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Preface

Dynamics has been an important part of mechanics in various disciplines. Rock dynam-
ics, too, is an important part of rock mechanics, where an increased rate of loading
induces a change in the mechanical behaviour of the rock materials and rock masses.

The study of rock dynamics is important because many rock mechanics and rock
engineering problems involve dynamic loading ranging from earthquakes to vibrations
to explosions, and rock failure under those dynamic loads as well as dynamic failure
under static loads. However, due to the additional “4th’’ dimension of time, dynamics
has been a more challenging topic to understand and to apply. It remains, at least in
the discipline of rock mechanics, a relatively uncultivated territory, where research and
knowledge are limited.

In 2008, the Commission on Rock Dynamics was set up within the International
Society for Rock Mechanics (ISRM). One of the aims of the Commission is to share
and exchange knowledge in rock dynamics research and to produce documents on the
study and engineering applications of rock dynamics.

In the summer of 2009, the ISRM Commission on Rock Dynamics organised its
first workshop in Lausanne, Switzerland. It was at this workshop that participants
felt that there was a lack of a comprehensive knowledge base and the Commission
should organise researchers to prepare a document summarising the state-of-the-art.
This edited book is a direct result of that discussion.

The book aims to provide a summary of the current knowledge of rock dynamics for
researchers and engineers. It consists of 18 chapters contributed by individual authors.
The topics chosen are wide-ranging, covering fundamental theories of fracture dynam-
ics and wave propagation, rock dynamic properties and testing methods, numerical
modelling of rock dynamic failure, engineering applications in earthquakes, explosion
loading and tunnel response, as well as dynamic rock support.

The editors would like to thank all the contributing authors. The editing effort by
Ms Haiying Bian is greatly appreciated. The CRC Press team, particularly Mr Janjaap
Blom and Mr Richard Gundel, also provided publishing support.

Yingxin Zhou and Jian Zhao
March 2011

© 2011 Taylor & Francis Group, London, UK
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Chapter 1

Introduction

Yingxin Zhou and Jian Zhao

1.1 SCOPE OF ROCK DYNAMICS

Rock dynamics, as a branch of rock mechanics, deals with the responses of rock (mate-
rials and masses) under dynamic stress fields, where an increased rate of loading (or
impulsive loading) induces a change in the mechanical behaviour of the rock materials
and rock masses. Figure 1.1 is an example showing the different failure behaviours for
a rock material under static and dynamic loads.

Differing from static mechanics, dynamic stresses are in the forms of stress waves
propagating in the loaded medium with time, and therefore the response of rock is
influenced by, and interacts with, the stresses in motion. Rock dynamics deals not
only with the end effects of the forces, but also the processes of the forces acting on
the rocks. In these processes, both forces and objects are in motion. Rock dynamics
specifically examines the processes of dynamic motions of both the forces and the
rocks, at different scales varying from micro particles to rock blocks.

Rock dynamics as a science subject covers a wide scope related to forces, and
responses of rock, in the time domain. It deals with the distribution of stress fields,

Figure 1.1 Rock specimens after failure under static (left) and dynamic (right) loads.

© 2011 Taylor & Francis Group, London, UK



2 Advances in Rock Dynamics and Applications

Wave sources:
Seismic
Earthquake
Impact
Explosion
Blasting

Wave properties:
P- and S-wave
Interface-wave
Frequency
Amplitude 

Wave propagation 

Rock 1 Rock 2

(1) Dynamic properties of rock materials;
effect of materials and microstructures on
wave transmission and damping

(2) Dynamic properties and behaviour of rock
fracture; effects of a single fracture on wave
transmission

(3) Dynamic behaviour of joint sets and rock
mass; effects of joint sets on wave
attenuation and equivalent mass properties

(6) Response of fractured rock masses to
dynamic loads; prediction of wave
propagation in fractured rock masses

(4) Dynamic response of
interfaces to dynamic load;
effects of interfaces on wave
propagation

(5) Stability and damage of rock
structures to dynamic load;
effects of free boundary, rock
reinforcement and bolts on wave
propagation

Figure 1.2 Typical rock dynamic problems in tunnels and caverns (after Zhao et al., 1999).

responses and properties of rocks, and dynamic behaviour coupled with the physical
environment.

Sources of dynamic loads include explosion, impact, and seismic events. These
loads are typically given in the form of time histories of particle acceleration, velocity,
or displacement.

The distribution of a dynamic stress field is in the form of a stress wave moving
in the loaded medium, including the propagation behaviour of the stress wave. Stress
wave propagation in rock masses is governed by wave transmission and transformation
across the discontinuities (rock joints) in the rock masses.

The response of rock materials and rock masses under dynamic stress field includes
displacements of rock at particle scale, material fracturing and failure, and large
movements at discontinuities. Rock fracturing, for example, is a dynamic micro-scale
process leading to macro-scale deformation and failure.

Rock dynamic behaviour is often coupled with, and frequently induced by, the
physical environment, e.g. water and temperature. Changes of physical environment
may alter the stress fields as well as the properties of the rock materials and rock
masses, hence leading to dynamic responses of the rocks.

Rock dynamics has applications in mining, energy, environmental and civil engi-
neering, when dynamic loads and behaviours are encountered. Figure 1.2 illustrates
typical rock dynamics issues related to the construction and utilisation of a storage
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Introduction 3

cavern. Some of the applications are summarised in, but not limited to, the items
below.

a) Construction: rock excavation and fragmentation by blasting and by mechanical
means, stability of rock mass and rock support under various dynamic loads,
protection of rock falls, use of seismic waves for ground exploration;

b) Energy and mining: rock burst and support in deep mines, fracturing of hot rock
in geothermal fields, effects of water injection and induced seismic events; and

c) Environment: earthquake effects on slopes and landslides, hazard and risk control
due to explosion and blast, effects of blasting vibrations on existing structures,
seismic damage to structures in and on rocks.

1.2 ISRM COMMISSION ON ROCK DYNAMICS

Understanding the effects of dynamic loading on rock and built structures (e.g. tunnels
and caverns with their associated reinforcement and support) is essential in dealing
with the various rock dynamics problems such as dynamic support design and safety
assessment. However, guidance and standards in dynamic analysis and design are
generally lacking, and much of the research work done on rock dynamics for military
purposes has not been easily available for the general public. For example, there are no
existing standard methods for rock dynamic testing, and in rock engineering practice,
guidelines and design methodologies for dealing with dynamic problems are generally
lacking.

It was against this background that the International Society for Rock Mechanics
(ISRM) established a Commission on Rock Dynamics in January 2008. The aim of the
Commission (ISRM 2010) is to:

i) Provide a forum for the sharing and exchange of knowledge in rock dynamics
research and engineering applications, including organising commission meetings,
workshops, seminars and short courses;

ii) Co-ordinate rock dynamic research activities within the ISRM community as well
as with other research and professional organizations; and

iii) Produce reports and guidelines on the study and engineering applications of rock
dynamics covering fundamental theories, dynamic properties of rock and rock
mass, testing methods, tunnel response, and support design.

Specifically, the Commission’s work scope (ISRM 2010) covers:

i) Characterisation of dynamic loading sources,
ii) Rock dynamic properties and their determination,

iii) Propagation of dynamic stress waves in geological media,
iv) Rock damage criteria and damage assessment, and
v) Dynamic rock support design.

Under the work plan of the Commission, and resulting from its first workshop
held in Lausanne, Switzerland in June 2009, Suggested Methods for determining
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4 Advances in Rock Dynamics and Applications

the dynamic strength parameters (uniaxial compression and the Brazilian tension)
and fracture toughness of rock materials have been drafted, all based on the split
Hopkinson pressure bar (SHPB) techniques. In addition, a thorough literature review
was conducted by members of the Commission, and formed the basis for the workshop
discussions and content of this book.

1.3 ABOUT THIS BOOK

This book is partially a result of the activities of the ISRM Commission on Rock
Dynamics. Several contributions are made by non-members. The book is intended to
present some recent advances in rock dynamics and engineering applications. It is to
be used as a reference for research.

This book consists of 18 chapters representing rock dynamics research and appli-
cations. Efforts have been made to be as consistent as possible, in terms of uses of
symbols, style and references.

While each chapter is independently prepared by individual authors, the 18 edited
chapters have been organised into roughly five sections. Chapter 1 provides an intro-
duction to the topic and background of the ISRM Commission on Rock Dynamics and
this edited book, while Chapter 2 provides an overview of the state of the art in rock
dynamics research. Chapters 3 to 7 discuss various testing techniques for determining
the dynamic properties of rock material. Chapters 8 to 10 focus on some fundamen-
tal theories related to rock fracturing under dynamic loads and wave propagation in
geological media. Chapters 11 to 14 deal with numerical modelling using some of the
most advanced numerical techniques of both continuum and discontinuum methods
focusing on micromechanics modelling of rock dynamics problems. Finally, Chapters
15 to 18 present some applications in interpretation of seismic effects, tunnel responses
under explosion loading and dynamic rock support.

REFERENCES

ISRM, website of the International Society for Rock Mechanics (ISRM), Commission on Rock
Dynamics, http://www.isrm.net (2010).

Zhao, J., Zhou, Y.X., Hefny, A.M., Cai, J.G., Chen, S.G., Li, H.B., Liu, J.F., Jain, M., Foo,
S.T. and Seah, C.C.: Rock dynamics research related to cavern development for ammunition
storage. Tunnelling and Underground Space Technology 14(4) (1999), pp.513–526.
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Chapter 2

An overview of some recent progress
in rock dynamics research

Jian Zhao

2.1 INTRODUCTION

Dynamics, as a branch of mechanics, deals with dynamic load (stress), deformation
(strain) and failure (fracturing) in relation to time. Hence rock dynamics covers a
wide scope, ranging from the initiation of dynamic loads, forms of dynamic loads,
transmission and attenuation of dynamic loads, rock fracturing and damage under
dynamic loading, to support of rock under dynamic conditions.

This chapter provides a summary of recent progress in some areas of rock dynam-
ics. It covers stress wave propagation and attenuation, loading rate effects on rock
strength and discontinuous micromechanics modelling of dynamic fracturing.

2.2 STRESS WAVE PROPAGATION AND ATTENUATION

Dynamic loads are generally presented in the form of stress waves. Stress waves, similar
to other physical waves, attenuate during propagation, particularly at discontinuities.
Since the rock masses are generally discontinuous, containing joint sets, stress wave
attenuation at joints is the dominating cause of overall wave attenuation in rock masses.
Current researches on wave propagation in rock masses have been focused on wave
transmission and transformation across joints.

2.2.1 Dynamic loads and stress waves

Dynamic loads are generally the loads applied in a short duration, including impact,
cyclic, explosion, and earthquake. For example, impact load, perhaps the most com-
mon dynamic load, is the load generated by knocking/hitting of one object onto another
object, with very short time duration.

As distinct from static loads, which are generally treated as constant without
change in time, dynamic loads change with time. An impact load typically rises quickly
from zero to peak and ends in zero, within a very short loading duration. There-
fore, they are in the form of waves. Typical forms of dynamic loads are illustrated in
Figure 2.1.

The dynamic loading is applied at a point/plane in stress wave forms, and the
stress moves further and applies to the next points/planes. The wave propagates at
a speed that is governed by the medium in which the wave travels. This speed is
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Figure 2.1 Various types of dynamic loads and their waveforms. Top left: blast wave measured from
an explosive test (Zhao et al., 1999b). Top right: impact wave measured from a SHPB test
(Li, Ma and Huang, 2010). Bottom: ground acceleration of the Turkmenistan earthquake
measured on 6 December 2000 (Landes, Ritter and Wedeken, 2009).

Table 2.1 Typical compressional wave velocities of various rocks.

P-Wave P-Wave P-Wave
Igneous Velocity Sedimentary Velocity Metamorphic Velocity
Rock (m/s) Rock (m/s) Rock (m/s)

Granite 4500–6500 Conglomerate 1500–4500 Gneiss 5000–7000
Diorite 4500–6700 Sandstone 1500–5000 Schist 4500–6500
Gabbro 4500–7000 Shale 2000–4600 Phyllite 4500–6000
Rhyolite 4500–6000 Mudstone 2000–4600 Slate 3500–4500
Andesite 4500–6500 Dolomite 3500–6000 Marble 5000–6000
Basalt 5000–7000 Limestone 3500–6000 Quartzite 5000–7000

generally known as seismic velocity, and is the speed of the wave passing through
the medium. For a specific medium, seismic velocity is a constant, unless the medium
becomes discontinuous. The two most common seismic waves are the compressional
(P) wave and the shear (S) wave. Typical values of P wave velocities in rocks are given
in Table 2.1.

When a stress wave travels in a medium (solid or fluid), stress is applied to particles
of the medium. The particles are accelerated to oscillate around their original positions.
The speed of particle movement is termed the particle velocity, and it is the physical
speed of particles moving back and forth in the direction the stress passing through.
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An overview of some recent progress in rock dynamics research 7

Particle velocity should not be confused with the seismic velocity, as the latter has a
much larger value. The particle velocity is governed by the magnitude and speed of the
load. A high particle velocity is generally produced by a high amplitude of the stress
wave. Peak particle velocity is often used as a key parameter assessing the failure and
stability of rock masses and engineering structures in and on the rocks.

When a stress wave propagates across a rock mass, its amplitude is mainly atten-
uated at the presence of joints, due to the discontinuity in particle movements. Wave
attenuation at joints accounts for a great deal of wave attenuation in a rock mass.

2.2.2 Theoretical approaches for wave propagation

There are mainly four models for studying the influences of joints on elastic wave prop-
agation. They are the layered medium model (LMM), the displacement discontinuity
model (DDM), the wave scattering model (WSM), and the equivalent medium model
(EMM), as summarised in Table 2.2.

With the LMM, which is also termed as the perfect bonded interface model
or the displacement continuity model by some researchers, both the stresses and
displacements across the joint are continuous (Ewing, Jardetzky and Press, 1957;
Brekhovskikh, 1980). There are two kinds of treatment of joints within the LMM.
The joint can be modelled as a perfectly bonded interface, or as a layer of the filled
weak medium sandwiched between two fully-bonded interfaces

The DDM treats each joint as a non-welded interface of zero thickness. It was
originally developed by Mindlin (1960) and applied to seismic wave propagation by
Schoenberg (1980). The basic assumption of this method is that, as a wave propa-
gates through a joint, the particle displacements are discontinuous. The displacement
discontinuity is equal to the stress divided by the specific joint stiffness. When the
joint specific stiffness approaches infinity, the interface becomes a perfectly welded
boundary, which can also be modelled with the LMM. When the joint specific stiff-
ness approaches zero, the interface becomes a free surface. For joints with viscoelastic
deformational behaviour, the particle velocities as well as the particle displacements
are discontinuous (Pyrak-Nolte, Myer and Cook, 1990a). When the joint is filled with
viscoelastic material, e.g., saturated sand or clay, due to the existence of the initial
mass of the filled joint, besides the particle displacements and velocities, the stresses
across the joint are also discontinuous.

The WSM treats the joint as a plane boundary with a distribution of small cracks
and voids (Achenbach and Kitahara, 1986; Hudson, 1981; Hudson, Liu and Crampin,
1996). The wave reflection and transmission across a joint is the result of wave scatter-
ing through all cracks. According to this model, the stress waves propagating through
the joint are considered to be uniformly scattered by the cracks, provided that the crack
size is small compared with the wavelength. Apparent wave attenuation due to the scat-
tering of energy at cracks is considered as the principal attenuation mechanism. The
wave propagation is determined by crack geometry, crack distribution, crack density,
saturation and other parameters. If cracks are filled with liquid, intrinsic attenuation
can be taken into account based on the viscous dissipation by the filling liquid.

The EMM (White, 1983; Schoenberg and Muir, 1989; Schoenberg and Sayers,
1995; Li, Ma and Zhao, 2010) treats problems from the viewpoint of entirety. From the
EMM, a material and the contained joints together are approximated by an equivalent
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8 Advances in Rock Dynamics and Applications

Table 2.2 Theoretical approaches for wave propagation in discontinuous medium.

Boundary
equations to Advantages and

Models describe the joint Relations Applications Disadvantages

LMM �ui = 1
f(d,Mr,Mf)

σi3 k and η can be Filled joint; A: accurate.
Layered obtained from perfectly D: very complex.
medium (For filled joint) Mr and Mf, or bonded joint.
model �ui = 0 Gc, Mr and

(For perfectly Mc; Mf can be
bonded joint) obtained from

Gc and Mc.

DDM �ui = 1
f(k, η)

σi3 Non-perfectly A: simple.
Displacement bonded joint D: valid only when
discontinuity with thickness joint thickness is
model much smaller much smaller than

than wavelength. wavelength.

WSM �ui = 1
f(Gc, Mr, Mc)

σi3 Joint containing A: accurate.
Wave a great number D: geometry and
scattering of cracks. distribution of
model cracks are difficult

to obtain.

EMM Changes of Estimate the A: convenient in
Equivalent equivalent moduli overall influence engineering
medium due to the presence of joints on wave applications.
model of joints are a transmission D: loss of joint

function of discreteness and
parameters used in accuracy.
boundary equations
of LMM, DDM or
WSM.

Note: d is the joint thickness, Mr is the mechanical properties of the rock material, Mf is the mechanical properties
of the filled medium,k is the joint specific stiffness,η is the joint specific viscosity,Gc is the geometric and distribution
properties of the cracks, Mc is the mechanical properties of the cracks.

continuous, homogeneous and isotropic medium. Thus, stress waves propagate as if
the jointed medium is continuous, homogeneous and isotropic. The effect of joints is
lumped into effective moduli of the equivalent medium. The methods for calculating
the effective moduli are mainly based on the geometry, structures, distributions of the
joints, and the filling contained in the joints.

Wave propagation across a single joint has been extensively studied. However,
joints in nature are in parallel form as joint sets. Multiple wave reflections among
joint sets have great effect on wave propagation (Schoenberger and Levin, 1974; Cai
and Zhao, 2000). The overall reflected and transmitted waves are the result of the
superposition of reflected and transmitted waves arriving at different times. A simpli-
fied method was proposed by ignoring multiple wave reflections as a short-wavelength
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An overview of some recent progress in rock dynamics research 9

Table 2.3 Different methods applicable for studying wave propagation in jointed rock masses.

Methods Domain application Dimension Analyticity Material damping

MC Time 1D Semi-analytical Not considered
SMM Frequency and time 1D and 2D Semi-analytical Considered
VWSM Frequency and time 1D and 2D Semi-analytical Considered
SAM Frequency and time 1D Analytical Considered

n�1 n�1

j�1

t/∆t

a

db c

x/(αp ∆t)n

j

Right-running
characteristic

Left-running
characteristic

Fracture

Figure 2.2 Characteristics in the nondimensional x-t plane (Cai and Zhao, 2000).

approximation (Pyrak-Nolte, Myer and Cook, 1990b; Myer et al., 1995). The trans-
mission coefficient across one joint set is calculated as the product of transmission
coefficients of individual joints. However, laboratory experiments (Hopkins, Myer
and Cook, 1988; Pyrak-Nolte, Myer and Cook, 1990b; Myer et al., 1995) found that
the simplified method was valid only when the first arriving wave was not contam-
inated by multiple wave reflections. When the incident wavelength is comparable to
or larger than the joint spacing, the simplified method is not applicable. So far, there
are four methods which take into account multiple wave reflections among joints, i.e.
the method of characteristics (MC), the scattering matrix method (SMM), the virtual
wave source method (VWSM), and the superposed analytical method (SAM). The
characteristics of the methods are summarised in Table 2.3 and discussed in detail in
Chapters 9 and 10.

The MC (Achenbach, 1973) is a mathematical tool for studying wave propagation
across different layers, where multiple wave reflections are taken into account. Based
on a one-dimensional wave equation, relations between particle velocity and stress
along right- and left-running characteristics can be built (Fig. 2.2). Combined with the
DDM, Cai and Zhao (2000) introduced the MC to study wave propagation across
parallel joints with linear elastic deformational behaviours. Joints with nonlinear and
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10 Advances in Rock Dynamics and Applications

Coulomb slip behaviour (Zhao and Cai, 2001; Zhao, Zhao and Cai, 2006) were also
studied with the MC.

The SMM, which is also termed the propagation matrix method, was origi-
nally used to study electromagnetic wave propagation (Collin, 1992), and adopted
to study wave propagation across rock joints (Aki and Richards, 2002; Perino, Barla
and Orta, 2010). When an elastic wave impinges on a discontinuity, a scattering
phenomenon takes place and can be described by a scattering matrix. When more
parallel joints are present, the scattering matrices of each one are combined according
to a standard algorithm in order to describe the behaviour of the complete struc-
ture, with due consideration of all multiply-reflected waves. The global scattering
matrix contains the global reflection and transmission coefficients of a set of parallel
discontinuities.

The VWSM, combined with the EMM, is introduced initially for studying nor-
mally incident wave propagation across one joint set, where multiple wave reflections
among the joints were considered (Li, Ma and Zhao, 2010). The VWS exists at each
joint surface and produces a new wave, which is equal to the reflected wave, at each
time when an incident wave propagates across the VWS. The VWSM is extended to
study the effects of discretely jointed rock masses combined with the DDM (Zhu et al.,
2011). With the DDM, VWS exists at the joint position and represents the mechani-
cal properties of the joint. It produces one reflected wave and one transmitted wave
each time a normally incident wave arrives at the joint, two reflected waves and two
transmitted waves each time an obliquely incident wave arrives at the joint.

Solutions for the MC, the SMM and the VWSM are not explicitly expressed and
can be regarded as semi-analytical. The Superposed Analytical Method (SAM) is a new
and explicitly expressed analytical method, where multiple wave reflections among
joints are superimposed in the analytical solutions (Zhu, 2011). Assuming, but not
limiting, that the background rock media of the opposite sides of each joint are iden-
tical, the mechanical properties are the same for every joint, and joints are equally
spaced, the reflection and transmission coefficients across 2n joints, which are consid-
ered as basic solutions, can be expressed as a function of the reflection and transmission
coefficients across 2n−1 joints. Detailed description of the analytical solutions can be
found in Zhu (2011).

R2n = R2n−1 + T2n−1
2R2n−1ei4πξ

1 − R2n−1 2ei4πξ
, (2.1)

T2n = T2n−1
2ei2πξ

1 − R2n−1 2ei4πξ
(2.2)

where R and T are reflection and transmission coefficients, respectively, and ξ is the
nondimensional joint spacing, which is defined as the ratio of joint spacing to the
wavelength.

In the SAM, the reflection and transmission coefficients across other numbers of
joints can be derived through basic solutions. This analytical method can be applied to
joints described by different models only if the reflection and transmission coefficients
across a single joint are available. It should be noted that this method can also be used
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An overview of some recent progress in rock dynamics research 11

to study the general cases where the background rock media of the opposite sides of
each joint are different, the mechanical properties are different for every joint, and
joints are not equally spaced. Besides, the method can be extended to study obliquely
incident wave propagation across one joint set by using a matrix.

Some of the 1D and 2D analytical methods to take into account multiple wave
reflections among joints, which are currently available and applicable to studying
wave propagation across rock joints and rock masses, are summarised in Table 2.3.
Depending on the problem to be solved, a specific model or method can be chosen and
adopted.

The study on dynamic stress wave propagation across joints at present is limited to
the assumption that the joint may deform (linear and non-linear) but is not damaged.
This is often not true in reality. A joint could be crushed and sheared when the stress
wave is imposed on it. Damage to the joint contact interface will consume energy and
reduce further the wave transmission. Such interaction between wave transmission and
joint damage has not been considered so far in the studies. It is envisaged that further
research will explore this interaction by combining the works on wave propagation
across joints and material fracturing/failure at joint surfaces.

2.2.3 Numerical modelling of wave propagation

Compared with theoretical and experimental studies, numerical modelling provides a
convenient and economical approach to study wave propagation across a jointed rock
mass, especially for complicated cases where theoretical solutions are impossible to
obtain and experiments are difficult to conduct.

The representation of joints is a key difficulty in numerical modelling for wave
propagation across jointed rock masses. In the finite element method (FEM), joints
are often treated as individual elements called joint elements (Goodman, Taylor and
Brekke, 1968; Ghaboussi, Wilson and Isenberg, 1973). Boundary interfaces are often
used to model joints with the FEM and boundary element method (BEM) (Beer, 1986)
or between BEMs (Crotty and Wardle, 1985; Pande, Beer and Williams, 1990). Joints
are treated as slide lines in the finite difference method (FDM) (Schwer and Lindberg,
1992). In the discrete element method (DEM), a rock mass is represented as an assem-
bly of discrete blocks and joints as interfaces between the blocks (Cundall, 1971;
Shi, 1988).

The finite boundary of the computational model will cause elastic waves to be
reflected and mixed with the original wave, which will make analysis of the modelling
results more difficult. To solve these problems, an artificial boundary condition that
can simulate a computational model without any finite boundaries is needed. This kind
of boundary condition is also called a non-reflection boundary condition, which can
eliminate the spurious reflections induced by the finite boundary. A number of non-
reflection boundary conditions have been proposed in the past. For example, vicous
boundary element (Lysmer and Kuhlemeyer, 1969), strip element (Liu and Achenbach,
1994) and infinite element (Gratkowski, Pichon and Razek, 1995) are implemented in
FEM and DEM to realize non-reflection boundary.

The universal distinct element code (UDEC), a 2D DEM numerical program, has
been widely adopted to study wave propagation across jointed rock masses. Lemos
(1987) performed a study on S-wave attenuation across a single joint with Coulomb
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12 Advances in Rock Dynamics and Applications

slip behaviour using UDEC. Brady et al. (1990) performed UDEC modelling on the slip
of a single joint under an explosive line source. Chen (1999) verified the capability of
UDEC to model the responses of jointed rock masses under explosion loading. Zhao
et al. (2008) carried out numerical studies of P-wave propagation across multiple
nonlinearly deformable joints with UDEC.

The Distinct Lattice Spring Model (DLSM) can also be used to study wave
propagation across jointed rock masses (Zhu et al., 2010). DLSM is a microstructure-
based numerical model, which is meshless and has advantages in modelling dynamic
problems including stress wave propagation.

2.2.4 Laboratory and field investigation

Pyrak-Nolte, Myer and Cook (1990a, 1990b) conducted experiments on wave propa-
gation across one single joint and one joint set. It was found that joints had significant
effects on wave propagation. The joint functioned as a high-frequency filter, i.e., only
waves with low frequency can transmit across the joint. However, the multiple wave
reflections among the joints were not studied in their research. Zhao et al. (2006a)
carried out a series of laboratory tests to study wave propagation across one joint set.
The transmitted pulses across joints are captured and compared with the results com-
puted with the method of characteristics (MC). Generally, experimental results agree
well with those obtained by the MC.

Wave propagation across a filled joint is also performed, where the incident wave
is generated through a modified SHPB (Li and Ma, 2009). It is found that the joint
width and water content have significant effect on wave transmission through a filled
joint.

A two-dimensional physical model to investigate an elastic plane stress wave prop-
agating across joints is established at EPFL (Wu et al., 2011). Different from previous
tests, this experimental apparatus can produce plane wave in 2D plates. It can also
be used to study obliquely incident wave propagation across a joint set and multiple
joint sets.

Cross-hole techniques have been used in a variety of geomechanical exploration
and monitoring applications (Auld, 1977; McKenzie, Stacey and Gladwin, 1982;
McCann and Baria, 1982; King, Myer and Rezowalli, 1986). The cross-hole method
has been found to provide a particularly promising in situ test for studying wave propa-
gation across jointed rock masses and the geomechanical characteristics of jointed rock
masses. It was found that the propagation of stress waves in a rock mass containing
joints is strongly influenced by the state of stress, changes in temperature, and degree
of water saturation. Watanabe and Sassa (1996) performed site geological observation
to detect the joints.

There are many criteria to relate stress wave and the performance of rock masses
(e.g., Dowding, 1984, 1985, 1996). Among them, the PPV is used as a main stability
criterion for engineering structures in and on rocks. Zhao et al. (1999b), Chong et al.
(2002), and Zhou (2011) reported in situ experiments in jointed rock masses to inves-
tigate the rock joint effects on wave propagation. It was found that the PPV attenuates
with the increase of distance from the charge centre, and the increase of incident angle
between the joint strike and the wave propagation path.
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An overview of some recent progress in rock dynamics research 13

2.2.5 Wave across multiple joint sets

Wave propagation across multiple joint sets will be further complicated due to the inter-
secting of joint sets. With the EMM, Schoenberg and Muir (1989) and Schoenberg
and Sayers (1995) incorporated the effects of multiple sets of parallel fractures by
representing them as group elements. However, EMM have two limitations: loss
of discreteness of wave attenuation and intrinsic frequency-dependent properties at
individual fractures.

Due to the complexity of wave propagation across multiple joint sets, analytical
solutions are difficult to obtain. Hence, numerical modelling and experimental tests
are more suitable for studying wave propagation across multiple joint sets with the
consideration of joint spacing, number of joint sets and joint sets intersecting angles.
While research continues with numerical and physical modelling to obtain wave trans-
mission and transformation across joints and joint sets, future work should also be
directed to using numerical methods to simulate multiple jointed rock masses to obtain
equivalent parameters for wave propagation, by considering joint frequency and distri-
bution, joint shear and normal stiffness. The requirement for engineering applications
is to be able to predict wave attenuation in a rock mass with known common rock
mechanics characteristics.

2.3 LOADING RATE EFFECTS ON ROCK STRENGTH

Dynamic loads are usually associated with high amplitude and short duration stress
pulse or a high loading rate. Mechanical properties of rock materials, including com-
pressive strength, tensile strength, shear strength and fracture toughness, are affected
by the loading rate. A proper understanding of the effect of loading rate on rock
strength is important in the analysis of mechanical behaviour. Rate effect has been stud-
ied experimentally by many researchers (e.g. Abbott, Cornish and Weil., 1964; Stowe
and Ainsworth, 1968; Lindholm, Yeakley and Nagy, 1974; Goldsmith, Sackman and
Ewerts., 1976; Grady et al., 1977; Li et al., 2001; Zhang et al., 2001; Lok et al.,
2002; Backers et al., 2003; Zhang and Hao, 2003; Li et al., 2004; Fuenkajorn and
Kenkhunthod, 2010; Liang et al., 2011). All these dynamic tests exhibit a general
trend of increase in strength with increasing loading rate. However, the test results are
rather scattered because of the complexity of rock types and rock properties.

This section will focus on the observations of rate effects on rock material strength
from experiments and the studies of rate dependent mechanisms.

2.3.1 Dynamic tests on rock strengths

A fundamental difference between dynamic tests and quasi-static tests is that inertia
and wave propagation effects become more pronounced at higher strain rates. Some
excellent reviews about the testing methods of strain rate effect on many engineering
materials such as concrete, ceramics, rock, silicon carbide and composite materials etc.,
are presented by Field et al. (2004), Gama et al. (2004) and Ramesh (2008), and also
in Chapters 3, 4, 5 and 6 of this book. Ramesh (2008) classified the common impact
tests into four categories according to the objective of the experiment, high-strain-rate
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14 Advances in Rock Dynamics and Applications

Table 2.4 Dynamic strength tests and apparatus.

Strain Rate (s−1) Test Apparatus Testing Principle Applicability

≤102 Specialized Dynamic load Uniaxial compression (e.g. Green and
hydraulic applied by Perkins, 1968; Zhao et al., 1999a); dynamic
servo- movement of a triaxial compression (e.g. Li, Zhao and Li,
controlled piston hydraulically 1999)
machines driven by gas or oil Direct tension (e.g.Yan and Lin, 2006;

Asprone et al., 2009); dynamic Brazilian
indirect tension (e.g. Zhao and Li, 2000)
Punch shear test (e.g. Zhao, Li and Zhao,
1998)
Shear of rock joints (e.g. Barbero, Barla
and Zaninetti, 1996; Kana et al., 1996)

100∼103 Drop-weight Gravitational Flexural loading (e.g. Banthia et al., 1989)
machines potential energy Impact and fragmentations (e.g. Whittles

et al., 2006)

101∼103 Hopkinson One-dimensional Uniaxial compression (e.g. Li et al., 2000;
pressure stress wave Li, Lok and Zhao, 2005; Cai et al., 2007;
bar propagation theory Zhou et al., 2010)

Triaxial compression (e.g. Christensen,
Swanson and Brown, 1972; Li et al., 2008;
Frew et al., 2010)
Direct tension (e.g. Cadoni, 2010; Huang,
Chen and Xia, 2010a)
Brazilian indirect tension (e.g. Wang, Li
and Song, 2006; Cai et al., 2007; Dai and
Xia, 2010)
Flattened Brazilian disk (FBD) tension
(e.g. Wang, Li and Xie, 2009)
Semi-circular bend (SCB) test (e.g. Dai,
Xia and Luo, 2008)
One-point impact test (e.g. Belenky and
Rittel, in press)
Spalling test (e.g. Erzar and Forquin, 2010)

>103 Gas gun High-pressure gas Equations of state (e.g. Shang, Shen and
driven projectile Zhao, 2000)

experiments, wave-propagation experiments, dynamic failure experiments and direct
impact experiments. Experimental techniques to obtain the strength of rock materials
under dynamic loading are summarised in Table 2.4.

Ordinary hydraulic servo-controlled testing machines can load specimens at strain
rates up to 10−3 s−1, but some specialized hydraulic servo-controlled machines such
as those developed by Green and Perkins (1968), Logan and Handin (1970), Perkins,
Green and Friedman (1970), Zhao et al. (1999a), Yan and Lin (2006), Asprone et al.
(2009) and Cadoni (2010), can achieve strain rates up to 102 s−1. However, the medium
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An overview of some recent progress in rock dynamics research 15

strain rate range (between 100 and 102 s−1) is very difficult to investigate. The primary
approach to testing in this range uses drop-weight machines (Charlie et al., 1993),
but great care must be taken in interpreting the data because of the coupling between
machine vibrations and wave propagation. The classical experimental technique in
the high strain rate range of 101∼104 s−1 is the Hopkinson pressure bar tests for
the measurement of rock mechanical properties (Kumar, 1968; Li et al., 2000; Frew,
Forrestal and Chen, 2001; Li, Lok and Zhao, 2005; Cai et al., 2007; Xia et al., 2008;
Dai et al., 2010). At higher strain rates (i.e. exceeding 103 s−1), light gas guns have
been successfully deployed to test the mechanical properties of rock materials (Shockey
et al., 1974; Shang, Shen and Zhao, 2000).

2.3.2 Loading rate effects on rock material strengths

Changes of rock strength with loading rate are primarily reported through laboratory
tests. There have been many attempts to derive empirical equations to express the
relationship between loading rate (or strain rate) and rock material strength.

Based on uniaxial compression tests with strain rate of 10−6–104 s−1 on limestone,
Lankford (1981) proposed that:

σdc ∝
{

ε̇1/(1+nc) ε̇ < 102 s−1

ε̇1/n ε̇ > 102 s−1 (2.3)

where σdc is the uniaxial dynamic compression strength, ε̇ is the strain rate, n and
nc are material constants, and are equal to 0.3 and 130, respectively in his experi-
ments. Lankford concluded that there exists a critical strain rate for a certain material.
When the strain rate is smaller than the critical value, the compressive strength slightly
increases with the strain rate. However, when the strain rate is larger than the critical
value, the compressive strength switches to rapidly increase with the strain rate.

Olsson (1991) studied the uniaxial compressive strength of a tuff with a strain rate
in the range 10−6 to 103 s−1. In his experiment, he also found a critical strain rate of
76 s−1, and gave the similar relationship,

σdc ∝
{

ε̇0.007 ε̇ < 76 s−1

ε̇0.35 ε̇ > 76 s−1 (2.4)

In addition, similar conclusions are drawn by Chong and Boresi (1990), and Lajtai,
Duncan and Carter (1991).

Based on tests on a granite at strain rate of 10−4 to 100 s−1, Masuda, Mizutani
and Yamada (1987) noted that the dynamic compressive strength increases with the
strain rate, following the relationship given as:

σdc = C log(ε̇) + σc (2.5)

where σc is the static uniaxial compressive strength, and C is a constant for the rock
material.
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16 Advances in Rock Dynamics and Applications

Based on tests on a granite with strain rate between 10−4 and 100 s−1, Zhao (2000)
suggested the relationship can be unified and expressed as:

σdc = RSCd log(σ̇dc/σ̇sc) + σsc (2.6)

where σ̇dc is the dynamic loading rate; σ̇sc is the quasi-static loading rate, σsc is the
uniaxial compressive strength at quasi-static loading rate (0.5∼1 MPa/s according to
ISRM suggested methods), and RSCd is the dynamic rock strength constant for the
rock material.

Logan and Handin (1970) conducted quasi-dynamic triaxial compression tests
of the Westerly granite at confining pressures up to 700 MPa, and found the failure
strength increases proportionally with increasing loading rate. The rate of increase rises
with increasing confining pressure. Green and Perkins (1968) and Masuda, Mizutani
and Yamada (1987) also found that at a low confining pressure the effect of loading
rate on the strength of a granite is smaller than that at a high confining pressure. How-
ever, Yang and Li (1994) reported that the loading rate sensitivity seems to decrease
with increasing confining pressure on a marble. Dynamic triaxial compression tests on
a granite (Li, Zhao and Li, 1999) showed that the increments of compressive strength
with increasing loading rate are different under various confining pressures. The maxi-
mum rising rate is 86%, with the strain rates increasing from 10−4 to 100 s−1 under the
confining pressure of 20 MPa. Zhao (2000) suggested the confining pressure effects
can generally account for the effect on strength following the Hoek-Brown strength
criterion.

Changes of dynamic tensile strength of rock materials with loading rate have also
been reported extensively, mostly with the Brazilian tests (e.g. Price and Knill, 1966;
Zhao and Li, 2000; Wang, Li and Song, 2006; Cai et al., 2007; Dai and Xia, 2010;
Chen et al., 2009; Cho, Ogata and Kaneko, 2003; Erzar and Forquin, 2010; Asprone
et al., 2009; Cadoni, 2010; Huang, Chen and Xia, 2010a). Results all showed that ten-
sile strength increases with loading rate, with similar equations to those of compressive
strength proposed based on the experiments.

Dynamic shear tests on rock materials done by Zhao, Li and Zhao (1998) and
Fukui, Okubo and Ogawa (2004) concluded that rock material shear strength is
also rate-dependent. When the loading rate increases by one order of magnitude,
the shear strength increases by approximately 10%. Zhao (2000) further suggested
that, based on the results of compression, tension and shear tests, the change of shear
strength with loading rate is primarily the change of the cohesion but not the friction
angle.

2.3.3 Fracture dynamics and strain rate mechanisms

Efforts have been made to study the mechanism governing the rate-dependent
behaviour of rock materials (e.g. Kumar, 1968; Qi, Wang and Qian, 2009; Chong
et al., 1980; Blanton, 1981; Chong and Boresi, 1990; Morozov and Petrov, 2000 and
Ou, Duan and Huang, 2010).

Rock is typically a brittle and inhomogeneous material, containing initial defects
such as grain boundaries, micro-cracks and pores. There have recently been increasing
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An overview of some recent progress in rock dynamics research 17

studies of inhomogeneity effects on the failure mechanism of rock materials. Some
researchers (e.g. Cho, Ogata and Kaneko, 2003; Cho and Kaneko, 2004; Zhu and
Tang, 2006; Zhou and Hao, 2008; Zhu, 2008) incorporated the rock inhomogeneity
into numerical methods, and successfully simulated progressive failure of rock mate-
rials under both static and dynamic loading conditions. These analyses revealed that
the differences are due to the stress concentrations and redistribution mechanisms
in the rock. The rock inhomogeneity also contributes to the difference between the
dynamic and static tensile strengths. In addition, Cho and Kaneko (2004) used the
same method to investigate the influence of applied pressure waveforms on dynamic
fracture processes in rocks.

Observation from the experiments showed that at high loading rates, rock materi-
als fail with more fractures and fragments are of smaller size. This observation is often
related to the strength increase. Since more fractures are generated at high loading
rates, more energy is consumed hence leading to higher loads and higher strengths.
There is certainly a connection between high density of fracturing and high strength.
However, the reasons for more fracturing are still under investigation, and are believed
to be micromechanics based (Kazerani and Zhao, 2010).

Micromechanics-based crack models have been investigated (e.g. Zhang, Wong
and Davis, 1990; Wong, 1990; Wong et al., 2006; Brace and Bombolakis, 1963;
Nemat-Nasser and Horii, 1982; Ashby and Hallam, 1986; Deng and Nemat-Nasser,
1992, 1994; Nemat-Nasser and Deng, 1994; Ravichandran and Subhash, 1995;
Huang, Subhash and Vitton, 2002; Huang and Subhash, 2003; Zhou et al., 2004;
Zhou and Yang, 2007; Li, Zhao and Li, 2000; Xie and Sanderson, 1995; Alves,
2005; Saksala, 2010; Wang, Sluys and de Borst, 1997; Ambrosio and Tortorelli, 1990;
Bourdin, Larsen and Richardson, 2010; Larsen, Ortner and Süli, 2010). Paliwal
and Ramesh (2008) developed an interacting micro-crack damage model based on
sliding of pre-existing cracks for the estimation of the strain rate dependent constitu-
tive behaviour of brittle materials, which shows a good agreement with experiments
(Paliwal and Ramesh, 2008; Kimberley, Ramesh and Barnouin, 2010). In order to
evaluate the variability of the mesoscale strain rate dependent constitutive behaviour
in brittle materials, Graham-Brady (2010) improved on the interacting micro-crack
damage model by incorporating statistical characterization of mesoscale random
cracks.

Zuo et al. (2006) presented a rate-dependent damage model, the Dominant Crack
Algorithm (DCA), for the damage of brittle materials based on the dominant crack.
Zuo, Disilvestro and Richter (2010) recently proposed a rate-dependent crack mechan-
ics based model by incorporating plastic deformation into the DCA model for damage
and plasticity of brittle materials under dynamic loading.

Kazerani (2011) and Kazerani and Zhao (2010, 2011) studied rock fracturing with
microscopic discrete element modelling and revealed that the rate dependency observed
in the experiments may be due to several causes: the intrinsic rate-dependent properties
of the microstructure, the structural rate dependent properties of the rock material
composition, and the testing conditions. The structural rate dependent properties of the
rock material composition are related to the mineral grain structure and homogeneity.
The intrinsic rate dependent properties of the microstructure are on the cohesion of
the bond between microelements. Testing conditions, such as end frictions at loading
and supporting points/planes also contribute to the rate effects.
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18 Advances in Rock Dynamics and Applications

2.3.4 Rock dynamic strength criteria

Based on dynamic experimental data of the Bukit Timah granite (Li, Zhao and Li, 1999;
Zhao et al., 1999a; Zhao and Li, 2000), Zhao (2000) examined the applicability of the
Mohr-Coulomb and the Hoek-Brown criteria to rock material strength in the dynamic
range.

