2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Librarian	
Learning Resource	e Centre
Acharya Insti	tutes

USN			1			
CDIT						

Fourth Semester B.E. Degree Examination, July/August 2022 **Biochemical Thermodynamics**

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Define the following: 1
 - System and surrounding
 - Homogeneous and heterogeneous system
 - Closed and isolated system iii)
 - Intensive and extensive properties. iv)

(10 Marks)

18BT45

- b. A gas is confined in a 0.47m diameter cylinder by a piston, on which a weight is resting. Mass of piston and weight together is 150kg. Local acceleration due to gravity is 9.81m/s² and atmospheric pressure is 101.3kPa. Calculate:
 - What is the force in Newtons exerted on gas by atmosphere, (piston + weight) i)
 - Assuming that no friction exists between piston and cylinder. ii)
 - What is the pressure in kPa?

(10 Marks)

- Define the first law of thermodynamics for non flow process, thermodynamics, Heat reservoir and heat pump. (10 Marks)
 - b. Derive the first law of thermodynamics for flow process.

(10 Marks)

Module-2

Explain the PVT behavior of pure fluids.

- (08 Marks)
- Obtain PV^{γ} = constant for adiabatic process and obtain the expression for work done.

(12 Marks)

a. Explain the equations of state for real gases.

- b. One kilomole of carbon dioxide occupies a volume of 0.381m3 at 313K. Compare the pressures by
 - Ideal gas equation i)
 - Van-der-Waal's equation. ii)

Van-der-Waal's constant: $a = 0.365 \text{Nm}^4/\text{mol}^2$; $b = 4.28 \times 10^{-5} \text{m}^3/\text{mol}$.

(06 Marks)

Module-3

Explain the methods of obtaining thermodynamic properties. 5

(08 Marks)

b. Derive the Maxwell equations.

(12 Marks)

OR

Derive Clausius Clapeyron equation.

(06 Marks)

Show that for ideal gas $C_p - C_v = R$.

(06 Marks)

Derive the expression for Gibbs Helmholtz equation.

(08 Marks)

Module-4

- Explain the methods for the determination of partial molar properties. (10 Marks)
 - Derive the expression for chemical potential for the changes in free energy of a solution and the effect of temperature.

Explain Lewis-Randall rule. 8

(06 Marks)

ii) Henry's law. b. Define: i) Raoult's law

(04 Marks)

Alcohol solution containing 96% alcohol and 4% water is to be diluted to a solution containing 56% alcohol and 44% water (all are defined in weight basis) volume are as follows:

96% alcohol solution:

 $\overline{V}_{\rm w} = 0.816 \times 10^{-3} \, m^3 \, / \, kg \; ; \; \overline{V}_E = 1.273 \times 10^{-3} \, m^3 \, / \, kg$

56% alcohol solution

 $\overline{V}_{\rm w} = 0.953 \times 10^{-3} \, {\rm m}^3 \, / \, {\rm kg}$; $\overline{V}_{\rm E} = 1.243 \times 10^{-3} \, {\rm m}^3 \, / \, {\rm kg}$

density of water is $0.997 \times 10^3 \text{kg/m}^3$.

- How much water would be added to 2×10^{-3} m³ of laboratory alcohol?
- What is the volume of dilute alcohol obtained? ii)

(10 Marks)

Module-5

- Explain the criteria for chemical reaction equilibrium and the factors affecting chemical (10 Marks) equilibrium.
 - Derive the Vant Hoff equation and the effect of temperature.

(10 Marks)

OR

Obtain the expression for the relation between K and ΔG° . 10

(10 Marks)

Derive the expression for effect of temperature on K.

(10 Marks)