USN

17CS54

Fifth Semester B.E. Degree Examination, July/August 2022 Automata Theory and Computability

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Define the following terms with example:
 - (i) Alphabet (ii) Power of an Alphabet (iii) Language

(06 Marks)

- b. Define Deterministic FSM. Draw a DFSM to accept decimal strings which are divisible by 3. (07 Marks)
- c. Convert the following NDFSM to its equivalent DFSM [Refer Fig.Q1(c)].

Fig.Q1(c)

Also write transition table for DFSM.

(07 Marks)

OR

a. Minimize the following FSM [Refer Fig.Q2(a)].

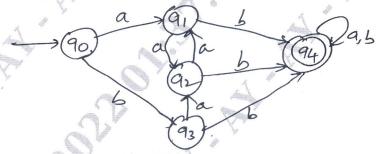


Fig.Q2(a)

(07 Marks)

- b. Construct a Melay Machine which accepts a binary number and produces its equivalent 1's complement. (07 Marks)
- c. Construct a Moore machine which accepts strings of a's and b's and count the number of times the pattern 'ab' present in the string. (06 Marks)

Module-2

- 3 a. Define Regular Expression. Obtain Regular Expression for the following:
 - (i) $L = \{ a^n b^m | m + n \text{ is even } \}$
 - (ii) $L = \{ a^n b^m | m \ge 1, n \ge 1, nm \ge 3 \}$
 - (iii) $L = \{ w : |w| \mod 3 = 0 \text{ where } w \in (a, b)^* \}$
 - (iv) $L = \{ a^{2n}b^{2m} | n \ge 0, m \ge 0 \}$

(08 Marks)

b. Let L be the language accepted by the following finite state machine. [Refer Fig.Q3(b)]

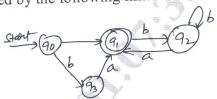


Fig.Q3(b)

Indicate for each of the following regular expression, whether it correctly describes L:

- (i) $(a \cup ba) bb^*a$
- (ii) $(\in \cup b)$ a $(bb^*a)^*$
- (iii) ba ∪ ab*a
- (iv) ba \cup ab \hat{a} \cup a
- $(v) (a \cup ba) (bb^*a)$

(05 Marks)

c. Consider the DFSM shown in below Fig.Q3(c).

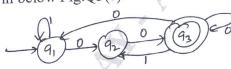


Fig.Q3(c)

Obtain the regular expressions $R_{ij}^{(0)}$, $R_{ij}^{(1)}$ and simplify the regular expression as much as (07 Marks) possible.

- a. State and prove the pumping Lemma theorem for regular language. (07 Marks) (07 Marks)
 - b. Show that the language $L = \{a^nb^n \mid n \ge 0\}$ is not regular.
 - c. If L_1 and L_2 are regular language then prove that $L_1 \cup L_2$, $L_1 \cdot L_2$ and L_1^* are regular (06 Marks) languages.

- Define CFG. Write CFG for the language 5
 - (i) $L = \{ 0^n 1^n | n \ge 1 \}$

(ii) $L = \{ a^n b^{n+3} | n \ge 1 \}$

(08 Marks)

b. Consider the grammar

 $E \rightarrow + EE \mid *EE \mid - EE \mid x \mid y$

Find LMD and RMD for the string +*- xy xy and write parse tree.

(08 Marks)

c. Is the following grammar Ambiguous?

$$S \rightarrow iC + S \mid iC + SeS \mid a$$

(04 Marks)

- Define PDA. Obtain PDA to accept the language $L(M) = \{w \subset w^R \mid w \in (a+b)^*\}$, where w^R (08 Marks) is reverse of w by a final state.
 - b. Convert the following CFG into PDA

 $S \rightarrow aABC$

 $A \rightarrow aB \mid a$

 $B \rightarrow bA \mid b$

 $C \rightarrow a$

(06 Marks)

c. Convert the following grammar into CNF:

 $S \rightarrow 0A \mid 1B$

 $A \rightarrow 0AA \mid 1S \mid 1$ $B \rightarrow 1BB \mid 0S \mid 0$

(06 Marks)

Module-4

7 a. Show that $L = \{a^n b^n c^n \mid n \ge 0 \}$ is not context free.

(06 Marks)

b. Prove that CFL's are closed under union, concatenation and star operation.

(06 Marks)

c. Design a Turing Machine to accept $L = \{0^n 1^n \mid n \ge 1\}$

(08 Marks)

OR

- 8 a. Design a Turing machine to accept $L = \{a^nb^nc^n \mid n \ge 1\}$. Show the moves made by TM for the string aabbcc. (10 Marks)
 - b. Explain with neat diagram, the working of a Turing machine model.

(05 Marks)

c. Write a note on Multitape turing machine.

(05 Marks)

Module-5

- 9 a. Design a turing machine to accept the language $L = \{0^n1^n \mid n \ge 1\}$. Draw the transition diagram. Show the moves made by this machine for the string 000111. (12 Marks)
 - b. Write short notes on:
 - (i) Post correspondence problem
 - (ii) Linear bounded automata.

(08 Marks)

OR

- Write short notes on:
 - a. Church turing thesis
 - b. Quantum computers
 - c. Classes of P and NP
 - d. Undecidable languages

(20 Marks)