The Mohr-Coulomb criterion is only applicable to dynamic triaxial strength in the
low confining pressure range. It appears that the change in the strength with loading
rate is primarily due to the change of cohesion, and the internal friction angle seems
unaffected by loading rate. The dynamic triaxial strength can be estimated as

cd = σdc(1 − sin φ)/2 cos φ (2.7)

σd1 = σdc + σ3(1 + sin φ)/(1 − sin φ) (2.8)

where cd is the dynamic cohesion, and φ is the friction angle.
The dynamic triaxial strength can be represented by the Hoek-Brown criterion at

low and high confining pressure ranges for the loading rate range examined. It may
be assumed that the parameter m (a constant in the Hoek-Brown criterion) is not
affected by the loading rate. Hence, the dynamic triaxial strength can be estimated
from

σd1 = σ3 + σdc(mσ3/σdc + 1.0)0.5 (2.9)

Additional testing data will provide further verification of the above conclusions
for other rocks and for the wide range of loading rates.

2.4 NUMERICAL MODELLING OF ROCK DYNAMIC
FRACTURING

Dynamic fracturing of rock governs the strength and failure mode, and is one of the
most important research issues in rock dynamics. However, the real mechanism of
the rate-dependency for fracturing pattern and mechanical properties of rock under
dynamic loading is still not clear. Facing this problem, both the experimental method
and the analytical method are limited. With the rapid advancement of computing tech-
nology, numerical methods provide powerful tools. The combination of numerical and
physical modelling methods can be the best applicable solution to provide the insight of
rock fracturing dynamics. In this section, numerical methods used for rock fracturing
dynamics are briefly reviewed. Detailed reviews on the corresponding classical numer-
ical methods and the newly developed numerical methods can be found in Chapters 13
and 14 of this book.

2.4.1 Numerical methods for fracturing modelling

Generally, numerical methods used in rock mechanics are classified into continuum
based method, discontinuum based method and coupled continuum/discontinuum

© 2011 Taylor & Francis Group, London, UK

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

2:
07

 1
6 

O
ct

ob
er

 2
01

5 



An overview of some recent progress in rock dynamics research 19

method (Jing, 2003). The continuum based methods are methods which based on
continuum assumption, examples are the Finite Element Method (FEM) (Clough,
1960), the Finite Difference Method (FDM) (Malvern, 1969), and the Smoothed Par-
ticle Hydrodynamics (SPH) (Monaghan, 1988). The merits of continuum methods are
directly inputting macro mechanical parameters which can be obtained from experi-
ments and precisely modelling the stress state of pre-failure stage. Moreover, computer
codes for continuum-based methods are also relatively mature, e.g., LS-DYNA (LSTC,
2010), ABQUS (SIMULIA, 2010), FLAC (ITASCACG, 2010) and RFPA (MECHSOFT,
2010) are commercial computer codes which can be used to model dynamic fracturing
problems. However, the continuum assumptions in these continuum-based methods
make them unsuitable for dealing with complete detachment and large-scale fracture
opening problems. It is also difficult to apply continuum-based methods to solve prob-
lems which involve complex discontinuity, such as jointed rock masses and rock in
post-failure state.

Discontinuum-based methods treat rock material or rock mass as an assembled
model of blocks, particles or bars, e.g., the Distinct Element Method (DEM) (Cundall,
1971), Discontinuous Deformation Analysis (DDA) (Shi, 1988) and Distinct Lattice
Spring Model (DLSM) (Zhao, 2010). In these methods, the fracturing process of
rock is represented by the breakage of inter-block contacts or inter-particle bonds.
Discontinuum-based methods can reproduce realistic rock failure processes especially
the post failure stage. However, they are not best suited for stress state analysis of pre-
failure rock. Available commercial computer codes based on DEM are UDEC/3DEC
and PFC (ITASC, 2010) and DDA (Shi, 1988). There also exist some research codes,
for example, DLSM (Zhao, 2010).

In order to overcome the limitations of both continuum and discrete methods,
coupled methods have been developed in recent years. For example, the Numerical
Manifold Method (NMM) (Shi, 1991) was developed to integrate DDA and FEM,
the FEM/DEM method (Munjiza, 2004) is designed to couple FEM with DEM, and
the Particle-based Manifold Method (PMM) (Zhao, 2009) was proposed to combine
DLSM and NMM. The coupled method is capable of capturing both the pre-failure
and the post-failure behaviour of rock materials. However, its implementation is diffi-
cult and no commercial codes are available now. There only exist some research codes,
e.g., NMM (Shi, 1991), Y2D (Munjiza, 2004), m-DLSM (Zhao, 2010). In Table 2.5,
a summary on these numerical methods and corresponding computer codes are
listed.

Table 2.5 Numerical methods for rock dynamic problems.

Numerical Methods Typical Software/Code General Applicability

Continuum based: LS-DYNA,ABQUS, FLAC, Displacement without element
FEM, FDM, BEM, SPH RFPA detachment
Discontinuum based: DEM, UDEC/3DEC, PFC, DDA, Element detachment, rock fracturing,
DLSM DLSM rock block movement
Coupled/hybrid based: FEMDEM, NMM,Y2D, Multiscale, displacement, fracturing, and
combined methods m-DLSM, PMM block movement combined

© 2011 Taylor & Francis Group, London, UK

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

2:
07

 1
6 

O
ct

ob
er

 2
01

5 



20 Advances in Rock Dynamics and Applications

Particle of
6 elements

Contact

Element

Grid point

Figure 2.3 UDEC model for dynamic fracturing simulation (left), and basic unit (right).

2.4.2 Micromechanics modelling of rock dynamic fracturing
using UDEC

Dynamic fracturing of heterogeneous materials such as rock and concrete cannot
be modelled realistically without appealing to their microstructures. This requires
that a successful numerical method must be capable of considering the formulation
and evolution of micro discontinuities. Recently, the micro dynamic fracturing of
rock is modeled by using UDEC through implementing a triangulation pre-processor
and a rate-dependent cohesive law (Kazerani and Zhao, 2010). The basic scheme is
shown in Figure 2.3, in which the material is represented as an assembly of distinct
particles/bodies interacting at their boundaries. The interface between these particles
is viewed as a contact which in fact represents grain-interface or grain cementa-
tion properties for igneous or sedimentary rocks, respectively. In order to model the
dynamic fracturing of rock materials, a full rate-dependent cohesive law was proposed
(Kazerani, 2011; Kazerani and Zhao, 2010). The model was used to model the ten-
sile and compressive failure of rock materials, and compared well with experimental
results (Kazerani and Zhao, 2011). It is also used for simulating the dynamic fracture
toughness test of rock materials, dynamic crack propagation of PMMA plate (Kazerani
and Zhao, 2011) and dynamic failure of joints under shear force (Kazerani, Zhao and
Yang, 2010).

2.4.3 Particle-based Manifold Method (PMM) for multiscale
rock dynamics modelling

Particle-based Manifold Method (PMM) is a new particle-based multi-scale numerical
method and corresponding computer code, currently under development by EPFL-
LMR (Zhao, 2009; Sun, Zhao and Zhao, 2011). PMM introduces the microscopic
particle concept into the numerical manifold method (NMM) and rebuilds a particle
manifold method (Fig. 2.4). It unifies continuum-discontinuum models at micro scale.
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An overview of some recent progress in rock dynamics research 21

Figure 2.4 NMM model (left) of two blocks with rectangular mathematical meshes, and PMM model
(right), where the blocks are approximately replaced by particles and the mathematical
meshes remain.

Further, PMM can be incorporated with NMM for multi-scale modelling. In summary,
PMM provides the following new features:

i) PMM is a dynamic model. Motion of discontinuum can be accurately described
by inertial equations. Static simulation is also available when the velocity is
ignored.

ii) PMM is a fully implicit model. All unknowns are solved by a global mathemat-
ical equation. The contact behaviours are described by the penalty method and
the open-close iteration is inherited from manifold method to make contact state
convergent.

iii) PMM extends NMM to micro scale simulation. By importing proper failure
mechanisms, PMM could simulate explicit processes with implicit modelling.

iv) PMM is capable of presenting material nonlinearity and inhomogeneity. The sep-
aration of mathematical mesh and material mesh frees the description of physical
domain without the limitation of drawing meshes. Inhomogeity is described at the
micro scale.

v) An analytical sphere simplex integration is given to guarantee the accuracy of
integration on physical domain.

vi) PMM has mobility of contact mechanism and failure model. PMM overcomes
the difficulty of 3D implementation of NMM by replacing the polyhedron-to-
polyhedron contact by the sphere-to-sphere contact.

The advantages of PMM, including unified implicit computational format, accu-
rate dynamic simulation, and microscale and manifold features, make the model
a suitable tool for analysing rock dynamics, especially when dealing with dynamic
fracturing.

Multi-scale modelling is regarded as an exciting and promising methodology due
to its ability to solve problems which cannot be handled directly by microscopic meth-
ods due to the limitation of computing capacitance (Guidault et al., 2007; Hettich,
Hund and Ramm, 2008; Xiao and Belytschko, 2003). The most direct way to build a
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Figure 2.5 Particle based Manifold Method (PMM) model (left) and basic element (right).

multi-scale numerical model is to combine two different scale methods. This method-
ology has been widely used, for example, in the coupling of MD with continuum
mechanics models (Mullins and Dokainish, 1982; Hasnaoui, van Swygenhoven and
Derlet, 2003). The PMM is to couple with the DLSM (Distinct Lattice Spring Model)
(Zhao, 2010; Zhao, Fang and Zhao, 2010) and the NMM. The computational model
of PMM is shown in Figure 2.5. The PMM element is realized by replacing the phys-
ical domain of the manifold element in NMM by the particle-based DLSM model.
The implementation details of this method are given by Zhao (2010). As a newly
developed numerical method, only a few examples are given (e.g., Zhao, 2010; Zhu
et al., 2011; Kazerani, Zhao and Zhao, 2010). The implicit PMM and GPU based high
performance PMM code is still under the development (Sun, Zhao and Zhao, 2011).
The new computer code will provide useful solvers for rock dynamic problems at
multiscale.

2.5 PROSPECTS OF ROCK DYNAMICS RESEARCH

Rock dynamics research is not limited to the aspects discussed in the previous sections.
It has a much wider scope, with topics ranging from wave propagation, to response
of rock material and rock mass, to engineering applications, dealing with microscopic
fracturing of rock material to dynamic behaviour of rock masses (Zhao et al., 2006b).
There are indeed many issues yet to be covered in rock dynamics. Some of the important
aspects requiring investigations are discussed below.

a) Wave propagation in rock joints

Further studies in this field need to be focused on the coupling of wave attenuation
and joint geometrical properties, such as spacing, frequency, aperture, roughness and
filling. Typical information on rock joints includes orientation, aperture and filling,
surface roughness, spacing and frequency, which can be generally measured. Spacing,
frequency and orientation can remain as geometrical parameters and can be the input
for either analytical solutions or numerical modelling. Aperture and roughness can be
correlated to mechanical properties such as joint normal stiffness and shear strength.
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Therefore, it is possible to incorporate those rock joint parameters in the wave prop-
agation analysis, particularly in numerical modelling, to estimate wave attenuation in
the jointed rock masses.

To deal with filled joints, mechanical properties of filling materials (e.g., sand
or clay) can be determined and incorporated into the wave propagation analytical
solutions by treating the filling as a viscous material.

b) Wave propagation in rock masses

Studies along this line are to develop equivalent medium wave propagation parameters
for jointed rock masses, by incorporating rock mass parameters. Statistic approached
may be adopted to represent the geometrical distribution of joints and of the joint
properties for rock masses. This can be achieved by performing a parametrical study
using numerical modelling to generate a representative rock mass and then to obtain
a wave attenuation coefficient for that rock mass.

c) Interaction of wave transmission and joint damage

Joint damage associates with energy consumption, and complicates the wave propa-
gation equation. For analytical solutions, one must consider the energy balance at the
failure of the joint surface asperities under compression and shearing.

There are possibilities for exploring the interaction between wave transmission
and joint damage by physical and numerical modelling. For numerical modelling, the
challenges will be the simulation of rock joint surface damage under dynamic loads.
Micromechanical discrete element modelling is likely to be required in such cases in
order to model the fracture and failure of rock joint surfaces.

d) Rock fracture induced seismic energy and wave

When a highly stressed (or strained) rock (material or joint) fractures, the stored strain
energy is released at the facture plane. If the energy released is sufficiently large,
it can cause induced seismic events. Physical experiment may offer direct observa-
tion on energy release patterns (amplitude and form), with good monitoring devices.
Chapter 15 addresses this issue.

Numerical modelling, particularly micromechanics-based discrete element meth-
ods, will be good tools to capture the phases of statically-strained rock materials,
sudden fracturing, and released and propagation of dynamic stress.

e) Mechanics of rock fracturing and rate effects

While it is clear that at high loading rate, rock material strengths increase and rock
material fails with more fractures, it is not clear yet what is the cause of high density
of fracturing. There are indeed many opportunities within this field to explore the
mechanical and physical cause of rate effects on rock strength and failure pattern. For
example, rate effects on fracture branching, rate effects on multiple fracture initiation,
and rate effects on crack propagation velocity.

Further study also needs to be conducted on the shear strength of rock joints under
dynamic loads, to understand the rate effects on shear strength and dilation.

f) Micromechanics modelling of rock fracturing and failure

As already mentioned in (e), numerical modelling of rock fracture and failure need to be
micromechanics- and discrete-based. There are two aspects which need to be addressed.
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One is to incorporate micromechanical constitutive laws and input parameters into
the existing codes, such as UDEC and DDA. The second is to develop new microscale
numerical codes with specific focus on modelling fracture initiation, propagation and
branching. The need for correlation with physical modelling will also advocate exper-
imental progress in terms of high-speed, high-resolution micromechanics monitoring
and observation.

The other question that micromechanics modelling should address is the effect of
element size. It is argued that if the elements are sufficiently small, the contact force
between the elements will be sufficiently simple and non-rate dependent (Zhao, Wang
and Tang, 2008). It needs to be verified and also determined with the element size.

g) Static-dynamic interaction

Rock dynamics also covers the dynamic failure processes under existing static loading
conditions, as reflected by rock burst and spalling. Rock burst mechanism, fail-
ure pattern, energy release, fracture propagation velocity and distance are likely to
be affected by static strain energy (in situ stress) and triggering mechanism (e.g.
stress re-distribution due to excavation). The process may involve static-dynamic
transition and interaction. Such a study will require multiscale and multimechanics
approaches.

Other areas which can be explored are the interaction between rock fracturing
and groundwater, gas and pore pressure and temperature, which may extend the
approaches to multiphysics.

h) Rock and earthquake engineering applications

In parallel with the fundamental studies outlined above, rock dynamics will be contin-
uously applied to engineering and construction. Stability of slopes and tunnels under
various dynamic conditions (earthquake and explosion), reinforcement and support
of rock slope and tunnels for dynamic loads, use of explosives and blast damage con-
trol, seismic and vibration hazard control, are some typical examples of engineering
applications needing to be addressed.
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Chapter 3

Split Hopkinson pressure bar tests
of rocks: Advances in experimental
techniques and applications to
rock strength and fracture

Kaiwen Xia, Feng Dai and Rong Chen

3.1 INTRODUCTION

The accurate measurement of rock dynamic mechanical properties has always been
a very important task for a variety of rock engineering and geophysical applications,
which include quarrying, drilling, rock bursts, blasts, earthquakes, and projectile pen-
etrations. In these applications, the rock materials are subjected to dynamic loading
over a wide range of loading rates. Therefore, accurate determination of dynamic
strength and toughness properties of rocks over a wide range of loading rates is cru-
cial. However, in sharp contrast to the static rock testing methods, no recommended
methods have been suggested by the International Society of Rock Mechanics (ISRM).
In addition, the existing dynamic testing results with different methods and instrumen-
tations are so scattered that cross-referencing of others’ results is unfeasible. It is thus
necessary and urgent for the rock mechanics community to develop reliable suggested
methods to standardize the mechanical testing of rocks under high loading rates.

To test dynamic mechanical properties of rocks, we need a reliable testing device.
For testing rock materials under high strain rates (102∼103 s−1), split Hopkinson pres-
sure bar (SHPB) is an ideal dynamic testing machine. As a widely used device to quantify
the dynamic compressive response of various metallic materials at high loading or
strain rates, SHPB was invented in 1949 by Kolsky (Kolsky, 1949; Kolsky, 1953).
Shortly after that, SHPB was attempted by researchers to test brittle materials such as
concretes (Ross, Thompson and Tedesco, 1989; Ross, Tedesco and Kuennen, 1995),
ceramics (Chen and Ravichandran, 1996; Chen and Ravichandran, 2000) and rocks
(Christensen, Swanson and Brown, 1972; Dai, Xia and Tang, 2010). However, some
major limitations of using SHPB for brittle materials were not fully explored until two
decades ago (Subhash, Ravichandran and Gray, 2000).

Unlike ductile metals, brittle materials have small failure strains (<1%) and hence
if the loading is too fast, as in a conventional SHPB test, the specimen may fail in
a non-uniform manner (i.e., the front portion of the sample may be shattered while
the back portion of the sample remains intact.). To achieve accurate measurements in
SHPB tests, one has to make sure that the dynamic loading is slow enough so that
the specimen is experiencing an essentially quasi-static load, and thus the deformation
of the specimen is uniform. As a rule of thumb, it takes the loading stress wave to
travel in the specimen 3–4 rounds for the stress to achieve such an equilibrium state.
The pulse-shaping technique was proposed to slow down the loading rate and thus
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to minimize the so-called inertial effect associated with the stress wave loading (Frew,
Forrestal and Chen, 2001). Another problem in conventional SHPB tests is that the
specimen is subjected to multiple loading due to the reflection of the wave at the impact
end of the incident bar. A momentum-trap technique was proposed to ensure single
pulse loading and thus enable valid post-mortem analysis of the recovered specimen
(Nemat-Nasser, Isaacs and Starrett, 1991). Other advancements in SHPB can be found
in a recent review (Field et al., 2004).

Using these new techniques in SHPB, we systematically measured the dynamic
mechanical properties of rocks. A few new testing methods were developed to accu-
rately measure the dynamic compressive strength and response, the dynamic tensile
strength, and dynamic fracture parameters of rocks. For all these tests, we used
core-based rock specimens to facilitate sample preparation. In the rock dynamic com-
pression, we addressed the issue of the length to diameter ratio of the cylindrical rock
specimen. In the static uniaxial compressive strength (UCS) tests, the length to diame-
ter ratio is required to be 2 or more to minimize the end frictional effect; in SHPB tests,
the friction is dynamic and thus the frictional effect is presumably smaller. Shorter
specimen favors dynamic stress equilibrium but has worse frictional effect. An optimal
length to diameter ratio was sought. The dynamic tensile strength measurements using
SHPB were conducted using the Brazilian disc (BD) method. This method was fully
validated on the dynamic force balance and quasi-static data reduction with the aid
of high speed photography. We proposed the fracture onset detection to determine the
correct value of the far-field load at failure for calculating the rock tensile strength.
There are two methods used to measure the dynamic fracture toughness of rocks: the
notched semi-circular bend (SCB) method and the cracked chevron-notched Brazilian
disc (CCNBD) method. Using a special optical technique to monitor the crack surface
opening distance (CSOD), we observed the stable fracture to unstable fracture tran-
sition in dynamic CCNBD tests. We also showed that using our optical device, the
dynamic fracture energy and fracture velocity of rocks can be estimated.

The chapter is organized as follows. The principles of SHPB and the new testing
techniques are covered in Section 2. The application of SHPB to dynamic compres-
sive tests, dynamic tensile tests and dynamic fracture tests of rocks are discussed in
Section 3, Section 4, and Section 5 respectively. Section 6 concludes the materials
presented in the entire chapter.

3.2 PRINCIPLES OF SPLIT HOPKINSON PRESSURE BAR
AND NEW TECHNIQUES

3.2.1 The split Hopkinson pressure bar system

SHPB is composed of three bars: a striker bar, an incident bar, and a transmitted bar
(Gray, 2000). The impact of the striker bar on the free end of the incident bar induces
a longitudinal compressive wave propagating in both directions. The left-propagating
wave is fully released at the free end of the striker bar and forms the trailing end of the
incident compressive pulse −εi (Fig. 3.1). Upon reaching the bar-specimen interface,
part of the incident wave is reflected as the reflected wave −εr and the remainder
passes through the specimen to the transmitted bar as the transmitted wave −εt.
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Figure 3.1 Schematics of a split Hopkinson pressure bar (SHPB) system and the x-t diagram of stress
waves propagation in SHPB.

A 25 mm diameter SHPB system is used in this study. The length of the striker bar
is 200 mm. The incident bar is 1500 mm long and the strain gauge station is 733 mm
from the impact end of the bar. The transmitted bar is 1200 mm long and the stain
gauge station is 655 mm away from the sample. An infrared detector system is used
together with a two-channel TDS1021 digital oscilloscope to measure the velocity of
the striker bar. An eight-channel Sigma digital oscilloscope by Nicolet is used to record
and store the strain signals collected from the Wheatstone bridge circuits after ampli-
fication. Because the bar diameter is relatively small, it is suitable for testing fine- to
medium-grained rocks. However, the methodologies developed can be applied to gen-
eral dynamic rock testing, given that an SHPB system with appropriate diameter is
chosen for a specific rock.

3.2.2 Standard analysis of SHPB

Based on the one dimensional stress wave theory, the dynamic forces on the incident
end (P1) and the transmitted end (P2) of the specimen are (Kolsky, 1949; Kolsky, 1953):

P1 = AE(εi + εr), P2 = AEεt (3.1)

The velocities at the incident bar end (v1) and the transmitted bar end (v2) are:

v1 = C(εi − εr), v2 = Cεt (3.2)

In the above equations, E is the Young’s Modulus of the bar, A is the cross-sectional
area of the bar, and C is the one dimensional longitudinal stress wave velocity of
the bar.
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3.2.3 The pulse-shaping technique

The loading pulse of the conventional SHPB system for materials testing at high strain
rates has an approximately trapezoidal shape companied by high level of oscillations.
The oscillations induced by the sharp rising portion of the incident wave results in
much difficulty in achieving dynamic stress equilibrium state in the sample. However,
the stress equilibrium is a prerequisite for valid SHPB tests.

In a review paper by Franz et al. discussing the incident pulse shaping for SHPB
experiments with metal samples (Frantz, Follansbee and Wright, 1984), the authors
emphasized that a slowly rising incident pulse is a preferred loading pulse in order to
minimize the effects of dispersion and inertia, and thus facilitate dynamic stress equi-
librium of the sample. Frantz, Follansbee and Wright (1984) presented experimental
results to show a properly shaped loading pulse can not only provide stress equilibrium
in the sample, but also generate a nearly constant strain rate in the sample. Gray and
Blumenthal also discussed these issues in their recent review paper (Gray, 2000).

To shape the incident pulse, one way is to modify the geometry of the striker. For
example, Christensen, Swanson and Brown (1972) used striker bars with a truncated-
cone on the impact end in an attempt to produce ramp pulses, Frantz, Follansbee and
Wright (1984) used a machined striker bar with a large radius on the impact face
to generate a slowly rising incident pulse for the tests, Li et al. (2000) used tapered
striker to generate an approximate half-sine loading waveform. Another way, maybe
a more convenient way is to place a small, thin disc made of soft materials between
the striker and the incident bar. The disc is called the pulse shaper and can be made
of paper, aluminum, brass or stainless steel, with 0.1–2.0 mm in thickness. During
tests, the striker impacts on the pulse shaper before the incident bar, thus generating a
non-dispersive ramp pulse propagating into the incident bar. This incident pulse with
slow-rising front facilitates the dynamic force balance the specimen (Frew, Forrestal
and Chen, 2001; 2002). One example of waves with and without shaper is shown in
Figure 3.2.

A wide variety of incident pulses can be produced by varying the geometry of the
pulse shaper (Fig. 3.3). Depending on the materials of testing, different loading pulses
are needed and can be achieved with proper shaper design.

The pulse-shaping technique in SHPB is especially useful for investigating dynamic
response of brittle materials such as rocks (Frew, Forrestal and Chen, 2001; 2002).
Without proper pulse-shaping, it is difficult to achieve dynamic stress equilibrium in
such materials because the sample may fail immediately from its end in contact with
the incident bar upon the arrival of the incident wave. In our SHPB tests, we use the
C11000 copper as the main shaper to modify the incident wave from a rectangular
shape to a ramped shape. In addition, a small rubber disc is placed in front of the
copper shaper to further reduce the slope of rising portion of the pulse to a desired
value.

3.2.4 The momentum-trap system

To ensure single pulse loading, the momentum-trap technique is adopted in our
Hopkinson bar setup as shown in Figure 3.4. Figure 3.4a is the photograph of the
momentum-trap system, which is composed of a momentum transfer flange that is
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Figure 3.2 Stress waves from the incident bar with and without pulse shaper (the incident pulses are
fully reflected because only the incident bar is used in these attempts).
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Figure 3.3 Different loading pulses produced by pulse-shaping with shaper.

attached to the impact end of the input/incident bar and a rigid mass that is attached
to the supporting I-beam for the bar system.

Denoting the length of the incident bar by l, it takes t0 = 2l/C for the reflected wave
to arrive at the impact end of the incident bar. The reflection wave is then reflected
and changes from the tensile wave to compression wave at the input end. As a result, it
will exert dynamic compression on the sample for a second time. This way, the sample
in a conventional SHPB will thus experience multiple compressive loading. This kind
of multi-loading complicates the post-mortem examination of tested samples (Nemat-
Nasser, Isaacs and Starrett, 1991). A momentum-trap system similar to that proposed
by Song and Chen (2004) is adopted here. The main idea of this method is to absorb
the first reflection by a big mass that can be considered as rigid because of its large
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(a) (b)

Striker

Incident

d

Reflection

Input bar

Figure 3.4 The momentum-trap system: (a) photograph and (b) x-t diagram showing its working
principle.

impedance (which is equal to ρCA, where ρ is density) compared to the bar. As showed
in the inset of Figure 3.4b, there is a gap between the flange and the rigid mass. The
distance of the gap d is determined by the velocity of the striker v0, the length of the
input bar l and the shape of the input pulse. It is required that when the reflection
wave arrives at the front end of the incident bar, the flange is in contact with the big
mass. As a result, the reflected compressive wave will be changed to tension due to
the interaction between the incident bar and the big mass through the flange. This
requirement is expressed as:

d = C
∫ t0

0
εi(t)dt (3.3)

If there is no pulse-shaper between the striker and the input bar, the particle
velocity of the input bar after impact is 1/2 v0 for the case where the striker and
input bar are made of the same material. Denote the length of the striker by ls, the
total duration of the loading pulse is t1 = 2ls/C, which is usually much smaller than
t0 = 2l/C. The total displacement of the end of the incident bar (flange), which is
equal to the gap between the flange and the rigid mass that we need to set is then
d = C

∫ t0
0 εi(t)dt = ∫ t1

0 v0/2dt = v0ls/C. If there is a pulse-shaper between the striker
and the incident bar, we should use the measured incidence pulse to determine the size
of the gap using Equation (3.3).

As an example shown in Figure 3.5, the second compression is indeed reduced
substantially by the momentum-trap so that the sample will experience essentially a
single pulse loading. The second “loading’’ pulse is composed of a low amplitude
compressive portion followed by a tensile portion. The tensile portion of the pulse will
separate the incident bar from the sample, resulting in soft-recovery of the sample for
valid post-mortem examination.
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Figure 3.5 Comparison of stress waves from the incident bar with and without momentum trap.
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Figure 3.6 Schematics of the laser gap gauge (LGG) system.

3.2.5 The laser gap gauge (LGG)

In the fracture tests conducted on SHPB system, we developed an LGG system to mon-
itor the opening of the notch to deduce the opening velocity of the cracked fragments
(Chen et al., 2009).

As shown schematically in Figure 3.6, the system consists of two major com-
ponents: the collimated line laser source and the light detector. LGG is mounted
perpendicular to the bar axis and the laser passes through the notch in the center of the
specimen. During the test, as the notch opens up, the amount of light passing through
the sample increases, leading to higher voltage output from the detector. The voltage is
linearly proportional to the gap width and thus the crack surface displacement distance
can be measured.

3.3 DYNAMIC COMPRESSIVE TEST

3.3.1 Introduction

The compressive tests of SHPB are based on two fundamental assumptions: 1) one
dimensional (1D) elastic wave propagation in the bars and 2) homogeneous deforma-
tion of the sample (Kolsky, 1953). The assumption of 1D stress wave propagation is
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42 Advances in Rock Dynamics and Applications

ensured by using long bars, and the elasticity of the bar deformation is guaranteed
throughout the test by limiting the impacting velocity of the striker. The homogene-
ity of the sample deformation is affected by two factors: inertial effects (i.e. the axial
inertial effect and the radial inertial effect) and the end frictional effect between the
sample and the bars.

The ideal slenderness ratio (i.e., the length to diameter ratio) of the sample has long
been studied because it plays a major role on the inertial effects during the dynamic
SHPB test. Based on the synthetic analysis of both axial and radial inertial effects,
Davies and Hunter (1963) suggested an optimal slenderness ratio of L/D = √

3ν/2,
where L and D are the length and diameter of the cylindrical sample respectively,
and ν is the Poisson’s ratio of the testing material. This slenderness ratio has been
frequently used to design the sample geometry for metals (Meng and Li, 2003). To
limit the inertial effects associated with stress wave loading, the slenderness ratio of
samples can not be too large. When SHPB is first introduced to the dynamic testing
community, the incident wave is in rectangular shape with a sharp rising edge and high
oscillation, it is harder to minimize the axial inertial effects because it takes longer time
for the sample to reach stress equilibrium as compared to the rising edge of the loading
pulse. However, with recent developed pulse shaping techniques (Frew, Forrestal and
Chen, 2001; 2002), even a relatively long compressive sample can easily obtain stress
equilibrium, thus reducing the axial inertial effects to a negligible amount. In this
case, the suggested ratio of L/D = √

3ν/2 by Davies and Hunter (1963) may be too
conservative under current application of the pulse-shaping technique. For example,
the slenderness ratio for an incompressible material (with ν equal to 0.5) is determined
to be 0.433 following the Davies and Hunter’s formula. As will be discussed later, for
short samples like this, friction at boundary may markedly affect the inner stress state,
and thus the homogeneity of the sample deformation.

Frictional effect is another major concern in the SHPB test. As early as SHPB
was first introduced as a useful dynamic testing tool, it was realized that the interfacial
friction on both ends of the sample may affect the testing results (Kolsky, 1949; Kolsky,
1953). When the sample is loaded by the compressive stress wave in the SHPB test,
it expands radially due to the Poisson’s effect. If the sample/bar interfaces are not
sufficiently lubricated, the resulting interfacial friction force can be significant. This
friction force influences the accuracy of the testing results by applying a dynamic
confinement to the compressive specimen, whose stress state should be one dimensional
stress by assumption. This additional sample stress can yield pseudo rate effects of the
material (Schey, Venner and Takomana, 1982). For example, Hauser et al. (1960)
mistakenly concluded that the Aluminum alloy was a rate sensitive material because
they glued the sample on the bars during their tests. In addition, the sample is no
longer deformed uniformly because of this dynamic confinement (Narayanasamy and
Pandey, 1997), whose effect is the largest on the ends and diminishes toward the centre
of the specimen. Bell (1966) examined the distribution of stress and strain in the SHPB
tests and found that there exists marked discrepancy between the measured strain
from SHPB data reduction and the strain directly measured from the sample surface.
With a finite difference method, Bertholf and Karnes (1975) simulated SHPB tests
on samples with three types of slenderness ratios and interfacial friction conditions to
investigate both inertial effects and interface frictional effects. They arrived at the same
conclusion that without enough lubrication at the boundary interfaces, the stress state
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Figure 3.7 Close-view of the sample in the compression test using SHPB.

in the sample is inhomogeneous and big deviation of measurement occurs inevitably.
Malinouski and Klepaczko (1986) presented a united analytic and numerical approach
to investigate inertia and frictional effects in SHPB tests on an annealed Aluminum
through the consideration of energy balance. They concluded that proper treatment
of frictional effects, along with inertia is crucial for an exact determination of the
material response during plastic deformation. Meng and Li (2003) recently revisited
the combined effects of slenderness ratio and the interface friction numerically. To
limit the frictional effect, the slenderness ratio of a compressive sample should be large
enough. This can be manifested from a recommended slenderness ratio of 2 or larger
for static compressive tests of rocks by ISRM (Bieniawski and Bernede, 1979). On the
other hand, the slenderness ratio should be short enough to limit the inertial effects.
Thus, an optimal slenderness ratio is thus needed to consider both the inertial effect
and the frictional effect.

3.3.2 Data reduction

The histories of strain rate ε̇(t), strain ε(t) and stress σ(t) within the sample in the
dynamic compression tests (Fig. 3.7) can be calculated as:



ε̇(t) = C
L

(εi − εr − εt)

ε(t) = C
L

∫ t
0 (εi − εr − εt)dt

σ(t) = A
2A0

E(εi + εr + εt)

(3.4)

where L is the length of the sample and A0 is the initial area of the sample.
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44 Advances in Rock Dynamics and Applications

Assuming the stress equilibrium or uniform deformation prevails during dynamic
loading (i.e., εi + εr = εt), the commonly used formulas are obtained:




ε̇(t) = −2C
L

εr

ε(t) = −2C
L

∫ t
0 εrdt

σ(t) = A
A0

Eεt

(3.5)

3.3.3 Sample preparation

An isotropic fine-grained granitic rock, Laurentian granite (LG) is chosen for this
research, whose mineralogical and mechanical characteristics are well documented
(Nasseri, Mohanty and Robin, 2005). Laurentian granite is taken from the Laurentian
region of Grenville province of the Precambrian Canadian Shield, north of St. Lawrence
and north-west of Quebec City, Canada. The mineral grain size of LG varies from 0.2
to 2 mm with the average quartz grain size of 0.5 mm and the average feldspar grain
size of 0.4 mm, with feldspar being the dominant mineral (60%) followed by quartz
(33%). Biotite grain size is of the order of 0.3 mm and constitutes 3–5% of this rock.
Rock cores with nominal diameters of 25 mm and 40 mm are first drilled from the rock
blocks. For the 25 mm in diameter cores, we directly slice them to obtain cylindrical
samples with varying slenderness ratios of 0.5, 1.0, 1.5 and 2.0. These cylindrical
samples are prepared for dynamic compressive tests. For the dynamic BD test, we slice
the 40 mm in diameter core into discs with nominal thickness of 20 mm. All the disc
samples are polished afterwards resulting in surface roughness of less than 0.5% of
the sample thickness.

3.3.4 Slenderness ratio

The choice of a proper slenderness ratio has been a fundamental issue in dynamic
compression tests with SHPB because it has a major influence on the axial inertial effect:
the higher the slenderness ratio, the larger the axial inertial effect and the smaller the
relative radial inertial effect. In conventional SHPB tests, a rectangular incident wave
is generated by a direct impact of the striker to the free end of the incident bar. This
incident wave features a very sharp rising part and significant oscillations. For brittle
solids like rocks with small failure strain, the sample may fail immediately from its end
in contact with the incident bar by such incident pulses.

Recently, the pulse-shaping technique has been widely utilized for SHPB testing
on engineering materials and it is especially useful for investigating dynamic response
of brittle materials such as rocks (Frew, Forrestal and Chen, 2001; 2002). During
tests, the striker impacts the pulse shapers right before the incident bar, generating a
non-dispersive ramp pulse propagating into the incident bar and thus facilitating the
dynamic stress equilibrium in the specimen (Frew, Forrestal and Chen, 2001; 2002).
Under stress equilibrium, the stress gradient vanishes, and the inertial effects induced
by stress wave propagation are minimized.
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Figure 3.8 Dynamic stresses on both ends of disc specimen tested using a modified SHPB with careful
pulse-shaping.

In the modified SHPB test, we use the C11000 copper disc in combination with
a small rubber disc together as the shaper to transform the incident wave from a
rectangular shape to a ramped shape (Xia et al., 2008). Figure 3.8 shows the dynamic
stress in a typical dynamic compressive test. Based on the 1D stress wave theory, the
time zeros of the incident and reflection stress waves in Figure 3.8 are shifted to the
sample-incident bar interface and the sample-transmitted bar interface, respectively.
From Equation (3.1), the dynamic force on one side of the specimen P1 is the sum of
the incident and reflected waves (In.+Re.), and the dynamic force on the other side
of the specimen P2 is the transmitted wave (Tr.). It is shown that the time-varying
stresses on both sides of the samples match with each other before the peak point is
reached during the dynamic loading. The sample is thus in a state of dynamic stress
equilibrium. It is also noted that the resulting stress on either side of the sample also
features a linear portion before the peak, thus facilitating a constant loading rate via
σ̇ = k1A/A0. The parameter k1 is illustrated in Figure 3.8.

We conducted compressive tests on cylindrical rock samples with varying slen-
derness ratio from 0.5, 1.0, 1.5 to 2.0. For all tests, we achieved dynamic stress
equilibrium. Since there is no stress gradient in the sample, the axial inertial effect is
thus negligible. In addition, to minimize the disturbance from the boundary frictions
on the measured strength, the bar-sample interfaces for all samples are fully lubricated
with vacuum grease. The measured compressive strengths with corresponding loading
rates are shown in Figure 3.9. There are no significant differences of strengths from
samples with selected slenderness ratios. For dynamic compressive tests on rocks, we
conclude that with bar-sample interfaces fully lubricated and thus with axial inertial
effects minimized, the slenderness ratio has little influence on the testing results within
the range of 0.5 to 2. We thus suggest using samples with a slenderness ratio of 1
for dynamic compressive tests of rocks for convenience because it is difficult to hold
shorter samples during sample fabrication.
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Figure 3.9 Dynamic compressive strengths with loading rates measured from rock samples with varying
slenderness ratio of 0.5, 1.0, 1.5 and 2.0.

3.3.5 Frictional effect

To manifest the frictional effect, we conducted tests on samples with three differ-
ent frictional boundaries on the bar-sample interfaces for sample slenderness ratio of
1: lubricated, dry and bonded. The bonded bar-sample interface completely restricts
the motion of the rock surfaces on the bar and is believed to provide the maximum
dynamic confinement to the sample. Through proper pulse shaping, we guarantee the
dynamic stress balance on both ends of the sample (Fig. 3.8) and a constant loading
rate has been achieved for all tests. Figure 3.10 illustrates the trend of the rate effects of
compressive strength under these three boundary friction conditions. Samples with bar-
sample interfaces fully lubricated yield the lowest measured compressive strength while
the samples with bonded interfaces own the highest. The frictional effect in dynamic
compressive tests on rocks is significant. The measured compressive strength increases
with increasing friction involved in the tests. To obtain the actual dynamic compressive
response of rocks, the bar-sample interfaces should be sufficiently lubricated.

Figure 3.11 shows the recovered samples with a) bonded b) dry c) lubricated
bar/sample interfaces, coming from the tests with the data points of A, B and C in Figure
3.10, respectively. For these three typical tests, we load the sample with approximately
the identical incident wave. However the damage levels of them are quite different.

With bar-sample interfaces fully lubricated, the samples are completely fragmented
into small pieces (Fig. 3.11c), featuring a typical axial splitting failure mode. This fail-
ure mode confirms one dimensional stress state during the dynamic tests. In contrast,
with friction at the boundary interfaces, the splitting is constrained significantly and
the recovered samples feature a shear cone as shown in Figures 3.11a and b. With
approximated similar loading rates, the strength values (at point A) measured for
the sample with bonded interfaces with the maximum induced friction, the strength
is the maximum (Fig. 3.11a); while fully lubricated sample yields the lowest value
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Figure 3.10 Dynamic compressive strengths with loading rates measured from rock samples
(L/D = 1.0) with three interfacial friction boundaries.

Figure 3.11 Photograph of recovered samples with (a) bonded (b) dry (c) lubricated bar/sample
interfaces showing the damaged level.

(at point C). The sample with dry friction interfaces has an intermediate strength level
(at point B). We can conclude here that without proper lubrication, the measurements
strength values will be over-estimated.

3.4 DYNAMIC BRAZILIAN DISC TEST

3.4.1 Introduction

SHPB has also been adopted to conduct indirect tension tests for measuring the ten-
sile strength of brittle solids like rocks. For examples, conventional SHPB tests were

© 2011 Taylor & Francis Group, London, UK

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

2:
17

 1
6 

O
ct

ob
er

 2
01

5 



48 Advances in Rock Dynamics and Applications

conducted using BD (Brazilian disc) method on marbles (Wang, Li and Song, 2006) and
argillites (Cai et al., 2007). These attempts followed the pioneer work on dynamic BD
tests of concretes using SHPB (Ross, Thompson and Tedesco, 1989; Ross, Tedesco and
Kuennen, 1995). Semi-circular bend samples were used also in SHPB to measure the
flexural tensile strength of Laurentian granite (Dai, Xia and Tang, 2010). BD method
has been suggested by ISRM as a recommended method for tensile strength measure-
ment of rocks (Bieniawski and Hawkes, 1978). Using BD method, Zhao and Li (2000)
measured the dynamic tensile properties of granite using a hydraulic loading system.
For quasi-static and low speed BD tests, it is reasonable to use the standard static
equation to calculate the tensile strength. However, for dynamic BD test conducted
with SHPB featuring stress wave loading, the application of the quasi-static equation
to the data reduction has not yet been rigorously checked (Wang, Li and Song, 2006;
Cai et al., 2007). In this work, we will investigate the conditions under which the
static analysis is valid and address the importance of the fracture onset detection on
the accurate data reduction.

3.4.2 Data reduction

A close-view of the dynamic BD sample in the SHPB system is schematically shown
in Figure 3.12, where the disc sample is sandwiched between the incident bar and
the transmitted bar. The principle of BD test comes from the fact that rocks are much
weaker in tension than in compression and thus the diametrically loaded rock disc sam-
ple fails due to the tension along the loading diameter near the centre. The calculation
equation of tensile strength is based on the 2D elastic analysis as:

σt = 2Pf

πDB
(3.6)

where Pf is the load when the failure occurs, σt is the tensile strength, D and B are the
diameter and the thickness of the disc, respectively.

A strain gauge is glued on the disc surface with 2 mm away from the centre of
the disc (Fig. 3.12). The cracking of the disc centre emits elastic release waves upon
cracking, and this wave causes sudden strain drop in the recorded strain gauge signal
(Jiang et al., 2004). The peak point of the strain gauge signal right before the sudden
drop corresponds to the arrival of the release wave due to crack initiation. It is noted
that the original strain gauge signal should be corrected accordingly considering the
time the elastic wave propagates from the disc centre to the strain gauge.

3.4.3 Test without pulse-shaping

3.4.3.1 Dynamic force and failure sequence

Traditionally, by the direct impact of the striker on the free end of the incident bar in
an SHPB test, the generated incident wave is a square compressive stress wave with a
very sharp arising portion, which inevitably introduces high frequency oscillations. As
a result, the dynamic forces on both ends of the sample vary significantly. Figure 3.13
depicts a large oscillation of dynamic force occurring on the incident side and a sizeable
distinction between P1 and P2.
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Figure 3.12 Close-view of the disc in a dynamic BD test using SHPB.
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Figure 3.13 Dynamic forces on both ends of the disc specimen tested using a traditional SHPB without
pulse-shaping.

3.4.3.2 Failure sequence from high speed camera

For a valid BD test, the disc sample should break first along the loading direction
somewhere near the centre of the disc (Mellor and Hawkes, 1971; Hudson, Rummel
and Brown, 1972). To verify this condition, we used a Photron Fastcam SA5 high
speed camera to monitor the fracture processes of the BD test. The high speed camera
is placed perpendicular to the sample surface with images taken at an inter frame
interval of 3.8 µs. The failure process of this test without shaping the loading incident
wave has been shown as top four images in Figure 3.14.

