15AE35

Third Semester B.E. Degree Examination, July/August 2022 Mechanics of Fluids

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Two large plane surfaces are 24 cm apart. The space between the surfaces is filled with glycerin. What force is required to drag a thin plate of surface area 0.5 m² between the two large plane surfaces at a speed of 0.6 m/s, if:
 - (i) The thin plate is in middle of the two plane surfaces and
 - (ii) The thin plate is at a distance of 0.8 cm from one of the plane surfaces?

Take the dynamic viscosity of glycerin = $8.10 \times 10^{-1} \text{ NS/m}^2$. (08 Marks)

b. Explain compressibility and bulk modulus. Derive a relationship between (K) and pressure (P) for a gas during isothermal and adiabatic process. (08 Marks)

OR

- 2 a. Derive an expression for total pressure and center of pressure for an inclined plane surface submerged in liquid. (08 Marks)
 - b. Explain conditions of equilibrium for a floating and submerged bodies. (08 Marks)

Module-2

3 a. Explain different types of fluid motion.

an oil.

(08 Marks)

b. In a two dimensional incompressible flow, the fluid velocity components are given by u = x - 4y and v = -y - 4x. Show that velocity potential exists and determine its form.

(08 Marks)

OR

- 4 a. Derive an expression for continuity equation in 3D, in differential form for steady incompressible flow. (08 Marks)
 - b. For a finite control volume fixed in space, derive momentum equation in integral form.

(08 Marks)

Module-3

5 a. Derive an expression for discharge through venturimeter.

(08 Marks)

(16 Marks)

b. A non uniform part of pipe line 5m long is laid at a slope of 2 in 5. Two pressure gauges each fitted at upper and lower ends read 20 N/cm² and 12.5 N/cm². If the diameter at the upper and lower ends are 15 cm and 10 cm respectively. Determine quantity of water flowing per second.

(08 Marks)

OR

Using Buckingham's π theorem, shown that the discharge Q consumed by an oil ring is given by $Q = Nd^3\phi \left[\frac{\mu}{\rho Nd^2}, \frac{\sigma}{\rho N^2d^3}, \frac{\omega}{\rho N^2d}\right]$ where d is internal diameter of the ring. N is rotational speed, ρ is density, μ is viscosity σ is surface tension and ω is specific weight of

Module-4

- 7 a. Explain Kutta-Joukowsky theorem.

 b. Derive an expression for drag and lift.

 (06 Marks)

 (06 Marks)
 - c. Explain stream-lined body and Bluff body. (04 Marks)

OR

a. Derive Von Kerman integral equation for boundary layer flows. (10 Marks)
 b. Find the displacement thickness, momentum thickness and energy thickness for velocity distribution in the boundary layer given by ^u/_U = ^y/_δ, where μ is velocity at a distance y from the plate and u = U at y = δ, where δ = boundary layer thickness. Also calculate value of δ*/θ. (06 Marks)

Module-5

- 9 a. Derive an expression for velocity of sound wave in a fluid. (08 Marks)
 - b. Derive Bernoulli's equation for:
 - (i) Isothermal process
 - (ii) Adiabatic process in a steady compressible flow. (08 Marks)

OR

- 10 a. Derive expression for:
 - (i) Stagnation density
 - (ii) Stagnation temperature for a compressible fluid (10 Marks)
 - b. Explain propagation of disturbance in a compressible fluid for subsonic, sonic and supersonic mach numbers. (06 Marks)

* * * * *