	Librarian Learning Resource Centre	GBGS SCHEME
USN	Acharya Institutes	

18AU754

(05 Marks)

Seventh Semester B.E. Degree Examination, July/August 2022 Introduction to Electric Vehicles

Time: 3 hrs. Max. Marks: 100

	-			
	N	ote: Answer any FIVE full questions, choosing ONE full question from each mo	dule.	
1		Module-1	D 00' '	
1	a.	Discuss the need for an electric drive visa-vis and IC engine based on (i)	Efficiency	
	h	(ii) Pollution (iii) Capital and operating cost (iv) Dependence on oil	(10 Marks)	
	υ.	Explain major issues of electric vehicles.	(10 Marks)	
		OR		
2	a.	Briefly give an account of past 30 years development of electric vehicles.	(10 Marks)	
_		What is the engineering philosophy of electric vehicles? Brief on key EV technology		
	0.	what is the engineering philosophy of electric vehicles: Brief on key E v technology	(10 Marks)	
		Module-2	(1011111)	
3	a.	Write briefly on conductors and insulators.	(06 Marks)	
	b.	Explain the functions of resistors, relays, capacitors and solenoids.	(08 Marks)	
	C.	What are the weight and size parameters considered for electric vehicles?	(06 Marks)	
			(
		OR		
4	a.	Classify AC and DC motors. Explain the working of a simple DC motor of brushe	ed type.	
	1		(10 Marks)	
	b.	Explain what are the energy and performance parameters of an EV?	(10 Marks)	
		Madala		
5	a.	With the aid of a block diagram describe major components of a Pottory O	annoted EV	
3	а.	With the aid of a block diagram, describe major components of a Battery O ₁ (BOEV).		
	b.	Make a comparison of a battery operated EV (BOEV) with IC engine vehicle (1	(10 Marks)	
	0.	reference to, (i) torque (ii) emission. Further, list out the disadvantages of an EV.		
(10 Marks)				
		OR		
6	a.	Using / drawing a schematic diagram, explain regenerative braking and the e	nergy flow	
		during acceleration and braking.	(10 Marks)	
		Write a brief note on steps followed in logical diagnosis of the battery opera		
		vehicle.	(10 Marks)	
		Module-4		
7	a.	Define the following parameters with reference to an EV battery:		
		(i) Battery capacity.		
		(ii) Discharge rate.		
		(iii) Depth of discharge (DoD)		
		(iv) State of charge (SoC)		
	l _e	(v) State of Discharge (SoD)	(10 Marks)	
	b.	A 3.5 V battery is at 2.7 V at SoC of 0% and 4.3 V at SoC of 100%. This implies		
		of the battery lies between $3.5 \pm \Delta\%$ volts. Find Δ .	(05 Marks)	

c. Assuming SoC is a linear function of voltage what is (i) SoC at 4 V and (ii) Voltage at

SoC of 64%? Assume the relation, SoC = (100V-270)/1.6

OR

- 8 a. Discuss briefly how battery rating is done in the following cases:
 - (i) Cold Cranking Amps (CCA)
 - (ii) Cranking Amps (CA)
 - (iii) Ampere-Hour (Ah)
 - (iv) Reserve capacity (RC)
 - (v) Watt-hour (Wh).

(10 Marks)

- b. Sketch and explain the working of a,
 - (i) lead-acid battery
 - (ii) Nickel-metal hydride (NiMH) battery.

(10 Marks)

Module-5

- 9 a. Mention different types of fuel cells. With a schematic sketch explain the working of a proton exchange membrane fuel cell. (10 Marks)
 - b. Explain the working of a solid oxide fuel cell, with the aid of a neat sketch.

(10 Marks)

OR

- 10 a. What are the challenges and solutions for hydrogen storage systems? (06 Marks)
 - b. Write a brief note on reformers and explain how a typical methanol-steam reformer works.

(08 Marks)

c. Make a brief note on fuel cell EV, with a simple block diagram.

(06 Marks)

* * * * *