The time zero corresponds to the moment when the incident pulse arrives at the
incident bar-sample interface. It can be seen that the first breakage emanates from the
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50 Advances in Rock Dynamics and Applications

Figure 3.14 High-speed video images of two typical dynamic BD tests; Top row: BD test without
pulse-shaping; Bottom row: BD test with careful pulse-shaping.

incident side of the sample at around 36 µs after the incident wave arrives at the bar-
sample interface. Soon after that, damages also occur from the transmitted side of the
sample (image at 55 µs). Thus, the splitting of the disc (image at 93 µs) is triggered by
the damages at the loading points and then expands to the centre of the disc. We thus
conclude that in this case, the working principle of BD test is violated. The rectangular
incident loading wave with a sharp rising edge (Fig. 3.13) seems to affect the failure
mode of the testing sample significantly. Since the cracking of the BD initiates from the
loading ends, not from somewhere near the centre of the disc, the standard equation
is invalid for reducing the tensile strength from the tensile stress history at the disc
centre.

3.4.4 Test with pulse-shaping

3.4.4.1 Dynamic force and failure sequence

Figure 3.15 illustrates the time-varying forces in a typical test with careful pulse-
shaping. The incident wave is shaped to a ramp pulse with a rising time of 180 µs,
and a total pulse width of 300 µs. It is evident that the time-varying forces on both
sides of the samples are almost identical before the peak point is reached during the
dynamic loading. The resulting forces on either side of the sample also feature a linear
portion before the peak, thus facilitating a constant loading rate via σ̇ = 2k2/(πDB),
where the parameter k2 is illustrated in Figure 3.15.

High speed camera has also been utilized to capture the failure sequences of the BD
sample. Bottom four images in Figure 3.14 presents the key frames with representative
features in the dynamic test. In sharp contrast to the images from the BD test without
pulse-shaping, this disc cracks near the centre and the primary crack occurs at around
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Figure 3.15 Dynamic forces on both ends of disc specimen tested using a modified SHPB with careful
pulse-shaping.

160 µs, and then propagates bilaterally to the loading ends. The next two frames
illustrate the splitting trajectory of the sample; and the disc specimen is split completely
into two fragments approximately along the centre line of the sample (Fig. 3.14). We
also note that after the initiation of the primary crack, one secondary crack is visible
near the loading ends at time instant 236 µs. Thus, since the splitting of the disc initiates
near the centre, not from the loading ends, the tensile strength can be determined as
long as we can accurately determine the tensile stress of the disc at failure.

3.4.4.2 Validation of the quasi-static data analysis

For a conventional dynamic compression tests with SHPB or direct tension tests with
split Hopkinson tension bar (SHTB), the samples are cylindrical and thus the force
balance on the ends ensures the stress equilibrium throughout the sample. However, the
disc is two dimensional (2D), and force balance on the boundaries (Fig. 3.15) does not
necessarily ensure dynamic equilibrium within the entire sample. A further comparison
of the stress history at a point of interest from full dynamic analysis with that from
quasi-static analysis is necessary. The dynamic finite element analysis represents the
accurate stress history. The commercial finite element software ANSYS is employed
for the analysis and the disc sample is meshed with quadrilateral eight-node element
PLANE82, with total 4,800 elements and 14,561 nodes (Fig. 3.16).

Assuming linear elasticity, this analysis solves the following equation of motion
with the Newmark time integration technique:

∇ · σ = ρü (3.7)

where σ is the stress tensor, ρ denotes density, and ü is the second time derivative of
the displacement vector u. The input loads in the finite element model are taken as the
dynamic loading forces exerted on the incident and transmitted side of the specimen
calculated using Equation (3.1) with measured waves.
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P1 P2

Figure 3.16 Mesh of the disc for the finite element analysis.
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Figure 3.17 (a) Tensile stress σx and (b) compressive stress σy histories at the disc centre from both
dynamic and quasi-static finite element analyses in a typical dynamic BD test with pulse
shaping.

The transient dynamic stress history at the disc centre (potential failure spot) is
calculated and compared with that from a quasi-static analysis employing Equation
(3.6). The histories of the stress components σx (in tension) and σy (in compression) for
dynamic and quasi-static finite element analyses are compared in Figures 3.17a and b
respectively. The stress states at the disc centre for both quasi-static and dynamic data
reductions match with each other. Thus, provided force balance on the sample ends,
the quasi-static analysis with the far-field loading measured as input can accurately
represent the stress history in the sample.

3.4.4.3 Determination of the fracture onset and dynamic tensile strength

Figure 3.18 shows the signal of the strain gauge mounted on the sample, compared
with the transmitted force. Only one peak (A) of the signal is registered by the stain
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Figure 3.18 Comparison of strain gage signal with the transmitted force for a dynamic Brazilian test
using a modified SHPB with careful pulse shaping.

gauge, occurring at time 149 µs. Thus, the breakage initiation time is designated by
the unique trough A at the time of 149 µs. Because the peak transmitted force occurs
at time 152.5 µs, it is thus delayed only by 3.5 µs after the measured onset of breakage.
We conclude that in this case, the peak far-field load matches with the breakage onset
with a negligibly small time difference. The small time difference of 3.5 µs can be
interpreted as follows. The release waves travel at the sound speed of the rock material
(around 5 km/s) and the distance between the fracture location and the supporting pin
is 20 mm. Assume the fracture starts at the center of the disc, the distance from the
center to the strain gauge is about 10 mm. The time difference between the two wave
trajectories is thus about 2 µs. In other words, the theoretical time delay should be 2 µs
if the fracture onset matches the peak of the load exactly.

Due to the interaction between the release wave and the pins, the load on the
transmitted side decreases (Fig. 3.12). Thus, the peak of the transmitted force can be
regarded as synchronous with the single peak of the strain gauge signal (the rupture
onset) for this specific test where the loading rate is not that fast. For this test, the
dynamic tensile strength can be reduced from Equation (3.6) where the stress state is
quasi-static, the tensile strength is calculated to be 18.9 MPa at the loading rate of
233 GPa/s.

It has been long realized from quasi-static tests that the BD sample may fracture
before the peak-load is reached (Mellor and Hawkes, 1971; Hudson, Rummel and
Brown, 1972). This is also the case for the typical test shown in Figure 3.18. The
reason for this phenomenon lies in the sample testing configuration. For an ideal BD
test, the fracture will initiate in the center of the sample along the loading axis. At the
fracture onset, the sample is still in contact with the two loading platens. The load can
thus still increase until the sample is completely split into two halves. From part of the
strain energy release from the fracture, the two halves will get transverse velocities to
separate from each other. The two halves may rotate and lose contact with the platen
during the separation process and this will lead to the unloading.

© 2011 Taylor & Francis Group, London, UK

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

2:
17

 1
6 

O
ct

ob
er

 2
01

5 



54 Advances in Rock Dynamics and Applications

40

30

20

10T
en

si
le

 s
tr

es
s 

(M
P

a)
S

train gauge signal (V
)

Time (�s)

0
0

Loading rate
1689 GPa/s

33 MPa

40.9 MPa

Tensile stress
Strain gauge

50 100 150 200
0.0

0.2

0.4

0.6

0.8

Figure 3.19 Tensile stress history with the strain gauge signal for detecting failure onset.

In quasi-static BD tests, the difference between the peak-load and the failure load
may be smaller if a servo-controlled material testing machine is used and the transverse
expansion of the disc is used as the controlling variable (Hudson, Rummel and Brwon.,
1972). In dynamic BD tests using SHPB, there is no way to control the load using a
feedback system, the mismatch of the measured peak-load and the failure load can be
significant. The low loading rate test presented in Figure 3.18 features a reasonable
match of the load, it is necessary though to address the load mismatch for higher rate
loading tests where the foregoing discussed load mismatch may be significant.

Figure 3.19 shows the signal of the strain gauge mounted on the sample, compared
with the transmitted force for a test featuring higher loading rate as compared to the
test shown in Figure 3.18. It can be seen that the tensile stress at the fracture onset
(i.e., tensile strength) is much lower than the peak stress determined from the far-field
loading. One will overestimate the tensile strength by 20% if the peak-stress is used by
mistake, which is significant. The accurate dynamic tensile strength measured using
the dynamic BD test for this case is 33 MPa.

3.5 DYNAMIC FRACTURE TEST

3.5.1 Introduction

Dynamic fracture is frequently encountered in geophysical processes and engineering
applications (e.g., earthquakes, airplane crashes, projectile penetrations, rock bursts
and blasts). These processes are governed by material dynamic fracture parameters,
such as initiation fracture toughness, fracture energy, fracture propagation tough-
ness, and average fracture velocity. Therefore, accurate determination of these fracture
parameters is crucial for understanding mechanisms of dynamic fracture and is also
beneficial for hazard prevention and mitigation.

Most of the existing studies on material fracture have focused on the fracture initi-
ation toughness measurement, mainly under quasi-static loading conditions. Fracture
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Split Hopkinson pressure bar tests of rocks 55

initiation toughness depicts the material resistance to crack reactivation. For brittle
materials such as rocks, one can not simply use the standard methods of fracture
tests developed for metals. Special sample geometries have been developed for frac-
ture toughness measurements for brittle solids like ceramics and rocks. For example,
ISRM recommended two suggested methods with three types of core-based specimens
for determining the fracture toughness of rocks: chevron bend (CB) and short rod
(SR) specimens in 1988 method (Ouchterlony, 1988) and cracked chevron notched
Brazilian disc (CCNBD) specimen in 1995 method (Fowell et al., 1995).

Limited attempts have been made to measure the dynamic initiation fracture tough-
ness of brittle solids, primarily due to the difficulties in experimentation and subsequent
data interpretation. As reported in the pioneering work by Böhme and Kalthoff (1982),
high loading rate test features significant inertial effect due to stress wave loading and
this inertial effect complicates the data reduction. They demonstrated the inertial effect
using a three point bending configuration loaded by a drop weight. They showed that
the measured crack tip stress intensity factor (SIF) history using the shadow optical
method of caustics did not synchronize with the load histories at supports.

Tang and Xu (1990) tried to measure dynamic fracture toughness of rocks using
three point impact with a single Hopkinson bar, and Zhang et al. (1999, 2000)
employed the split Hopkinson pressure bar (SHPB) technique to measure the dynamic
fracture toughness of rocks with SR specimen. In these attempts, the evolution of SIF
and the fracture toughness were calculated using quasi-static formulas without careful
consideration of the inertial effect. To minimize the error induced by inertial effects,
the pulse-shaping technique was employed to conduct dynamic fracture tests with the
SHPB (Weerasooriya et al., 2006; Jiang and Vecchio, 2007). The pulse-shaping tech-
nique (Frew, Forrestal and Wright, 2001; 2002) facilitates dynamic force equilibrium
and thus minimizes inertial effect. The fracture sample is therefore in a quasi-static
state of deformation. Indeed, as it was observed by Owen, Zhuang and Rosakis (1998),
the SIF value obtained by directly measuring the crack tip opening is consistent with
that calculated with the quasi-static equation if the dynamic force balance is roughly
achieved in split Hopkinson tension bar tests.

The dynamic fracture energy and the fracture propagation toughness of materials
are directly related to the energy consumption during dynamic failures. For trans-
parent polymers or polished metals, those properties could be readily measured with
optical methods (Owen, Zhuang and Rosakis, 1998; Xia, Chalivendra and Rosakis,
2006). For rocks, the measurements on these fracture properties are rarely reported in
the literature, albeit their direct relevance to the energy consumption during dynamic
fracture. To our best knowledge, there is only one report on the dynamic propagation
toughness of rocks (Bertram and Kalthoff, 2003).

Recently, a semi-circular bend (SCB) technique in SHPB tests to measure dynamic
fracture parameters of rocks was proposed (Chen et al., 2009). Provided that the
force balance is achieved with pulse shaping, the initiation fracture toughness can be
obtained from the peak load by virtue of static analysis. A laser gap gauge system
was developed to measure the crack surface opening displacement history. From this
history and the stress wave measurements in the bars, the fracture energy, propagation
fracture toughness, and fracture velocity can be determined (Chen et al., 2009).

A fundamental prerequisite for fracture testing via this semi-circular bend specimen
is the fabrication of a sharp crack. A 1 mm notch was first made in the semi-circular
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rock disc (with 40 mm in diameter) and then sharpened with a diamond wire saw to
achieve a tip radius of 0.25 mm. For rock with average grain size 0.5 mm or larger,
the radius of the tip is smaller than the thickness of naturally formed cracks. This
will result in valid fracture toughness measurement. This argument was supported by
Lim et al. (1994). However, it will be very difficult to make a sharp enough crack tip
for fine-grained rocks. To overcome this problem, a convenient way in the fracture
test is to employ one of the V shaped (or chevron) notch specimens as suggested by
ISRM (Ouchterlony, 1988; Fowell et al., 1995). The V shaped ligament facilitates
crack initiation emanating from the notch tip and thus avoids pre-cracking in the
brittle solids. Subsequently, the crack propagates in a stable fashion until it reaches the
critical crack length where the crack transitions to unstable growth. If the load is static,
the load reaches its maximum at this critical crack length while the corresponding SIF
has a minimum value. The V notched specimen has been conducted in the SHPB
fracture test for rocks (Zhang et al., 1999; 2000), and ceramics (Weerasooriya et al.,
2006). Zhang et al. (1999; 2000) conducted dynamic SHPB wedge tests using SR rock
samples. The quasi-static equation proposed in the ISRM 1988 method was employed
to determine the fracture toughness without evaluating the stress state in the sample.
Weerasooriya et al. (2006) employed a V notched four point bend specimen to measure
dynamic initiation toughness of ceramics. They applied the pulse-shaping technique
to achieve force balance in the SHPB tests. The time-varying forces on both ends
of the sample is almost the same during the loading. They thus concluded that the
sample is in a quasi-static loading condition and a quasi-static data reduction is valid.
We noticed that in these attempts on the dynamic initiation toughness measurements
employing V notched samples (Zhang et al., 1999; 2000; Weerasooriya et al., 2006),
no detailed evaluation has been conducted on the measurement principles. In addition,
key fracture parameters such as dynamic fracture energy and the fracture propagation
toughness were not measured. A thorough investigation on the dynamic fracture test
employing the sample with a chevron notch is thus desirable. Among three standard
ISRM specimens (Ouchterlony, 1988; Fowell et al., 1995), the CCNBD specimen
owns special merits such as: much higher failure load, fewer restrictions on the testing
apparatus, larger tolerance on the specimen machining error, simpler testing procedure
and lower scatter of test results (Fowell et al., 1995). This CCNBD method has thus
been widely used (Dwivedi et al., 2000; Iqbal and Mohanty, 2007).

3.5.2 Semi-circular bend (SCB) method

3.5.2.1 Methodology

Figure 3.20 shows the notched SCB fracture sample sandwiched in the spit Hopkinson
pressure bar (SHPB) system and the laser gap gauge (LGG) system.

Based on the ASTM standard E399-06e2 for rectangular three-point bending sam-
ple (2002), we propose a similar equation for calculating the stress intensity factor for
mode-I fracture in current SCB specimen:

KI(t) = P(t)S
BR3/2

· Y
( a

R

)
(3.8)
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Figure 3.20 Schematics of the straight-through notched SCB specimen in the spit Hopkinson pressure
bar (SHPB) system with laser gap gauge (LGG) system.
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Figure 3.21 Schematic of the configuration for finite element analysis, and the quarter point element
on the crack tip.

where P(t) is the time-varying loading force, Y(a/R) is a dimensionless geometry factor,
which can be calculated with a standard finite element software package (e.g., ANSYS).

With the pulse-shaping technique, the forces applied on both sides of the sample
during our SHPB tests are identical. The inertial effects are eliminated because there
is no global force difference in the specimen to induce inertial forces (Weerasooriya
et al., 2006). We conduct finite element analysis to relate the far-field loading to the
local stress intensity factor at the crack tip for a given specimen geometry. This process
is called numerical calibration. Taking advantage of the symmetry of the problem,
half-crack model is used to construct the finite element model. PLANE82 (eight-node)
element is used in the analysis. To better simulate the stress singularity near the crack
tip (r is the radius to the crack tip), 1/4 nodal element (singular element) (Barsoum,
1977) is applied to the vicinity of the crack tip in meshing the finite element model
(Fig. 3.21).
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Figure 3.22 Dynamic forces on both ends of the notched SCB specimen tested using a conventional
SHPB.

The Young’s modulus is 92 GPa and the Poisson’s ratio is 0.21 for Laurentian
granite used in our simulation (Iqbal and Mohanty, 2006). The load is set as the
boundary stresses at the left and right edge of the model plate while the lower edge of
the model has the symmetric boundary condition. The resulting loading at the main
crack is mode I. For a given load P, KI can be obtained from the finite element analysis.
The geometry factor Y(a/R) for a given sample geometry follows Equation (3.8) as:

Y
( a

R

)
= KIBR3/2

PS
(3.9)

After Y(a/R) is numerically calibrated, KI(t) is directly calculated from Equation
(3.8) for the loading history P(t). The dynamic initiation fracture toughness KID corre-
sponds to the peak point of the loading Pmax. There is an approximately linear region
in KI(t), and its slope is taken as the fracture loading rate.

In the forgoing discussion, we have assumed that with the dynamic force balance
achieved using the pulse-shaping technique, the quasi-static stress analysis is valid and
the maximum load corresponding to the failure load. This has to be validated and the
validation is covered in the following two sections.

3.5.2.2 SCB test without pulse-shaping

In a conventional SHPB tests, impact of the striker on the incident bar generates a
square incident stress wave. The rising portion of the incident wave is too sharp that
high frequency oscillations are inevitably introduced. Figure 3.22 shows the forces on
both ends of the sample.

From Equation (3.1), the dynamic force on one side of the specimen P1 is the sum
of the incident (In.) and reflected (Re.) waves, and the dynamic force on the other side
of the specimen P2 is the transmitted wave (Tr.). It is evident from Figure 3.22 that a
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Figure 3.23 Comparison of CSOD and strain gage signal with the transmitted force of the notched
SCB specimen tested using a conventional SHPB (the unit for CSOD is 0.05 mm).

large fluctuation of dynamic force occurs on the incident side and a sizeable distinction
exists between forces on the two ends of the specimen.

The measured CSOD of the notched SCB specimen by LGG and the transmitted
force in a conventional SHPB test are illustrated in Figure 3.23. Two force peaks
A and B are identified in the transmitted force signal, occurring at time 62 µs and
94 µs respectively. More interestingly, over a rather long time period, upon 85 µs after
the incident stress wave arrives at the sample, the measured CSOD is negative. This
means that the crack surface at the measuring site closes rather than opens, which is a
manifestation of load inertia effect. The closing of the crack surface may lead to “loss
of contact’’ between the transmitted side of the sample and the two pins (Böhme and
Kalthoff, 1982). This explains why after the first peak A of the transmitted force, an
obvious unloading is observed (Fig. 3.23). This unloading ends at trough C and then
the load continuously rises until the second peak B. From the CSOD signal, we can
see that the trough D almost synchronizes with C, indicating the completion of the
unloading and the restart of the loading phase.

The signal of the strain gauge mounted on the sample surface is also depicted
in Figure 3.23. Two troughs E and F are visible from the strain gauge signal. The
first trough E occurs at time 39 µs and the second trough F occurs at time 76 µs. The
second trough F is lower and believed to coincide with the fracture initiation time at
76 µs. Because the peak transmitted force occurs at time 96 µs, the fracture initiation
of the notched SCB sample is thus 20 µs ahead of the peak transmitted load. These
observations show that due to the inertial effect, the far-field loads on the sample
boundary do not synchronize with the local load at the sample crack-tip. This kind
of loading inertial effect is similar to what was observed by Böhme and Kalthoff in a
different testing configuration (Böhme and Kalthoff, 1982).

Figure 3.24 shows the evolution of SIF from both quasi-static and dynamic data
reductions. The static analysis is carried out using the transmitted force on both ends of
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Figure 3.24 The evolution of SIF of the notched SCB specimen tested using a conventional SHPB with
both quasi-static analysis and dynamic analysis.

the sample. The overall trends of the two curves match with each other but the dynamic
SIF features huge fluctuation. Furthermore, the dynamic SIF is far from linear and
therefore it is difficult to achieve a constant loading rate. Consequently, the SIF from
the quasi-static data reduction with the far-field load recorded from the transmitted
bar cannot reflect the transient SIF history in the notched SCB sample. The usage of
the far-field loads such as the transmitted force to obtain the fracture toughness with
a quasi-static analysis will lead to tremendous error in the results. The quasi-static
equation is not valid for determining fracture toughness in a conventional SHPB test.

3.5.2.3 SCB test with pulse-shaping

A composite pulse shaper (a combination of a C11000 copper and a thin rubber shim)
is utilized to shape the loading pulse. In a test with the same speed of striker as the
previous case, the incident wave is shaped to a ramp pulse with a rising time of 150 µs,
and a total pulse width of 300 µs (Fig. 3.25).

Also shown in Figure 3.25 are the forces on both ends of the specimen. In contrast
to Figure 3.22, the forces on the two ends of the specimen exhibit no fluctuation and
they are almost identical before the maximum value is reached. The balance of dynamic
forces on both ends of the sample is clearly achieved.

Figure 3.26 illustrates the measured CSOD of the notched SCB specimen by LGG
and the transmitted force in a modified SHPB test. The measured CSOD is always
positive and there is a single peak A in the transmitted force (Fig. 3.26), occurring at
time 164 µs. The phenomenon of crack closing due to inertial effects vanishes com-
pletely in this case. Figure 3.26 also shows strain gauge signal mounted on the sample.
Only one trough B signal is registered by the stain gauge, occurring at time 160 µs.
Thus, the fracture initiation time is designated by the unique trough B at time 160 µs.
Because the peak transmitted force occurs at time 164 µs, it is thus only 4 µs after the
measured fracture onset. We can conclude that in this case, the peak far-field load
matches with the fracture onset with negligibly small time difference. The small time
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Figure 3.25 Dynamic forces on both ends of the notched SCB specimen tested using a modified SHPB.

0

0 50 100

B

150 200 250 300

1

2

3

Tr.
Strain gauge
CSOD

Tr
an

sm
itt

ed
 fo

rc
e 

(k
N

)
C

S
O

D
 (

0.
05

 m
m

)

4

0

10

S
train gauge signal (m

V
)

Figure 3.26 Comparison of CSOD and strain gauge signal with the transmitted force of the notched
SCB specimen tested using a modified SHPB test (the unit for CSOD is 0.05 mm).

difference between them can be partially interpreted as follows. The load on the speci-
men increases with the incident pulse before it reaches the peak. At the fracture onset,
release waves are emitted from the crack tip at the sound speed of the rock material.
The distance between the crack tip and the supporting pin is 12 mm and it thus takes
around 2.4 µs for the first release wave to reach the supporting pins. Due to the interac-
tion between the release wave and the pins, the load on the transmitted side decreases
(Fig. 3.26). In addition, between 160 µs and 164 µs, the curve of transmitted force is
almost flat (Fig. 3.26). The 4 µs time difference will thus lead to negligibly small error
in the final result of fracture toughness.

By carefully shaping the loading wave, the dynamic force balance on the boundary
of the sample is achieved (Fig. 3.25). However, with a 2D geometric configuration,
the force balance on the boundary does not necessarily guarantee the dynamic stress
equilibrium in the entire specimen. To address this issue we evaluate the SIF evolution
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Figure 3.27 The evolution of SIF of the notched SCB specimen tested using a modified SHPB with both
quasi-static analysis and dynamic analysis.

by dynamic finite element analysis, and compare the result with that from a quasi-static
analysis (Fig. 3.27). The dynamic SIF exhibits no fluctuation at all in contrast to that
shown in Figure 3.24. The evolutions of SIF from both static and dynamic methods
match reasonably well.

From the above discussion, we have verified that with dynamic force balance in
SHPB, the peak far-field load coincides with the fracture onset. The fracture toughness
can thus be confidently deduced from the peak far-field load by virtue of quasi-static
equations. For the case we examined, the dynamic fracture toughness is 3.47 MPa·m1/2,
with the loading rate of 79.7 GPa·m1/2/s. It is also noted that when there is no pulse
shaper, the failure time is at 76 µs. The corresponding dynamic stress intensity factor is
1.5 MPa·m1/2 (Fig. 3.23). This value can not be used as the dynamic fracture toughness
because it carries significant errors. First, the loading condition is not well defined due
to the oscillation of the load. Secondly, the oscillation is due to the dispersion of stress
waves in the bar system, and thus it only represents the accurate trend of the dynamic
load but not the accurate force at individual measurement points. As a matter of fact,
the static fracture toughness of this rock is about 1.5 MPa·m1/2 (Nasseri and Mohanty,
2008). The dynamic fracture toughness should be much higher. Hence, we show again
that the test without pulse-shaping is not reliable.

3.5.2.4 Fracture energy and propagation toughness

Figure 3.28 shows a typical loading history (P2) and the corresponding CSOD history
during a dynamic SCB fracture test. Because the dynamic force balance is achieved, the
peak point of the loading (A) corresponds to the fracture initiation in the specimen,
as in a quasi-static experiment. The temporal derivative of the CSOD history is the
crack surface opening velocity (CSOV) history. The crack surface opening velocity
(CSOV) increases with time and then approaches a terminal velocity of v = 13.9 m/s
at the turning point B.
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Figure 3.28 Typical loading history and CSOD history of the SCB specimen tested in SHPB. Inset: the
crack gauge signals at three locations.

The two vertical lines passing through points A and B divide the whole deformation
period into three stages I–III. We believe that in stage I the crack opens up elastically,
in stage II the crack propagates dynamically, and in stage III the fracture separates
the sample into two pieces and the two fragments rotate away from each other. The
separation velocity of the two fragments (normal to the bar axis) is approximately the
terminal velocity in CSOV (for small angle of rotation in stage III), and doubles the
fragment velocity.

The crack propagation process lasts about �tAB = 53 µs as seen from CSOD and
CSOV. Given the crack distance Ls = R − a = 16 mm for this test (Fig. 3.20), we esti-
mate the average crack growth velocity vf to be about 300 m/s. We also use crack gauges
to estimate the fracture propagation velocity. Three cracks are mounted on the speci-
men (Fig. 3.20), separated by �l1 = 5.36 mm and �l2 = 7.81 mm. The time separations
between the arrivals of the fracture signals are �t1 = 20 µs, and �t2 = 22 µs, respec-
tively. Thus the corresponding fracture velocities are v1 = 268 m/s, and v2 = 355 m/s.
The fracture velocity appears to increase as the crack propagates during dynamic load-
ing. The first gauge is cemented at about 2 mm away from the crack tip in order to
avoid interfering the crack initiation. So there is 8 µs delay between the crack initiation
and the breaking of the first crack gauge. The fracture velocity as measured with LGG
is consistent with the crack gauge results. One advantage of the LGG is that it is a
non-contact method.

A high speed camera (Photron Fastcam SA1) is used to monitor the fracture ini-
tiation and propagation process as well as the trajectories of the fragments. The high
speed camera is placed perpendicular to the SHPB and specimen. Images are recorded
at an inter frame interval of 8 µs; the sequence shown in Figure 3.29 represents only the
frames of representative features. The first two images show the pre-fabricated notch
and the crack opening can be barely seen. The opening of the SCB crack becomes
visible at t > 40 µs. At 80 µs, the SCB specimen is split completely into two fragments.
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64 Advances in Rock Dynamics and Applications

Figure 3.29 Selected high speed camera images showing the fracture and fragmentation of an SCB
specimen.

The fragments then rotate about the contact point between the specimen and the inci-
dent bar. The rotation angle of the fragment is measured to be 9◦ at 160 µs, 21◦ at
480 µs, and 32◦ at 800 µs. This indicates that the angular velocity of the fragments is
almost constant during the period (about 314 rad/s), and the motion of the fragments
is rotational.

The high speed camera imaging indicates that the fragments rotate around the
axis along the loading point. The LGG system measures CSOD and the fragment
angular velocity can be deduced. The linear velocity of the two rotating fragments at the
LGG point is approximately the terminal velocity in the CSOV curve (Fig. 3.28). The
distance between the LGG and the rotating axis �l = 18 mm, so the angular velocity
ω = v/2/�l = 313 rad/s for the shot shown in Figure 3.29, in excellent agreement with
the result obtained from high speed imaging.

We next use the energy conservation principle to calculate the propagation fracture
energy and fracture toughness. A similar method was used by Zhang et al. (2000),
who used a high-speed camera to estimate the fragment residual velocities. The elastic
energy carried by a stress wave is (Song and Chen, 2006):

W =
∫ t

0
Eε2AC dτ (3.10)

The total energy absorbed by the specimen then is �W = Wi − Wr − Wt, where i, r,
and t denote incident, reflected and transmitted wave respectively. Part of the total
energy absorbed is used to create new crack surfaces, called the total fracture energy
(WG); the other part remaining in the fragments as the residue kinetic energy (K). That
is, �W = WG + K. For the rotating fragments, the moment of inertia is I, and the total
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Figure 3.30 The effect of loading rate on the initiation fracture toughness and fracture energy.

rotational kinetic energy is K = Iω2/2, where the fragment angular velocity ω is esti-
mated from the CSOD data. The average propagation fracture energy is Gc = WG/Ac,
where Ac is the area of the crack surfaces created. The average dynamic propagation
fracture toughness is:

KIP =
√

GcE/(1 − ν2) (3.11)

where E and ν are the Young’s modulus and Poisson’s ratio of the specimen respectively.
Here we assume the plain-strain condition.

3.5.2.5 Results

Figure 3.30 shows the measured initiation and propagation fracture toughnesses at
different loading rates; both of them increase linearly with increasing loading rates. The
propagation fracture toughness also increases with the fracture velocity (Fig. 3.31). At
the highest fracture velocity (∼850 m/s), the fracture toughness value is 9.48 MPa m1/2,
about twice of those at slower fracture velocities near 300 m/s.

3.5.3 Cracked chevron-notched Brazilian disc
(CCNBD) method

3.5.3.1 Methodology

Figure 3.32 shows the schematics of the spit Hopkinson pressure bar (SHPB) system
and the laser gap gauge (LGG) system. The geometry of the CCNBD sample is shown
in Figure 3.33.
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Figure 3.31 The variation of propagation fracture toughness with fracture velocity.
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Figure 3.32 Schematics of the spit Hopkinson pressure bar (SHPB) system and the laser gap gauge
(LGG) system.

Provided a quasi-static state of the specimen has been achieved during the SHPB
test with pulse shaping, the initiation fracture toughness KIC of CCNBD specimen is
then determined by the ISRM suggested method (Fowell et al., 1995):

KIC = Pmax

B
√

R
Y∗

min (3.12)

where Pmax is the measured maximum load, B and R are the thickness and the radius
of the disc respectively, Y∗

min is the minimum value of Y∗, and Y∗ is the dimensionless
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Figure 3.33 The CCNBD specimen in a SHPB system. R = radius of the disc, B = thickness of the
disc, Rs = radius of the diamond saw for making notch, a = Length of crack, a0 = initial half
length of chevron notch, a1 = final half length of chevron notch.

SIF and can be determined in advance by numerical calibrations according to Equation
(3.12):

Y∗ = KI/

(
P

B
√

R

)
(3.13)

As a critical factor for determining fracture toughness, Y∗
min corresponds to the

dimensionless SIF at the critical dimensionless crack length αm(αm = am/R, and am is
the critical crack length), where the load is maximum.

For a given CCNBD sample configuration, Y∗
min can be found from ISRM sug-

gested method (Fowell et al., 1995). However, the corresponding critical dimensionless
crack length αm is not explicitly documented (Fowell, et al., 1995). A commercial
finite element analysis software ANSYS is used in this work to determine the critical
dimensionless crack length αm and the corresponding Y∗

min.
To achieve accurate SIF values, a sub-modeling technique is adopted to achieve a

fine mesh zone around the crack front. A typical sub-modeling sequence is twofold in
practice. A full-model, generally with a coarse mesh, is first analyzed. This is followed
by analyzing the zone of interest sliced from the full model using a finely meshed sub-
model. Sub-modeling is also known as the cut-boundary displacement method or the
specified boundary displacement method. The boundary of the sub-model inherits the
displacement obtained from the analysis of the full model (Manual, 1999).

Before we calculate the SIF of the CCNBD specimen, the analysis capabilities of the
ANSYS sub-modeling technique on three dimensional crack problems are evaluated
by several benchmark problems, involving the calculation of SIFs for a penny-shaped
crack and an elliptic crack in an infinite domain under remote uniform traction. The
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Region for sub-modeling

Figure 3.34 Mesh of one eighth of the CCNBD specimen as well as the cut-boundary of the sub-model.

b/2

Crack tip elements

Figure 3.35 Mesh of the sub-model.

results are highly satisfactory, with the maximum error less than 0.4% compared to
the theoretical results. We then conduct an elaborate analysis on the CCNBD specimen
with the ANSYS sub-modeling technique. Due to symmetry, one eighth of the specimen
is first modeled. Solid 92 elements (10-node tetrahedral structural solid) are used in
the mesh. The total model is meshed with 34907 elements and 50427 nodes as shown
in Figure 3.34.

We then cut a brick from the model enclosing the straight crack front (shown in Fig.
3.35) and analyze it as a sub-model. Solid 95 elements (20-node brick shaped element)
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Figure 3.36 The calculated dimensionless SIFs vary with the dimensionless crack length α.

are used. This sub-model is meshed with 6258 elements and 25829 nodes as shown in
Figure 3.35. Specifically, to simulate the stress singularity of r−1/2 near the crack tip (r is
the radius to the crack tip), quarter-nodal elements (Barsoum, 1977) are used to mesh
the region adjacent to the crack front. For the CCNBD sample configurations used
in this research, the calculated dimensionless SIFs vary with the dimensionless crack
length α (Fig. 3.36). Y∗

min is found as 0.6 and the corresponding critical dimensionless
crack length αm is 0.43.

Following the same method described in section 5.2.4, we can calculate the fracture
energy. The only difference is on the calculation of the residue kinetic energy in the two
cracked fragments, K. The kinetic energy K for CCNBD test can be calculated with
K = mv2/2, where m is the mass of the specimen, v is the translation velocity of the
fragment, which can be deduced from the CSOD history data using with our optical
device.

3.5.3.2 Stable-unstable crack propagation transition

We employ pulse shaping technique for all our dynamic CCNBD tests. The dynamic
forces on both loading ends of the sample are critically assessed. To compare the
dynamic force histories of these two, the time zeros of the incident and reflection
stress waves are shifted to the sample-incident bar interface and the time zero of the
transmitted stress wave is shifted to the sample-transmitted bar interface invoking 1D
stress wave theory. Hereafter, a typical dynamic CCNBD test is shown and discussed.
Figure 3.37 compares the time-varying forces on both ends of the sample for this test.
The dynamic forces on both sides of the samples are almost identical throughout the
dynamic loading period. Obviously, the dynamic forces on both ends of the sample are
balanced and the inertial effects are thus eliminated because there is no global force
difference in the specimen to induce inertial force.

Figure 3.38 shows the measured CSOD by LGG as well as the strain gauge signal
mounted on the sample, compared with the transmitted force (P2) in the SHPB test.
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Figure 3.37 Dynamic force balance in a typical CCNBD-SHPB test with pulse shaping.

With dynamic force balance (Fig. 3.37), the transmitted force P2 can be regarded as
the loading to the sample, similar to the quasi-static case. The strain gauge signal of the
sample surface is used to detect the fracture initiation and propagation. The fracture
initiation from the notch tip will result in a decrease in the strain gauge signal, denoted
as point C in Figure 3.38. This fracture initiation coincides with the turning point A in
the sustaining load P2. After this instant, to further drive the propagation of the crack,
the load has to increase until the peak point B. At this instant, the crack reaches the
critical crack length (with dimensionless crack length αm) and the unloading starts due
to transition of crack growth from stable to unstable. The peak B of P2 occurs at time
149 µs, 4 µs after the critical crack length is reached as indicated on the strain gauge
signal as point D. We believe that the peak of the loading corresponds to the moment
the crack reaches the critical crack length. The delay in time between point B and D can
be explained in this way. The load on the specimen increases before the propagating
crack reaches critical crack length, when the release waves are emitted at the sound
speed of the rock material. The distance between crack tip and the transmitted loading
end is about 20 mm and it thus takes around 4 µs for the first release wave to reach
the transmitted end of the specimen. It is noted also that the measured CSOD curve
from the LGG system exhibits an obvious linear segment after point E is reached at
227 µs. The slope of this linear segment indicates constant departure velocity of the
two fractured fragments. The point E thus designates the complete separation of the
two fragments of the CCNBD specimen.

The dynamic fracture process of the CCNBD specimen in SHPB test can be divided
into four stages, separated by three vertical lines through points A, B, and E (denoted
by I–IV in Fig. 3.38). The elastic deformation of the CCNBD specimen dominates stage
I. At the end of the stage I, the crack initiates from the notch tip, and propagates until
the turning point B, when the propagating crack reaches the critical crack length am

(stage II). We believe that point B designates the transition of stable to unstable crack
propagation. During stage II, the crack propagates stably; while in stage III, the crack
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Figure 3.38 LGG measured CSOD and strain gage signal of the CCNBD sample surface, compared
with the transmitted force in the SHPB test with pulse shaping.

propagates unstably. Finally, the sample is cracked completely into two half fragments
in stage IV flying away from each other.

Both stable and unstable crack propagation velocities can be quantified. For
the typical test, the stable crack propagation lasts around �ts = 57 µs in stage II
and the distance of the crack propagation during this stage can be calculated by
our finite element analysis: Ls = am − a0 = 5.1 mm. The average velocity of the sta-
ble crack growth is then Vs = Ls/�ts = 89 m/s. The unstable crack propagation,
shown in stage III, lasts around �tus = 80 µs. The unstable crack growth distance
Lus = R − am = 11.4 mm. The average unstable crack propagation velocity is thus
determined as Vus = Lus/�tus = 143 m/s.

3.5.3.3 Results

Figure 3.39 illustrates the measured dynamic mode-I fracture initiation toughness and
the average propagation toughness of LG with respect to the loading rates. The fracture
loading rate is determined from the slope of the loading curve before fracture initiation.
Within the range of loading rates from 30 to 70 GPa m1/2 s−1, both toughness values
increase almost linearly with increasing loading rates.

Figure 3.40 shows the average stable-unstable fracture velocities with loading
rates. The unstable fracture velocity is always larger than the stable fracture velocity
for each test (two to three times).

3.5.4 Comparison of dynamic CCNBD results
with dynamic SCB results

The measured fracture initiation toughness values from our dynamic CCNBD method
are compared with those from dynamic SCB tests in Figure 3.41. The fracture initiation
toughness is quite consistent with the measured results by SCB. We are thus confident
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Figure 3.39 The effect of loading rates on the fracture initiation toughness and the average propagation
toughness.
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Figure 3.40 The effect of loading rates on the average stable and unstable crack velocities.

that the measured results from dynamic CCNBD tests are reliable. It is noted here that
the determination of the loading rate for the CCNBD test is difficult: the loading rates
before the transition and after the transition are different. We use the slope of the force
after the transition the critical dimensionless SIF Y∗ to calculate the loading rate. Cares
should be thus taken to apply the dynamic CCNBD results.
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Figure 3.41 Comparison of the initiation toughness from dynamic CCNBD and dynamic SCB methods.

3.6 CONCLUSIONS

This chapter discussed the new advancements in testing techniques using the split
Hopkinson pressure bar (SHPB) apparatus. These new techniques made the SHPB
suitable for testing rocks and other brittle solids. Because of their small failure strain,
the biggest challenge of applying SHPB for testing brittle solids has been to ensure the
dynamic force balance during the dynamic loading. The pulse-shaping technique that
involves using pulse shaper to slow down the rising of the loading pulse to achieve
the dynamic force balance is thus extremely useful. The momentum-trap technique
ensures valid post-mortem examination of the tested materials, and thus enables the
establishments of the dynamic loading to the damage. Among various optical methods
developed for SHPB, the laser gap gauge (LGG) is very useful for monitoring the
opening of crack surfaces as demonstrated.

The traditional application of SHPB is the dynamic compression of materials. The
choice of sample dimension and reduction of the friction between the sample and the
bars are two critical issues in this application. These two problems are coupled in some
sense. With the utilization of the new techniques such as pulse-shaping, it is shown
in this work that with proper lubrication, the slenderness ratio of the sample can be
chosen between 0.5 and 2, without affecting the accuracy of the result. The effect of
friction on the measurement is demonstrated using lubricated, dry friction, and bonded
bar/sample interfaces.

SHPB can also be used to measure the dynamic tensile strength of rocks using
indirect tension methods. The dynamic Brazilian disc (BD) method is adopted in this
work. It is demonstrated that the dynamic force balance is a prerequisite for quasi-static
data analysis with the aid of numerical simulation and high speed photography. Given
the dynamic force balance, the evolution of the stress at the center of the specimen
synchronizes to the far-field load; the peak of the load can thus to be used to deduce
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the nominal tensile strength. In addition, the overshoot of the peak load first suggested
for static BD method is worse in the dynamic case. It is necessary to use a strain gauge
cemented on the end surface of the BD sample to detect the failure onset.

As a relatively new application, SHPB is applied in this work to measure the
dynamic fracture parameters of rocks. Two methods are used to determine the dynamic
rock fracture toughness: semi-circular bend (SCB) method and cracked chevron-
notched Brazilian disc (CCNBD) method. The two methods give comparable dynamic
fracture toughness values; the SCB sample features an unstable crack configuration
and thus it is easier to determine the loading rate, while the CCNBD sample has a
stable to unstable transition of the fracture propagation and it is difficult to detect
the transition point and ambiguity exists on the meaning of the loading rate. Again
the dynamic force balance is needed for valid testing condition for both methods. In
light of the sample preparation and result interpretation, the dynamic SCB method is
advantageous. However, CCNBD method is more applicable for testing fine-grained
rocks.

In summary, the SHPB can be used to effectively determine the dynamic mechanical
properties of rocks. As a universal prerequisite, the dynamic force balance is needed
for all dynamic tests. It is then possible to extend the static tests to their dynamic
counterparts. The dynamic compressive test, dynamic BD tension test, dynamic SCB
fracture test, and dynamic CCNBD fracture test are used in this work as examples.
Some of these testing methods can be potentially adopted by the ISRM as suggested
methods.
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Chapter 4

Modified Hopkinson bar technologies
applied to the high strain rate
rock tests

Ezio Cadoni and Carlo Alber tini

4.1 INTRODUCTION

Rock excavations in tunnel construction or mining works are usually performed by
means of the action of pressure waves generated from controlled explosions and by
impact loading from excavation machines. As a consequence, the pressure wave ampli-
tude and duration are important. Firstly, for economic reasons, we need to obtain the
desired effects with the lowest costs. Secondly, for safety measures, risks from heavy
impact or vibrations especially in urban underground excavations should be avoided.
The optimised choice of the impact loading parameters of the excavation machines
are important, and also for the same reasons, the proper choice and design of the
excavation machines.

