	Librarian		
	Learning Resource Centre		
USN	Acharya Institutes		

10CS56

Fifth Semester B.E. Degree Examination, July/August 2022 Formal Languages and Automata Theory

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A

What is Automata? Discuss why to Study Automata.

(06 Marks)

- Define DFA and design DFA for the following languages:
 - Decimal integers divisible by 3.
 - String of a's and b's, such that every block of five consecutive symbols have atleast (ii)
- c. Define NFA and design an NFA for the language L^2 , where $L = \{awa \mid w \in \{a, b\}^n, n \ge 0\}$.

(04 Marks)

- Define ε-NFA and design an ε-NFA to accept decimal numbers and convert the constructed ε-NFA to its equivalent DFA.
 - b. Define a Regular Expression and give the Regular Expression for the following languages:

 - (i) $L_1 = \{a^n b^m \mid m+n \text{ is even}\}$ (ii) $L_2 = \{a^n b^m \mid m \ge 1, n \ge 1, n \ge 3\}$

(06 Marks)

c. Convert the following Finite Automata to a Regular Expression [Refer Fig.Q2(c)].

Fig.Q2(c)

(04 Marks)

State and prove pumping Lemma for regular languages.

(06 Marks)

b. Show that $L = \{ww \mid w \in \{a, b\}^*\}$ is not regular.

- (06 Marks)
- Minimize the following DFA using Table.Q3(c) filling algorithm.
- (08 Marks)

δ	0	1
$\rightarrow q_1$	q_2	q_3
q_2	q_3	q ₅
*q3	q_4	q_3
q 4	q_3	q ₅
*q5	q_2	q 5
Table	03	(c)

- Define the following terms with an example:
 - (i) Left Most Derivation (LMD)
 - (ii) Right Most Derivation (RMD)
 - Sentential form
 - Yield of a tree
 - Parse tree

(05 Marks)

(05 Marks) (05 Marks)

(05 Marks)

(05 Marks)

b. Define Context Free Grammar and generate CFG for the language: (i) $L_1 = \{ w = w^R \mid w \text{ is in } \{a, b\}^* \}$ (ii) $L_2 = \{ a^n b^m c^k \mid k = m + n, m, n, k \ge 0 \}$ (05 Marks) What is an ambiguous grammar? Show that the following grammar is ambiguous: (05 Marks) $S \rightarrow SbS | a$ Write the LMD, RMD and Parse Tree for the string "+ * - xyxy" using the grammar: (05 Marks) $E \rightarrow +EE \mid *EE \mid -EE \mid x \mid y$ PART - BDefine Push Down Automata and also discuss the languages accepted by a PDA. (06 Marks) b. Design a PDA to accept the language $L = \{0^{2n} \ 1^n \mid n \ge 1\}$ and also show the moves made by (10 Marks) PDA for the string "000011". c. Convert the following CFG to PDA: $S \rightarrow a A BB \mid a AA$ $A \rightarrow a BB \mid a$ $B \rightarrow b BB \mid A$ (04 Marks) $C \rightarrow a$ Eliminate the useless symbols and productions from the following grammar. $S \rightarrow AB \mid AC$ $A \rightarrow aA \mid bAa \mid a$ $B \rightarrow bbA \mid aB \mid AB$ $C \rightarrow aCa \mid aD$ (07 Marks) $D \rightarrow aD \mid bC$ b. Define CNF and convert the following grammar into CNF: $S \rightarrow ABa$ $A \rightarrow aab$ (06 Marks) $B \rightarrow Ac$ c. Prove that the family of context free languages is closed under union, concatenation and star closure. a. Design a Turing Machine for the language $L = \{0^n \ 1^n \ 2^n \ | \ n \ge 1\}$. Write the Transition diagram and also indicate the moves made by the Turing machine for the input "001122". (14 Marks) b. Define Turing Machine and Explain the working of a basic Turing Machine with a neat (06 Marks) diagram.

Universal Turing Machine.

Write short notes on:
a. Multi Tape Turing Machine

b. Non-Deterministic Turing Machine

c. Post's Correspondence Problem

* * * *