USN	
-----	--

18CS54

Fifth Semester B.E. Degree Examination, July/August 2022 Automata theory and Computability

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Define the following terms with an example ii) Alphabet ii) Power of an alphabet iii) String iv) String concatenation v) language. (05 Marks)
 - b. Explain the hierarchy of language classes in automata theory with diagram. (05 Marks)
 - c. Design DFSM for each of the following language.
 - i) $L = \{\omega \in \{0,1\}^* : \omega \text{ does not end in } 01\}$
 - ii) $L = \{ \omega \in \{a, b\}^* : \text{ every a in } \omega \text{ is immediately preceded and followed by b} \}.$

(10 Marks)

OR

a. Use MiNDFSM algorithm to minimize M given in Fig Q2(a).

Fig Q2(a)

(08 Marks)

b. Convert the following NDFSM given in Fig Q2(b) to its equivalent DFSM.

Fig Q2(b)

(08 Marks)

Design a mealy machine that takes binary number as input and produces 2's complement of the number as output. (04 Marks)

Module-2

- 3 a. Define Regular expression. Write regular expression for the following language.
 - i) $L = \{0^n 1^m \mid m \ge 1, n \ge 1, mn \ge 3\}$
 - ii) $L = \{ \omega \in \{a, b\}^* : \text{string with atmost one pair of consecutive a's} \}$

(08 Marks) (05 Marks)

b. Obtain NDFSM for the regular expression $(a^* \cup ab) (a \cup b)^*$.

c. Build a regular expression for the given FSM in Fig Q3(c).

Fig Q3(c)

(07 Marks)

OR

- 4 a. State and prove pumping Lemma theorem for regular language.

 b. Prove that regular languages are closed under complement.

 (08 Marks)

 (05 Marks)
 - c. Write regular expression, regular grammer and FSM for the languages $L = \{\hat{\omega} \in \{a, b\}\}$: w ends with pattern aaaa $\}$. (07 Marks)

Module-3

- 5 a. Define Context Free Grammer (CFG). Write CFG for the following languages $L = \{0^m \ 1^m \ 2^n : m \ge 1, n \ge 0\}.$ (05 Marks)
 - b. What is ambiguity in a grammar? Eliminate ambiguity from balanced parenthesis grammar? (08 Marks)
 - c. Simplify the grammar by removing productive and unreachable symbols

 $S \rightarrow AB|AC$

 $A \rightarrow aAb \in$

 $B \rightarrow bA$

 $C \rightarrow bCa$

 $D \rightarrow AB$

(07 Marks)

OR

- 6 a. Define PDA and design PDA to accept the language by final state method. (07 Marks) $L(M) = \{ \omega C \omega^R \mid \omega \in (a \cup b)^* \text{ and } \omega^R \text{ is reverse of } \omega \}$
 - b. Convert the following grammar to CNF

 $S \rightarrow ASB \in$

 $A \rightarrow a AS | a$

 $B \rightarrow SbS|A|bb$

(08 Marks)

c. Consider the grammar

 $E \rightarrow E + E|E * E|(E)|id$

Construct LMD, RMD and parse tree for the string (id + id * id).

(05 Marks)

Module-4

7 a. Define Turing Machine (TM). Design a TM for language

L = $\{0^n 1^n | n \ge 1\}$. Show that the string 0011 is accepted by ID.

(10 Marks)

b. Explain multiple TM with a neat diagram.c. Explain any two techniques for TM construction.

(05 Marks) (05 Marks)

OR

- 8 a. Design a TM for the language $L = \{1^n 2^n 3^n \mid n \ge 1\}$ show that the string 11 22 33 is accepted by ID. (12 Marks)
 - b. Demonstrate the model of Linear Bounded Automata (LBA) with a neat diagram. (08 Marks)

Module-5

- 9 a. Show that A_{DFA} is decidable. (05 Marks)
 - b. Define Post Correspondence Problem (PCP). Does the PCP with two list $x = (b, bab^3, ba)$ $y = (b^3, ba, b)$ have a solution. (08 Marks)
 - c. Explain quantum computation. (07 Marks)

OR

- 10 a. Prove the A_{TM} is undecidable. (05 Marks)
 - b. Does the PCP with two list x = (0, 01000, 01) y = (000, 01, 1) have a solution. (05 Marks)
 - c. State and explain Church Turning Thesis in detail. (10 Marks)