No matter which calculation method is employed, either analytical or numerical,
the very basic data needed by the engineer for the above mentioned optimisations
will be:

a) The precise values of the amplitude, duration and shape of the pressure pulse
acting on the rock to simulate the type, weight and shape of the explosive charge
or the impact loading parameters of the excavation machine.

b) The complete stress-strain curve until fracture of the rock material to be excavated.
It should be precisely measured at the strain rate imposed by the acting pressure
pulse by means of a special dynamic material testing apparatus, possibly taking
into account also the effect on the dynamic stress-strain curves under the in situ
stresses during real excavation works.

The theme of the present chapter is the presentation of some precision measure-
ment methodologies of the acting pressure pulses and of the rock stress-strain curves
described at the above points.

The impact pressure pulses generated by the charge explosion or by the specialised
excavation machine, act on the rock/soil through stress wave propagation, which is
the most important phenomenon to be taken into account for achieving a precise
measurement of the parameters of the generated pressure pulses. The impact load
generated by the dynamic material testing apparatus during the high strain rate test
acts also on the rock specimen through stress wave propagation. As a consequence,
the precise measurement of the stress-strain curve of the rock/soil specimens at high
strain rate should be performed by means of testing devices. Those devices will have

© 2011 Taylor & Francis Group, London, UK
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controlled stress wave propagation so that it can be precisely analysed by means of the
one-dimensional elastic wave propagation theory.

The pioneering studies by Hopkinson, father (1872), Hopkinson, son (1914) in
the early 20th century and by Davies (1948) in the mid 20th century, introduced a
method similar to the bar technique adapted to modern instrumentation. It is scien-
tifically the most recognized methodology for the precise measurement of pressure
pulse parameters and dynamic material properties. It allows the recording of the pres-
sure pulses under wave propagation control, avoiding the complications introduced
by wave reflections and superposition. Also, it allows the record analysis by means
of the well proofed one-dimensional elastic wave propagation theory (Davies, 1948;
Kolsky, 1953). The Hopkinson bar method requires the generation of a stress wave
pulse well controlled in amplitude and duration which, by means of an elastic bar sys-
tem, is propagated without dispersion and uncontrolled reflections to load and deform
until fracture of a specimen. Furthermore, in the Hopkinson bar method, the specimen
should have a gauge length allowing a state of stress homogeneity to be reached along
the gauge length at the early stages of the deformation. It means that in a short time
with respect to the duration of the test, the state of stress homogeneity is obtained by
means of the stress waves propagating forwards and backwards inside the specimen.
The gauge length of the specimen is kept sufficiently short.

In the analysis of the Hopkinson bar, the propagation of the stress waves without
dispersion and uncontrolled reflections, and the deformation of the specimens in a state
of stress homogeneity, are the basic conditions to be satisfied for a correct implementa-
tion of the one-dimensional elastic stress wave propagation theory. Therefore accurate
measurements are needed to determine the dynamic mechanical properties of mate-
rials. However, the basic principles of the Hopkinson bar method are normally not
respected, especially in the impact rigs based on the use of drop weight or missiles. In
fact they impinge directly on the specimen generating an impact load and use load cells
as load transducers that are in contact with the specimen. The material properties under
impact loading measured with drop weight impact rigs are of low accuracy. There-
fore they are not reliable for the development and calibration of material constitutive
laws, due to many noisy phenomena like resonant vibrations, rebounds, superposition
of waves, and reflections (Birch, Jones and Jouri, 1988). The low accuracy of load
and displacement measurements performed with drop weight impact rigs has been
clearly shown by a benchmark exercise where the European Commission (EC) Joint
Research Centre (JRC) and 14 European Laboratories performed the measurement of
the load–displacement curves of equal structural components using respectively a large
Hopkinson bar and drop weight/horizontal sledge impact rigs (Albertini, Hanefi and
Wierzbicki, 1995; Albertini, Solomos and Labibes, 1998).

In this benchmark exercise, because of the earlier mentioned noisy phenomena
which obliged the application of questionable filtering processes to the experimental
records, the drop weight impact rigs were practically unable to give reliable mea-
surements of the load-displacement curves. They show a large spread of the results
especially in the first part of the load-displacement curves where unrealistic large load
peaks were recorded (Albertini, Hanefi and Wierzbicki, 1995; Albertuni, Cadoni and
Labibes, 1997; Albertini, Solomos and Labibes, 1998). These initial “false’’ load peaks
present in the records of drop weight impact rigs will particularly affect the accuracy
of the impact strength measurements of concrete, reinforced concrete, and geological
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Figure 4.1 Dynamic stress versus strain curve of a rock specimen in tension (Cadoni, 2010).

material specimens. In fact, the resulting stress-strain curves will be strongly affected by
the existence of the initial false load peak because its duration covers all the deformation
phase (generally of low value) of these materials.

The large Hopkinson bar experimental records, taken during the benchmark exer-
cise (Albertini, Hanefi and Wierzbicki, 1995; Albertini, Solomos and Labibes, 1998)
were very clean. They do not require any filtering process before being analysed by
means of the well proofed one-dimensional elastic wave propagation theory. No unre-
alistic first load peaks affected the records. The benchmark exercise demonstrated also
the usefulness of the Hopkinson bar technique for the precise measurement of the
amplitude, shape and duration of pressure pulses.

The Hopkinson bar technique has been modified during more than three decades
in EC-JRC Ispra, Italy. It is intended to be applied successfully to a large range of
materials extending from very ductile materials like metals to relatively fragile materials
like concrete and ceramics.

The typical dynamic stress-strain curve of a rock specimen is shown in Figure 4.1,
where it can be distinguished by three main branches:

i) a linearly increasing branch, which can be considered as elastic, characterised by
the elastic modulus and by the elastic limit,

ii) a strain hardening branch, where stress increases non-linearly with strain up to
the UTS and,

iii) a softening branch, where load decreases non-linearly with displacement, corre-
sponding to the fracture propagation through the specimen cross-section.

The three above branches of the dynamic stress-strain curves are measured by
means of a unique dynamic tensile test, extended up to fracture of the specimen with
the Hopkinson bar at high strain rate. The Hopkinson bar governs the problem of stress
wave propagation connected with the high strain rate testing in a way (exposed in more
detail later) to lead back the dynamic test to a quasi-static test by means of numerous
stress wave reflections inside the specimen, creating the need for homogeneous stress
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distribution along the specimen gauge length. This practice assures good measurement
accuracy for the non-linear deformation phases II and III because they are characterised
by displacements and loads of the same order of magnitude.

However, the above practice cannot assure the same accuracy for the branch I (the
elastic one up to the elastic limit or the upper yielding) of the dynamic stress-strain
curve for two main reasons:

• the displacements measured during the linear branch I are up to two orders of
magnitude smaller than those of branches II and III, requiring specific displacement
measurement instrumentation,

• the time to upper yield stress or to elastic limit, especially in high loading rate,
is very short and may give problems of non-homogeneous stress distribution
along the specimen gauge length which must be taken into account when defining
material properties.

In the following sections, after a description of the principles of the JRC Modified
Hopkinson Bar (MHB) and of its performance in testing plain concrete, some applica-
tion proposals of the JRC-MHB for the dynamic mechanical characterisation of rocks,
and of the acting pressure pulses in the case of excavation works, will be presented.

4.2 PRINCIPLES AND FUNCTIONING OF THE JRC-MHB WITH
QUASI-STATICALLY PRE-STRESSED LOADING BAR

An innovative version of the modified Hopkinson bar (MHB) has been developed
during the last three decades at EC-JRC. The JRC-MHB is capable of performing
impact precision tests in tension, compression, bending and shear using the same
supporting structures and the same measuring instrumentation.

The classical Hopkinson bar normally works only in compression and consists
principally of, as shown in Figure 4.2, a projectile in order to generate a rectangular
impact loading pulse by impinging on an input bar which transmits the load to a
specimen inserted between the input and output bars (Davies, 1948; Kolsky, 1953).
The main modification of the classical Hopkinson bar introduced at JRC (Albertini
and Montagnani, 1974, 1977; Albertini and Labibes, 1997) consists in the substitution
of the projectile, normally used to generate the impact loading pulse, with a statically

Gas gun Input bar

Impacted systemImpactor system

Projectile Specimen

Output bar

Compression wave Compression wave

Figure 4.2 Traditional SHPB for rock specimen in compression (Cadoni, 2010).
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Pre-stressed bar

Brittle intermediate piece

Hydraulic
actuator

Compression wave Compression wave

Blocking
system

Specimen

Impactor system Impacted system

Input bar Output bar

Figure 4.3 Modified SHPB for rock specimen in compression (Albertini and Labibes, 1997).

elastic pre-stressed bar which is the physical continuation of the input bar as shown in
Figure 4.3.

The method of functioning the JRC modified Hopkinson bar in compression (Fig.
4.3) consists of the following phases:

Elastic energy is stored in the pre-stressed loading bar by statically tensioning the
length of this bar between a blocking ring and a brittle intermediate piece connected
to the hydraulic actuator.

A rectangular stress wave pulse is generated by suddenly breaking the brittle inter-
mediate piece and propagates through the input bar, the specimen and the output bar,
provoking a state of compressive stress in the specimen because the particles move
from left to right.

Records are taken by the strain-gauge stations glued on the input and output bars
of the elastic deformation εi provoked by the incident pulse propagating in the input
bar, the elastic deformation εr provoked in the input bar by the part of the incident
pulse reflected at the interface of input bar-specimen and the elastic deformation εt

provoked in the output bar by the pulse transmitted through the specimen.
By applying the elastic one-dimensional stress wave propagation theory at the

Hopkinson bar system, the forces F1 and F2 and the displacements D1 and D2 acting
on the two faces of the specimen in contact with the input and output bars can be
calculated, following the relationships below, using the recorded deformations εi, εr

and εt of the elastic input and output bars:

F1 = EA (εi + εr) (4.1)

F2 = EA εt (4.2)

D1 = C0

∫
(εi − εr)dt (4.3)

D2 = C0

∫
εt dt (4.4)

Having realised the condition of the specimen deformation in a homogeneous stress
state, the average stress σ, strain ε and strain rate ε̇ in the specimen material can be
determined with the following relationships:

σ = F1 + F2

2A0
= 1

2
E

A
A0

(εi + εr + εt) ∼= E
A
A0

εt (4.5)
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Figure 4.4 Modified SHPB for rock specimen in tension (Albertini and Montagnani, 1974, 1977).

ε = D1 − D2

L
= C0

L

T∫
o

(εi − εr − εt)dt ∼= 2C0

L

T∫
o

εt dt (4.6)

ε̇ = C0

L
(εi − εr − εt) ∼= 2C0

L
εr (4.7)

where: L = gauge length of the specimen, A0 = cross-sectional area of the specimen,
T = test time, E = elastic modulus of the bar, A = cross-sectional area of the bar and
C0 = the elastic wave speed in the bars.

The approximations on the right hand side of the above equations (4.5), (4.6),
(4.7) are based on the approximate equivalence of the forces on both faces of the
specimen, so that:

F1
∼= F2 (4.8)

or

εi + εr
∼= εt (4.9)

This approximation is valid for short specimen gauge length as required for having
a homogeneous stress distribution in the specimen gauge length. The validity of this
approximation can be checked experimentally by directly summing the indicated signal
records.

In Figure 4.4, the scheme of the MHB (Albertini and Montagnani, 1974, 1977) has
been shown as suitable for tensile tests. The tension device works in a similar way as the
compression device described above. In this case, the tensile stress state of the specimen
is obtained by placing the brittle intermediate piece in a device blocking the point of the
bar which determines the separation between the pre-stressed bar and the input bar. In
the physical reality, the pre-stressed bar and the input bar are a unique continuous bar
which for a certain part of its length works as a pre-stressed bar. The remaining part
works as an input bar (the functional subdivision is determined by the position of the
blocking ring in the compression version of Figure 4.3 and by the position of the brittle
intermediate piece in the tension version of Figure 4.4. By pulling the pre-stressed
bar with the hydraulic actuator (Fig. 4.4) until the desired amplitude of the stored
stress state is reached, and by successively fracturing the brittle intermediate piece, a
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stress wave pulse is generated propagating in the system that consists of the input bar,
the specimen and the output bar. In this case, the input bar particle displacement is
from right to left inducing a tensile stress state in the specimen.

The main difference of the JRC tension and compression MHB with respect
to the classical bar lies mainly in the fact that the generation of the loading stress
pulse is performed by means of a pre-stressed bar which is the physical continu-
ation of the input bar instead of the launching of a projectile. This different way
of generation of the loading pulse has allowed the generation of very long load-
ing pulses by simply increasing the length of the pre-stressed bar. Loading pulses of
40 millisecond duration have been obtained by 100 m length of the pre-stressed bar
(Albertini, Boone and Montagnani, 1985). If the projectile technique would have been
used, it would have been necessary to launch a 100 m long projectile, and it would
have been a very difficult and expensive solution. The generation of long duration
loading pulses has been requested for testing very ductile materials and structural
components.

The impact testing with the classical Hopkinson bar of low elongation materials
like concrete and rocks requires a perfect plane impinging of the projectile on the input
bar in order to have a clean record of the short duration mechanical response of the
specimen. This condition is practically impossible to be realised with the projectile
launching in engineering test conditions. However, in the JRC MHB, the loading pulse
passes smoothly and in plane from the pre-stressed bar to the input bar because the two
bars are the physical continuation of each other. This process assures the rising and the
first part of the generated pulse remaining unspoiled from the oscillations generated
by the imperfect projectile impinging. It is necessary to have precise measurements of
the dynamic mechanical properties of the rock specimens.

4.3 TENSILE AND COMPRESSIVE IMPACT TESTS OF PLAIN
CONCRETE WITH THE JRC-MHB

The two basic schemes of the JRC-MHB for tests in compression and tension, as
shown in Figures 4.3 and 4.4, and described in Section 2, have been successfully
applied to impact testing of plain concrete material of two cubic specimens with side
length of 6 cm and 20 cm, respectively. The impact tensile tests of plain concrete cubes
of 60 mm side are shown in Figure 4.5. The input and output aluminium bars having
square cross-section of 60 mm side were constructed for better matching the mechan-
ical impedances. A too large mismatch of the impedances would provoke a complete
reflection of the incident wave at the input bar - specimen interface without any loading
on the specimen.

Furthermore, the input and output aluminium bars were constructively subdi-
vided by EDM (Electro-Discharging-Machine) into two bundles of input and output
Hopkinson bars. The aim of this subdivision in two bundles was the measurement of
the distribution of stress and strain over the cross-section of the specimen during both
the ascending branch of the stress-strain curve and the softening branch characterized
by the fracture initiation in a limited area of the specimen cross-section and then the
propagation through the whole specimen cross section (Albertini, Cadoni and Labibes,
1997; 1999). The pre-stressed loading bar for practical reasons has been constructed
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(a) (b)

Figure 4.5 JRC-MHB for concrete specimen in tension (Albertini, Cadoni and Labibes, 1997).
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Figure 4.6 Records of a tensile test on a concrete specimen by a JRC-MHB.

in steel with a dimension assuring the mechanical impedance continuity between the
steel pre-stressed bar and the aluminium input bar so that the generated stress wave
pulse enters the input bar without any reflection.

The functioning of the device in Figure 4.5 is the same as that in Figure 4.4. The pre-
stressed loading bar is quasi-statically pulled by the hydraulic actuator until the sudden
fracture of the brittle intermediate piece generates stress wave pulses propagating along
the input bar to the bar-specimen interface where some of them are reflected and
some are transmitted through the specimen (deforming it until fracture) successively
propagating along the output bar. The records of an impact test obtained from one bar
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Figure 4.7 JRC-MHB for dynamic compression testing of concrete or rocks.

of the bundle of the device in Figure 4.5 are shown in Figure 4.6. The incident, reflected
and transmitted pulses are clearly resolved. The application of the relationships (4.5)
to (4.7) to the records of all the bars of the bundle allows the precise determination of
the stress-strain curves of the plain concrete until fracture (Cadoni et al., 1997, 2000;
Albertini, Cadoni and Labibes, 1997, 1999).

The scheme in Figure 4.7 shows the Aluminium Hopkinson bar setup realised for
testing the 6 cm cubes under compressive impact loads. The way of functioning is the
same as described above for the general scheme in Figure 4.3.

A large MHB of high loading capacity (5 MN) is available at the EC-JRC Ispra,
known by the name LDTF (Large Dynamic Testing Facility). It was originally designed
for testing large steel specimens which need high dynamic load and large displacements
for impact testing to failure. After a proper adaptation, it allows the tensile impact
testing of large concrete specimens (cubes of 20 cm side) to study the effects of large
aggregate size (similar to those used in real constructions) and of specimen size. The
adaptation of the LDTF to impact testing of large plain concrete specimens has been
realised by inserting a long (100 m) pre-stressed steel cable of LDTF, an input and an
output aluminium Hopkinson bar of square cross sections of 20 cm side as shown
in the scheme of Figure 4.8 (Cadoni et al., 1997, 2000, 2001a, 2009). The input and
output bars were subdivided each one in a bundle of 25 bars individually instrumented.
This large device functions as follows:

– the long steel cable has been pre-stressed;
– an explosive bolt, inserted between the steel cable and the input aluminium bar,

has been exploded in order to generate a stress wave pulse which shall propagate
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Figure 4.8 JRC-Hopkinson Bar Bundle set-up for impact testing of large plain concrete specimen in
tension.
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Figure 4.9 Some signals of (a) input and (b) output elementary bars of the JRC-Hopkinson Bar Bundle.

in the aluminium Hopkinson bar set-up and shall deform the concrete specimen
until fracture;

– each one of the 25 Hopkinson input and output bars recorded the incident,
reflected and transmitted pulses correlated to the portion of specimen cross section
in front of the bar; Figure 4.9 (Cadoni et al., 1997) shows the records of the pulses
of one test;

– the application of the relationships (4.5) to (4.7) to the clear records like those
of Figure 4.9 allow study of the stress-strain distribution over the cross section
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Figure 4.10 Distribution of the maximum stress over the specimen cross-section measured by each
bar of the JRC-Hopkinson Bar Bundle (Cadoni et al., 1997).

of the specimen both during the ascending branch and the descending branch of
the stress-strain curve (Albertini, Cadoni and Labibes, 1999; Cadoni et al., 2000).
For example, Figure 4.10 shows the distribution of the stress over the specimen
cross-section in correspondence with the maximum of the stress-strain curve. Some
results concerning the effects of high strain rate on the mechanical properties of
small and large specimens can be found in the work of Cadoni et al. (2000, 2001a,
2009). Also, the fracture initiation and propagation through the plain concrete
specimen have been recorded with precision using the bundle Hopkinson bar as
shown in Figure 4.11 (Cadoni et al., 2000, 2001a, 2009).

– The investigations conducted with the large aluminium Hopkinson bar installed
in the LDTF were also extended to the study of the influence of humidity on the
dynamic mechanical properties of plain concrete (Cadoni et al., 2001b).

It is evident that the high loading capacity of the LDTF was needed for the impact
testing of large concrete specimens of 20 cm side but that the 100 m length of the pre-
stressed cable was oversized for this type of test because of the very small displacement
needed to fracture plain concrete specimens. In fact, a pre-stressed bar of a couple of
meters long would have been sufficient to bring to fracture the large plain concrete
specimens.

In fact, more recently, an MHB which is more adequate for testing large concrete
specimens has been constructed at JRC following the scheme sketched in Figure 4.12,
where the pre-stressed bar, the input bar and the output bar are 2 m long. The total
length of the equipment is about 8 m. This equipment has been used for testing large
concrete specimens in compression (Cadoni et al., 2009).
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Figure 4.11 Crack propagation of the specimen with dmax = 25 mm (strain rate = 10 s−1).
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Figure 4.12 Scheme of the JRC-MHB for compressive impact test of large concrete specimens.

4.3.1 Special tensile tests with the MHB for high resolution
measurement of elastic limit and elastic modulus of rocks

The tests at high strain rate are performed by means of the MHB. In the following
section, we will concentrate on the definition of the optimised test conditions for
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Figure 4.13 Representation of two loading rates Ṗ1 and Ṗ2.

the measurement of the mechanical properties of rocks at high strain rate using the
MHB, in particular the measurement of the elastic modulus and the elastic limit, whose
accurate measurement poses the major difficulties.

Whatever precise deformation mechanism is involved, the elastic limit of the linear
branch of the stress-strain curve of a rock material corresponds to the transition from
predominantly linear elastic to predominantly non-linear plastic deformation mode.
The overall elastic strain rate just before the elastic limit and the nominal plastic strain
rate just after the elastic limit should be nearly equal. However at the elastic limit, while
the elastic strain will and must be homogeneously distributed over the specimen gauge
length, the initial non-linear plastic strain will be confined to one or more restricted
regions within the specimen gauge length. It takes some time to spread over the whole
gauge length, with the consequence that a definition of an overall plastic strain rate
in proximity of the elastic limit is impossible. In fact, in the regions of localised non-
linear plastic strain of the specimen gauge length, the plastic strain rate will be very
high while outside it will be very low, arriving to a stable value only after some time.

Therefore we can define the strain rate as follows:

ε̇E = 1
E

dσ

dt
(4.10)

obtained on the basis of the Hooke’s law valid in the linear elastic field.
Considering that during the elastic straining phase the specimen cross-section (A)

remains, with good approximations, constant, then Equation (4.10) can be written as:

ε̇E = 1
E

d P
A

dt
= 1

EA
dP
dt

(4.11)

From Equation (4.11) we see that in order to obtain a constant strain rate in the linear
elastic deformation phase, it is necessary to apply a loading pulse Ṗ(t) characterised
by a constant loading rate. This means that the load P applied to the specimen will
linearly increase with the time t as shown in Figure 4.13.
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Figure 4.14 MHB loading pulse with different linear rise times.

An average value of the elastic strain rate over the time lap needed to reach the
elastic limit can be defined as:

ε̇E = YD

E · ty
(4.12)

where YD = elastic limit, E = elastic Young’s modulus, ty = time to reach the elastic
limit measured on the record of the specimen response.

As shown by Equations (4.10) or (4.11), for the accurate determination of the
elastic modulus and the elastic limit of rock specimens at high constant elastic strain
rates, it is necessary to apply linearly increasing loading pulses to the specimen, as
shown in Figure 4.13.

The actual version of the MHB is designed for the generation of a loading pulse
having the shape represented by the full line pulse in Figure 4.14. The load linearly
increases in a time of about 30 µs to an amplitude A and then remains constant for
a time T corresponding to the travel time of the elastic wave along the double length
of the pre-tensioned bar. In order to change the value of the rise time of the linearly
increasing loading pulse so as to perform tests at different elastic strain rates, we have
to introduce in the MHB design an element to generate a load linearly increasing, with
rise times larger than the actual ones as represented by the dashed lines in Figure 4.14.
This element, called “pulse shaper’’, allowing the increase of the rise time, is sketched
in two different versions in Figures 4.15a and 4.15b. Each version of the pulse shaper
is intended to be inserted along the incident bar of the MHB.
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Figure 4.15 MHB for tension test: (a) with low modulus material pulse shaper; (b) with mass-spring
pulse shaper.

The pulse shaper represented in Figure 4.15a is realised by interruption of the
continuity of the incident bar at points A1 − A2 and by insertion between these points
of the connection pieces re-establishing the continuity of the incident bar. The insertion
of the connection pieces of the pulse shaper obliges the incident elastic plane stress wave
propagating from the pre-tensioned bar to follow a path through the pulse shaper,
indicated by the arrows in Figure 4.15a. The wave passes through a material ring
of Young’s modulus lower than the incident bar and then continues the propagation
along the incident bar towards the specimen. The passing of the loading pulse through
the ring of lower Young’s modulus causes an increase in the rise time of the incident
pulse arriving at the specimen, with respect to the loading pulse propagating without
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Figure 4.16 Records of a tensile test on a concrete specimen by an MHB.

insertion of the pulse shaper. By increasing the thickness of the ring with lower Young’s
modulus, pulses with increased rise time are obtained. It is noticed that, with the
insertion of the pulse shaper with complete exclusion of the ring with low Young’s
modulus, it is possible to obtain pulses with extremely short rise time in order of few
microseconds (≤10) allowing study of the elastic limit in case of extremely hard impact.

The second version of the pulse shaper shown in Figure 4.15b consists of a mass-
spring system; the mass is bonded by friction to the incident bar and is connected to
a spring resisting the movement of the incident bar. The inertia of the mass and the
resistance of the spring will cause a linear increase of the rise time of the pulse. By
changing the value of the mass-spring system, different loading rates can be realised
corresponding to different elastic strain rates.

As shown in Figure 4.16, for a high strain rate test with the MHB, we observe that
the incident pulse generated by the MHB is characterised by a linear increasing load
during the rise time. It therefore meets the condition of constant loading rate desired
for a constant elastic strain rate during the elastic deformation of the specimen. The
constancy of the elastic strain rate is shown in Figure 4.16 by the linearity of the
measured strain with time.

The implementation of the pulse shaper of Figure 4.15a or 4.15b allows changes
of the slope of the rising branch of the incident pulse, to achieve different constant
elastic strain rates for dynamic tests.
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Figure 4.17 Stress versus strain curves of plain concrete in tension at different strain rates.

From Figure 4.17 and at the second phase of the transmitted loading pulse in Figure
4.16, we observe that the trends of these curve branches tend to flatten. Therefore in
order to study these branches of the stress-strain curves at constant strain rate, a
flattening to a constant value of the incident pulse is also needed.

For the incident pulse shown in Figure 4.16, after the linearly increasing load it
follows a flat plateau. It satisfies the condition for a constant strain rate during the
strain hardening phase of the dynamic stress-strain curve of Figure 4.17. The constancy
of the strain rate during the strain hardening phase of the stress-strain curve is shown
in Figure 4.16 by the linear trend of the measured strain with time, on the specimen
during the strain hardening phase.

4.3.2 Important recommendations for analysis of test records
of high strain rate tests performed with the MHB

It is important to note that, in the case of the Hopkinson bar tests of concrete and
rocks, it is recommended that the complete analysis be applied with Equations (4.5),
(4.6) and (4.7). We have in fact observed that the application of the simplified analysis
procedure to the MHB test records, with the approximated form of Equations (4.5),
(4.6), (4.7), do not give accurate values of strain rate and description of the strain rate
trend during the different phases of the test.

To explain this important point, we have to look attentively at the records of
Figure 4.16, where we distinguish the classic records of the incident, the reflected and
the transmitted pulses of a Hopkinson bar test, together with the record of the strain
versus time. The incident pulse has the correct shape in order to obtain a constant strain
rate both during the linear elastic response and during the non-linear strain hardening
response of the specimen to the applied incident pulse. That means a linear increasing
load versus time (constant loading rate) followed by a constant load versus time.
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In the record of the transmitted pulse, we can distinguish:

– a first phase where the load increases linearly with time,
– a second phase where the load increases non-linearly with time,
– a third phase where the load decreases linearly with time

On the record of the measured strain versus time, we observe:

– a first phase of time duration equal to the first phase of the transmitted pulse, where
the strain increases linearly with time indicating a deformation at a constant strain
rate,

– a second phase of time duration equal to the second phase of the transmitted pulse
where the strain increases also linearly with time but with an increase of slope in
respect to the first phase,

– a third phase where the strain increases linearly with time but with an increase of
slope in respect to the second phase.

Coupling the records of the transmitted pulse and the strain, by applying the time
shift and Equation (4.5), we can then affirm that:

• The coupling of the linear first phases of the transmitted pulse and of the strain
gauge on the specimen generates the elastic phase of the stress-strain curve, which
is then measured at the constant elastic strain rate given by the slope of the first
phase of the strain gauge on the specimen.

• The coupling of the non-linear second phase of the transmitted pulse with the
linear second phase of the strain gauge on the specimen generates the non-linear
strain hardening phase of the stress-strain curve, which is also measured at the
constant strain rate corresponding to the slope of the second phase of the strain
gauge on the specimen.

• The linear third phase of the transmitted pulse coupled with the linear third phase
of the strain gauge on the specimen generates the fracture propagation phase of
the stress-strain curve, which seems to take place at a constant speed.

In conclusion we can observe that:

– The coupling of the records of the measured strain on the specimen and the
resistance of the specimen measured on the transmitted bar generate an accurate
stress-strain curve of the plain concrete specimen.

– The constant slope of the first and second phases of the record of the measured
strain on the specimen gauge length demonstrates that the shape of the applied inci-
dent pulse is correct for performing a dynamic test at a constant elastic strain rate
during the elastic phase and at a different strain rate during the strain hardening
phase.

– On the contrary, when we apply the approximated version of Equation (4.7) for
the simplified analysis procedure to the first and second phases of the record of
the reflected pulse, we find the elastic strain rate and strain rate during the strain
hardening phase always increase with time.
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Figure 4.18 Stress versus strain curve for granite in tension obtained by means of JRC-MHB (Cadoni
et al., 2009b).

These results can also be directly deduced from the record of the reflected pulse in
Figure 4.16. The amplitude of the reflected pulse, which is proportional to the strain
rate, increases during the whole test time.

Therefore, taking the strain record as a reference, we can affirm that, for concrete
specimens of about 50 mm length, it is necessary to analyse the MHB test records using
the complete version of Equations (4.5), (4.6) and (4.7). It is also necessary to check
the analysis with the strain measurements by strain gauges or high resolution optical
instrumentation on the specimen gauge length.

4.4 LABORATORY MEASUREMENTS OF ROCKS UNDER STATIC
MULTIAXIAL COMPRESSION

As mentioned earlier, the most precise measurements of load and displacement in high
strain rate testing are those performed by a proper application of the Hopkinson bar
testing methodology. This statement is particularly true for low ductility materials like
concrete and rocks where the dynamic test takes place during the rising time and the
first few microseconds of the loading pulse duration. The efficiency of the JRC-MHB in
measuring the stress-strain curves of low ductility materials such as rocks and concrete
has been shown in Section 3.

Some successful tensile impact tests were performed at JRC using the MHB for
cubes of 60 mm side of rocks like porphyries, granite and gabbro. The results for por-
phyries and granite are presented in Figure 4.18 and by Cadoni, Solomos and Albertini
(2009) showing that this type of test can be performed using the MHB installed in the
DynaMat laboratory at SUPSI in Lugano. Recently more detailed results have been
obtained with the JRC-MHB on yellow tuff (Asprone et al., 2009), on orthogneiss
(Cadoni, 2010) and on different marbles (Cadoni et al., 2010).
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Figure 4.19 Stress versus displacement curves of Marbles and Orthogneiss in tension obtained by
means of JRC-MHB (Cadoni et al., 2010).

The conceptual schemes of a high load MHB that should allow the impact testing
in compression or tension are presented:

– of a cubic rock specimen of 100 mm side,
– with the superposition of a biaxial or triaxial compression to the rock specimen

before the impact test in order to simulate the natural confinement of in situ
stresses.

The high load compression biaxial MHB, termed as ROCK-MHB is shown in
Figure 4.20. It has the following features:

– An MHB, having pre-stressed input and output bars of equal length of 2 m and
equal square cross-sectional area of 100 mm side, generating a rectangular loading
pulse of 3 MN amplitude and 800 µs duration which propagates through the input
bar – rock specimen – output bar deforming the rock specimen at high strain rate
to failure. The total length of the ROCK- MHB is about 8 m.

– The addition of two bars, each one activated by a hydraulic actuator, orthogonally
at the MHB axis, having the same cross-sectional area and the same length of the
MHB input and output bars. It allows achievement of a static biaxial stress state
(confining stresses) before the specimen undergoes the compressive impact test.
In order to realise the biaxial static preloading, the output bar along the MHB
axis is also provided with a hydraulic actuator.

– The extension of the ROCK-MHB to a triaxial test is shown in the scheme in
Figure 4.21, where two further output-confinement bars are placed along the
second direction at 90◦ to the MHB axis.

The independent control of the confining loads along the three principal axes allow
description of different loading paths in the principal stress space.
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Figure 4.20 Scheme of the rock-MHB for compressive biaxial impact test of confined rock specimens.
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Figure 4.21 Scheme of the rock-MHB for compressive triaxial impact test of confined rock specimens.
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Figure 4.22 Stress wave paths in a biaxial rock-MHB impact test.

A test with the equipment shown in Figures 4.20 and 4.21 is performed in the
following operational sequence:

– a quasi-static biaxial or triaxial stress state is introduced in the rock specimen by
the hydraulic actuators of the output-confinement bars,

– the rupture of the brittle joint of the MHB pre-stressed bar gives rise to a rect-
angular square pulse propagating into the system and loading dynamically the
rock specimen until fracture (in case of a tensile test, joints will be placed in a
device blocking the point of the bar which determines the separation between the
pre-stressed bar and the input bar, as shown in Fig. 4.4),

– the strain gauges on the input and output-confinement bars record the incident
εi, reflected εr and transmitted εt pulses which allow the reconstruction of the
equivalent stress-strain curves in the analysis shown below.

The scheme in Figure 4.22 shows the stress wave propagation in the case of a
biaxial ROCK-MHB, where εiX , εrX , εtX are respectively the incident, reflected and
transmitted pulses along the ROCK-MHB axis and εtY−1 , εtY−2 are the transmitted
pulses along the output bars perpendicular to the ROCK-MHB axis.

After the rupture of the brittle joint, the stress wave propagates along the input
and output bars placed along the X and Y axes. The one-dimensional elastic wave
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Modified Hopkinson bar technologies applied to the high strain rate rock tests 101

propagation theory applied to the configuration and Equations (4.5), (4.6) and (4.7)
can be rewritten as follows:

σx = 1
2

E
A
A0

(εix + εrx + εtx) (4.13)

εx = C0

L

T∫
0

(εix − εrx − εtx)dt (4.14)

ε̇x = C0

L
(εix − εrx − εtx) (4.15)

σy = 1
2

E
A
A0

(εty−1 + εty−2) (4.16)

εy = C0

L

T∫
0

(εty−1 − εty−2)dt (4.17)

ε̇y = C0

L
(εty−1 − εty−2) (4.18)

where: E, A, A0, L denote the elastic modulus and the cross-sectional area of the input
and output bars elastic modulus, the cross-sectional area and the gauge length of the
specimen, respectively.

The stresses σx and σy, the strains εx and εy, the strain rates ε̇x and ε̇y can then be
combined following the equations of the chosen yielding-fracture criterion in order to
obtain the dynamic equivalent stress-strain curves.

The illustrated analysis can be extended to the case of the triaxial ROCK-MHB of
Figure 4.21. With a proper configuration of the rock specimen geometry it is possible
to perform shear (Albertini et al., 1991) and bending (Chatani, Hojo and Tachiya,
1991) impact tests using the ROCK-MHB configuration sketched in Figures 4.20 and
4.21, using similar methods of analysis.

The ROCK-MHB can also be employed to impose repetitions of impact load-
ing cycles simulating those generated by the rock excavation machines (e.g. hydraulic
hammer). In this case, the pre-stressed bar of the ROCK-MHB might be configured as
shown in Figure 4.23, where the hydraulic actuator and the brittle joint placed at the
end of the pre-stressed bar shown in Figure 4.20 are substituted by a rotating cam. With
the rotating cam, a store repetition at the desired frequency of half-cycle load in the
pre-stressed bar can be realised and therefore a repetition at the desired frequency of
half-cycle compressive loading pulses acting on the specimen can be generated. The
ROCK-MHB can also have a similar configuration for the generation of tension half-
cycles. The repetition of half-cycle loading pulses generated as shown in Figure 4.24
acts on the rock specimen in the same way as those generated by the rock excavation
machine. In correspondence with each half cycle of the incident loading pulse, the
related reflected and transmitted pulses are recorded before the arrival of the next half
cycle of loading.
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Figure 4.23 Scheme of the half-cyclic loading of the rock-MHB system.
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Figure 4.24 Setup for the laboratory recording with the rock-MHB of the pressure wave generated
by an explosive charge or by the pulse of an excavation machine.
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Modified Hopkinson bar technologies applied to the high strain rate rock tests 103

Therefore it is possible to measure in detail the mechanical response of the rock
specimen for each half-cycle loading similar to that of the excavation machine, with
the application of Equations (4.9) to (4.18). The shape of the half-cycle loading can be
varied by changing the shape of the rotating cam. A repetition of complete impulsive
loading cycles might also be generated by the introduction of the rotating cam and a
change of cross-sectional area of the input bar as described by Albertini et al. (1988).

4.5 CONCLUSIONS

Appropriate experimental methods, based on the physics of stress wave propagation in
the materials, are necessary in order to measure dynamic mechanical properties of rocks
subjected to pressure pulses generated by explosive charges or by excavation machines.
It is scientifically recognised that the most accurate methodology for the measurement
of the dynamic mechanical parameters in presence of stress wave propagation is the
Hopkinson bar.

The Modified Hopkinson Bar (MHB) with Pulse Shaper allows the generation of
loading pulses with constant loading rate during the rise time followed by a constant
amplitude of the pulse. The constant loading rate during the rise time is needed for
the accurate determination of the elastic modulus and of the elastic limit of the rock
specimen performed at constant elastic strain rate. The successive constant amplitude
of the pulse is needed for the accurate determination during the strain hardening phase
of the dynamic stress-strain curve.

The Modified Hopkinson Bar for rock tests (ROCK-MHB) allows the precise
determination of the equivalent stress-strain curve at high strain rate, under single or
cyclic pulses for rock specimens subjected to biaxial or triaxial quasi-static loads. It
reproduces the in situ stress conditions existing in the excavation field. The ROCK-
MHB also allows the precise calibration of the pressure pulses generated by explosive
charges or by excavation machines, and provides the direct demonstration of the effect
of such pulses on rocks.
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Chapter 5

Wave shaping by special shaped striker
in SHPB tests

Xibing Li, Zilong Zhou, Deshun Liu, Yang Zou and Tubing Yin

5.1 INTRODUCT ION

The split Hopkinson pressure bar has been a very popular and promising experimen-
tal technique for the study of dynamic behaviours of metallic materials for its easy
operation and relatively accurate results, with three basic assumptions (Davies and
Hunter, 1963; Bazle, Sergey and John, 2004): (a) waves propagating in the bars can
be described by the one-dimensional wave theory, (b) stress in the specimen is uni-
form, and (c) specimen inertia effect and friction between specimen and bars can be
negligible.

Due to the advantages of SHPB in dynamic tests, it was gradually extended to the
studies of brittle materials including rock, concrete and ceramic (e.g., Ravichandran
and Subhash, 1994; Li and Gu, 1994; Tedesco and Ross, 1998). However, because of
the brittle and heterogeneous characteristics of rock-like materials, the technique was
affected by the following problems:

a) Difficulty in achieving stress uniformity and equilibrium in specimen. For rock-
like geological materials, the grain size is usually large. Therefore, the specimen
should be sufficiently large to represent the true mechanical properties. It is greatly
suggested that the specimen size should at least be 5 times the maximum grain size.
Accordingly, larger diameter bars of SHPB are needed to test rock and concrete
specimens. Hence, the wave dispersion, inertia effect and stress non-uniformity
introduced by large specimens and large diameter bars appear more prominent. It
becomes difficult to fulfil the basic assumptions of SHPB technique.

b) Premature failure of specimen before stress equilibrium. Traditional SHPB with
rectangular incident wave can provide useful experimental results for metals,
whose compressive flow stresses happen at strains larger than a few percent. By
contrast, brittle materials such as rocks, ceramics and concrete normally fail at
strains less than 0.5 percent. With the steep front of a rectangular wave, a spec-
imen of rock-like materials always fails before its stress equilibrium. Hence, the
test results may not be reliable.

c) High oscillation of incident wave. Due to dispersion of the traditional rectangular
wave in a large bar, the acquired incident wave, reflected wave and transmitted
wave are usually oscillatory. These lead to jumpy stress-strain curves for rock-
like materials, which actually contain the loading and unloading histories of the
specimen.
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d) Difficulty in ensuring the specimen deformation at constant strain rate. Rock-
like brittle materials are usually rate sensitive. Only when the specimen deforms
at constant strain rate during SHPB test can the obtained stress-strain results be
regarded as obeying the constitutive relation correspondingly. However, the tradi-
tional SHPB with cylindrical striker does not always keep specimen deformation
at constant strain rate. Therefore, the traditional SHPB needed to be improved.

Among the above 4 problems, problem (a) determines the applicability of SHPB
for rock-like materials; problem (b) relates to the reliability of test results; problems
(c) and (d) affect the accuracy of test results.

Focusing on these problems, efforts have been made to meet the requirements of
big specimens, and large SHPB devices were constructed worldwide with bar diameters
of 50 mm to 100 mm. The wave dispersion, stress equilibrium and inertia problems
were studied accordingly (e.g. Gong, Malvern and Jenkins, 1990; Wu and Gorham,
1997; Meng and Li, 2003; Zhao and Gary, 1996; Zhao, 2003; Yang and Shim, 2005;
Forrestal, Wright and Chen, 2007). In order to overcome the premature failure of
specimen before its stress equilibrium, the incident wave has been modified by vari-
ous techniques. One technique was the pulse shaper method (Frantz, Follansbee and
Wright, 1984). Many researchers have investigated the response of pulse shapers with
different materials and used them in tests (Follansbee and Frantz, 1983; Frew, Forrestal
and Chen, 2002). The other technique uses a special shaped striker (Liu and Li, 1998).
A series of studies have been done on theories and laboratory experiments (Liu, Peng
and Li, 1998; Li, Lok and Zhao, 2000, 2005; Lok et al., 2002; Li, Zhou and Lok,
2008; Li and Zhou, 2009). For the constant strain rate deformation of specimen in
SHPB tests, it only attracted high attention recently after the strain rate sensitivity of
rock-like material was recognized. By now, the shaped striker method and pulse shape
method have gained good applications in SHPB testing (Li and Gu, 1994; Li, Lok and
Zhao, 2000, 2005; Li, Zhou and Lok, 2008; Frew, Forrestal and Chen, 2002).

5.2 ADVANTAGE OF HALF-SINE WAVE FOR LARGE DIAMETER
SHPB TESTS

5.2.1 Stress equilibrium during specimen deformation

The wave velocity in rock material is between 3000–6000 m/s. It results in a relatively
long travel time of the wave in the specimen. At the same time, stress equilibrium
in specimens in SHPB tests is usually reached after several reflections of wave in the
specimen. This implies that, if a steep rising incident wave like a rectangular wave
is applied to the specimen, the stress at the incident end of the specimen (the end
near the input bar) will increase abruptly and be high enough to fail the material,
while the other end of specimen (transmitted end) may have no stress disturbance yet.
In this situation, the stress state of the specimen between the two ends is apparently
non-uniform, especially for a brittle material with failure strain less than 0.5 percent.
For a half-sine wave with slow rising slope, the responses of specimens differ greatly.
Upon arrival of the wave front, the incident end has slightly higher stress than the
other end. With wave reflection in the specimen, the stress at the transmitted end
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Figure 5.1 Stress at both ends of specimen with different incident wave: (a) rectangular incident wave;
(b) half-sine incident wave.

increases gradually and accumulates gradually. After several reflections of wave in the
specimen, the stress at both ends of the specimen reaches equilibrium with an average
value still less than the failure stress of the specimen. Figure 5.1 gives typical stress
histories at both ends of the specimen with rectangular and approximate half-sine
wave from a shaped striker. It can be seen that the case with half-sine wave gives better
stress equilibrium during specimen deformation, while the stress in specimen with
a rectangular incident wave shows great deviation at the two ends during specimen
deformation and failure, which violates the assumption of SHPB technique.

