	Le	am	L	ibra	aria sou	n rce	Cer	ntre	GE	}G	3	SCH	
USN		Ac	ha	rya	Ins	titu	es						

17AE34

Third Semester B.E. Degree Examination, July/August 2022 **Mechanics of Materials**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Derive the equilibrium equations in polar co-ordinates for a two dimensional state of stress. 1
 - b. Consider a displacement field $U = [y^2i + 3yzj + (4 + 6x^2)k]$. What are the rectangular strain components of the point P(1, 0, 2). (10 Marks)

- Draw stress-strain curve for mild steel and mention the salient points. 2 (04 Marks)
 - Write a note on material selection for structural performance. (08 Marks)
 - A stepped bar of steel, held between two supports as shown in Fig.Q.2(c), is subjected to loads $P_1 = 80$ kN and $P_2 = 60$ kN. Find the reactions developed at ends 'P' and 'Q'. (08 Marks)

Module-2

- Derive the relations between load, shear force and bending moment.
 - (08 Marks) A symmetric I-section beam with flange dimension 180mm × 15mm and web dimension 280 × 15mm is subjected to a bending moment 120kN and a shear force of 60kN. Determine bending stress and shear stress distribution along its depth of the section. (12 Marks)

- What is three-dimensional beam theory? Give its kinematic description. (10 Marks)
 - b. Find the principle centroidal bending stiffness of the beam shown in Fig.Q.4(b), the axial stiffness of section is S = Et(bth). (10 Marks)

Module-3

5 a. Derive Torsion equation. List its assumption.

(10 Marks)

b. A hollow cylinder shaft 200mm external diameter and thickness of metal 25mm is transmitting power at 200rpm. The angle of twist over a length of 2m was found to be 0.5° . Calculate the power transmitted and the maximum shear stress induced in the section. Take G = 84GPa. (10 Marks)

OF

- 6 a. Derive following equations for this walled beams:
 - i) Thin walled assumption
 - ii) Stress flows

iii) Stress resultants.

(12 Marks)

b. What is warping of thin walled beam under torsion? Give its kinematic description.

(08 Marks)

Module-4

7 a. Define principle of virtual work for a particle. Obtain the equilibrium of a particle.

(10 Marks)

b. List the difference between virtual work and complementary virtual work.

(10 Marks)

OR

- 8 a. Explain in detail the following theorems:
 - i) Castiglione's theorem
 - ii) Clapeyron's theorem
 - iii) Maxwell's theorem.

(15 Marks)

b. Explain conservative force.

(05 Marks)

Module-5

9 a. Explain Trescas and Von Mises criterions.

(10 Marks)

b. A rigid rod ABCD is supported by a hinge at 'A' and two wires at 'B' and 'C' as shown in Fig.Q.9(b). Determine the stresses and elongations of two wires. Take $E_S = 200$ GPa and $E_C = 100$ GPa. (10 Marks)

OR

10 a. Derive the six-strain displacement equations of Kirchhoff's plate theory. (10 Marks)

b. Derive the displacement equation for a simply supported circular plate under uniform pressure 'P₀'. (10 Marks)

* * * * *