5.2.2 Less dispersion and better uniform stress at bar section

Different waves propagate in solids at different velocities, which depend on the solid
material and the wave type. If the solid media has special geometries such as a cylinder
or plate, dispersion happens. In SHPB tests, the incident bar, transmitting bar and
absorbing bar are all cylindrical rods with dispersion effect. Researches indicated that
waves in reality usually consist of a number of harmonic components with different
frequencies, which can be decomposed with Fourier Transformation tools (Lifshitz
and Leber, 1994; Gong, Malvern and Jenkins, 1990; Anderson, 2006). The harmonic
wave components travel along a circular bar with different velocities as:

c = c0

[
1 − µ2π2

(a
λ

)2
]

(5.1)

where c0 equals to (E/ρ)1/2, E and ρ are the modulus and density of material respec-
tively, µ is Poisson’s ratio, a is the radius of the cylindrical rod, and λ is the wavelength;
c/c0 describes the wave dispersion along the bar.

Taking a rectangular incident wave as an example, it can be decomposed into
a series of harmonic wave components as in Figure 5.2 (Li and Gu, 1994). From
Equation (5.1), the component waves with different frequencies travel with different
velocities individually. Finally, the original rectangular wave would be stretched and
distorted, i.e. the wave oscillation appears (Fig. 5.3). More severely, the oscillation
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Figure 5.2 Frequency components of a rectangular wave.
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Figure 5.3 Oscillation of rectangular wave due to dispersion.
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Figure 5.4 Dispersion effect of different incident waves in SHPB bars: (a) Signals along bar with different
incident waves; (b) Stress distribution at bar section with different waves.

of the incident wave triggers oscillation in the reflected wave and transmitted waves
correspondingly. Then the test results of SHPB calculated with the incident, reflected
and transmitted waves will be deviated from true behaviour.

On the other hand, a sinusoidal wave has simple frequency, which travels at one
determined velocity. Figure 5.4(a) gives the simulation results of signals travelling along
an elastic rod with rectangular and half-sine incident waves. It can be seen that there
is no dispersion for the half-sine wave travelling through a long bar.
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Incident wave

(a) (b)

Incident wave

Reflected waveReflected wave

Figure 5.5 Signals obtained with two different strikers: (a) Signal obtained with a traditional cylindrical
striker; (b) Signals obtained with a purpose-built striker.

Besides, wave dispersion from non-sinusoidal waves can lead to stress non-
uniformity at bar section when the bar diameter is large. From the above, wave
components of a non-sinusoidal wave travel with different velocities. In fact, wave
components transfer not only particle motion, but also stress and energy. Simulation
with rectangular and half-sine waves along a thick bar showed that the stress distri-
bution at the middle sections of the bar are different, as shown in Figure 5.4(b). The
half-sine wave gives uniform stress distribution and shows its advantage once again.

5.2.3 Constant strain rate deformation of specimens

Recent researches show that constant strain rate deformation of specimens can be
achieved with a half-sine wave, which is vital for tests of rate-sensitive materials (Zhou,
Li and Ye, 2010).

Figure 5.5 compares examples of signals produced by a traditional cylindrical
striker and the new purpose-built striker.

It can be seen that the reflected wave sourced by the purpose-built striker has long
and smooth segments, whereas the reflected wave sourced by the cylindrical striker has
an apparent high-frequency overprint that makes it much more rugged in appearance.
According to the principle of the SHPB device, the reflected waveform indicates the
strain rate of the specimen directly. Therefore, the purpose-built striker is better than
the traditional cylindrical striker for testing brittle materials.

5.3 GENERATING HALF-SINE WAVES BY SPECIAL SHAPED
STRIKERS

5.3.1 Impact by striker and the generated stress wave

Practices like percussive drilling, piling and forging indicate that the impact-generated
stress waves have intrinsic relations to the strikers, punch head or impactors.

In order to obtain the general relation between striker profile and stress wave,
a non-prismatic striker is considered to impact a long cylindrical rod. As shown in
Figure 5.6, the striker is divided into micro-segments, and then the characteristic line
method is used to get the generated wave.
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Figure 5.6 Stress analysis of non-prismatic striker with characteristic line method.

For any micro-segment in the striker, the following relation exists,

A
∂σ

∂x
+ σ

dA
dx

+ Aρ
∂v
∂t

= 0

∂ε

∂t
+ ∂v

∂x
= 0

σ = Eε

E = ρc2




(5.2)

Then,

∂v
∂t

+ ρ
dσ

dx
+ ρ

σd ln A
dx

= 0

∂v
∂x

+ 1
ρc2

∂σ

∂t
= 0


 (5.3)

Equation (5.3) gives the general wave equation for a continuous striker with arbitrary
cross sections. The equation has the solving conditions as:

σ(x = 0, t) = 0
σ(t = 0, x) = 0
v(t = 0, x ≤ L) = v0

v(t = 0, x > L) = 0
A = A(x), 0 ≤ x ≤ L
A = A0, x > L




(5.4)
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Wave shaping by special shaped striker in SHPB tests 111

According to the characteristic line theory:

dx ∓ cdt = 0
dσ + σd ln A ± ρcdv = 0

}
(5.5)

For points a, b and c in Figure 5.6, their relations can be expressed as:

σij − σi−1, j−1 + σij + σi−1,j−1

2
(ln Ai − ln Ai−1 + ρc(vij − vi−1,j−1)) = 0

σij − σi+1, j−1 + σij + σi+1,j−1

2
(ln Ai − ln Ai+1 − ρc(vij − vi+1,j−1)) = 0


 (5.6)

The solving conditions can be determined as:

vi0 = v0, i ≤ n0

vi0 = 0, i > n0

σi0 = 0, i ≥ 0
σ0j = 0

v0j = σ1, j−1

(
1 + 1

2
ln(A0/A1)

)
/(ρc) + v1, j−1




(5.7)

With Equations (5.6) and (5.7), the stress wave generated by impact with an arbitrary
striker can be obtained. This method can be called the forward design method.

5.3.2 Inverse design of striker for a specific wave

When a specific wave form is given beforehand, it is usually difficult to find the striker
profile directly. This is a typical inverse problem.

Here a striker-rod system is established to investigate this inverse problem, as
shown in Figure 5.7, where a non-prismatic striker with length of L impacts a long
cylindrical rod of radius r0. A spring, with stiffness k, is assumed to lie between the
striker and the rod to simulate the impact contact between them.

The motion of the impact system is governed by the one-dimensional wave
equation:

ρA(x)
∂v
∂t

+ ∂F
∂x

= 0

ρc2A(x)
∂v
∂x

+ ∂F
∂t

= 0


 (5.8)

The boundary and initial conditions are:

F(x = 0, t) = 0
dF(x = L, t)

dt
= k[v(x = L, t) − P(t)/(ρcA0)]

P(t) = F(x = L, t)
v(0 ≤ x ≤ L, t = 0) = v0

F(0 ≤ x, t = 0) = 0, A(x) = πr2(x)




(5.9)
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where v, F are the velocity and the normal force of the studied section; ρ, c are the
density and p-wave velocity of the striker and bar; k is the stiffness of the virtual
spring; A(x), r(x) are the cross-sectional area and radius which are functions of the
coordinatex; L is the length of the striker; A0, r0 are the cross-sectional area and radius
of the rod; v0 is the impact velocity of the striker; P(t) is the force wave generated by
impact between the striker and rod, propagating in the rod.

For simplicity, the above equations can be rewritten in non-dimensional forms as
follows.

x∗ = x/L, t∗ = ct/L, v∗ = v/v0, F∗ = F/(ρcA0v0), k∗ = kL/ρc2A0,

P∗ = P/(ρcA0v0), r∗ = r/r0

Thus, Equations (5.8) and (5.9) can be transformed into:

r∗2 ∂v∗

∂t∗ + ∂F∗

∂x∗ = 0

r∗2 ∂v∗

∂x∗ + ∂F∗

∂t∗ = 0

F∗(x∗ = 0, t∗) = 0,
dF∗(x∗ = 1, t∗)

dt
= k (v∗ − P∗)

F∗(x∗ = 1, t∗) = P∗

v(0 ≤ x∗ ≤ 1, t∗ = 0) = v0, F∗(0 ≤ x∗, t∗ = 0) = 0

r∗ = r∗(x∗), 0 ≤ x∗ ≤ 1




(5.10)

1/n
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Figure 5.7 Striker-rod system and characteristic line sketch.
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Wave shaping by special shaped striker in SHPB tests 113

According to the characteristic line theory, the following differential equation can be
established:

dt∗ ∓ dx∗ = 0
r∗2dv∗ ± dF∗ = 0

}
(5.11)

Let a striker occupy x ∈ [0, L], and consist of N uniform segments with constant
cross-sectional area and equal transit time �t∗ = 1/n as shown in Figure 5.7. The
characteristic line grid can be established. For points a, b and c in Figure 5.7, they
have the following relations:

F∗
i,j − F∗

i−1,j−1 + r∗
i

2(v∗
i,j − v∗

i−1,j−1) = 0, i = 1, 2, . . . , n (5.12a)

F∗
i,j − F∗

i+1,j−1 + r∗
i+1

2(v∗
i,j − v∗

i+1,j−1) = 0, i = 0, 2, . . . , n − 1 (5.12b)

Accordingly, the boundary and initial conditions can be specialized as:

F∗
0j = 0

F∗
nj − F∗

n,j−1 = k∗(v∗
nj − F∗

nj)/n
P∗(j/n) = P∗

j = F∗
nj

v∗
i0 = 1, F∗

i0 = 0, i = 0, . . . , n
r∗
i = r∗(i/n), i = 0, . . . , n




(5.13)

With Equations (5.12) and (5.13), the radii of the striker can be determined.
Therefore, the profile of the striker is obtained.

5.4 SHPB TESTS WITH SPECIAL SHAPED STRIKER

5.4.1 Configuration of SHPB system with special shaped striker

A standard SHPB (Fig. 5.8) consists of a striker bar, an input bar, an output bar, an
absorption bar, a buffer, a gas gun and a data acquisition unit. Supporting foundation is
needed to keep the bar system stable and coaxial. The specimen is sandwiched between
the input and output bars. After ejecting from the gas gun, the striker bar impacts the
free end of the input bar, thus generating a compressive longitudinal wave that prop-
agates along the bar towards the specimen. Once the wave reaches the bar/specimen
interface, a part of it is reflected, whereas another part goes through the specimen and
transmits into the output bar and absorption bar.

Gas gun Striker Bracket Input bar Output bar Absorption bar Buffer

SpecimenSetup foundation

Data acquisition unit

Figure 5.8 General view of SHPB with special shaped striker.
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Figure 5.9 Typical special shaped striker: (a) Parameters of the striker; (b) Stress wave from the left
striker.

The input, output and absorption bars are cylindrical with diameter D of 50 mm
and length of 2000 mm, 2000 mm, 1000 mm respectively. It is suggested the speci-
men be cylindrical with diameter of 50 mm and length of 25 mm. The bars should be
machined from steel with minimum yield stress of 1000 MPa. The supporting foun-
dation shall be safely bolted to the floor with brackets and have a fine adjustment
function to ensure the bar system is exactly coaxial. The striker bar should be longer
than 5D. The traditional cylindrical striker for metal tests should be avoided for the
premature failure of specimens under a rectangular stress wave. A striker with the
configuration shown in Figure 5.9(a) generating the approximate half-sine stress wave
of Figure 5.9(b) is suggested.

Brackets on the setup foundation should be carefully designed and installed so that
they can be adjusted up and down precisely, and be individually translated back and
forth along bars. The quantity of brackets depends on the bar diameter and stiffness.
Precision bar alignment is required for both stress uniformity and 1D wave propagation
within the pressure bars and specimen during test. Lack of free movement of the bars
will lead to forced clamping and result in a wrong signal and high background noise.

A pair of strain gauges should be glued diametrically at the middle points of the
input bar and of the output bar to obtain the incident wave, reflected wave and trans-
mitted wave. Strain gauge with length shorter than 2 mm is suggested for capturing
details of stress waves. A strain meter with sampling frequency larger than 1 MHz
should be used.

5.4.2 Test procedures on SHPB with special shaped striker

5.4.2.1 Specimen preparation

Specimens should be cored from the same rock block with no visible geological weak-
ness. Specimens should be intact, petrographically uniform and representative of
the rock. Ultra-sonic velocity should be measured to group the specimens of similar
velocities.

A grinding machine or fine sandpaper should be used to ensure that ends of spec-
imen are smooth and parallel. The ends of the specimen shall be flat to 0.02 mm and
shall not depart from perpendicularity to the axis of the specimen by more than 0.001
radian or 0.025 mm in 25 mm. The side surface of the specimen shall be smooth and
free of abrupt irregularities, and straight to within 0.02 mm over the full length of
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�1/4 �3/4

�Incident �Transmitted

Figure 5.10 Sketch of system calibration.

the specimen. The diameter D should be measured to the nearest 0.02 mm by averag-
ing two diameters obtained at right angles to each other at about the mid-height of
the specimen. The thickness of the specimen should also be determined to the nearest
0.02 mm by averaging two thickness measurements at right angles to each other.

If tests cannot be finished for one time, specimens shall be stored in the same
environment as the test for no longer than 30 days. When the specimens are used next
time, their ultra-sonic velocity and density should be measured again. The number of
specimens tested under a specified condition should be more than five.

5.4.2.2 System preparation

a) Gas gun

Gas source should be checked every time before test to ensure there is enough gas. Gas
pressure should be high enough to drive the striker movement and generate the planned
incident wave. The relations between the striker position, gas pressure and incident
stress can be determined after the construction of apparatus, and verified every year.

b) Strain meter

After being turned on, the strain meter shall warm up for more than 10 minutes. If
the gauge bridges cannot reach balance automatically, manual reset is needed to get
balance before tests. Trigger channel, trigger level, gain level and sampling rate of the
signal recorder should be properly chosen so as to capture and show the test signals
correctly.

5.4.2.3 System calibration

System calibration is necessary to ensure all parts of the apparatus work synergistically
and precisely. In calibration tests, the strain gauges can be deployed as shown in
Figure 5.10. With strain gauges mounted on the middle of the input bar and the
output bar, the stress (strain) histories σIncident, σReflected and σTransmitted are measured
for calculation. σIncident and σReflected are measured with the same strain gauge. At the
same time, in order to identify the wave attenuation and distortion for misalignment
impact, two additional strain gauges are suggested, glued at the position of 1/4 and
3/4 of the input bar. The obtained stresses are denoted as σ1/4, σ3/4.

Then the calibration of the SHPB system with the special shaped striker can be
divided into 4 steps.
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i) System adjustment. Tune the brackets under the SHPB bars to keep the striker,
input bar and output bar in the same line axially as much as possible; make
sure that the strain gauges are well glued and the strain meter can get the signals
properly.

ii) Wave distortion identification. After system adjustment, the striker is fired to
impact the input bar which contacts the output bar without specimen, then σ1/4,
σ3/4, σIncident and σTransmitted are obtained. In order to distinguish these stresses
from those in tests with specimens, they are denoted as σ0

1/4, σ0
3/4, σ0

Incident and
σ0

Transmitted respectively.
By using the special shaped striker, the stress waves on the input bar are

expected to have half-sine waveforms. σ0
1/4, σ0

3/4 and σ0
Incident should be very

similar when there is no damping.
iii) Measurement calibration. The measurement correction mainly deals with the

attenuation of waves during propagation. The measurement calibration factor
K1 can be defined as:

K1 = max (|σ0
1/4|)/max (|σ0

3/4|) (5.14)

Then the incident and reflected waves in normal tests with specimens can be
corrected respectively as:

σIncident = σIncident/K1 (5.15)

σReflected = K1 · σReflected (5.16)

iv) Transmission correction. Transmission error mainly comes from the stress loss
caused by the small gap between the input bar and the output bar. Besides, the
wave attenuation for the traveling distance between specimen and the strain gauge
at the middle of the output bar also contributes to the experimental error. By
considering the gap effect and the attenuation effect, the transmission calibration
factor can be defined as:

K2 = max (|σ0
Incident|)/K2

1 max (|σ0
Transmitted|) (5.17)

Then the measured transmitted wave in tests with specimens should be corrected
as:

σTransmitted = K2 · σTransmitted (5.18)

5.4.2.4 Testing

a) Specimen placement

The specimen should be clamped between the input and output bar coaxially. Before
placing, both ends of specimen should be lubricated with grease. When placing, the
specimen should be rotated more than 360 degrees with tight squeezing from the
input/output bar to achieve uniform lubrication. For specimens with large density, a
supporter of soft material is needed to avoid dropping of the well-lubricated specimen.
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Wave shaping by special shaped striker in SHPB tests 117

b) Alignment of bars

The absorption bar is gently moved to the output bar until their surfaces contact totally.
There should be no initial stress or visible gaps between contacted surfaces of the input
bar, the output bar and the specimen.

c) Gas gun ready

Push the striker back into the gas gun to the right position, and adjust the gas pressure
to preset level.

d) Strain meter ready

Press READY button to keep the strain meter waiting for trigger.

e) Gas gun action

Turn around the on-off switch on the gas gun to release the pressured gas. This pushes
the striker out of the gun barrel to impact the input bar.

f) Data saving and transmission

After the strain meter captures the signals, test data should be saved and transmitted
for post-processing.

5.4.3 Data processing

a) Wave extraction

With captured signals, the incident, reflected and transmitted waves can be extracted,
as shown in Figure 5.11. The data from the strain meter are usually voltage signals
and should be converted into stress or strain signals.

b) Wave shifting and value calibration

The obtained signals represent the stress/strain histories in the positions of strain gauges
other than the specimen. So the extracted waves should be shifted to the bar/specimen
interfaces for calculation. The incident wave should be shifted forward for Le/2Ce,
where Le, Ce are the length and wave velocity of the input/output bar respectively.

Reflected
wave

Incident wave
Transmitted

wave

Figure 5.11 Incident, reflected and transmitted waves in captured signals.
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Unbalance force

Transmitted wave

Reflected wave

Incident wave

Time
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t 
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Figure 5.12 The incident, reflected, transmitted waves and the unbalance force in specimen.

Accordingly, the reflected and transmitted waves should be shifted backward for
Le/2Ce. Their values should be calibrated accordingly. Figure 5.12 shows a typical
series of incident wave σI(t), reflected wave σR(t) and transmitted wave σT (t), where
they share the same time origin at which the wave propagates into the specimen from
the input bar; ts is the time needed for wave to go through the specimen.

c) Obtaining deformation variables of specimen

With the extracted incident, reflected and transmitted waves, the stress, strain and
strain rate of the specimen can be derived according to SHPB principles:

σ(t) = Ae

2As
[σI(t) + σR(t) + σT (t)] (5.19)

ε(t) = 1
ρeCeLs

∫ t

0
[σI(t) − σR(t) − σT (t)]dt (5.20)

ε̇(t) = 1
ρeCeLs

[σI(t) − σR(t) − σT (t)] (5.21)

where Ae, ρe, Ce, Ee are the cross sectional area, density, wave velocity and Young’s
modulus of elastic bars, As, Ls are the cross-sectional area and length of the specimen.

5.5 DYNAMIC CHARACTERISTICS OF ROCK OBTAINED FROM
SHPB WITH SPECIAL SHAPED STRIKER

5.5.1 Strain rate effect of rock under dynamic loading

Lots of dynamic tests were carried out on SHPB with the special shaped striker.
Figure 5.13 shows a typical set of stress-stain curves of specimens under different
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Figure 5.13 Typical stress-strain curves of specimen under dynamic loadings.
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Figure 5.14 Strain rate histories of specimen in Figure 5.13.

strain rates. It can be observed from these curves that initially they follow the same
path, and that the higher peak stresses apparently correspond to the higher strain rates.
Figure 5.14 gives their strain rate histories respectively. For specimens that are totally
fragmented, the strain rate increases to the maximum at a very short period of about
25 µs. Thereafter, the response remains constant over a relatively long period.

Figure 5.13 shows that although some results are scattered, there is a tendency
that the strength increases with increasing strain rate. Regression analysis has further
shown that the dynamic compression strength can be expressed as:

σf = K
(

dε

dt

)1/3

(5.22)

where K is a constant and dε/dt is the strain rate.
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5.5.2 Size effect of rock under dynamic loading

Rock material is usually heterogeneous with inner defects and different mineral grains,
so its strength always shows a size effect. The size effect of static strength has been
widely studied, while there are limits on dynamic size effect. With the special shaped
striker on SHPB with bar diameter of 22 mm, 36 mm and 75 mm, size effects of granite,
siltstone and limestone have been investigated. Figure 5.15 shows 4 different types of
special shaped strikers used for SHPB tests with different bar diameters.

Figure 5.16 presents the size effect of granite under different strain rates. It can
be seen that the relationship between dynamic strength and strain rate of rock can
be described with Equation (5.22) when the same specimen dimension is used. How-
ever, when the specimen size is changed, the parameters would change accordingly.
Under the same strain rate, the specimen with smaller size would have higher dynamic
strength.

5.5.3 Dynamic strength of rock under coupling static and
dynamic loads

Mining, geothermal exploitation and nuclear waste disposal lead us to deal with rock
at great depth. Rock at great depth can endure high ground in situ stress, tectonic

Figure 5.15 Strikers for dynamic size effect researches.
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Figure 5.16 Size effect of granite under different strain rates.
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Wave shaping by special shaped striker in SHPB tests 121

stress, and dynamic loading of explosion and impact. Among these loads, some are
static loads, while others are dynamic loadings. Therefore, rock behaviours under
coupled static and dynamic loads have become of interest. The existing SHPB device
was improved to conduct experiments on rock under coupled static and dynamic loads
simultaneously (Li, Zhou and Lok, 2008).

Stress-strain curves of rock subjected to the same dynamic loading but different
axial pre- stresses is shown in Figure 5.17.

The strength of rock under coupling loads changes when the axial static pres-
sure is set to 80% of the specimen’s static strength. The trend of this change is
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Figure 5.17 Stress-strain curves of rock subjected to same dynamic loading but different static
pre-stresses.
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Figure 5.18 Dynamic strength of rock subjected to same dynamic loading but different static
pre-stresses.
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Figure 5.19 Strength of rock subjected to same axial pre-stress and different dynamic loadings.

evident in Figure 5.19. It can be seen that with coupling loads, the strength of rock
increases with increasing dynamic peak stress. This phenomenon reinforces the original
understanding that the material strength increases with increasing strain-rate.

5.6 CONCLUSIONS

Traditional SHPB devices with cylindrical strikers should be cautiously used for tests of
brittle materials. Purpose-built special shaped strikers can be an excellent alternative.
These typical strikers can generate an approximately half-sine wave, which is beneficial
in overcoming premature failure of the specimen and realizing better stress uniformity
in the specimen. The new method also appears to have the abilities of reducing signal
oscillation and keeping specimen deformation at constant strain rate. The new system
has been used to investigate the rate effect, size effect and coupled-load effect of rock
materials, and good results have been obtained.

Acknowledgment: financial support from the National Natural Science Founda-
tion of China (50934006, 50904079) and National Basic Research Program of China
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Chapter 6

Laboratory compressive and tensile
testing of rock dynamic properties

Haibo L i, Junru Li and Jian Zhao

6.1 INTRODUCTION

Dynamic loads are usually associated with high amplitude and short duration. A proper
understanding of the effect of strain/loading rate on the mechanical properties of rock
is important in the analysis of rock behavior or the design of rock structures subjected
to dynamic loads. For example, in rock blasting, a blast stress wave is generated and
propagates through the rock mass; the rock mass and rock structure are subjected
to blast shock loads at different strain/loading rates. Mechanical responses of a rock
mass and a rock structure to various strain/loading rates are different (Serdengecti and
Boozer, 1961; Price and Knill, 1966; Stowe and Ainsworth, 1968; Birkimer, 1971;
Mellor and Hawkes, 1971; Shockey et al., 1973; Vutukuri, Lama and Saluja, 1974;
Janach, 1976).

Experiments have been conducted to study the effects of strain/loading rate on
rock properties under dynamic loading. For example, Donath and Fruth (1971) con-
ducted dynamic triaxial compression tests on a marble at confining pressure of 100
and 200 MPa, and strain rate from 10−7 to 10−3 s−1. They reported that at confining
pressure of 100 MPa, the strength increased by 30% when the strain rate increased by
5 orders of magnitude, while under the confining pressure of 200 MPa, the strength
increased by 40%, for the same increment of strain rate. Similarly, Logan and Handin
(1972) conducted dynamic triaxial compression tests on the Westerly granite at con-
fining pressures up to 700 MPa. They found that the strength increases proportionally
with increasing strain rate and the rising rate increases with increasing confining pres-
sure. The same results are also reported by Masuda, Mizutani and Yamada (1987) on
granite. The loading rate (or strain rate) has effects on rock fracturing mechanisms
and mechanical properties including strengths and deformation modules. Extensive
experimental results have indicated that rock strength increases with loading rate (e.g.
Logan and Handin, 1972; Sangha and Dhir, 1975; Grady and Kipp, 1980; Lankford,
1981; Masuda, Mizutani and Yamada, 1987; Wu and Gao, 1987; Lajtai, Scott and
Carter, 1991; Olsson, 1991; Ju and Wu, 1993; Yang and Li, 1994; Wu and Liu,
1996; Zhao and Zhao, 1998; Li, Zhao and Li, 1999; Li et al., 2000; Li et al., 2004;
Zhao et al., 1999a; Zhao et al., 1999b; Cho, Ogata and Kaneko, 2003). The dynamic
strength criteria would be different from the static ones. Attempts have been made to
provide a dynamic version of Mohr-Coulomb and Hoek-Brown criteria (e.g. Zhao and
Li, 2000), by including a loading rate depended term in these criteria.
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Through dynamic Brazilian tests on dolerite and limestone, Price and Knill (1966)
suggested that strength of both rocks generally increases with the increasing loading
rate. For dolerite, the tensile strength at highest loading rate is 17% greater than
that at the lowest loading rate. For limestone, the tensile strength at highest loading
rate is 44% greater than that at the lowest loading rate. Wu and Liu (1996) studied
the changes of tensile strength, Young’s modulus and the failure strain for Longmen
limestone at the loading rates from 10−3 MPa/s to 104 MPa/s by Brazilian test. It is
reported that the tensile strength, Young’s modulus and the failure strain for the rock
clearly increase with loading rate. Based on the SHPB test for quartz monzonite rock
and strain energy analysis for the failure of rock, Birkimer (1971) pointed out that the
dynamic tensile strength of the rock increases with the cube root of the strain rates
when strain rates range from 101 and 104 s−1. The similar results are also suggested
by Grady and Kipp (1980).

In this chapter, dynamic compressive and tensile tests of rock material at mod-
erate strain/loading rates are conducted. The apparatus, loading device, the sample
preparation as well as the analysis of experimental results are presented.

6.2 DYNAMIC COMPRESSION TESTS FOR ROCK MATERIAL

A series of uniaxial and triaxial dynamic compression tests on the Bukit Timah granite
of Singapore are conducted. The rock samples are mostly tested at 4 strain/loading
rates and 7 confining pressures.

6.2.1 Test equipment

Figure 6.1 shows the layout of the system for dynamic compression tests. It consists
of three parts: compressive loading frame, axial dynamic loading system and data
acquisition system.

6.2.1.1 Compressive loading frame

The loading frame has a stiffness of 2.92 GN/m. It is capable of conducting uniaxial
and triaxial dynamic compression testing of rock specimens up to 300 mm in height.
During uniaxially compressive tests, a chamber is adopted to confine sample fragments.

6.2.1.2 Axial dynamic loading system

The axial dynamic loading system is driven hydraulically, as illustrated in Figure 6.2.
The system mainly consists of two gas cylinders (A and B), a connecting piston, a
release valve, a regulating valve, an oil cylinder and a loading piston. During the test-
ing, pressures in the gas cylinders A and B are initially increased to a desired value,
so as to produce a stress imposing on the rock sample at about three times its static
strength. This is to ensure that the load generated by the loading system is sufficient
to make the rock sample fail. When the release valve is opened, gas in the cylinder B
escapes, and the pressure quickly reduces to zero. The connecting piston is then pushed
down by the pressure in the cylinder A. The movement of the connecting piston cre-
ates a pressure in the oil cylinder and in turn, pushes the loading piston, thus applying a
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Dynamic axial loading system
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Figure 6.1 Schematic layout of a dynamic compressive machine and data acquisition system.
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Figure 6.2 Working principle of a dynamic loading system.
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dynamic load to the rock sample. The regulating valve controls the oil flow between
the upper and lower parts of the oil cylinder, hence the piston is loaded. Four classes
of the regulating valve are available to produce dynamic loads ranging from 100, 101,
103 and 105 MPa/s. The maximum axial dynamic load is 2,200 kN and the travel
distance for the loading piston is 25 mm. The minimum rising time for an axial load
of 2,200 kN is 12 ms.

6.2.1.3 Data acquisition system

The data acquisition system consists of a signal conditioning unit and an acquisition
unit interfaced with a computer. The signal conditioning unit is used to convert the
resistance signals of strain gauges to voltage signals. It has six connecting channels
and is capable of recording strains of up to 100,000 uε. A computer is interfaced with
an acquisition unit to acquire and store data. It contains six channels. The sampling
data points and sampling time interval are selected according to the loading rate.
The maximum number of sampling data points is 16,384 and the minimum sampling
interval is 10 ms. The system can obtain more than 100 data points even at the highest
loading rate (105 MPa/s) and more than 1,000 data points at a lower loading rate. Axial
dynamic load, axial and circumferential strains are measured in the tests. The axial
load is measured by a load cell consisting of a strain-gauged high strength steel block.
Axial and circumferential strains are measured by two axial and two circumferential
strain gauges which are glued on the rock samples at the mid-height and opposite sides
diametrically.

6.2.2 Sample set-up and test technique

6.2.2.1 Sample preparation and test set-up

Cylindrical rock samples of 30 mm diameter and 60 mm length were cut from 52 mm
diameter granite cores. The axial direction of each sample was the same as that of
the rock cores. The ends of each sample were ground to be flat and parallel to each
other. The deviation in the diameter and the undulation of ends were less than 0.2 mm.
The vertical deviation was less than 0.001 radian. The samples were left air-dried over
several days. Specific gravity and sonic velocity of the samples were measured before
gluing the strain gauges. The sample stack, consisting of the sample, the load cell and
the spacers, was then placed in the compression machine and connected to the data
acquisition system before the commencement of testing.

6.2.2.2 Test procedure

The testing system was firstly calibrated before testing. Trial tests were conducted
to obtain optimum parameters of the gain, the number of sampling points and the
sampling interval of the acquisition system at different loading rates. The main test
procedures are described below:

1) The data acquisition system was connected to the sample stack,
2) The loading piston was brought in contact with the sample stack,
3) The regulating valve of the dynamic loading system was selected for the desired

loading rate,
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Figure 6.3 Schematic illustration of loading rate determination.

4) Pressures in the gas cylinders (A and B) were increased to the desired value,
5) The release valve was opened to apply dynamic loading to rock samples,
6) Stress and strain histories were recorded.

6.2.2.3 Determination of loading rate

Loading rate is determined from the stress history curve. The average loading rate is
determined by

¯̇σ = σmax − σs

�t
(6.1)

where σ̇ denotes the average loading rate, σmax is the maximum (failure) stress, σs is
the initial stress, and �t is the loading time. Figure 6.3 illustrates the definition of all
parameters.

6.2.3 Experimental results

6.2.3.1 Uniaxial compression

A total of 12 dynamic uniaxial compression tests were performed at four different
loading rates, i.e., 100, 101, 103 and 105 MPa/s. Figure 6.4 shows the typical stress
and strain histories of the granite tested. The strength, Young’s modulus and Poisson’s
ratio were obtained from the stress-strain curves. Test results are summarized in Figures
6.5 to 6.7, where Figure 6.5 shows the relationship between the uniaxial compressive
strength and the loading rate. It can be seen from the figure that the uniaxial compres-
sive strength increases with increasing loading rate. An average increase of 15% was
observed when the loading rate was increased from 100 to 105 MPa/s. The increase
of the uniaxial compressive strength with increasing loading rate has been observed
by many other researchers. Figures 6.6 and 6.7 plot the values of Young’s modulus
and Poisson’s ratio with the change of the loading rate. The results are scattered and
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Figure 6.4 A typical stress-strain history measurement.
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Figure 6.5 Change of uniaxial compressive strength with loading rate.

yet seem to indicate that the Young’s modulus decreases slightly and the Poisson’s
ratio increases slightly with increasing loading rate. It was noted that the relationship
between the uniaxial compressive strength and the loading rate could be described by
the formula below:

σdc = A log(σ̇dc/σ̇sc) + σsc (6.2)

As shown in Figure 6.8, where σdc is the dynamic uniaxial compressive strength, σ̇dc is
the dynamic loading rate, σ̇sc is the quasi-static loading rate (e.g. 5 × 10−5 MPa/s), σsc

is the uniaxial compressive strength at the quasi-static loading rate, and A is a constant.
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Figure 6.7 Change of the Poisson’s ratio with loading rate.

For the granite tested, σsc is at 170 MPa obtained at 5 × 10−5 MPa/s. Regression
analysis shown in Figure 6.8 indicates that A is 11.9.

However, it should be noted that the changes in the Young’s modulus and Poisson’s
ratio of the granite with the loading rate are very small. Therefore, it can be considered
that the Young’s modulus and the Poisson’s ratio are unaffected by the loading rate in
the test range.

6.2.3.2 Triaxial compression

Figure 6.9 plots the typical stress-strain curves at different strain rates and confin-
ing pressures obtained from the tests. At a constant confining pressure, the triaxial
compressive strength conclusively increases with increasing strain rate, as shown in
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Figure 6.9 Schematic illustration of triaxial confining pressure cell system.

Figure 6.10. In addition, it is shown that the rising rates of compressive strength
decrease with the increasing of confining pressures, that is, at the confining pressure
of 20 MPa, the rising rate of strength reaches 50% when the strain rate increases by
5 orders of magnitude, while at the confining pressure of 170 MPa, the rising rate is
about 5% for the same increment of strain rate. These results generally agree with the
experimental observations by Yang and Li (1994), Sangha and Dhir (1975), and Ju and
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Figure 6.10 Typical stress-strain curves at different strain rates and confining pressures.

Wu (1993). At a constant strain rate, the compressive strengths clearly increase with
increasing confining pressures, as shown in Figure 6.11. The change of compressive
strength with confining pressures under dynamic loading condition seems follow the
similar trend of static loading condition, i.e. the strength envelope complies with the
Hoek-Brown criterion. It also appears that the tendencies of the strength changing with
confining pressure are almost identical for different strain rates. Figures 6.12 and 6.13
present the change of the Young’s modulus with strain rate and confining pressures. It
is noted that the results are scattered. The Young’s modulus shows no conclusive trend
with increasing strain rate and it therefore can be suggested that the Young’s modulus
is not affected by strain rate. The Young’s modulus appears to increase with increasing
confining pressure, but the increment is very small.
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Figure 6.11 Variation of the axial deviator strength with the strain rate at different confining pressures.
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Figure 6.12 Variation of the axial deviator strength with the confining pressure at different strain rates.

Similarly, the results of the Poisson’s ratio at different strain rates and confining
pressures are scattered, as plotted in Figures 6.14 and 6.15. The Poisson’s ratio seems
to increase slightly with increasing strain rate and confining pressures. Nevertheless,
the changes are not significant.

6.3 DYNAMIC TENSION TESTS FOR ROCK MATERIAL

A series of indirect tensile tests using the Brazilian method and the 3-point flexural
method were conducted to determine the indirect tensile strength and Young’s modulus
of the Bukit Timah granite in Singapore. A total of twenty three Brazilian tests at 4
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Figure 6.14 Variation of theYoung’ modulus with the confining pressure at different strain rates.

different loading rates, i.e. 10−1, 100, 102, 103 MPa/s, and a total of twenty 3-point
flexural tests at 4 loading rates, i.e. 100, 102, 103, 104 MPa/s were carried out.

6.3.1 Dynamic Brazilian test system and procedures

The Brazilian tensile test is schematically illustrated in Figure 6.17. The Brazilian tensile
strength is determined by

σtd = 2Pmax/Dd (6.3)

where σtd is the Brazilian tensile strength, Pmax is the maximum load, D and d are the
diameter and thickness of the specimen, respectively.
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Figure 6.17 Schematic illustration of the Brazilian tensile test.
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Figure 6.18 Principle of the dynamic loading machine.

A set of Brazilian tests were carried out by using a 100 KN dynamic loading
machine, as shown in Figure 6.18. The dynamic loading system was air- and oil-
hydraulically driven. During the test, the pressure in the gas chamber was initially
set to the desired value which can cause the specimen failure. The pressure of the oil
chamber was also set to balance the gas chamber pressure. Subsequently, the release
valve was opened, the oil in the oil chamber quickly flowed to the oil reservoir and
the loading piston moved upward to impose a dynamic load on the specimen. The
regulating valve controlled the oil flowing velocity and the loading time by the piston.
As for the loading system used in the present study, the minimum rising time is 8 ms
for the maximum axial loading of 100 KN, and the maximum piston travel distance is
25 mm.

The load was monitored by a load cell placed above the specimen. The tensile strain
was measured by two electricity resistance strain gauges which were perpendicular to
the loading axis, mounted at the mid-point of both sides of the specimen. The data
acquisition system, which is the same as that described in the dynamic compression test,
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Figure 6.19 Schematic illustration of the 3-point flexural tensile test.

recorded the load and strain histories at the desired frequency. The average loading rate
is calculated by the maximum load divided by the loading time. The stress and strength
of the specimen can be calculated from Equation (6.3). The tensile Young’s modulus
is determined from the average slopes of the (more or less) straight-line portion in the
stress-strain curves.

From the rock cores with diameter 50 mm, the specimen used in the Brazilian tests
was cut into a disc with 50 mm diameter and 20 mm thickness. The two flat sides of
the specimen were ground to parallel and their undulation was less than 0.03 mm.

The testing system was calibrated before tests. Trial tests were carried out to obtain
the desired load and loading rate, and the optimum parameters of gain and sampling
frequency at different loading rates.

6.3.2 Dynamic 3-point flexural test system and procedures

Figure 6.19 shows the schematic illustration for the 3-point flexural test. The 3-point
flexural tensile strength of the specimen can be expressed as:

σtd = 1.5PmaxL/BH2 (6.4)

where σtd is the 3-point flexural tensile strength, Pmax is the maximum load, L is
the span of the two supports, B and H are the width and height of the specimen,
respectively.

The 3-point flexural tensile tests were also carried out on the same dynamic loading
machine used for the Brazilian tests. In the tests, the same load cell used for the Brazilian
tests was adopted to record the load. One strain gauge was pasted in the middle of
the bottom side of the specimen to monitor the tensile strain. The test procedures are
basically the same as those of the aforementioned Brazilian tests.

The average loading rate and Young’s modulus of the 3-point flexural tensile test
are calculated similarly to the methods in the Brazilian tests. The stress and strength
of the specimen is also obtained by Equation (6.3).

The granite specimens used in the 3-point flexural tests were cut to cubes of size
140 × 30 × 15 mm (length × height × width). The undulation for the surfaces of the
specimens was less than 0.03 mm.
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Figure 6.20 Typical stress and strain histories of the Brazilian and 3-point flexural tensile tests.

6.3.3 Experimental results

Figure 6.20 shows the typical stress and strain histories for the Brazilian and 3-point
flexural dynamic tensile tests. The stress-strain curves, strength, Young’s modulus and
loading rate are interpreted from these histories.

Figure 6.21 shows the Brazilian and 3-point flexural tensile strengths at different
loading rates. The results indicate that the tensile strengths obtained by both methods
increase with increasing loading rate. It is also observed from the figure that the ten-
sile strength determined by the 3-point flexural method is about 2.5 times of that
determined by the Brazilian method when the loading rates are the same. In addition,
although the tensile strengths obtained by the two methods are different, the trend of
the dynamic tensile strength with the loading rate is almost the same, that is, when the
loading rate increases by one order of magnitude, the tensile strengths of the granite
increase by approximately 10%.
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Figure 6.22 The Brazilian and the 3-point flexural tensileYoung’s modulus at the different loading rates.

The tensile Young’s modulus at different loading rates is plotted in Figure 6.22. It
can be seen that the Young’s modulus obtained in the Brazilian tests tends to increase
with increasing loading rate when the loading rate ranges from 10−1 to 102 MPa/s.
When the loading rate is greater than 103 MPa/s, the Young’s modulus begins to drop.
The same tendency can also be observed from the 3-point flexural tests. It is found
that the Young’s modulus obtained by the Brazilian method is generally lower than
that obtained by the 3-point flexural method. In addition, it should be noted that,
except for the loading rates of 103 MPa/s for the Brazilian tests and 104 MPa/s for the
3-point flexural tests, the Young’s modulus of the granite changes slightly with the
loading rate, and the results are scattered.
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6.4 SUMMARY

Dynamic compressive tests for the Bukit Timah granite were carried out at 4 moderate
loading/strain rates and 6 confining pressures. It is concluded that the compressive
strength generally increases with increasing loading/strain rate and confining pressure.
The rate of increment of the compressive strength with strain rate is lower under a
higher confining pressure. The strength envelopes at different strain rates, however,
appear similar.

The results for the Young’s modulus and the Poisson’s ratio at different load-
ing/strain rates and confining pressures are scattered. The Young’s modulus increases
slightly with increasing confining pressure and appears to be unaffected by load-
ing/strain rate, while the Poisson’s ratio increases with increasing loading/strain rate
and confining pressure. Therefore, further tests are needed to overcome the scattering
of the results to obtain conclusive indications on the change of the Young’s modulus
and the Poisson’s ratio.

The dynamic tensile strengths of the Bukit Timah granite in Singapore were also
determined by the Brazilian and 3-point flexural methods at different loading rates. The
results show that the tensile strengths of the granite obtained by both methods increase
with increasing loading rate and the trends for the change of the tensile strength with
the loading rates are very close.
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Chapter 7

Penetration and perforation of rock
targets by hard projectiles

Chong Chiang Seah, Tore Bør vik, Svein Remse th and
Tso-Chien Pan

7.1 INTRODUCTION

Today, underground facilities in rocks are used extensively for military applications
and civil defence (Zhao et al., 1999). Because of their depth and hardened status,
many of these strategic hard and deeply buried targets could only be put at risk by
earth penetrating weapons (EPW). With the development of precision guidance sys-
tems, the scenario of an EPW hitting its target has become highly probable, and some
weapons are even capable of penetrating deeper when assisted by a pilot-hole. This
has posed great challenges to defence engineers and scientists working in both the field
of weaponry and protective technology. Baty, Lundgren and Patterson (2003) recently
reported on penetration tests conducted on concrete and in situ weathered granite
with predrilled holes to understand the terra-dynamics of pilot-hole assisted penetra-
tion. Antoun, Lomov and Glenn (2003) have also undertaken a computational study to
investigate the penetration efficiency of a sequence of penetrating bombs into granitic
hard rock. However, the amount of non-classified literature on projectile penetration
in rock materials remains small and limited.

Studies concerned with the penetration of projectiles into rock targets usually focus
on the depth of penetration, penetration deceleration history or stresses on the nose
(Young, 1969, 1997; Forrestal, Longcope and Norwood, 1981a, 1981b; Longcope
and Forrestal, 1983; Frew, Forrestal and Hanchak, 2000). While several works have
been published on the penetration and perforation of concrete targets (Hanchak et al.,
1992; Børvik et al., 2002; Børvik, Gjørv and Langseth, 2006; Sjøl and Teland, 2003),
it is not found in any open source literature that such ballistic experiments have been
performed on rock targets of finite thickness, where the rear surface of the target exerts
considerable influence on the deformation process during all (or nearly all) of the pro-
jectile motion. Hence, this chapter aims to extend the present knowledge of projectile
penetration in rock materials to include the process of perforation. Sets of ballistic
penetration experiments were conducted to study the penetration and perforation of
0.6 m × 0.6 m × 0.1 m thick granite targets by 0.2 kg, 20 mm diameter hard projectiles.
The spherical cavity-expansion model developed by Forrestal and Tzou (1997) for pre-
dicting stresses on the projectile nose and the final penetration depths of projectiles
penetrating into concrete targets was extended to predict the perforation of granite
target plates by hard projectiles with a three-stage analytical model.
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Figure 7.1 Projectile impact phenomena on rock-like targets: (a) penetration; (b) spalling and scabbing;
(c) cone plugging; (d) perforation; (e) ricochet and rebound; (f) formation of radial cracks.

7.2 TERMINOLOGY

A large amount of work has been published in the field of impact and penetration
mechanics, which also results in conflicting use of several technical terms. Therefore
it is important that some of the terminology used in this field, which is essential to the
subsequent discussions, be appropriately defined. Figure 7.1 shows the possible failure
mechanisms in a rock target of finite thickness when impacted by a hard projectile.

• Penetration: Tunneling of a projectile into the target (the length of the tunnel
measured from the proximal face is called the penetration depth P).

• Spalling: Ejection of target material from the proximal face of the target.
• Scabbing: Ejection of fragments from the distal face of the target due to reflected

tensile waves.
• Cone plugging: Formation of a conical plug ahead of the projectile that is

commonly observed at the distal face of a brittle target with intermediate thickness.
• Perforation: Complete passage of the projectile through the target.
• Ricochet or rebound: Deflection of the projectile from the target without being

stopped.
• Radial cracking: Global cracks radiating from the impact point and appearing on

either the proximal or distal face of the concrete slab or both, if the cracks develop
through the target thickness.
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The above-mentioned terms are defined as the local impact effects. In order to
evaluate the projectile and target performance, limit velocities are often used, and we
will consider and define the two following limit velocities:

• Ballistic limit (Vbl): The average of two striking velocities, one of which is the
highest velocity giving a partial penetration and the other of which is the lowest
velocity giving perforation.

• Protection limit (Vpl): The average of two striking velocities, one of which is the
highest velocity such that daylight cannot be seen through the plate at the point of
impact and the other of which is the lowest velocity such that the projectile creates
a through hole but does not perforate the target.

7.3 EXISTING METHODS OF ANALYSIS AND PREDICTION

Generally, there are three methods of analysing and predicting the penetration of
projectiles into rock targets:

i) the empirical methods that are based upon experimental results obtained from
impact and penetration tests,

ii) the analytical methods, such as those using the cavity expansion theories, and
iii) numerical modelling.

In some instances, mixed methods are used, such as in the coupling of the
PRONTO 3D finite-element code for the projectile, with spherical cavity expansion
theory for the limestone target (Warren, 2002).

7.3.1 Empirical methods

In 1960, Sandia National Laboratories (SNL) began its terradynamics program with
the objective of developing the technology to permit the design of a nuclear earth
penetrating weapon (EPW). Based on the extensive experimental database, Young
(1969) published a set of penetration equations which is still widely used today. The
latest modifications of these equations and the associated technique for predicting the
depth of penetration P by kinetic energy projectiles were summarised by Young (1997).
It should be cautioned that the equations may not be applicable for projectile mass m
less than 5 kg.

For striking velocity, Vs < 61 m/s:

P = 0.0008 KSN(m/A)0.7 ln (1 + 2.15 V2
s × 10−4) (7.1a)

For striking velocity, Vs ≥ 61 m/s:

P = 0.000018 KSN(m/A)0.7(V2
s − 30.5) (7.1b)

with K = 0.46 m0.15 if m < 182 kg, else K = 1.0. A is the average cross sectional area
of the projectile body in m2. S = 2.7(σcQ)−0.3, where σc is the unconfined compressive
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strength of the intact rock sample in MPa. Q is a number that ranges from 0.1 to 1.0,
and describes the rock quality as given in Table 7.1 below.

The selection of a value for Q is based largely on engineering judgment. If two or
more of the terms are used to describe the rock quality, it is necessary to condense the
aggregate descriptions into a single value of Q.

For Eq. (7.1a) and (7.1b), the nose performance coefficients N for
ogive- and conical-nose projectiles are given by N = 0.18(Ln/d) + 0.56 and
N = 0.26(Ln/d) + 0.56, respectively. Ln is the nose length and d is the diameter of
the projectile.

Other than SNL, the following formulations for rock penetration were also pro-
posed by the US Army Waterways Experiment Station (WES) (Bernard and Creighton,
1979).

P = m
A

· N
ρ

[
Vs

3
ρ1/2

σ
1/2
cm

− 4
9

ln
(

1 + 3
4

Vs
ρ1/2

σ
1/2
cm

)]
(7.2a)

with

N = 0.863
[

4(ψ)2

4ψ − 1

]1.4

for ogive-nose projectiles (7.2b)

N = 0.805(sin ηc)−1/2 for conical-nose projectiles (7.2c)

σcm = σc(RQD/100)0.2 (7.2d)

where N is the nose performance coefficient, ψ is the calibre-radius-head defined as
the ratio of radius of curvature of the tangent ogive to the diameter of the projectile,
ηc is the cone half-angle, and RQD the Rock Quality Designation. The units used are

Table 7.1 Descriptive Terms for Rock Quality Q (Young, 1997).

DescriptiveTerms Rock Quality Q

Massive 0.9
Interbedded 0.6
Joint Spacing < 0.5 m 0.3
Joint Spacing > 0.5 m 0.7
Fractured, blocky, or fissured 0.4
Highly fractured or jointed 0.2
Slightly weathered 0.7
Moderately weathered 0.4
Highly weathered 0.2
Frost shattered 0.2
Rock quality, very good/excellent 0.9
Rock quality, good 0.7
Rock quality, fair 0.5
Rock quality, poor 0.3
Rock quality, very poor 0.1
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Penetration and perforation of rock targets by hard projectiles 147

in m, kg, m/s, kg/m3 and N/m2. It should be noted that the WES formulation may not
be applicable for P < 3d or RQD < 20.

In addition to the two empirical formulae mentioned above, Kar (1978) also pro-
posed the following set of equations for the depth of penetration in rock, igneous
material and clay. The units used are in inch, lb, ft/s, and psi.

G = 123.36√
σc

( m
d2.31

)(Es

E′
s

)1.25

N
(

Vs

1000

)1.25

(7.3a)

with

G = (P/2d)2 for P/d ≤ 2 (7.3b)

G = [(P/d) − 1] for P/d > 2 (7.3c)

N = 0.72 + [(ψ)2.72/1000] (7.3d)

E′
s = 30 × 106 psi, and Es is the Young’s Modulus of the projectile material.

7.3.2 Analytical methods

The most widely adopted analytical methods today are those that are based on the
cavity expansion theory (CET). Other than the CET, there are others that are based
on the differential area force law (DAFL) approach, which was adopted and modified
by the US Army Waterways Experiment Station (WES) to provide a 2-D theory for
the analysis of oblique impacts. The DAFL theory also forms the basis for the WES
PENCO2D code which is still in use today. However, the number of publications on the
CET far exceeds those of the DAFL. Since the early 1980s, numerous developments
have been made in using CET to model projectile penetration in rock targets, most
noticeably those by Forrestal and his co-workers at SNL. These developments on the
CET will be described in this section.

The notion of analysing the penetration of an object in a semi-infinite medium
by simulating it as a cavity expanding in that medium was first presented by Bishop,
Hill and Mott (1945) more than 60 years ago. However, it was not until the 1970s
that CET models such as Norwood (1974), Yarrington (1977), Yew and Stirbis (1978)
and Davie (1979) were developed for penetration of projectiles into geological targets,
particularly soil. Later, Forrestal, Longcope and Norwood (1981a) published a model
to predict the forces on conical-nose projectiles for normal impact into dry rock targets
based on a cylindrical cavity expansion approximation to model the target response.
A closed-form solution to this model was subsequently given by Longcope and Forrestal
(1981). Since then, several works (e.g., Forrestal, Longcope and Norwood, 1981b;
Forrestal and Grady, 1982; Longcope and Forrestal, 1983; Forrestal 1986), on the
use of cylindrical cavity expansion to study penetration of projectiles into rock targets
were published, and reasonably good agreement was shown between the predictions
and measured data.

More recently, Frew, Forrestal and Hanchak (2000) had used the model proposed
by Forrestal et al. (1994) for concrete penetration to study the depth of penetration of
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ogive-nose steel rod projectiles into limestone targets. The equations for determining
the depth of penetration P is given by

P = m
2πa2ρN

ln
(

1 + NρV2
1

R

)
+ 4a for P > 4a (7.4a)

N = 8ψ − 1
24ψ2

, V2
1 = mV2

s − 4πa3R
m + 4πa3Nρ

(7.4b)

R = NρV2
s(

1 + 4πa3Nρ

m

)
exp

[
2πa2 (P − 4a) Nρ

m

]
− 1

(7.4c)

in which the ogive-nose projectile is described by mass m, shank radius a, calibre-
radius-head ψ, and striking velocity Vs. The target is described by density ρ and target
strength constant R, which can be obtained from Eq. (7.4a) by measuring the striking
velocity Vs and penetration depth P of a penetration experiment on the rock target.
The accuracy of the prediction increases with the number of experiments being carried
out.

7.3.3 Numerical modelling

While empirical and analytical approaches may provide a reasonably accurate and
convenient engineering solution for a problem involving projectile impacting and pen-
etrating a rock target, they are limited by their range of validity and assumptions
made. Their applications are further impeded by the heterogeneous nature of rock
materials, their complex constitutive behaviour, and the presence of micro-cracks and
discontinuities. Hence, if a more comprehensive and complete solution, which includes
simulating the penetration process and structural analysis of both the target and the
projectile is required, numerical modelling has to be used. Huezé (1990) has presented
an overview of the main numerical techniques and summarised the various computer
programs developed in the 1970s and 1980s that had been used for penetration anal-
yses in geological materials, with emphasis on rocks. Some of the computer programs
such as ABAQUS, DYNA2D and DYNA3D and PRONTO2D have since been updated
and widely used today in impact and penetration studies.

While several recent works on the development of constitutive models can be
found, and on the numerical simulations of penetration and perforation of con-
crete (e.g., Reidal et al., 1999; Gebbeken and Ruppert, 2000; Polanco-Loria, 2001;
Fan, Zhou and Tan, 2003; Warren, Fossum and Frew, 2004; Warren, Hanchak and
Poormon, 2004; Teng et al., 2005; Tham, 2005; Huang et al., 2006; Unosson and
Nilsson, 2006; Rabczuk and Eibl, 2006; Leppänen, 2006), little has been done for
rock materials. Recently, Warren (2002) developed a combined numerical and analyt-
ical technique by using the PRONTO 3D finite-element code to model the projectile
and an analytical forcing function based on the dynamic expansion of a spherical cav-
ity to represent the target. The results from the penetration simulations are compared
with the corresponding results of the ballistic penetration experiments performed by
Frew, Forrestal and Hanchak (2000) with limestone targets, and shown to be in good
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Penetration and perforation of rock targets by hard projectiles 149

agreement. The combined techniques were later modified by Warren, Fossum and Frew
(2004) and Warren, Hanchak and Poormon (2004) with a free surface effect model
and used to simulate the penetration of limestone targets by ogive-nose steel projectiles
at oblique angles. The results from the simulations are in reasonably good agreement
with those from the experiments.

7.4 PENETRATION AND PERFORATION OF GRANITE
TARGET PLATES

From the methods of analysis and prediction presented above, it is observed that
previous studies concerning the penetration of projectiles into rock targets focused
mainly on the penetration process. With the intent to extend the present knowledge
of projectile penetration in rock to include the process of perforation, research was
carried out to study the physical phenomena and failures taking place in a rock target of
finite thickness when impacted, penetrated and perforated by a hard projectile (Seah,
2006). The research methodology involved an integrated use of experimental work
(material tests and ballistic tests), and analytical modelling. Properties of the rock
material obtained from material tests are used as inputs for the analytical model that
is developed to make predictions for the ballistic tests.

7.4.1 Ballistic tests

7.4.1.1 Compressed gas gun facility

The compressed gas gun facility seen in Figure 7.2, and described by Børvik (2000)
was used to carry out the ballistic tests. The main components of the facility consist

Sabot trap

Trigger/velocity measurement

Target plate/clamping rig 

Steel wire mesh 

Rag-box, filled with
graded plywood
Reinforcement

Pressure tank 

Firing section 
Barrel

Support

Recoil
absorber 

Laser curtains

High-speed camera

Figure 7.2 Sketch of compressed gas gun used in the experiments (Børvik, 2000).
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(a) (b)

Figure 7.3 (a) The projectile package and (b) the design of the sabot.

of a 20 MPa pressure tank, a specially-designed firing section for compressed gas, a
10 m-long smooth barrel of bore diameter 50 mm, and a closed 16 m3 impact chamber.

The projectile package comprises a 0.2 kg 20 mm-diameter projectile encased in an
eight-piece serrated sabot with an obturator as shown in Figure 7.3. When the projectile
package leaves the muzzle in the impact chamber, the sabot immediately separates from
the projectile. A sabot trap, which is located at 1.5 m from the muzzle, catches the
sabot parts. The projectile is then allowed to travel freely through the initial velocity
measurement station before it finally impacts the target after about 2 m of free flight.

The initial velocity is measured by a photocell system consisting of two identical
light-curtains with LED-light sources on one side and detectors on the other of the
path of the projectile. An interruption will be caused in the light transmission between
the sources and detectors when the projectile passes through the LED-light curtain,
and the signals are recorded by an oscilloscope and a nanosecond counter. Knowing
the distance between the two light curtains and the time that the projectile takes to
pass through them, the striking velocity can be determined.

Previously, Børvik et al. (2002) had performed ballistic experiments on concrete
targets with the compressed gas gun facility. Due to debris that triggered the optical
devices ahead of the projectile when it perforated the concrete target, it was found
to be difficult to obtain reliable residual velocity measurements from the tests. Similar
problems were also encountered with the trial tests that were carried out on three gran-
ite targets when planning for the experimental programme. However, it is important
to determine whether the projectile did perforate the granite target. A steel wire mesh
was employed to cover the section between the rear side of the target and the rag-box
to capture the projectile when it perforated the target as shown in Figure 7.1. The wire
mesh also helped in the collection of the major debris ejecting from the distal face for
studying the damage caused by the penetration and perforation process. During each
test, a foam panel was placed at 0.6 m from the distal face of the granite target in
the rag-box to provide some quantitative information on the energy in the debris by
observing how far they travelled and the extent of damage on the foam.
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Figure 7.4 Dimensions of the ogive-nose projectile.

Table 7.2 Basic Properties of the Iddefjord Granite.

Young’s Compressive Tensile Poisson’s Residual Shear Friction
Modulus Strength Strength Ratio Density Strength Angle
E σc σ t ν ρ C0 θ

54 GPa 163 MPa 7.1 MPa 0.27 2626 kg/m3 40.4 MPa 52.60

7.4.1.2 Projectiles and Targets

Ogive-nose projectiles were used in the ballistic tests. The projectiles were manufac-
tured from Arne tool steel with a nominal mass and diameter of 197 g and 20 mm,
respectively. The dimensions of the ogive-nose projectile are given in Figure 7.4. The
ogive-nose projectile has a calibre-radius-head (CRH) of 3. After machining, the
projectiles were oil-hardened to a nominal Rockwell C value of about 51–53, with
yield strength of 1850 to 1900 MPa. They were then spray-painted bright red and
equipped with fiducial marks for easier tracking by the high-speed cameras.

The granite target plates used in the experimental programme were quarried
and cut from the Iddefjord granite. Material tests were performed on the Idde-
fjord granite and the properties are given in Table 7.2. All the granite targets are
0.6 m × 0.6m × 0.1 m in dimension and weigh about 100 kg.

During each test, the granite target is fitted into a specially designed steel frame
with screws and rigid steel plates and mounted onto a holding bracket which is fixed
onto the supporting frame of the impact chamber as shown in Figure 7.5.

7.4.2 Analytical Modelling

The analytical model consists of a set of closed-form equations describing the three
stages of the penetration and perforation process: cratering, tunnelling and plugging
as shown in Figure 7.6. Generally, only catering and plugging are observed for thinner
targets.

Post test observations of concrete and rock targets show that the cavity after pene-
tration is a conical region with length about two projectile shank diameters 4a followed
by a circular cylinder with diameter nearly equal to the projectile shank diameter 2a
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Rigid Steel
Plates

Steel Frame

Granite Target

Holding
Bracket

Tightening Screws

Figure 7.5 Experimental set-up for the granite targets during the tests.
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Stage 2:
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Figure 7.6 Penetration and perforation model (a) with and (b) without tunneling.

(Forrestal et al., 1994). The depth of penetration z is measured from the target surface
and P is the final penetration depth.

7.4.2.1 Projectile Force

The spherical cavity-expansion penetration model presented by Forrestal and Tzou
(1997) for an incompressible material with elastic-crack-plastic response approximates
the normal stress on the projectile nose by

σr(Vz, φ) = τ0
[
A + BVz cos φ + C(Vz cos φ)2] (7.5)

where τ0, A, B and C are material parameters. From material tests, they are found
to be 49.2 MPa, 44.7, 0.0663 and 0.0012, respectively for the Iddefjord granite. In
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θ0

φ

sr

Ln

s

a

Figure 7.7 Normal stress on an ogive-nose projectile.

addition, it is assumed that there is no tangential stress on the nose from interface
frictional resistance. The resulting axial force on the projectile nose at penetration
depth z is then given as

Fz = 2πs2
∫ π/2

θ0

{[
sin φ −

(
s − a

s

)]
cos φ

}
σr(Vz, φ)dφ (7.6)

where θ0 = sin−1[(s − a)/s], Vz is the velocity of the projectile at penetration depth z
and s, a and φ are as defined in Figure 7.7.

From observations of deceleration data from penetration tests carried out on ante-
lope tuff (Longcope and Forrestal, 1983), the force on the projectile nose can be
taken as

Fz = Ccz for 0 < z ≤ 4a (7.7a)

Fz = 2πs2τ0(f1 + f2Vz + f3V2
z ) for 4a < z ≤ P (7.7b)

where Cc, f1, f2 and f3 are functions to be determined from the integration of Eq. (7.6),
and they are given as

Cc = 2πsτ0

(cos θ0 − cos φ)
(A′ + B′Vz + C′V2

z ) for 0 < z ≤ Ln (7.8a)

Cc = 2πs2τ0

z
(A′ + B′Vz + C′V2

z ) for Ln < z ≤ 4a (7.8b)

f1 = A

[
1
4

(1 − cos 2φ) − s − a
s

sin φ + 1
2

(
s − a

s

)2
]

for z < Ln (7.9a)
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f1 = A
2

(a
s

)2
for z ≥ Ln (7.9b)

f2 = B
{

1
3

(cos3 θ0 − cos3 φ) − s − a
2s

[(
sin 2φ

s
+ φ

)
−
(

sin 2θ0

2
+ θ0

)]}
for z < Ln (7.10a)

f2 = B
[

1
3

cos3 θ0 − s − a
2s

(
π

2
− sin 2θ0

2
− θ0

)]
for z ≥ Ln (7.10b)

f3 = C
{

1
4

(cos4 θ0 − cos4 φ) − s − a
s

[
(sin φ − sin θ0) − 1

3
(sin3 φ − sin3 θ0)

]}
for z < Ln (7.11a)

f3 = C
[

1
4

cos4 θ0 − s − a
s

(
2
3

− sin θ0 + 1
3

sin3 θ0

)]
for z ≥ Ln (7.11b)

It should also be noted that Vz is given as a function of penetration depth z in Eq. (7.7b).

7.4.2.2 Plug resistance

It is well documented that the tensile strengths of rocks are much lower than their
compressive strengths. When the projectile force reaches a critical value equal to the
plug resistance, plugging occurs as shown in Figure 7.8.

The separation of a conical plug from the surrounding material is governed by
the local principal stress and the tensile strength of the material. The simplest and
most well-known criterion of failure in rocks is the Mohr-Coulomb criterion. From
the Mohr-Coulomb failure envelope with a tensile cut-off at σt, the critical angle of
the tensile crack is given as α = 45◦ + θ/2 and the plug resistance can then be derived
by multiplying the vertical component of the tensile strength with the surface area of
the truncated cone plug to give

Fp = πσt

[
H∗ tan

(
45◦ + θ

2

)]2

(7.12)

where H∗ = H − z. For a given target thickness H the ballistic limit velocity Vbl is
defined as the minimum impact velocity Vs for which the projectile will penetrate and
perforate the target on the rear side of the target.
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(a)

d

H
H* 

z1

z2

45˚ + θ/2

45˚ + θ/2

45˚ + θ/2 

drc

drc

Fz  < Fp 

z2 > z1

Fz = Fp 

(b)

(c)

H

H* 

 

st H* 

 

H*  

d

st

H

drc

Figure 7.8 Illustration of a plugging process: (a) Fz < Fp; (b) Fz = Fp; and (c) plugging.

7.4.3 Limit velocities

7.4.3.1 Ballistic limit

By equating Fz = Fp, the penetration depth z when plugging will occur can be obtained.
Then, the corresponding velocity Vz can be found, and this will become the residual
velocity Vr. The solution procedure may seem rather tedious but can easily be done
graphically by generating a series of projectile force versus penetration depth plots
for different striking velocities with Equations (7.7a) and (7.7b), and superimposing
the plug resistance versus penetration depth plot from Equation (7.12) onto them as
illustrated in Figure 7.9. For each striking velocity Vs, there will be a residual velocity
Vr. Finally, to determine the ballistic limit Vbl, the data obtained from the analytical
model are curved fitted to a limit-velocity curve proposed by Recht and Ipson (1963)
in Figure 7.10.

With the penetration depth z when plugging will occur already known, the height
of the conical plug which is given by H∗ = H − z can then be calculated, together with
the diameter of the rear crater drc which is given by

drc = 2H∗ tan
(

45◦ + θ

2

)
(7.13)
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Figure 7.9 Force versus penetration depth plot.
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Figure 7.10 Determining of the ballistic limitVbl with the limit-velocity curve.

7.4.3.2 Protection limit

If the striking velocity is less than the ballistic limit, the projectile is not expected to
penetrate through to the other side of the target. At the instance when the projectile is
suddenly brought to a stop, the stress at the projectile nose-target interface is doubled
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Figure 7.11 Illustration of the Ballistic Limit and Protection Limit of a rock target that is struck by a
hard projectile.
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Figure 7.12 Determining the final penetration depth when a projectile suddenly stops in the rock
target.

while the net displacement and particle velocity is zero. This net stress, if sufficiently
large, will result in scabbing and create a through hole in the target. The minimum
striking velocity at which this scenario can occur is the protection limit Vpl as illustrated
in Figure 7.11. A graphical solution procedure can also be adopted to determine Vpl.

From the series of projectile force versus penetration depth plots shown in Fig-
ure 7.9, one can find the final penetration depth P and the corresponding projectile
force Fz=p, for each striking velocity. Plots of final penetration depth versus striking
velocity, and projectile force versus final penetration depth, can then be obtained. By
equating 2 Fz=p = Fp and solving for the final penetration depth in Figure 7.12, we can
finally determine the protection limit from Figure 7.13.

Similar to the case of the ballistic limit, the height of the conical plug and the
diameter of the rear crater drc can be calculated, after the final penetration depth P
when plugging occurs has been determined.
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Figure 7.13 Plot of final penetration depth versus striking velocity.
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Figure 7.14 High-speed camera images at various time intervals showing the responses at the front
and rear side of the granite target plate when impacted by ogive-nose projectile at
Vs = 279 m/s.

7.5 RESULTS AND DISCUSSIONS

For every experiment, high-speed digital images as presented in Figure 7.14 were taken,
and the striking velocities were measured. The debris collected in the steel-wire cage
and the damage on the granite target plates were also documented as shown in Fig-
ure 7.15. Figure 7.16 shows the typical damage and failures on the granite targets that
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Figure 7.15 Documentation of the damage on the granite target plate and the debris collected.

Front crater

Conical plug

Diameter of rear crater

Height of conical plug

Figure 7.16 Typical damage and failures on the granite target plates that were observed in the ballistic
tests.

Table 7.3 Comparison between predictions from analytical model and results from ballistic tests.

Ballistic Limit Protection Limit

Vbl H* drc Vpl H* drc
(m/s) (mm) (mm) (m/s) (mm) (mm)

Prediction 377 60 355 242 77 455
Experiment 406 55 297 288 65 312
% Diff −7.1 9 19.5 −16.0 18.5 45.8

were observed in the ballistic tests. The ballistic limit and protection limit, and the
dimensions of the conical plug associated with each of these limit velocities are sum-
marised in Table 7.3 together with the predictions from the analytical model. Given
the complexity of the penetration and perforation problems and the simplicity of the
three-stage analytical model which was used, the predictions are considered to be in
reasonably good agreement with the experimental results.

7.6 CONCLUDING REMARKS

Previous studies on projectile penetration in rock usually focussed on penetration
depth, deceleration history or stresses on the nose of the projectile. This paper has
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extended the current knowledge of the penetration of projectiles into rock targets to
include the process of perforation. The Iddefjord granite has been selected as the tar-
get material to be studied. The research work consists of experimental work (material
tests and component tests), and analytical modelling. Properties of the rock mate-
rial obtained from material tests are used as inputs for the analytical model that is
developed to make predictions for the ballistic tests. Sets of ballistic penetration and
perforation experiments were performed with 0.6 m × 0.6 m × 0.1 m thick Iddefjord
granite targets and 0.2 kg, 20 mm diameter Arne tool steel projectiles. Ogive-nose pro-
jectiles with calibre-radius-head (CRH) of 3 were considered. In analytical modelling,
a three-stage analytical model was proposed to make predictions for the experiments.
Despite the complexity of the penetration and perforation problem, the three-stage
analytical model is capable of taking into account the main physical phenomena and
failures that take place when a rock target is impacted, penetrated and perforated by
a hard projectile, and give predictions that are considered to be in reasonably good
agreement with the experimental results.
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Chapter 8

Incubation time based fracture
mechanics and optimization of
energy input in the fracture
process of rocks

Yuri Petrov, Vladimir Bratov, Grigory Volkov and Evgeny Dolmatov

8.1 INTRODUCTION

The possibility of optimising the amount of energy required to fracture materials is of
great interest in connection with many applications. Energy inputs for fracture induced
by short impulse loadings are of major importance in such areas as percussive, explo-
sive, hydraulic, electro-impulse and other means of mining, drilling, pounding etc.
In these cases energy input usually accounts for the largest part of the process cost
(e.g. Royal Dutch Petroleum Company Annual Report, 2003). Taking into considera-
tion the fact that the efficiency of the above-mentioned processes rarely exceeds a few
percent, the importance of energy inputs optimization becomes evident.

This chapter summarizes some results connected with the application of the incu-
bation time approach to problems of dynamic fracture of rock materials. Incubation
time based fracture criteria for intact media and media with cracks are discussed and a
possibility of optimizing energy input for fracture is studied. It is shown that the min-
imal energy needed in order to initialize fracture in cracked rock media does strongly
depend on amplitude and duration of an impact causing this rupture. Existence of
optimal energy saving shapes for a single impact or a sequence of periodic impacts is
demonstrated.

The purpose of the first section is to find and explore the amount of energy suffi-
cient to initiate the propagation of a mode I loaded central crack in a plate subjected to
plane strain deformation. Two ways to apply the dynamic load to the body are studied.
In the first case the load is applied at infinity. The study involves the analysis of inter-
action of the wave package approaching from infinity with an existing central crack
in a plane. The existing crack is oriented parallel to the front of the wave package. In
the second case the load is applied at the crack faces. Tractions are normal to the crack
faces. Following the superposition principle these two loading cases should produce
identical stress-strain fields in the vicinity of the crack tip. It will be shown later that
the amount of total energy applied to the body needed to initiate crack growth depends
on the load application manner in different ways for the two cases under investigation.

In the second part of the chapter, one of the very first attempts to incorporate
incubation time based fracture criterion into FEM (Finite Element Method) code is
presented. Utilizing developed techniques, the conditions of SMART1 satellite impact-
ing the moon surface are simulated. Received dimensions of a crater formed on the
moon due to contact with SMART1 are the same as observed in reality.
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2l

P

P

x2

x1

Figure 8.1 Experiment scheme. Central crack in an infinite plane is loaded by a wave approaching from
infinity. Wave front is parallel to the crack plane.

In the final part of the chapter, as a result of using the incubation time approach
we succeeded in giving an explanation for the experimentally observed effect of opti-
mization of the energy spent on the fracture of materials by pulsed dynamic attacks.
By example of the simplest problem about contact collision, we estimated the energy
necessary for the fracture-pulse generation in the rock medium. It was found that this
energy substantially depends on the attack duration and has the characteristic lowest
value.

8.2 MODELING INTERACTION OF THE WAVE COMING FROM
INFINITY WITH THE CRACK

Consider an infinite plane with a central crack (Fig. 8.1). The load is given by the wave,
falling on the crack. Displacements of the plane are described by:

ρui,tt = (λ + µ)uj,ji + µui,jj, (8.1)

where “,’’ refers to the partial derivative with respect to time and spatial coordinates;
ρ is the mass density, and the indices i and j assume the values 1 and 2. Displacements
are given by ui in the directions xi respectively. T stands for time, λ and µ are Lame
constants. Stresses and strains are coupled by Hooke’s law:

σij = λδijuk,k + µ(ui,j + uj,i), (8.2)

where σij represents stresses in direction ij, and δij is the Kronecker delta assuming
value of 1 for i = j and 0 otherwise. Boundary conditions are:

σ22||x1|<l,x2=0 = σ21||x1|<l,x2=0 = 0. (8.3)
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Figure 8.2 Typical stress intensity factor (Pa
√

m) time (µs) dependence in FE solution.

The impact is delivered to the crack by the falling wave:

σ22|t<0 = P
(

H
(

t + x2

c1

)
+ H

(
t − x2

c1

)
− H

(
t + x2

c1
− T

)
− H

(
t − x2

c1
− T

))
(8.4)

where c1 is the longitudinal wave speed, H is the Heaviside step function and T is the
impact duration. P represents the pressure pulse amplitude and has a dimension of Pa.
The described problem is solved using the finite element method.

The process is analyzed utilizing the finite element method. The ABAQUS (see
ABAQUS User Manual) finite element package was used to solve the problem. The
task was formulated for a quarter sample using the symmetry of the problem about
the x and y axes. Plane strain conditions were supposed. An area adjacent to the crack
tip was meshed with triangular isoparametric quarter-point elements available in the
ABAQUS package. Thus, the mesh in the vicinity of the crack tip may assume a square
root singularity in stress/strain fields. The total of about 3 × 106 elements were used
to model the cracked sample. The crack surface was represented by 50 nodes along
the crack’s half-length. Explicit time integration was utilized to solve the dynamical
problem in question.

Computations were performed for granite (E = 96.5 GPa, ρ = 2810 kg/m3, υ =
0.29, where E is the elasticity modulus and υ is the Poisson’s ratio). The results of the
investigation will qualitatively hold for a large variety of quasi-brittle materials.

In the conditions of plane strain, the interaction of the wave approaching from
infinity with a central crack was investigated.

Firstly infinite impulse durations were supposed, i.e. T = ∞. Time dependence of
the stress intensity factor KI was studied. KI used in a further analysis was calculated
from the J-integral that is available as a direct output from ABAQUS solution. Compu-
tations were performed for different amplitudes of the loading pulse applied. Typical
dependence of KI on time is presented in Figure 8.2.
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Apparently KI is rapidly approaching the static level. Thus the time to approach
the steady-state situation in the vicinity of a crack tip can be estimated as 5–10 times
more than the time required by the wave to travel along the crack’s half-length.

Fracture criterion fulfillment was checked for different load amplitudes and dura-
tions. Dependence of time-to-fracture T∗ on the amplitude of the load applied was
investigated. Time-to-fracture is the time from the beginning of interaction between
the wave package and the crack to fracture initiation. Incubation time criterion of frac-
ture (Petrov and Morozov, 1994; Morozov and Petrov, 2000) was adopted. A similar
approach to be used in the case of short cracks is given by Petrov and Taraban (1997).

8.2.1 Incubation time fracture criterion

Incubation time based fracture theory proposed by Petrov and Utkin (1989), Petrov
and Morozov (1994) and Morozov and Petrov (2000) is successfully used to describe
fracture initiation in dynamic conditions (Petrov and Morozov, 1994; Morozov and
Petrov, 2000; Bratov et al., 2004; Bratov and Petrov, 2007). Criterion for fracture at
a point x at time t reads:

1
τ

1
d

x∫
x−d

t∫
t−τ

σ(x, t)dxdt ≥ σc, (8.5)

where τ is the fracture process incubation time (or microstructural time) – parameter
characterizing response of a studied material on applied dynamical loads (i.e. τ is
constant for a given material and does not depend on the problem geometry, the way
a load is applied, the shape of a load pulse or its amplitude); d has the meaning of
characteristic size of a fracture process zone and is constant for the given material and
chosen spatial scale; σ is the stress at a point, changing with time and σc is its critical
value (ultimate stress or critical tensile stress evaluated in quasistatic conditions); x∗
and t∗ are local coordinate and time.

Assuming

d = 2
π

K2
IC

σ2
c

, (8.6)

where KIC is a critical stress intensity factor for mode I loading (mode I fracture tough-
ness), measured in quasistatic experimental conditions, it can be shown that within
the frames of linear fracture mechanics for the case of fracture initiation in a tip of an
existing crack, loaded by mode I, criterion (8.5) is equivalent to:

1
τ

t∫
t−τ

KI(t∗)dt∗ ≥ KIC. (8.7)

Condition (8.6) arises from a requirement that criterion (8.5) is equivalent to Irwin’s
criterion (KI ≥ KIC) in quasistatic conditions (t → ∞). This means that a certain size
typical of fractured material appears. This size is believed to be associated with the size
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of a failure cell on the current spatial scale – all rupture sized significantly less than d
cannot be called fracture on the current scale level.

Thus, by introducing τ and d, the time-spatial domain is discretized. Once the
material and scale one is working with are chosen, τ gives time, such that energy
accumulated during this time can be released by rupture of the cell that accumulated
it. The d assigns dimensions for such a cell. Introduction of time and spatial domain
discretization is very important. To our belief, a correct description of high loading rate
effects is not possible if this time-spatial discreteness is not accounted for in some way.
The advantage of the incubation time approach is that one can stay within the frames
of continuum linear elasticity, utilizing all the consequent advantages and accounting
for discreteness of the problem only in the critical fracture condition.

As was shown in earlier publications (e.g., Petrov, 1991; Petrov, Morozov and
Smimov, 2003; Petrov and Sitnikova, 2005), criterion (8.5) can be successfully used to
predict fracture initiation in brittle solids. For slow loading rates and, hence, times to
fracture that are much bigger than τ, condition (8.7) for crack initiation gives the same
predictions as the Irwin’s criterion (Irwin, 1957) of the critical stress intensity factor.
For high loading rates and times to fracture comparable with τ all the variety of effects
experimentally observed in dynamical experiments (e.g. Smith, 1975; Ravi-Chandar
and Knauss, 1984; Shockey et al., 1986; Kalthoff, 1986; Dally and Barker, 1988) can
be received using condition (8.7) both qualitatively and quantitatively (Petrov, 2004).
Application of condition (8.7) to description of real experiments or usage of (8.7) as
a critical fracture condition in finite element numerical analysis gives a possibility for
better understanding of the nature of fracture dynamics (e.g. Bratov et al., 2004) and
even prediction of new effects typical for dynamical processes (e.g. Bratov and Petrov,
2007).

Another known approach to dynamic fracture, originating from works of Freund
(Freund and Clifton, 1974) and later developed by Freund (Freund, 1990) and Rosakis
(e.g. Owen et al., 1998) is based on an assumption that fracture toughness can be
directly and unequivocally coupled with loading rate or stress intensity factor rate.
Sometimes, for specific experimental conditions with stress intensity factor (or just
stress) monotonously growing with time, such a dependency can be observed in reality.
But, generally speaking, the majority of known experimental results for short pulse
fracture demonstrate the inapplicability of this approach. In numerous experiments
(Shokey et al., 1986; Zlatin and Pugachev, 1975; Berezkin et al., 2000), it is observed
that fracture can initiate at a moment when the stress intensity factor (or stress, if
concerning fracture of intact material, for example, in dynamic cleavage experiments)
is decreasing, and hence is having a negative rate. Obviously these phenomena are
impossible to describe presuming unequivocal dependency of fracture toughness (or
critical stress) on stress intensity factor rate (or stress rate).

All this provides grounds to state that an incubation time based approach to
fracture has the most potential of all currently known approaches in dynamic fracture.

Using criterion (8.7), the dependence of time-to-fracture on the amplitude of the
load pulse applied was studied. Values of KIC = 2.4 MPa

√
m and τ = 72 µs, typical for

the granite under investigation, were used. Integration of the temporary dependence
of the stress intensity factor was done numerically. In Figure 8.3, the x-axis represents
the time from the beginning of interaction of the wave coming from infinity with the
crack to the fracture initiation. The y-axis represents the corresponding amplitude of
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Figure 8.3 Curve limiting the pulses leading to crack propagation. Time-to-fracture (µs) vs. applied
pressure amplitude (Pa).

the load applied at infinity. The point on Figure 8.3 marked with a cross corresponds
to the maximum possible time-to-fracture for a given problem. As follows, for the
investigated granite and studied experimental conditions, fracture is only possible for
times less than 92 µs.

At the same time the critical (threshold) amplitude of the applied load was found.
This amplitude corresponds to the maximum time-to-fracture possible. Loads with
amplitudes less than the critical one do not increase the length of the crack.

8.2.2 Dependence of the energy inputs for fracture on the load
amplitude and duration

At this point we examine the specific momentum transferred to the plane under
investigation by a loading device. In our case:

P(t) = P(H(t) − H(t − T)), (8.8)

therefore the specific (per unit of length) momentum of the impact will be:

R = PT. (8.9)

The filled area on Figure 8.4 corresponds to a set of momentum values causing
fracture. For the values outside of this area, crack propagation does not occur. The min-
imum value for the momentum incrementing the crack length (44.7 kg m/s) is reached
at impulse with duration of 72 µs while the amplitude of the load exceeds the minimal
amplitude by more than 10%.
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Figure 8.4 Filled area corresponds to a set of possible pulses leading to crack initiation. At T = 72 µs
momentum R (kg m/s) needed to advance the crack is minimized.

Now we come to examination of the energy transmitted to the sample by a virtual
loading device in the process of impact. The shape of the load applied is given by
Equation (8.8). A specific (per unit of length) energy transmitted to the stripe can be
calculated using the solution for the uniformly distributed load acting on a half plane.
This problem can be easily solved utilising the D’Lambet method. The solution for a
specific energy transmitted to the half plane appears to be:

εspec = 1
c ρ

T∫
0

P2(t)dt. (8.10)

The c here is the same as c1 and gives the longitudinal wave speed. This result can be
used for the problem under investigation, as interaction of the loading device and the
sample is finished before the waves reflected from the crack come back. Substitution
of Equation (8.8) into Equation (8.10) gives εspec = P2T/c ρ.

Analogously to Figure 8.4, we plot a limiting curve for a set of energies that, being
transmitted to the sample, cause the crack propagation (Fig. 8.5).

The minimum energy able to increment the crack length (172 × 106 J) is reached
at load pulses with duration of 78 µs. As it is evident from Figure 8.5, the minimum
energy required to propagate the crack by impacts with durations differing greatly
from the optimal ones, significantly exceeds the minimum possible value. Thus the
minimum energy initiating the crack for the load with duration of 92 µs (at this impact
duration crack propagation is possible with the impact of threshold amplitude), will
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Figure 8.5 Filled area corresponds to a set of possible pulses leading to crack initiation. At T = 72 µs
the energy ε ( J/m2) needed to advance the crack is minimized.

exceed the minimum energy possible by 10%, and at duration of 40 µs it will be more
than two times bigger.

8.3 THE CASE OF A LOAD APPLIED AT THE CRACK FACES

Now we consider a problem similar to the previous one, but with the load applied
not at infinity but on the crack faces. The problem is solved numerically and in the
same manner as the one for the load applied at infinity. Obviously, according to the
superposition principle, the solution will coincide with the one for the stripe stretched
by a load applied at infinity. Thus all the consequences of the previous solution are
applicable, except for estimations of energy. Specific momentum transmitted to the
sample will be the same as the one in the previous problem.

It is not possible to estimate energy transmitted to the sample analytically for
the situation when the load is applied at the crack faces. However the finite element
solution can be used in this case to estimate this energy. Figure 8.6 represents time
dependence of full, kinetic and potential energies of deformation contained in a loaded
sample for a particular pressure amplitude.

Firstly the kinetic energy increases linearly along with the potential one, in the same
manner as happens in the case with the loaded half-plane. However at the moment
of time equal to the time sufficient for a wave to travel along the crack length, the
kinetic energy starts to transform into potential energy of deformation. Some part of
the energy is returned to the loading device.

The limiting curve for the set of energies increasing the crack length is presented
on Figure 8.7a. As can be noticed in the case of the load applied at the crack faces,
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Figure 8.6 Transmitted energy ( J) time (µs) dependence.

the energy input to increase the crack length has no marked minimum. The minimum
energy needed to produce fracture in this case decreases with the growth of impulse
duration. When the duration is equal to the maximum possible time-to-fracture, the
energy reaches the minimum value.

Figure 8.7b enlarges the area adjacent to the point where the minimal energy is
firstly reached on Figure 8.7a. As seen from Figure 8.7b for the pulse durations close
to the maximal possible time-to-fracture (92 µs), the minimum energy input needed
for crack propagation is not much different from the minimum value firstly achieved
at 92 µs.

8.3.1 Optimization of the load parameters to minimize energy
cost for the crack growth

With the majority of non-explosive methods used to fracture materials (drilling, grind-
ing etc.), it is possible to control amplitude and frequency of impacts from the side
of a rupture machine. The performed modeling shows that at a certain load duration
(at impact fracture of large volumes of material, impulse duration is connected to the
frequency of the machine impacts) energy input for crack propagation has a marked
minimum.

Analogously to Figure 8.5, it is possible to plot the limiting curve for the set of
energy values leading to propagation of a crack in the sample at different load ampli-
tudes. This is done on Figure 8.8. Thus, it is possible to establish ranges of amplitudes
and frequencies of load, at which energy costs for fracture of the material are mini-
mized. These ranges are dependent on parameters of fractured material, predominant
length of existing material cracks and the way the load is applied.
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Figure 8.7 Energy minimization. Possible energy ( J) quantities transmitted to a sample by a loading
device depending on load duration (µs). Figure 8.7b enlarges part of 8.7a.

Dependence of the optimal load parameters on the crack length was also stud-
ied. The results received are presented in Figures 8.9a and 8.9b. As observed from
Figure 8.9a, the duration of the load, that minimizes energy, and momentum inputs
are linearly or quasi-linearly dependent on the existing crack length. With the dis-
appearing crack length, the duration of the load minimizing momentum needed for
crack propagation approaches zero. At the same time, the duration optimal for the
energy inputs most probably tends to the microstructural time of the fracture pro-
cess. The maximum possible time-to-fracture also tends to the microstructural time of
fracture.

Thus, considering intact media as the extreme case of media with cracks when the
crack length goes to zero, we find that the maximum possible time-to-fracture is the
same as the microstructural time of the fracture process. Durations of the loads being
optimal for the energy inputs for the fracture of intact media are also equal to the
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Figure 8.8 Finding optimal pulse amplitude. Possible energy ( J/m2) values for different pressure
amplitudes P (Pa).

microstructure time of the fracture process. Amplitudes of loads, that minimize energy
and momentum sufficient to increase the crack length, are presented in Figure 8.9b.

As expected, the amplitude of the threshold impulse is inversely dependent on
√

l,
where l is the crack length. Dependence of amplitude, minimizing energy inputs, from
the crack length is close to 1/

√
l. The amplitude, minimizing the momentum, is back

proportional to the crack length. When the crack length is close to zero, the amplitude
of the load that minimizes the energy cost of the crack propagation, is close to threshold
amplitude. However, the amplitude, minimizing the energy input, deviates from the
threshold amplitude more and more with the growing crack length (Fig. 8.10).

8.3.2 Application to the problem of impact crater formation

In this section an attempt to incorporate incubation time approach into finite element
(FE) code, and to simulate conditions of the satellite SMART1 lunar impact conducted
by ESA in the year 2006 (ESA, 2006a, 2006b) is presented. The aim of the simulation
is to compare dimensions of the crater created due to SMART1 contact with the moon
surface to the results received using the FE method utilizing the ITFC as the critical
rupture condition.

The traditional way to create a new surface in FE formulation is associated with
splitting of existing nodes. Using this approach is reasonable in most cases, though
this normally requires remeshing and remapping, which are rather time consuming
procedures. For the studied problem the situation is different. To guarantee correct
integration in condition (8.5), one should use small (as compared to τ) time steps.
Thus the solution can result in a long series of tiny substeps. Solution (convergence)
on every substep is achieved comparably fast – FE solver is almost not iterating. It was
found that in this case it is more effective to use multiple nodes in the same location
from the beginning, rather than split the node in question. Each element that the full
model is constructed of, is not sharing nodes with other elements.
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Figure 8.9 Dependence of (a) optimal load duration (µs) and (b) amplitude (Pa), on crack length (mm).

The 2-D problem with rotational symmetry is solved. Quadratic 4-node elements
are used. The dimension of every element is exactly d times d (where d is given by
(6)). Obviously, 4 nodes have the same location for inner points of a body and 2
nodes have the same location for the points belonging to the boundary. These nodes
originally have their DOF’s coupled. This results in exactly the same FE solution before
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Figure 8.10 Dependence of optimal load amplitude (Pa) on crack length (mm).

the fracture condition is implemented in a respective point as if the elements had shared
nodes. When the fracture condition is fulfilled, restriction on node DOF’s is removed –
a new surface is created. This is done automatically by FE code after every substep.

Figure 8.11 gives a schematic representation of internal points of a body. Originally
all 4 nodes sharing the same location have all of their DOF’s coupled. Condition (8.5)
for this point can be written:

1
τ

t∫
t−τ

σii(t′)dt′ ≤ σc, (8.11)

where i assumes values 1 and 2. Repeating indices do not dictate summation in this case.
Spatial integration is removed, because the stress in the respective direction calculated
by FE program is already a mean value over size d (since d is the element size being
used). If condition (8.11) is fulfilled for σ11 and σ22 then displacements of nodes 1, 2,
3 and 4 on Figure 8.11 become uncoupled. If condition (8.11) is fulfilled for σ11, two
new couple sets consisting of nodes 1, 2 and 3, 4 are created. If condition (8.11) is
fulfilled for σ22, new couple sets are created for nodes 1, 3 and 2, 4. For later times,
condition (8.11) in the applicable direction is traced for newly created couple sets
separately. Contact between separated fragments is not modeled.

The problem is solved for half-space. The half-space representing the moon
had the following material properties: σc = 10.5 MPa, KIC = 2.94 MPa

√
m, τ = 80 µs,

E = 60 GPa, ρ = 2850 kg/m3, ν = 0.25 typical for earth basalt. This results in d = 5 cm.
Half-space is impacted by a cylinder with diameter of 1 meter and height of 1 meter.
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1 2

3 4

Figure 8.11 Model consisting of elements without shared nodes.

Density for the cylinder is chosen so that its mass is the same as that of the SMART1
satellite. We suppose the material of the cylinder is linear elastic and has no possi-
bility of fracture. Elastic properties are: E = 200 GPa, υ = 0.32, typical for steel. The
SMART1 satellite had a form close to cubic with sides of 1meter and had a mass of
366 kg. SMART1 impacted the moon surface at a speed of approximately 2000 m/s.
In FE formulation the cylinder was given an initial speed of 2000 m/s prior its contact
with the half-space boundary. Figure 8.12 gives an overview of the FE model. The size
of the sample representing the half-space is chosen from the condition that the waves
reflected from the sample boundaries are not returning to the region where the crater is
formed in the process of the simulation. A total of 17,328 nodes and 17,252 elements
were used in FE model. The time step was chosen to be equal to the time needed for
the fastest wave to pass the distance equal to d.

ANSYS finite element package (ANSYS User’s Guide (ANSYS, 2006)) was used
to solve the stated problem. Separate ANSYS APDL subroutine was controlling the
implementation of the fracture condition (Equation 8.11) in every point of the sample.
The same subroutine was responsible for creation of a new surface once the rupture
criterion is executed somewhere in the sample.

Figure 8.13 shows the sample state after the simulation is finished. Damage local-
ized at the down part of the sample is due to the finite dimensions of a sample and
represents cleavage fracture that occurred after compressive waves have reflected from
the lower boundary. In Figure 8.14 locations of nodes where the fracture occurred are
marked. This gives a possibility to assess the dimensions of the crater that is formed
after the SMART1 impact. The damaged zone is found to be about 10 meters in diam-
eter and about 3 meters deep. The zone where the material is fully fragmented (crater
formed) can be assessed as being 7–10 meters in diameter and 3 meters deep. This
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Incubation time based fracture mechanics and optimization 177

Figure 8.12 FE model overview.

result coincides with ESA estimations of dimensions of the crater formed due to the
SMART1 impact (ESA, 2006a, 2006b).

8.3.3 Minimization of fracture energy in the case of contact
interactions

In analyzing dynamic strength of materials, one is facing a contradiction between avail-
able experimental results and classical quasi-static approaches in fracture. Numerous
experiments demonstrate that under high-rate dynamic loads, materials are able to
endure loads significantly exceeding fracture loads in static (quasi-static) conditions.
At the same time, in some of the experiments fracture in dynamic conditions is initiated
at a moment when local stresses at a rupture point are significantly less as compared to
stresses leading to fracture initiation in static (quasi-static) conditions. These obvious
contradictions led to attempts to “correct’’ and “generalize’’ classical fracture criteria
in order to make it applicable in the case of high-rate loads. This led to the appearance
of a concept of “dynamic strength’’, depending not only on the material properties,
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178 Advances in Rock Dynamics and Applications

Figure 8.13 The sample after impact.

Figure 8.14 Locations of ruptured nodes.

but also on the loading rate and even the time-shape of the load pulse (Protasov, 2002;
Latyshev, 2007). Practical utilization of this approach is rather complicated and often
impossible, as there is no possibility of evaluating dynamic strength for all variety of
loading rates and load shapes.

Most researchers dealing with problems of dynamic fracture are using fracture
criteria based on extrapolation of quasi-static fracture criteria to dynamic conditions.
Though they normally account for inertia and temporal characteristics of the load
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Incubation time based fracture mechanics and optimization 179

applied, temporal characteristics of the fracture process are usually not taken into
consideration. Utilizing this kind of approach it is impossible to predict a critical
situation, leading to fracture, applicable to both dynamic (high-rate loads) and quasi-
static cases. In this section, an incubation time fracture criterion is used in order to
predict fracture in the case of contact interactions. Employing this approach one does
not need to worry about the time scale of the problem – the criterion gives correct
predictions in a wide range of loading rates from static problems to the extremely
dynamic ones. For the present analysis, we need to consider a wide range of loading
rates and load durations. In this regard the incubation time fracture criterion provides
a unique possibility to achieve correct estimations of conditions leading to fracture for
the complex problem of spudding rocks.

In the simplest case, the incubation time fracture criterion is:

1
τ

t∫
t−τ

σ(s)ds ≤ σc, (8.12)

where σc is the tensile strength of the material, evaluated for quasi-static conditions,
and τ is the incubation time of the fracture process. Suppose that the shape of a loading
pulse can be approximated by a smooth function:

ω(t) =




exp


 1

1 −
(

2t
t0

− 1
)−2


 ,

∣∣∣∣t − t0

2

∣∣∣∣ ≤ t0

2

0,
∣∣∣∣t − t0

2

∣∣∣∣ >
t0

2

,

where t0 is for the load duration. Then the load is given by

σ(t) = σmax · ω(t), (8.13)

where σmax is the load amplitude. Substituting Equation (8.13) into fracture criterion
(8.12), one can obtain the critical (threshold) amplitude σmax leading to fracture and
corresponding to equality in Equation (8.12):

σ∗ = σc · τ

max
t∈[0;t0]

t∫
t−τ

ω(s)ds

As an option for the way the energy is delivered to the fracture zone, consider a problem
of impact interaction. Petrov, Morozov and Smimov (2003) analyzed a problem for a
spherical particle having radius R and velocity V impacting an elastic half-space using
the classical Hertz contact scheme. The maximal stresses appearing in the half-space
and the duration of interaction between the particle and the half-space were calculated.
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180 Advances in Rock Dynamics and Applications

According to the Hertz hypothesis, the contact force P arising between the particle and
the half space can be presented as:

P(t) = kh
3
2 ,

k = 4
3

√
R

E
(1 − ν2)

, (8.14)

where h is a particle penetration and ν is the Poisson’s ratio of the elastic media. The
maximal penetration h0 can be found as:

h0 =
(

5mV2

4k

) 2
5

, (8.15)

where m is the mass of a particle. The impact duration can be presented as

t0 = 2h0

V

1∫
0

dγ

1 − γ
5
2

= 2, 94
h0

V
. (8.16)

The dependence of time on penetration h(t) can be approximated by:

h(t) = h0sin
(

π · t
t0

)
. (8.17)

Time-dependent maximum tensile stress generated in the impacted media can be
estimated by

σ(V , R, t) = 1 − 2ν

2
· P(t)
πa2(t)

, (8.18)

where the radius of the contact area a(t) is given by:

a(t) =
(

3P(t)(1 − ν2)
R
4E

) 1
3

. (8.19)

Knowing the duration and amplitude of the applied load, the mass and velocity of the
impacting particle can be found from Equations (8.14)–(8.19):

R = t0

2, 94

(
6
5

σmax

ρ(1 − 2ν)

) 1
2

,

V =
(

5
4

ρπ(1 − ν2)
E

)2 (6
5

σmax

ρ(1 − 2ν)

) 5
2

,

where ρ is a parameter of load intensity, having a dimension of mass density, and σmax

is the maximum stress (i.e. load amplitude). Evaluating the initial kinetic energy of the
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Figure 8.15 Energy ( J) necessary to fracture versus load pulse duration (µs) for gabbro-diabase.

spherical particle, one can estimate the energy required in order to create fracture in
the impacted media:

ε = α · t3
0σ

13
2

max

ρ
3
2 E4

,

where α = 2
3

π5

(2,94)3

(
5(1−ν2)

4

)4 (
6

5(1−2ν)

) 13
2

is a dimensionless coefficient. This energy,

corresponding to the value ρ = 2400 kg/m3, is plotted versus impact duration in
Figure 8.15. The properties of the material are taken to be equal to the properties
of gabbro-diabase (Petrov et al., 2004) (E = 6.2·109 N/m2, σc = 44.04 · 106 N/m2,
υ = 0.26 and τ = 440 µs).

8.4 CONCLUSIONS

The results received indicate a possibility of optimizing the energy consumption of
different fracture-connected industrial processes (e.g., pounding, drilling). It is shown
that the energy cost of crack propagation strongly depends on the amplitude and dura-
tion of the load applied. For example, in the studied problem when the duration of
the load differs from the optimal one by 10%, the energy cost of initiating the crack is
exceeding the minimum value by more than 10%. The obtained dependencies of the
optimal characteristics of a load pulse on the existing crack length can help in predicting
energy-saving parameters for the fracture processes by investigating the predominant
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crack size in a fractured material. Knowing the fracture incubation time for the par-
ticular material we can select the most energetically favorable mode of treatment. In
particular, adjusting the duration of impacts, we can optimize the operation of rup-
ture devices of the impact type. Similarly, it is possible to choose the vibration modes
for decreasing the energy losses during processing of various materials. Thus, it was
demonstrated that the incubation time approach is providing a possibility to predict
the strength of rocks in a wide range of loading rates as well as to optimize the energy
input needed to create rupture of rock media.
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Chapter 9

Discontinuous approaches of wave
propagation across rock joints

Xiaobao Zhao, Jianbo Zhu, Jungang Cai and Jian Zhao

9.1 INTRODUCTION

Rock masses often consist of multiple, near-parallel, planar joints and on most occa-
sions, such a set (or sets) of parallel joints control the physical behaviour of rock
masses. When a wave propagates through jointed rock masses, it is greatly attenuated
(and slowed) due to the presence of joints. For rock engineering, the damage criteria
of rock structures are generally regulated according to the threshold values of wave
amplitudes, such as peak particle displacement, peak particle velocity and peak par-
ticle acceleration. Therefore, the prediction of wave attenuation across jointed rock
masses is very important in assessing stability of, and damage to, rock structures under
dynamic loads.

Wave propagation in layered media containing welded interfaces has been exten-
sively studied, where stresses and displacements are continuous across the interfaces
(Ewing, Jardetzky and Press, 1957; Brekhovskikh, 1980). However, joints have dis-
placements (opening, closure and slip) under normal and shear stresses. Therefore,
joints cannot be treated as welded interfaces, but should be referred to as displacement
discontinuous boundaries (also termed non-welded interfaces, incompletely-welded
interfaces or slip interfaces by some researchers).

Usually, the effects of joints on wave propagation have been modelled by equiv-
alent medium methods (White, 1983; Schoenberg and Muir, 1989; Schoenberg and
Sayers, 1995), which treat problems from the viewpoint of entirety. The effects of
joints are lumped into effective elastic moduli of the equivalent medium. This assump-
tion inherently results in two limitations. One limitation is the loss of discreteness of
wave attenuation at individual joints, and the other limitation is the loss of the intrin-
sic frequency-dependent property at the joints. The frequency dependent property is
attributed to two mechanisms. One mechanism is that the joints have an intrinsic fre-
quency dependent property caused by the displacement discontinuity, and the other
mechanism is aroused by multiple reflections between the joints.

As an alternative to the equivalent medium methods, the displacement disconti-
nuity methods (Schoenberg, 1980) treat each joint as a non-welded interface of zero
thickness. Thus, the stresses across the interface are continuous, but displacements
across the interface are discontinuous. The discontinuity in displacement is equal to
the average applied stress divided by the joint stiffness. When the joint stiffness
approaches infinity, the interface becomes a welded boundary. When the joint stiffness

© 2011 Taylor & Francis Group, London, UK



186 Advances in Rock Dynamics and Applications

5

4

340

60

80

100

Fracture

Input waveform Transmitted waveform

120

150

200

500

2

1

0
0 100 200 300

A
m

pl
itu

de

Increasing stiffness
Frequency Hz

20
40

60

80

100

120

150

200

�/z 	 500

�/z 	 20
�T

Figure 9.1 Illustration of the effects of a single joint on the transmitted waveform and corresponding
amplitude spectra (after Myer, Pyrak-Nolte and Cook, 1990).

approaches zero, the interface becomes two free boundaries. Therefore, a non-welded
interface can be thought as a generalized interface.

At the microscopic scale, a single joint appears as a planar collection of void
spaces and asperities (asperities refer to contacts between two fracture surfaces). A
comparison between wave scattering methods and displacement discontinuity methods
was conducted by analyzing wave transmission across a periodic array of collinear
micro-cracks (Angel and Achenbach, 1985a,b; Achenbach and Zhang, 1990). They
found that solutions obtained by displacement discontinuity methods coincide with
the far field solutions obtained by wave scattering methods, provided that the crack
size and spacing are small relative to the incident wavelength. The agreement between
two kinds of theories improves when crack size and spacing decrease. Myer (2000)
carried out an ultrasonic test on wave reflection and transmission at a joint with
different asperity separations. His results verified the conclusions obtained by Angel
and Achenbach (1985a, b).

The effects of a single joint on wave propagation have been widely studied with
full consideration of different joint deformational behaviour (Miller, 1977, 1978;
Schoenberg, 1980; Myer, Pyrak-Nolte and Cook, 1990; Pyrak-Nolte, Myer and Cook,
1990b; Pyrak-Nolte, 1996; Gu et al., 1996; Zhao and Cai, 2001). Figure 9.1 shows a
numerical example to illustrate the effects of a linear deformational joint in a homo-
geneous medium on a normally incident wave, where k is the joint stiffness, Z is the
wave impedance and �T is the time delay. For an incident pulse shown at the extreme
left, transmitted waves were calculated for a range of joint stiffness values. Shown on
the right in the figure are the amplitude spectra of transmitted waves. For a high joint
stiffness, the transmitted wave is essentially identical to the incident pulse. The case of
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Discontinuous approaches of wave propagation across rock joints 187

infinite stiffness corresponds to the welded boundary condition. As the joint stiffness
decreases, the transmitted wave is both slowed and attenuated. The attenuation is char-
acterized by both decreasing amplitude and filtering of high frequency components of
the pulse. Gu et al. (1996) performed a study of wave reflection, transmission and con-
version of harmonic wave incidence upon a joint at arbitrary angles. They found that a
head wave or an inhomogeneous P-interface wave appears, when an SV-wave (SV-wave
is a kind of S-wave with particle movement in the vertical plane) is incident at or beyond
the critical angle, which is determined by the Poisson’s ratio of the rock material.

In comparison, the effects of multiple joints on wave propagation become com-
plicated due to multiple reflections occurring between joints. Actually, the transmitted
wave across parallel joints can be treated as a wave superposition of transmitted waves
arriving at different times, which are caused by the multiple reflections. However, it
is difficult to explicitly determine the wave superposition. A simplified method was
proposed by ignoring the multiple reflections as a short-wavelength approximation
(Hopkins, Myer and Cook, 1988; Pyrak-Nolte, Myer and Cook, 1990a; Myer et al.,
1995). Thus, the transmission coefficient across parallel joints is calculated as the
product of transmission coefficients of individual joints. Laboratory experiments con-
ducted by Hopkins, Myer and Cook (1988), Pyrak-Nolte, Myer and Cook (1990a),
Myer et al. (1995) and Nakagawa, Nihei and Myer (2000) verified that the TN-method
is valid, when the firstly arriving wave is not contaminated by the multiple reflections.
In addition, Hopkins, Myer and Cook (1988) and Myer et al. (1995) observed that
|TN | is larger than |T1|N , when joint spacing is small relative to incident wavelength.

In the present study, normal transmission of P-waves across parallel joints with
linear deformational behaviour is examined, where the fractures are assumed to be
planar, dry, and of a large extent and small thickness relative to the incident wave-
length. In theoretical formulation, the method of characteristics is used to develop a
set of recurrence equations with respect to particle velocities and normal stress. These
equations are then numerically solved.

9.2 METHOD OF CHARACTERISTICS FOR ONE-DIMENSIONAL
P-WAVE PROPAGATION ACROSS JOINTED ROCK MASSES

The method of characteristics has been widely used to study one-dimensional wave
propagation in a continuous medium (e.g., Ewing, Jardetzky and Press, 1957;
Brekhovskikh, 1980; Kennett, 1983; Bedford and Drumheller, 1994). Based on the
one-dimensional wave equation, relations between particle velocity and stress along
right- and left-running characteristics can be built. In an ideally elastic medium, a
one-dimensional P-wave equation is

∂2u
∂t2

= α2
p
∂2u
∂x2

, (9.1)

where u is the displacement, αp is the P-wave velocity, x is the distance, and t is the
time. Alternatively, Equation (9.1) can be expressed by particle velocity and strain:

∂v
∂t

= α2
p
∂ε

∂x
, (9.2)
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where v = ∂u/∂t is the particle velocity, and ε = ∂u/∂x is the strain. Apparently, the
variables v and ε are related by

∂v
∂x

= ∂ε

∂t
. (9.3)

Therefore, the derivative of (v − αpε) is

d(v − αpε) = ∂(v − αpε)
∂t

dt + ∂(v − αpε)
∂x

dx =
(

∂v
∂t

− αp
∂ε

∂t

)
dt +

(
∂v
∂x

− αp
∂ε

∂x

)
dx

(9.4)

Equations (9.2) and (9.3) are substituted into Equation (9.4):

d(v − αpε) =
(

∂v
∂x

− 1
αp

∂v
∂t

)
(dx − αpdt). (9.5)

Equation (9.5) indicates that d(v − αpε) equals to zero, if dx/dt = αp. The quantity
of (v − αpε) is a constant along any straight line with slope of 1/αp (right-running
characteristic) in the x-t plane. Similarly, the quantity of (v + αpε) is a constant along
any straight line with slope of −1/αp (left-running characteristic) in the x-t plane.
An illustration of right- and left-running characteristics in the x-t plane is shown in
Figure 9.2.

(v − αpε) and (v + αpε) are multiplied by P-wave impedance (Zp):

Zp(v − αpε) = Zpv − Zpαpε = Zpv + σ = constant (9.6)

along a right-running characteristic in the x-t plane, and

Zp(v + αpε) = Zpv + Zpαpε = Zpv − σ = constant (9.7)

along a left-running characteristic in the x-t plane, where σ is the normal stress,
Zp = ραp, α2

p = E/ρ, Zp is the P-wave impedance, ρ is the rock density, and E is the
Young’s modulus of rock material. It is notable that normal stress is defined to be pos-
itive for compressive stress, and negative for tensile stress. The definition is consistent
with that commonly used in rock mechanics.

Compared with the effects of a single joint, the effects of multiple parallel joints
on wave propagation become complicated due to the multiple reflections occurring
between the joints. A general model of the method of characteristics is introduced to
solve the problem. In the x-t plane, new variables, nondimensional distance (n) and
nondimensional time (j), are imported and defined as

j = t
�t

, (9.8)

n = x
αp�t

, (9.9)
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Left-running
characteristic

�p �p

Right-running
characteristic

11

x

t

Figure 9.2 Right- and left-running characteristics in the x-t plane.

where �t is the time interval. It is assumed that a finite number of interfaces are located
at integral values of nondimensional distance in a half space with its left boundary at
n = 0, the first interface at n = 1, the second interface at n = 2 and the last interface at
n = l (l is an integer). The interfaces could be joints or welded interfaces, which can
be treated as joints with infinite joint stiffness. Figure 9.3 shows conjunction points
of right- and left-running characteristics at integral values of nondimensional distance
and nondimensional time. Particle velocities and normal stresses are evaluated at these
points. However, this does not mean that solutions can be obtained only at the interface
positions. If the field between two adjacent interfaces is further divided into a number
of uniform layers, solutions can be obtained at the boundaries of these layers, which
are considered as joints with infinite joint stiffness.

The characteristic model shown in Figure 9.3 consists of two characteristics, and
can be applied in the study of joints with different deformational models, e.g., joints
with linear deformational behaviour (Cai and Zhao, 2000; Zhao, Zhao and Cai,
2006a), joints with nonlinear deformational behaviour described by the static BB
model (Zhao and Cai, 2001; Zhao, Zhao and Cai, 2006b), and joints with Coulomb
Slip behaviour (Zhao et al., 2006). In order to simplify the model, it is assumed that
joints and elastic media on both sides of the joints have identical properties.

Along the right-running characteristic ab and the left-running characteristic ac
shown in Figure 9.3, two relations between particle velocities and normal stresses at
points a, b and c are built:

Zpv−(n, j + 1) + σ−(n, j + 1) = Zpv+(n − 1, j) + σ+(n − 1, j), (9.10)

Zpv+(n, j + 1) − σ+(n, j + 1) = Zpv−(n + 1, j) − σ−(n + 1, j), (9.11)
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Fracture

Right-running
characteristic

b
j

n � 1 n � 1n

j � 1

t/�t

x/(�p�t)

d

a

c

Left-running
characteristic

Figure 9.3 Conjunction points of right- and left-running characteristics at nondimensional distance n
and nondimensional time j in the n-j plane.

where v−(n, j + 1) and v+(n, j + 1) are particle velocities at time j + 1 before and after
the joint at distance n. Similarly, σ−(n, j + 1) and σ+(n, j + 1) are normal stresses at
time j + 1 before and after the joint at distance n.

In the far field of dynamic responses induced by an explosion or vibration, the
magnitude of the stress wave is too small to mobilize nonlinear deformation of the
joints, so linear joint behaviour is adopted in the present study. The displacement
discontinuous model is applied at point a:

σ−(n, j + 1) = σ+(n, j + 1) = σ(n, j + 1), (9.12)

u−(n, j + 1) − u+(n, j + 1) = σ(n, j + 1)
kn

, (9.13)

where kn is the normal joint stiffness, u−(n, j + 1) and u+(n, j + 1) are displacements at
time j + 1 before and after the joint at distance n.

By considering Equation (9.12), the addition of Equations (9.10) and (9.11) is

Zpv−(n, j + 1) + Zpv+(n, j + 1) = Zpv+(n − 1, j) + σ+(n − 1, j)

+ Zpv−(n + 1, j) − σ−(n + 1, j). (9.14)

The differentiation of Equation (9.13) with respect to t is

v−(n, j + 1) − v+(n, j + 1) = 1
kn

∂σ(n, j + 1)
∂t

. (9.15)

If �t is small enough that the differential part in Equation (9.15) can be expressed as

v−(n, j + 1) − v+(n, j + 1) = 1
kn

∂σ(n, j + 1)
∂t

= σ(n, j + 1) − σ(n, j)
kn�t

, (9.16)
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Discontinuous approaches of wave propagation across rock joints 191

then Equation (9.16) is rewritten as

σ(n, j + 1) = σ(n, j) + kn�t[v−(n, j + 1) − v+(n, j + 1)]. (9.17)

Substituting Equation (9.17) into Equation (9.10) gives

(kn�t + Zp)v−(n, j + 1) − kn�tv+(n, j + 1) + σ(n, j) = Zpv+(n − 1, j) + σ(n − 1, j).

(9.18)

Equations (9.14) and (9.18) form a linear equation group with respect to particle
velocities at point a before and after the joint. After the equation group is solved,
expressions of particle velocities at point a are obtained:

v−(n, j + 1) = (Zpv+(n − 1, j) + σ(n − 1, j) − σ(n, j) + kn�t
Zp

(Zpv−(n + 1, j)

+ Zpv+(n−1, j) + σ(n−1, j) − σ(n+1, j)))/(2kn�t +Zp), (9.19)

v+(n, j + 1) = ((Zpv+(n − 1, j) − σ(n + 1, j) + σ(n − 1, j)

+ Zpv−(n + 1, j))
kn�t + Zp

Zp
+ σ(n, j) − σ(n − 1, j)

− Zpv+(n − 1, j))/(2kn�t + Zp), (9.20)

By substituting Equations (9.19) and (9.20) into Equation (9.17), the expression of
normal stress is obtained:

σ(n, j + 1) = σ(n, j) + kn�t
2kn�t + Zp

(Zpv+(n − 1, j) + σ(n − 1, j)

−Zpv−(n + 1, j) + σ(n + 1, j) − 2σ(n, j)). (9.21)

Equations (9.19), (9.20) and (9.21) show that the responses at point a are determined
by those at points b, c and d. Meanwhile, it indicates that responses at time j + 1 can
be calculated from those at time j. With input velocity of v(0, j) and initial conditions
of v+(n, 0), v−(n, 0) and σ(n, 0), Equations (9.19), (9.20) and (9.21) are applied to
determine particle velocities and stress at any point through an iterative computation,
which can be implemented by a self-developed computer program.

The accuracy of differential calculation requires the time interval to be infinitely
small. A smaller time interval can be achieved by further dividing the field between
two adjacent interfaces into a number of uniform layers with sufficiently small ratio
(γ) of layer thickness to incident wavelength. However, an extremely small γ may cost
a lot of computation time. Therefore, it is necessary to determine a reasonable value
of γ to achieve a balance between computation efficiency and accuracy. A parametric
study on P-wave attenuation across a linear deformational joint (|T1|) is performed in
the following part to calibrate the computer program, and at the same time, to select
a suitable value of γ.
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192 Advances in Rock Dynamics and Applications

Schoenberg (1980) and Pyrak-Nolte, Myer and Cook (1990) derived an analytical
expression of transmission coefficient for normally incident harmonic P-wave across
a single joint in an identical rock material:

T1 = 2(kp/(Zpω))
−i + 2(kp/(Zpω))

, (9.22)

where T1 is the transmission coefficient across a single joint and ω is the angular
frequency of the harmonic wave. Equation (9.22) shows that the transmission coeffi-
cient is dependent on the ratio (Kn) of normal joint stiffness to the product of P-wave
impedance and angular frequency. The ratio (Kn) is named as normalized normal
stiffness.

In the following calculations, it is assumed that rock density is 2650 kg/m3 and
P-wave velocity is 5830 m/s, as typical properties of the Bukit Timah granite of
Singapore (Zhao, 1996). Normal joint stiffness is varied from 1 to 15 GPa/m to achieve
different normalized normal stiffness (Kn = kn/(Zpω)). Because a harmonic wave only
exists in the frequency domain and can be treated as a pulse with innumerous cycles, it
is impossible to input a harmonic wave in the calculation. Hence, a one-cycle sinusoidal
wave with unit amplitude is applied at the left boundary as the incident wave, where
the frequency of the sinusoidal wave is 50 Hz. Figure 9.4 shows the incident waveform
(in the left figure) and corresponding amplitude spectra (in the right figure). In order
to obtain the analytical solution of the one-cycle sinusoidal wave across a single joint,
the incident wave is firstly transformed into frequency domain by FFT (fast Fourier
transform). In the frequency domain, the one-cycle sinusoidal wave is treated as the
sum of a series of harmonic waves with dominant frequency of 42.5 Hz. Then, based
on Equation (9.22), transmitted waves of all harmonic components across the joint
are obtained. Finally, an inverse transform for these transmitted waves is conducted
to get the transmitted wave of the one-cycle sinusoidal wave by IFFT (inverse fast
Fourier transform). Although the frequency of the sinusoidal wave is closely related
to the dominant frequency of the one-cycle sinusoidal wave, it is reasonable to use
the dominant frequency to represent the frequency of the incident wave, instead of
the frequency of the sinusoidal wave. Therefore, f = 42.5 Hz is used in the following
calculations.

During the computation, incident, reflected and transmitted waves are obtained
at two receiving points before and after the joint. The two points should be carefully
chosen, so that the receiving waves have no superposition with each other, and are not
contaminated by reflected waves from computation boundaries.

The comparisons between computed results for different γ (ratio of layer thickness
to incident wavelength) and theoretical solution of |T1| (the magnitude of transmission
coefficient across a single joint) as a function of normalized normal stiffness are shown
in Figure 9.5. From the plots, it is found that the computed results agree well with the
analytical solutions. The average error percentages (the error percentage is defined as
a ratio of the difference of theoretical solution and computed result to the theoretical
solution) for γ equal to 1/20, 1/50, 1/100 and 1/200 are 4.1, 2.1, 1.4 and 1.1%,
respectively. By considering both computation efficiency and accuracy, γ = 1/100 is
selected for the calculations in the next section.
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Figure 9.4 Illustration of incident wave (a one-cycle sinusoidal wave) and corresponding amplitude
spectra.
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Figure 9.5 Comparisons between computed results for different γ and theoretical solution of |T1| as
a function of normalized normal stiffness.

Since particle velocity is the commonly used parameter in assessing stability and
damage of rock structures under dynamic loads, the magnitudes of transmission and
reflection coefficients in the present study are defined by particle velocities as ratios of
amplitudes of transmitted and reflected waves to the amplitude of the incident wave,
which is assumed to have unit amplitude.

9.3 PARAMETRIC STUDIES ON WAVE ATTENUATION ACROSS
PARALLEL JOINTS

Because nondimensional variables are used in the model, nondimensional joint spacing
(ξ), the ratio of joint spacing to incident wavelength, is imported to study the effects of
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194 Advances in Rock Dynamics and Applications

joint spacing. During the calculation, ξ is assumed to be an integral multiple of γ and
the value of ξ varies from 1/100 to 50/100. Therefore, the field between two adjacent
joints could be further divided into a number of uniform layers with γ of 1/100 (e.g.
when ξ is 1/100, there is only one layer between two joints, and when ξ is 50/100,
there are 50 layers between the two joints).

Studies on wave attenuation across two parallel joints separated with different
nondimensional joint spacing at different normalized normal stiffness (Kn = 0.247,
0.494, 0.988, 1.482 and 1.976) are conducted. In addition, energies of transmit-
ted and reflected waves are examined. The transmitted and reflected energy rates are
defined as

etra = Etra

Einc
=
∫ t1

tra

t0
tra

Zp(vtra)2dt∫ t1
inc

t0
inc

Zp(vinc)2dt
=

j=t1
tra∑

j=t0
tra

Zp(vtra)2�t

j=t1
inc∑

j=t0
inc

Zp(vinc)2�t

, (9.23)

eref = Eref

Einc
=
∫ t1

ref

t0
ref

Zp(vref )2dt

∫ t1
inc

t0
inc

Zp(vinc)2dt
=

j=t1
ref∑

j=t0
ref

Zp(vref )2�t

j=t1
inc∑

j=t0
inc

Zp(vinc)2�t

, (9.24)

where etra and eref are transmitted and reflected energy rates, Etra, Eref and Einc are
energies of transmitted, reflected and incident waves, Zp is the P-wave impedance, vtra,
vref and vinc are particle velocities of transmitted, reflected and incident waves, t0

tra, t0
ref

and t0
inc are initial times of transmitted, reflected and incident waves, and t1

tra, t1
ref and

t1
inc are final times of transmitted, reflected and incident waves.

Calculation results for the magnitude of transmission coefficient across two par-
allel joints (|T2|) as a function of ξ at different Kn are shown in Figure 9.6. From the
results, it is found that:

1 |T2| increases with increasing Kn.
2 Two important indices of ξ, threshold value (ξthr) and critical value (ξcri), are

identified. They divided the area of ξ into three parts: the individual joint area
(ξ ≥ ξthr), the transition area (ξthr > ξ > ξcri) and the small spacing area (ξ ≤ ξcri).

3 In the individual joint area, |T2| remains constant with changing ξ, and it indicates
that the wave superposition of transmitted waves arriving at different times has
no effects on |T2|.

4 When ξ < ξthr, the wave superposition has obvious effects on |T2|, so the transition
area and small spacing area are together named as superposition area. In the
transition area, |T2| increases from the constant value to a maximum value with
decreasing ξ. While in the small spacing area, |T2| decreases from the maximum
value with decreasing ξ.
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Figure 9.6 |T2| as a function of nondimensional joint spacing at different normalized normal stiffness.

5 When ξ → 0, the two joints act together as an equivalent joint with effective normal
joint stiffness of kn/2.

6 When Kn is large, |T2| ≈ |T1|2 (|T1| for Kn equal to 0.247, 0.494, 0.988, 1.482
and 1.976 are 0.494, 0.696, 0.860, 0.921 and 0.949, respectively) in the indi-
vidual joint area. When Kn is small, |T2| > |T1|2 in the individual joint area. The
phenomena will be explained in the following discussion section.

7 Values of ξthr and ξcri vary with Kn, as shown in Figure 9.6 by two dotted lines.
Generally, ξthr decreases and ξcri increases with increasing Kn.

Correspondingly, the transmitted and reflected energy rates (etra and eref ) are calculated
as functions of ξ at different Kn, as shown in Figure 9.7. From Figure 9.7, the following
observations can be noted:

1 etra and eref are functions of ξ and Kn. Generally, etra increases and eref decreases
with increasing Kn.

2 The balance of energy rates (energy conservation) is always preserved (e.g.
eref + etra ≈ 1). The energy conservation coincides with the basic assumptions: (a)
rock material is ideally elastic without material attenuation and, (b) joint has
elastic deformational behaviour.

3 The increase (or decrease) of etra is not always consistent with that of |T2|. This is
because multiple reflections may lead to a transmitted wave with a low amplitude
but long lasting time, which has large etra.

4 Actually, the sum of energy rates (eref + etra) are not exactly equal to 1 (e.g.
eref + etra = 0.976, when Kn is 1.976 and ξ is 7/100). This is because the value
of γ equal to 1/100 causes some numerical error.

If more parallel joints are further incorporated, the magnitude of transmission
coefficient across multiple parallel joints (|TN |) is calculated for different numbers of
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Figure 9.7 etra and eref as functions of nondimensional joint spacing at different normalized normal
stiffness.

joints (N). Figure 9.8 shows |TN | as a function of ξ for Kn = 1.482 and N = 2∼10. It
is found that:

1 |TN | decreases with increasing N.
2 Two important indices of ξ, threshold value (ξthr) and critical value (ξcri), are

identified. They divided the area of ξ into three parts: the individual joint area
(ξ ≥ ξthr), the transition area (ξthr > ξ > ξcri) and the small spacing area (ξ ≤ ξcri).

3 In the individual joint area, |TN | remains constant with changing ξ, and indicates
that wave superposition of transmitted waves arriving at different times has no
effects on |TN |.

4 When ξ < ξthr, the wave superposition has obvious effects on |TN |, so the transition
area and small spacing area are together named as the superposition area. In the
transition area, |TN | increases from the constant value to a maximum value with
decreasing ξ, while in the small spacing area, |TN | decreases from the maximum
value with decreasing ξ.

5 When ξ → 0, the joints act together as an equivalent joint with effective normal
joint stiffness of kn/N.

6 In the individual joint area, |TN | decreases substantially with increasing N. The
dependence of |TN | on N becomes weak in the transition area, and becomes much
weaker in the small spacing area, especially for the values of |TN | in circle A or
circle B as shown in Figure 9.8. The phenomena in the small spacing area will be
explained by the equivalent medium method in the following discussion section.

7 When N is small, |TN | ≈ |T1|N (|T1| for Kn equal to 1.482 is 0.921) in the indi-
vidual joint area. When N is large, |TN | > |T1|N in the individual joint area. The
phenomena will be explained in the following discussion section.

8 Values of ξthr and ξcri vary with N, as shown in Figure 9.8 by two dotted lines.
Generally, ξthr decreases and ξcri increases with decreasing N.
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Figure 9.8 |TN| as a function of nondimensional joint spacing for different numbers of joints (Kn = 1.482).

9.4 EFFECTS OF SINGLE JOINT AND PARALLEL JOINTS
ON WAVE TRANSMISSION

The transmitted wave across parallel joints can be treated as a wave superposition of
transmitted waves arriving at different times, which are caused by multiple wave reflec-
tions. Therefore, waveforms of differently arriving transmitted waves are important,
and should be studied in detail.

Figures 9.9 and 9.10 show the incident, reflected and transmitted waves upon a
single joint at different normalized normal stiffness (Kn = 0.988 and 1.976). It can be
seen that

1 The reflected and transmitted waves are very different from the incident wave.
Compared with the incident wave, the transmitted wave has small amplitude and
low frequency; while the reflected wave is a three-bulb pulse, which has small
amplitude and high frequency.

2 The transmitted and reflected waves change with Kn. When Kn becomes small,
the transmitted wave has small amplitude and low frequency; while the reflected
wave has large amplitude and low frequency.

When the incident wave is transformed into frequency domain by FFT (fast Fourier
transform), the one-cycle sinusoidal wave can be treated as the sum of a series of har-
monic waves with dominant frequency of 42.5 Hz. The joint acts as a frequency filter
as shown in Figure 9.1: it reduces the high frequency components of the incident
wave. Meanwhile, the frequency of the reflected wave becomes higher than that of
the incident wave. The phenomenon can also be observed as the broadening of trans-
mitted waveforms or the shortening of reflected waveforms in Figures 9.9 and 9.10
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Figure 9.9 Incident, reflected and transmitted waves upon a single joint (Kn = 0.988).
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Figure 9.10 Incident, reflected and transmitted waves upon a single joint (Kn = 1.976).

(e.g. the incident waveform lasts for 100 nondimensional time units, but the transmit-
ted waveforms or reflected waveforms in Figures 9.9 and 9.10 last more or less than
100 nondimensional time units). In addition, the decrement of transmitted wave ampli-
tude is observed in Figures 9.9 and 9.10 (|T1| = 0.86 for Kn = 0.988 and |T1| = 0.949
for Kn = 1.976).

Figures 9.11 and 9.12 show the incident, reflected and transmitted waves upon
two parallel joints at different normalized normal stiffness (Kn = 0.988 and 1.976).
Large nondimensional joint spacing is adopted in the calculation, so that differently
arriving waves can be shown separately in the figures. From the plots, it is found that:

1 Compared with the transmitted wave across a single joint, the firstly arriving
transmitted wave across two parallel joints has small amplitude and low frequency.

2 The secondly arriving transmitted wave is a three-bulb pulse, and it has high
frequency compared with the firstly arriving transmitted wave. In addition, the
secondly arriving transmitted wave changes with Kn. When Kn is small, it has
large amplitude and low frequency.

Figure 9.1 shows that the frequency of transmitted wave decreases with decreas-
ing Kn. Figures 9.11 and 9.12 verify the conclusion and show the decrement of the

© 2011 Taylor & Francis Group, London, UK

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

2:
20

 1
6 

O
ct

ob
er

 2
01

5 



Discontinuous approaches of wave propagation across rock joints 199

Reflected
wave

Incident
wave

�1.0

�0.5

0.0

0.5

1.0

P
ar

tic
le

 v
el

oc
ity

, v
 (

m
/s

)

0 100 200 300 400
Nondimensional time, j

�1.0

�0.5

0.0

0.5

1.0

P
ar

tic
le

 v
el

oc
ity

, v
 (

m
/s

)

0 100 200 300 400
Nondimensional time, j

Secondly arriving 
transmitted wave

Firstly arriving 
transmitted wave

Figure 9.11 Incident, reflected and transmitted waves upon two parallel joints (Kn = 0.988).
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Figure 9.12 Incident, reflected and transmitted waves upon two parallel joints (Kn = 1.976).

frequency of the firstly arriving transmitted wave with decreasing Kn. Furthermore,
it is understandable to conclude that the frequency of the firstly arriving transmitted
wave decreases with increasing N. Therefore, when Kn is small or N is large, the fre-
quency of the firstly arriving transmitted wave decreases significantly, and it causes
|TN | > |T1|N in the individual joint area.

The effects of multiple reflections are applicable to explain the change of |TN | with
joint spacing. If joints are sparsely placed relative to the incident wavelength, i.e. ξ ≥ ξthr

(in the individual joint area), multiple reflections have no effects on the amplitude of
the transmitted wave. This means that each of the joints contributes individually to
wave attenuation like a singe joint. However, if ξ < ξthr (in the superposition area), the
effects of multiple reflections become significant due to the close joint spacing. Since
the arriving-time difference between differently arriving transmitted waves depends
on the joint spacing, the superposition of transmitted waves arriving at different times
cause an increase in |TN | if ξthr > ξ > ξcri (in the transition area) and a decrease in |TN |
if ξ ≤ ξcri (in the small spacing area) with decreasing ξ.

Equivalent medium methods have been commonly applied to determine the overall
properties of fractured rock masses in the long wavelength limit (Schoenberg, 1983;
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�x�x�x�x

2 431

Figure 9.13 Illustration of effective length of an equivalent medium.

Pyrak-Nolte, Myer and Cook, 1990; Schoenberg and Sayers, 1995). When the incident
wavelength is much larger than the fracture spacing (e.g. in the small spacing area,
ξ ≤ ξcri), an equivalent medium method is developed to explain wave phenomena in
this area.

Generally, the effective length of an equivalent medium is defined as the sum of
N fractures and N fracture spacings. Figure 9.13 illustrates the definition of effective
length of an equivalent medium, which has four fractures numbered from 1 to 4.
Therefore, the effective length of the equivalent medium includes four fractures, three
fracture spacings (3�x) between the fractures and an extended fracture spacing (�x)
on the left side of fracture 1. According to the definition, the effective length of an
equivalent medium is N�x, and it can be rewritten as Nξλp. Since nondimensional
variables are used, nondimensional effective length is defined as the ratio of effective
length to incident wavelength, and is equal to Nξ. Subsequently, the effective Young’s
modulus of the equivalent medium (Ee) is defined as

Ee = σ

εe
= σ

Nd
Nξλp

+ ε
= σ

σ
kn

N+ σ
Er

Nξλp

Nξλp

= 1
1

knξλp
+ 1

E

, (9.25)

where Ee is the effective Young’s modulus, εe is the effective strain, d is the fracture
closure, ε is the strain of rock material, N is the number of fractures, σ is the normal
stress, kn is the normal fracture stiffness, ξ is the nondimensional fracture spacing,
λp is the P-wave wavelength in rock material, and E is the Young’s modulus of rock
material.

Additionally, the portion of knξλp in Equation (9.25) can be rewritten as

knξλp = knξαp

f
= Zp2π

Zp2π
· knξαp

f
= Zpαp

kn

Zpω
2πξ = ZpαpKn2πξ = EKn2πξ, (9.26)

where αp is the P-wave velocity in rock material, f is the P-wave frequency,
E = ρα2

p = Zpαp, and ρ is the rock density. Equations (9.25) and (9.26) show that
Ee is a function of ξ and Kn.

In Figure 9.6, |T2| changes with Kn at a specific ξ value in the small spacing
area, their nondimensional effective lengths are the same and equal to 2ξ. However,
the effective Young’s modulus is a function of Kn. According to the knowledge of one-
dimensional wave propagation across a layered medium, |TN | increases with increasing
effective Young’s modulus. Therefore, |T2| increases with increasing Kn at a specific ξ

value in the small spacing area. In Figure 9.8, |TN | changes with N at a specific ξ value in
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Discontinuous approaches of wave propagation across rock joints 201

the small spacing area, their effective Young’s moduli are the same, but nondimensional
lengths are different and proportional to N. Similarly, according to the knowledge
of one-dimensional wave propagation across a layered medium, |TN | decreases with
increasing nondimensional effective length. The decreasing rate becomes small, when
nondimensional effective length is large. After the nondimensional effective length
exceeds a certain value, |TN | keeps constant with changing nondimensional effective
length. Hence, |TN | decreases with increasing N, but the dependence of |TN | on N
becomes much weaker in the small spacing area.

When ξ → 0, 1
Kn2πξ

>> 1. Then, Ee is approximated as

Ee = 1
1

EKn2πξ
+ 1

Er

= E
1

Kn2πξ
+ 1

≈ EKn2πξ. (9.27)

Meanwhile, the equivalent medium can be treated as an equivalent fracture with
effective normal fracture stiffness (kne):

kne = limξ→0
Ee

Nξλp
= limξ→0

EKn2πξ

Nξλp
= E

Kn

N
2π

λp
= Kn

N
zpω = kn

N
, (9.28)

Equation (9.28) shows that when ξ → 0, the equivalent medium including N frac-
tures with normal fracture stiffness of kn can be treated as an equivalent fracture with
effective normal fracture stiffness of kn/N.

9.5 OUTLOOKS

Besides the method of characteristics, other approaches, e.g. the scattering matrix
method, the virtual wave source method, and the superposed analytical method, can
also be used to study wave propagation across parallel joints combined with the dis-
placement discontinuity model, where multiple wave reflections among joints are taken
into account.

The scattering matrix method (SMM) (Fig. 9.14), which is also termed the prop-
agation matrix method, is adopted to study wave propagation across rock joints (Aki
and Richards, 2002; Perino, Barla and Orta, 2010; Zhao et al., 2011). Combined with
the displacement discontinuity model, the method of plane wave analysis and propa-
gator matrix are applied to develop relations between the first layer (incident wave)
and the nth layer with respect to potential amplitudes or displacements and stresses in
matrix form. Then, with initial boundary conditions, potential amplitudes in any layer
or displacements and stresses at any point can be obtained by solving corresponding
matrices. In the case of a planar discontinuity like a joint, incident, reflected and trans-
mitted plane waves have the same transverse wave-vector. The respective amplitudes
are related by a 2 × 2 block matrix:(

c1
−

c2
+

)
=
(

S11 S12

S21 S22

) (
c1

+
c2

−

)
(9.29)
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Figure 9.14 Wave propagation through an interface with the SMM.

where c1
+ and c2

− are the amplitudes of the waves incident on the discontinuity,
whereas c1

− and c2
+ are the amplitudes of the scattered waves (reflected and transmit-

ted), Sii have the meaning of reflection coefficients at the two sides of the discontinuity,
and Sij have the meaning of transmission coefficients. Since elastic waves have three
possible polarization states (P, SV, SH), the submatrices have a size of 3 × 3. In order
to extend the scattering matrix method to the case of multiple parallel joints, one may
compute the scattering matrix for each discontinuity. Then, by using a “chain rule’’
procedure, the global scattering matrix is defined. This is a combination of the compo-
nents of the scattering matrix for each discontinuity and represents the effect on elastic
wave propagation due to the N discontinuities. The global scattering matrix contains
the global reflection and transmission coefficients of a set of parallel discontinuities,
where multiple wave reflections among the joints are taken into account.

Combined with the equivalent medium model, the concept of virtual wave source
(VWS) is introduced to study normally incident wave propagation across one joint set,
where multiple wave reflections among the joints were considered (Li, Ma and Zhao,
2010). The VWS produced one reflected wave each time an incident wave arrives at the
joint. The transmitted wave was derived by the effective moduli of the equivalent model
which includes a rock joint and rock material with length equal to joint spacing. The
virtual wave source method (VWSM) can also be extended to study wave propagation
across joints in combination with the displacement discontinuity model (Zhu et al.,
2011). As shown in Figure 9.15, in order to obtain the theoretical solution of the
transient wave (vI) transmitting across one joint set, the incident transient wave is firstly
transformed into frequency domain by FFT (fast Fourier transform). In frequency
domain, the incident transient wave can be transformed as the sum of a series of
harmonic waves:

vI =
∞∑

i=−∞
vIi =

∞∑
i=−∞

Aieiωi t (9.30)
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Figure 9.15 Scheme of jointed rock mass withVWSM.

where vIi is one harmonic wave, Ai and ωi are the amplitude and angular frequency of
vIi. VWSM is used to take into account multiple wave reflections for wave propagation
across one joint set. However, the definition of VWS here is different from that of Li,
Ma and Zhao (2010). VWS exists at the joint position and represents the mechanical
properties of the joint. Each time an incident wave propagates across the joint, VWS
produces 2 new waves for normally incident wave or 2 or 4 new waves for obliquely
incident wave, which can be directly derived by using the reflection and transmission
coefficients of a single joint. Thus, the transmitted harmonic wave across one joint set
is the result of wave superposition of different transmitted waves created by VWS:

vTi =
∞∑

j=1

vTij (9.31)

where vTi is the transmitted wave and for the incident harmonic wave vIi, vTij is the
transmitted wave arriving at a different time. Finally, an inverse transform for these
waves is conducted to get the transmitted waves of the incident transient wave by IFFT
(inverse fast Fourier transform), which can transform one series of harmonic waves
into one transient wave (vT ):

vT =
∞∑

i=−∞
vTi (9.32)

A methodology termed the superposed analytical method (SAM) is also introduced to
study wave propagation across multiple parallel joints, where multiple wave reflections
among joints are considered (Zhu, 2011). Assuming but not limiting that the back-
ground rock media of the opposite sides of each joint are identical, the mechanical
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204 Advances in Rock Dynamics and Applications

properties are the same for every joint, and joints are equally spaced, all the transmit-
ted waves across 2n−1 joints form a geometric sequence, and all the reflected waves
across 2n−1 joints except the first one also form a geometric sequence. Therefore, the
reflection and transmission coefficients across 2n joints, which are considered as basic
solutions, can be expressed as a function of R2n−1 and T2n−1 :

R2n = R2n−1 + T2n−1
2R2n−1ei4πξ

1 − R2n−1 2ei4πξ
, (9.33)

T2n = T2n−1
2ei2πξ

1 − R2n−1 2ei4πξ
, (9.34)

where, ξ is the ratio of the joint spacing to the wavelength and is termed the nondimen-
sional joint spacing. Therefore, if the reflection and transmission coefficients across
a single joint are known, e.g. those obtained in Eqs. (9.22), the reflection and trans-
mission coefficients across 2n joints can be derived. However, it does not mean that
the reflection and transmission coefficients can only be obtained for 2n joints. The
reflection and transmission coefficients across other numbers of joints can be derived
through basic solutions. For example, R3, T3 can be obtained from R1, T1, R2 and T2:

R3 = R1 + T2
1 R2ei4πξ

1 − R1R2ei4πξ
= R2 + T2

2 R1ei4πξ

1 − R1R2ei4πξ
(9.35)

T3 = T1T2ei2πξ

1 − R1R2ei4πξ
(9.36)

The SAM can also be extended to study obliquely incident waves, but the parameters
in Equations (9.33)–(9.36) should be changed to matrix form. It should be noted that
the superposed analytical method is different from communication theory (e.g., Treitel
and Robinson, 1966; Luco and Aspel, 1983), because basic solutions are available and
hence the computational speed will be much faster.

The above discontinuous approaches are limited to studying wave propagation
across a single joint set. However, for practical jointed rock masses, there usually
exist several sets of joints. When a stress wave is incident to the jointed rock masses,
wave phenomena will become more complicated due to wave conversion, and multiple
reflections and refractions between joints. Numerical computation and experimental
testing should be adopted to study these complicated wave propagation problems.
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Chapter 10

Equivalent Medium Model with
Virtual Wave Source Method for
wave propagation analysis in
jointed rock masses

Jianchun Li, Guowei Ma and Jian Zhao

10.1 INTRODUCTION

Rock mass usually consists of multiple, parallel planar joints, known as joint sets,
which govern the mechanical behavior of the rock mass. The dynamic behavior and
wave propagation across jointed rock masses are of great interest in geophysics, mining
and underground constructions. It is also significant to assess the stability and damage
of rock structures under dynamic loads. Because of the discontinuity of the joints, the
dynamic response of jointed rock masses is a complicated process. It is of significance to
develop an efficient and explicit model to represent the dynamic property of the jointed
rock mass.

Currently, the methods for analyzing the effect of joints on the properties of
rock masses can be divided into two categories. One is the displacement discontinuity
method (DDM) (Miller, 1977; Schoenberg, 1980) and the other is the effective moduli
method (White, 1983; Schoenberg and Muir, 1989; Pyrak-Nolte, Myer and Cook,
1990; Cook, 1992). In the displacement discontinuity method, the stresses across the
interface are continuous, while the displacements across the interface are discontin-
uous. Generally, the displacement discontinuity method treats joints, particularly the
dominant sets, as discrete entities. It predicts well the effect of joints on the transmis-
sion of seismic waves (Pyrak-Nolte, 1988; Cook, 1992). Successful applications of this
method have been reported for wave transmission across a single joint (Miller, 1977;
Pyrak-Nolte, 1988; Pyrak-Nolte, Myer and Cook, 1990; Cook, 1992; Zhao and Cai,
2001; Li, Ma and Huang, 2010; Ma, Li and Zhao, 2011) and multi-parallel joints (Cai
and Zhao, 2000; Zhao, Zhao and Cai, 2006a, 2006b; Zhao et al., 2006). In all these
applications, the joints were considered to be linear or nonlinear elastic, and the rock
between each two joints was intact and elastic. Based on the displacement discontinu-
ity method, the derivation of wave propagation equations is straightforward and it is
in a differential form, which may not display an explicit expression of the solutions.

The effective moduli methods predict the aggregate effects of many joints or joint
systems within a representative elementary volume (REV), so as to make the analysis
of continuum problems contractible. Using a static approach, Zhao, Zhao and Cai
(2006a) deduced the effective normal joint stiffness in a rock mass with parallel joints
and small joint spacing. Pyrak-Nolte, Myer and Cook (1990) derived the time delay
between two joints by using DDM and obtained the effective velocity for a normal
incident wave through a set of parallel joints. Cook (1992) showed that the effective
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moduli methods account for the effect of joints on wave velocities while ignoring
their influence on wave dissipation. The demerits of the effective moduli methods
(White, 1983; Schoenberg and Muir, 1989; Pyrak-Nolte, Myer and Cook, 1990; Zhao,
Zhao and Cai, 2006a) are that they simplify the discontinuous rock mass to an elastic
medium, which is effective only if the frequency-dependence and the discreteness of
joints, or multiple reflections among the joints, are negligible.

Pyrak-Nolte, Myer and Cook (1990) indicated that the frequency dependence
can be accounted for with an assumption of an equivalent viscoelastic medium. By
conducting extensive laboratory tests on ultrasonic wave transmission across natural
joints, Pyrak-Nolte (1988) and Pyrak-Nolte, Myer and Cook (1990) suggested that the
natural rock joints may possess elastic as well as viscous coupling across the interface.
The definition of a linear viscoelastic solid is that it is a material for which the stress
and the strain components are related by linear differential equations which involve
the stress, the strain, and their derivatives with respect to time (Kolsky, 1953). The
wave propagation in linear viscoelastic solids has been investigated by Kolsky (1953)
and Tsai and Kolsky (1968), in which the Voiget solid model, the Maxwell solid model
and some more general solid models were proposed. By analysis, it is found that the
auxiliary spring placed in series with the Voiget model is a more appropriate equivalent
model for a rock mass with one joint set, which can display both the attenuation and
the frequency dependence of the transmitted wave (Li, Ma and Zhao, 2010).

This chapter proposes a viscoelastic equivalent medium model (EMM) for wave
propagation through rock masses with parallel joints. The new model is in general
form to describe the normal and shear effective property of the rock mass. The EMM
combines a linear viscoelastic solid model with the concept of virtual wave sources
(VWS), in which the frequency dependence and the discreteness of joints in rock mass
are taken into account. The parameters in the equivalent model are derived by analy-
sis of longitudinal (P-) and shear (S-) wave propagation normally across REV by using
DDM and EMM. To verify the proposed EMM, the results of the transmitted waves
through a set of equally spaced parallel joints are compared with those from DMM.
The effects of VWS are also demonstrated.

10.2 CONVENTIONAL EFFECTIVE ELASTIC MODULI METHODS

The effective elastic moduli methods are commonly used to determine the overall
properties of the jointed rock mass. For a rock mass with a set of equally-spaced
parallel joints, a representative elementary volume (REV) is one part of the rock mass.
REV is composed of a joint and the rock between two adjacent joints. The length of the
REV is defined as the joint spacing. Hence, the associated equivalent medium is defined
as the continuum medium with the summary of the representative elementary volume.

There are two main conventional effective elastic moduli methods used to derive
the elastic constants of the rock mass: one is static and the other is dynamic. For the
statically effective elastic moduli methods, the rock mass with a set of parallel joints
is replaced by a transversely isotropic medium model, which can be expressed by five
elastic constants. These five elastic constants are described in terms of the properties
of joints and rock material (Pyrak-Nolte, Myer and Cook, 1990).
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Equivalent Medium Model with Virtual Wave Source Method 209

Therefore, if an incident wave normally propagates across parallel and linear
deformable rock joints, the propagation velocity of the wave is expressed as (Amaderi
and Goodman, 1981; Pyrak-Nolte, Myer and Cook, 1990)

ρV2 = C3333 (10.1)

where V is the magnitude of the wave velocity, ρ is the density of the rock material and
C3333 is the elastic constant of the transversely isotropic medium model, which can be
obtained from

1
C3333

= 1
E

+ 1
SKp

(10.2)

where E is the Young’s modulus of the intact rock, S is the joint spacing, and Kp is the
normal specific stiffness of the joints.

In the dynamic effective elastic moduli method (Crampin, McGonigle and
Bamford, 1980; Ciccotti and Mulargia, 2004), the effective modulus of the rock mass
is calculated by

Eeff = ρV2
e (10.3)

where the subscript ‘eff ’ denotes the effective property and ‘e’ denotes the value
obtained by experimental or field measurement.

The effective modulus Eeff of the representative element is then extended to the
entire rock mass. Therefore, the effective velocity of the stress wave propagating in the
jointed rock mass is the same as given in Equation (10.3).

As mentioned above, the material constants can be obtained by using the static and
dynamic effective elastic moduli method in Equations (10.2) and (10.3), respectively.
However, as a result of the presence of the joint, the jointed rock mass is no longer
purely elastic. Accordingly, the dynamic effective moduli are not the same as the static
effective moduli. Therefore, it is not possible that the effective velocities obtained by
these two methods coincide with each other. Several laboratory measurements showed
that the static effective elastic modulus appeared to be lower than the dynamic effective
modulus (Eissa and Kazi, 1988; Ciccotti and Mulargia, 2004).

10.3 EQUIVALENT VISCOELASTIC MEDIUM MODEL FOR ROCK
MASS WITH PARALLEL JOINTS

Natural jointed rock mass is discontinuous and may include one or more joint sets.
When an incident body wave propagates across the rock mass, the transmitted wave
depends not only on the characteristics of the incident wave but also on the properties
of the joints, such as the stiffness and spacing (Pyrak-Nolte, Myer and Cook, 1990;
Cai and Zhao, 2000; Zhao, Zhao and Cai, 2006a, 2006b; Zhao et al., 2006).

Besides the Voiget and the Maxwell solid models, two extended linear viscoelas-
tic solid models are also used for solid medium to describe the stress-strain relation
(Kolsky, 1953). One is an auxiliary spring in parallel with the Maxwell model, and
the other is an auxiliary spring placed in series with the Voiget model. By comparing
the Maxwell model, the Voiget model and their extended forms, it is found that the
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210 Advances in Rock Dynamics and Applications

auxiliary spring placed in series with the Voiget model is a more appropriate equivalent
model for a rock mass with one joint set, which can display both the attenuation and
the frequency dependence of the transmitted wave. This viscoelastic model was used
by Li, Ma and Zhao (2010) to describe the stress-stain relation for a rock mass with
one joint, when the incidence was only a P-wave normally across the joints. In order to
consider the effect of the wave reflections between joints, the concept of virtual wave
source (VWS) was introduced by Li, Ma and Zhao (2010). For a normally incident
S-wave, the concept of viscoelastic model and VWS can also be adopted to describe
the dynamic shear property of a jointed rock mass. In this chapter, the incident waves
are assumed to be P- and S-wave normally across a set of parallel joints within a rock
mass. The objective of the chapter is to introduce a general EMM for wave propagation
through rock masses with a set of parallel joints.

10.3.1 Wave equations for linear viscoelastic medium

The equivalent mechanical model of the auxiliary spring placed in series with the
Voiget model is shown in Figure 10.1, where Figure 10.1(a) is the viscoelastic model
with normal property and Figure 10.1(b) is the viscoelastic model with shear property.
E and G are respectively the Young’s modulus and the shear modulus of the rock
material, Evp and ηvp are the normal stiffness and the viscosity contributed by the
joint, respectively, Evs and ηvs are the shear stiffness and the shear viscosity of the
joint, respectively. For simplification, when k is p and s, Evk is adopted as a unified
symbol for Evp and Evs, respectively, so does ηvk for ηvp and ηvs.

If the Young’s modulus E and the shear modulus G of the rock material are
expressed as a unified symbol Eak (k = p for E and k = s for G), the stress-strain relation
for the model shown in Figure 10.1 can be expressed in a general form, that is:

(Eak + Evk)σk + ηvk
∂σk

∂t
− ηvkEak

∂εk

∂t
− EvkEakεk = 0, (k = p, s) (10.4)

(a) With normal property (b) With shear property

Evs

G

Evp

E

hvp

hvs

Figure 10.1 Equivalent mechanical model of an auxiliary spring in series withVoiget model.
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Equivalent Medium Model with Virtual Wave Source Method 211

where σk and εk are the normal stress and strain when k = p and the shear stress and
strain when k = s. Considering the longitudinal motion equation for one-dimensional
problem, there is:

ρ
∂vk

∂t
= ∂σk

∂xk
(10.5)

where ρ is the density of the medium, vk is the particle velocity along normal or shear
direction when k = p or s, respectively, and t is time.

Differentiating Equation (10.4) with respect to xk and substituting for ∂σk/∂xk

with Equation (10.5) yields

ρηvk
∂2vk

∂t2
+ ρ(Eak + Evk)

∂vk

∂t
− ηvkEak

∂2vk

∂x2
k

− EvkEak

∫
∂2vk

∂x2
k

dt = 0 (10.6)

Defining τk = ηvk/Evk as the time of retardation of the Voiget element, when a trial
solution has the form of

vk = Ak · exp(βkxk) exp[i(ωkt − αkxk)] (10.7)

where Ak (k = p, s) are the amplitudes of the incident wave, ωk = 2πfk and fk is the
frequency of the wave, k = p and s are for P- and S-waves, respectively. It is found that
Equation (10.6) can be solved if




αk =
{

ρωk
2

2EckEak

[(
Eak

2 + Eck
2ωk

2τk
2

1 + ωk
2τk

2

)1/2

+ Eak + Eckωk
2τk

2

1 + ωk
2τk

2

]} 1
2

βk = −
{

ρωk
2

2EckEak

[(
Eak

2 + Eck
2ωk

2τk
2

1 + ωk
2τk

2

)1/2

− Eak + Eckωk
2τk

2

1 + ωk
2τk

2

]} 1
2

(10.8)

where

1
Eck

= 1
Eak

+ 1
Evk

. (10.9)

The αk gives the phase shift per unit length; and the minus sign of βk indicates the wave
attenuation. It is shown in Equations (10.7) and (10.8) that the wave propagation in a
viscoelastic solid is frequency-dependent and its amplitude attenuates during the wave
propagation process.

10.3.2 Virtual wave source (VWS)

Assume a rock mass contains one joint set, i.e. equally-spaced multiple parallel joints.
When a longitudinal or shear incident wave normally reaches a joint, a transmitted

© 2011 Taylor & Francis Group, London, UK

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

2:
21

 1
6 

O
ct

ob
er

 2
01

5 



212 Advances in Rock Dynamics and Applications

wave and a reflected wave are created and propagate in two opposite directions to the
neighboring joints as two new incident waves. Multiple transmitted and reflected waves
are repeatedly created among the joints. Because of the discreteness of the joints, the
newly created waves have different amplitudes and phase shifts to the initial incident
waves. Across the joint set, the final transmitted wave is the superposition of two parts,
one is from the direct transmission of the initial incident wave and the other part is
from the multiple reflections among the joints. Although the frequency-dependence
and wave attenuation have been shown in Equations (10.7) and (10.8), the effect of
the discreteness of joints on wave propagation in the viscoelastic solid still cannot be
reflected in the two equations.

In order to solve this problem, the concept of virtual wave source (VWS) is pro-
posed in the equivalent viscoelastic medium model. The VWS exists at each joint
surface and produces a new wave (in the opposite direction of the incident wave) at
each time when an incident wave propagates across the VWS. The distance between
two adjacent VWSs is equal to the joint spacing S. The equivalent length of the medium
is defined as the product of joint number N and the joint spacing S, i.e. NS. Figure 10.2
shows a rock mass with three parallel joints and the corresponding equivalent medium
with and without VWS, where the equivalent length is 3S. The concept of VWS can
be interpreted as that a reflected wave is created from the virtual wave source when
either a positive wave or a negative wave arrives at the VWS.

Assume there is an incident harmonic wave

vIk(t, 0) = Ak exp(−iωkt) (10.10)

from the left side a of the equivalent medium in Figure 10.2. According to Equation
(10.7), along the direction of the incident wave the particle velocity at point b is

vek(t, S) = Ak exp(βS) exp[i(−ωkt + αkS)] (10.11)

where the phase shift of vek(t, S) and vIk(t, 0) is αkS. According to the energy conser-
vation of simple harmonic waves (Cook, 1992), the amplitude of the reflected wave at
the interface b is Ak{1 − [exp(βkS)]2}1/2, if the interface b is a discontinuous boundary.
From the Kramer-Kronig relation (a statement of causality), any change in the ampli-
tude of a wave must be accompanied by a change in phase. Since the phase shift between
the reflected and transmitted waves is π/2 (Pyrak-Nolte, Myer and Cook, 1990; Cook,
1992), the reflected wave at b can be expressed as

v′
ek(t, S) = Ak

√
1 − [ exp(βkS)]2 exp[i(−ωkt + αkS + π/2)] (10.12)

where v′
ek(t, S) is regarded as the wave produced from the VWS at b. Then, vek(t, S)

and the created wave v′
ek(t, S) propagate along two opposite directions as newly inci-

dent waves to the adjacent interfaces c and a, where new waves are repeatedly created
and propagate to their adjacent interfaces. The transmitted wave at the right side
d of the equivalent medium is a wave superposition of vek(t, 3S) arriving at differ-
ent times, which is the summation of multiple waves created from the three VWSs

© 2011 Taylor & Francis Group, London, UK

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

2:
21

 1
6 

O
ct

ob
er

 2
01

5 



Equivalent Medium Model with Virtual Wave Source Method 213

(a) Jointed rock mass

Joint Joint Joint

RockRock
vTddkvIk

a

a

S S

3S

S
b c d

d

(b) Equivalent medium model without virtual wave source

(c) Equivalent medium model with virtual wave source

vTddkvIk

a
S S S

b c d

vTddkvIk

Figure 10.2 Scheme of jointed rock mass and equivalent medium (k = p for incident P-waves and k = s
for incident S-waves).

and the transmitted wave from the incident wave vIk(t, 0) propagating across the
viscoelastic medium.

10.4 DETERMINATION OF THE PARAMETERS

In the present study, the joint is assumed to be planar, large in extent and small in
thickness compared to the wavelength, and the joint and the intact rock are linear
elastic. For the equivalent medium model in Equations (10.10)–(10.12), Eak is a known
parameter, where Eap is equal to the Young’s modulus E and Eas is the shear modulus
G of the intact rock; Evk and ηvk need to be determined by comparing the transmitted
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214 Advances in Rock Dynamics and Applications

wave through the equivalent medium with the existing solutions of discontinuous
rock mass.

10.4.1 Single joint case

If an incident P- or S-wave at the boundary with the form of vIk = Ak exp(iωkt) prop-
agates in a rock mass with one joint, the transmitted wave after the joint was derived
and written as (Pyrak-Nolte, Myer and Cook, 1990; Cook, 1992)

vTk1 = 2Kk/zk

−iωk + 2Kk/zk
Ak exp[i(−ωkt + xkωk/Ck)] (10.13)

or

vTk1 = 2Kk/zk√
ωk

2 + (2Kk/zk)2
Ak exp[i(−ωkt + xkωk/Ck + θk)] (10.14)

where Kk is the joint normal or shear stiffness when k = p or s; zk is the wave impen-
dence and zk = ρCk; Ck is the wave velocity in the intact medium; xk is the length of the
rock mass along the wave propagation path; θk = arctan [−ωk/(2Kk/zk)]. When x = S,
the transmitted wave can be expressed as Equation (10.14) for a rock mass with one
joint or Equation (10.11) for the corresponding equivalent viscoelastic medium. Thus,
the amplitude and phase in Equation (10.11) should respectively be equal to those in
Equation (10.14), i.e.




βk = 1
S

ln

[
2Kk/zk√

ωk
2 + (2Kk/zk)2

]

αk = ωk

Ck
+ 1

S
arctan

(
ωk

2Kk/zk

) (10.15)

where αk and βk are shown in Equation (10.8).

10.4.2 Parameter determination from single joint analysis

Defining g1 and g2 as the functions of the two parameters, Evk and ηvk,
Equation (10.15) can be rewritten as

g1(Evk, ηvk) = βk − 1
S

ln

[
2Kk/z√

ω2 + (2Kk/z)2

]

g2(Evk, ηvk) = αk − ωk

Ck
− 1

S
arctan

(
ωk

2Kk/z

)



. (10.16)

The Newton-like method (Kelley, 2003) is adopted to generate a sequence
{(Evk)n (ηvk)n} until the converged solutions are obtained:
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Figure 10.3 The relation between parameters Evk and frequency ωk (k = p, s).

{
(Evk)n+1

(ηvk)n+1

}
=
{

(Evk)n

(ηvk)n

}
− G−1

k

{
g2[(Evk)n, (ηvk)n]
g2[(Evk)n, (ηvk)n]

}
(10.17)

where Gk is a matrix as follows:

Gk =




∂g1

∂(Evk)n
+ ∂g1

∂(ηvk)n

∂g2

∂(Evk)n

∂g2

∂(ηvk)n


 (10.18)

In the following calculations, it is assumed that the rock density ρ is 2650 kg/m3, the
P-wave velocity Cp is 5830 m/s and the S-wave velocity Cs is 2950 m/s, the joint normal
stiffness Kp is 3.5 GPa/m and joint shear stiffness Ks is 2.46 GPa/m. The parameters
Evk and ηvk are predicted with different incident wave frequency ωk and joint spac-
ing S. Figures 10.3(a) and 10.3(b) respectively show the relations between Evk and
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216 Advances in Rock Dynamics and Applications

Table 10.1 Coefficients for curve fittings of Evk ∼ ωk, ηvk ∼ ωk in Figures 10.3 and 10.4.

S = 1/10λk S = 1/2λk S = λk

(a) Incident P-wave
B1p (GPa) 92.7 454.8 829.00
B2p (GPa) 20.5 124.2 196.80
B3p (GPa) −0.1 16.3 22.99
B4p (MPa·s) 15.7 117.7 648.56
B5p (MPa·s) 64.9 550.4 267.81
B6p (MPa·s) 0.8 3.4 18.22
F1p (Hz) 166.4 191.9 239.3
F2p (Hz) 713.3 861.5 1.3 × 103

F3p (Hz) 965.7 1.14 × 103 253
F4p (Hz) 276.6 215.5 935.6

(b) Incident S-wave
B1s (GPa) 42.9 151.8 52.2
B2s (GPa) 2.45 23.7 283.2
B3s (GPa) −0.184 −4.54 −10.4
B4s (MPa·s) 4.5 55.7 9.4
B5s (MPa·s) 32.1 127.6 124.3
B6s (MPa·s) 0.3 2.9 3.45
F1s 0.79 0.93 12.7
F2s 7.39 13.06 0.98
F3s 3.02 2.36 9.64
F4s 0.82 0.46 2.1

ωk, ηvk and ωk, when S is 1/10λk, 1/2λk and λk, where k = p and s are for incident
P- and S-waves, respectively. From the two figures, it can be seen that either Evk or
ηvk depends on the incident wave frequency ωk and the joint spacing S. For a given
S, Evk and ηvk decrease with increasing ω. For a given ω, Evk and ηvk increase with
increasing S.

The relation between Evk and S, ηvk and S can respectively be derived by the least
square regression method as the two exponential forms,

Evk = B1k exp(−ωk/F1k) + B2k exp(−ωk/F2k) + B3k (10.19)

and

ηvk = B4k exp(−ωk/F3k) + B5k exp(−ωk/F4k) + B6k (10.20)

where Bik and Fjk (i = 1∼6, j = 1∼4, k = p, s) are the coefficients from the curve fitting,
which are listed in Table 10.1.
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Figure 10.4 The relation between parameters ηvk and frequency ωk (k = p, s).

10.5 VERIFICATIONS OF EMM WITH VIRTUAL WAVE SOURCE
METHOD

10.5.1 Periodical function expression for an arbitrary
incident wave

Using the Fourier and inverse Fourier transforms, any arbitrary incident wave can be
expressed as the sum of periodical functions. Assume the incident P-wave applied at
the left side a in Figure 10.2 is a half-cycle sinusoidal wave with the form of

vIp(t, 0) =
{

I sin(ω0t)
0

, when
0 ≤ t ≤ π/ω0

t > π/ω0
(10.21a)

and the incident S-wave applied at the left side a in Figure 10.2 is a full-cycle sinusoidal
wave with the form of

vIs(t, 0) =
{

I sin(ω0t)
0

, when
0 ≤ t ≤ 2π/ω0

t > 2π/ω0
(10.21b)
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where I is the amplitude of the incident wave and equal to 1 m/s; ω0 is the angular
frequency of the incident wave. In order to obtain the periodical function expression
of the incident waves, Equations (10.21a) and (10.21b) are firstly transformed in the
frequency domain by the Fourier transform, i.e.

F[vIp(t, 0)] = 2√
2π

ω0I

ω2
0 − ω2

cos
πω

2ω0
e−i πω

2ω0 , for incident P-wave (10.22a)

F[vIs(t, 0)] = I√
2π

ω0

ω2 − ω2
0

(e−2π ω
ω0

i − 1), for incident S-wave (10.22b)

The harmonic wave form with innumerable cycles of Equation (10.18) is derived by
using the inverse Fourier transform of Equation (10.19) in the time domain.

vIp(t, 0) = F−1{F[vIp(t, 0)]} = 2
π

∫ +∞

0

ω0I

ω2
0 − ω2

cos
(

πω

2ω0

)
cos

(
ωt − πω

2ω0

)
dω,

for incident P-wave (10.23a)

vIs(t, 0) = F−1{F[vIs(t, 0)]} = I
π

∫ +∞

0

2ω0

ω2 − ω2
0

sin
(

πω

ω0

)
sin
(

ωt − πω

ω0

)
dω,

for incident S-wave (10.23b)

If the frequency interval �ω is sufficiently small, Equation (10.20) can be rewritten as

vIpa(t, 0) = 2I
π

+∞∑
j=1

{
ω0

ω2
0 − ω2

j

cos
(

πωj

2ω0

)
cos

(
ωjt − πωj

2ω0

)
�ω

}
,

for incident P-wave (10.24a)

vIsa(t, 0) = 2I
π

+∞∑
j=1

{
ω0

ω2
j − ω2

0

sin
(

πωj

ω0

)
sin
(

ωjt − πωj

ω0

)
�ω

}
,

for incident S-wave (10.24b)

When the number of the frequency ωj is sufficiently large, so that the main frequencies
in the frequency domain of the incident wave are included, vIka(t, 0) is approximately
equal to vIk(t, 0), i.e. vIka(t, 0) ∼= vIk(t, 0).

10.5.2 Result comparison and verification of the equivalent
medium model

In order to verify the general EMM, the transmitted wave calculated by the pro-
posed model is compared with that determined by DDM. Assuming the incident
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Equivalent Medium Model with Virtual Wave Source Method 219

velocity wave at the boundary a in Figure 10.2 has the form of Equation (10.18)
and ω0 = 2π × 100 Hz, the transmitted wave vTddk through the discontinuous rock
mass with joint spacing S is obtained from the displacement discontinuity method. To
analyze the wave propagation across the equivalent medium, the waves given by Equa-
tions (10.24a) and (10.24b) are chosen as the incident waves. Considering Equations
(10.24a) and (10.24b) and the wave propagation equations (10.8) and (10.10)–(10.12)
for the equivalent medium model, the transmitted wave at the interface b in Figure 10.2
(c) by the incident wave is

vebp =
+∞∑
j=1

[
I�ω

2
π

ω0

ω2
0 − ω2

j

cos
(

πωj

2ω0

)
exp(βpS) cos

(
ωjt − πωj

2ω0
− αpS

)]
,

for incident P-wave (10.25a)

vebs =
+∞∑
j=1

[
2I�ω

π

ω0

ω2
j − ω2

0

sin
(

πωj

ω0

)
exp(βsS) sin

(
ωjt − πωj

ω0
− αsS

)]
,

for incident S-wave (10.25b)

and the reflected wave at interface b is

v′
ebp =

+∞∑
j=1

{
2I�ω

π

ω0

ω2
0 − ω2

j

cos
(

πωj

2ω0

)√
1 − [

exp(βpS)
]2

cos
(

ωjt − πωj

2ω0
− αpS − π

2

)}
, for incident P-wave (10.26a)

v′
ebs =

+∞∑
j=1

{
2I�ω

π

ω0

ω2
j − ω2

0

sin
(

πωj

ω0

)√
1 − [exp(βsS)]2

sin
(

ωjt − πωj

ω0
− αsS − π

2

)}
, for incident S-wave (10.26b)

The forward wave vebk and the backward wave v′
ebk then move toward the interfaces

c and a respectively as new incident waves, where k = p and s for incident P- and
S-waves, respectively. The interfaces a, b and c then perform as VWSs respectively
which generate a backward wave once an incident wave reaches the joint. The waves
superpose with each other in the medium and the final transmitted wave vTek at the
interface d is obtained.

The transmitted waves vTddk based on DDM and vTek based on EMM are compared
in Figures 10.5 to 10.8, where Figures 10.5 and 10.6 are respectively for incident
P- and S-waves across the rock mass with different joint number, and Figures 10.7 and
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Figure 10.5 Comparison of transmitted waves obtained from displacement discontinuity method
(DDM) and equivalent medium method (EMM) with different joint number (S = 1/10λp,
and incident P-wave).
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Figure 10.6 Comparison of transmitted waves obtained from displacement discontinuity method
(DDM) and equivalent medium method (EMM) with different joint number N (S = 1/10λs,
and incident S-wave).
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Figure 10.7 Comparison of transmitted waves obtained from displacement discontinuity method
(DDM) and equivalent medium method (EMM) with different joint spacing S (Incident
P-wave).

10.8 are for incident P- and S-waves across the rock mass with different joint spacing.
In Figures 10.5 and 10.6, the joint spacing is one-tenth of the elastic wave length λk and
λk = 2πCk/ω0 (k = p and s for incident P- and S-waves, respectively), while the joint
number changes from one to six to reflect the medium length effect. In Figure 10.5, the
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Figure 10.8 Comparison of transmitted waves obtained from displacement discontinuity method
(DDM) and equivalent medium method (EMM) with different joint spacing S (Incident
S-wave).

transmission coefficients, max(vTep)/max(vIp), are about 0.67 for the one-joint case,
0.626 for the two-joint case, 0.602 for the three-joint case, and 0.59 for the four-joint
case. In other words, the transmitted wave attenuates quickly when the rock mass has
one and two joints while the attenuation of the transmitted wave becomes slow with
increasing number of joints.
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Figures 10.7 and 10.8 show the relationship between the transmitted waves
and the joint spacing, or the joint frequency when two joints are considered. In
Figure 10.7, the time delay of the transmitted P-wave across two joints with S = λp is
about 0.022s, which is equal to that of 2S · ∂αp/∂ωp|ωp=ω0

as given in Equation (10.7).
The transmitted wave depends mainly on the original incident wave and the effect of
the reflected waves between the two joints appears minor for a large joint spacing,
e.g. when S = λp.

It is found from Figures 10.5 to 10.8 that the waveforms of vTek agree very
well with those of vTddk for all the cases studied. The comparisons between vTek

and vTddk verify that the EMM proposed in the present study is effective for study-
ing wave propagation, and the proposed EMM can describe the longitudinal and
shear wave propagation in a rock mass with one set of parallel joints without losing
accuracy.

10.6 APPLICATIONS AND OUTLOOKS

10.6.1 Transmitted wave

In the following discussions, only the case of incident P-waves is considered. Define
vTep,1 as the transmitted wave based on the equivalent viscoelastic medium without
considering the effects of the VWSs; and define vTep,2 as the transmitted wave due
to the reflections between the VWSs. From Equation (10.25a), the transmitted wave
vTep,1 can be expressed as

vTep,1 =
+∞∑
j=1

[
I�ω

2
π

ω0

ω2
0 − ω2

j

cos
(

πωj

2ω0

)
exp(NβpS) cos

(
ωjt − πωj

2ω0
− NαpS

)]

(10.27)

where N is the number of VWS. When two VWS are in the equivalent medium and
S = 1/10λp, the curves of vTep,1, vTep,2 and vTep which is the superposition of vTep,1

and vTep,2 are plotted in Figure 10.9. The vTep in Figure 10.9 is exactly the same as
the transmitted wave shown in Figure 10.5(b). The vTep,1 in Figure 10.9 is the further
attenuation with time shift of the transmitted wave shown in Figure 10.5(a), which is
from an equivalent medium with only one VWS. It implies that vTep,1 is purely from
the original incident wave.

When the VWS spacing S is λp and the length of an equivalent medium is
2λp or 4λp, the transmitted waves across the equivalent medium with and with-
out the VWS are derived as shown in Figure 10.10. For both medium lengths, the
waveform of vTep,1 is very similar to the first part of vTep. Comparison of vTep in
Figures 10.9 and 10.10 indicates that the VWS spacing influences the transmitted
waveform, while the effect of the number of VWS on the transmitted waveform
is minimal when the VWS spacing is larger than a critical value. Therefore, when
the VWS spacing is very large, the transmitted wave can be directly calculated from
Equation (10.27).
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Figure 10.9 Effect of virtual wave source (VWS) on transmitted waveforms (S = 1/10λp, N = 2).
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Figure 10.10 Transmitted waves by using displacement discontinuity method and equivalent medium
model without virtual wave source (f = 100 Hz, S = λp).
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Figure 10.11 Transmission coefficient with different frequency of incident waves (kn = 3.5 GPa/m and
S = 8λp).

10.6.2 Transmission coefficient

In rock engineering, the damage criteria of rock structures are generally regulated
according to the threshold values of wave amplitudes, such as the peak particle velocity.
Therefore, the transmission coefficients for the waves propagating through the rock
mass with multiple joints are important.

One simplified method to calculate the transmission coefficient is the TN-method
(Hopkins, Myer and Cook, 1988; Pyrak-Nolte, Myer and Cook, 1990; Myer et al.,
1995), which considers the transmission coefficient across parallel joints as the product
of transmission coefficients of individual joints:

|TN | = |T1|N (10.28)

where TN denotes the transmission coefficient after N joints and T1 denotes the
transmission coefficient after a single joint. Laboratory experiments verified that
the TN-method is valid when the first arriving wave is not contaminated by the multiple
reflections, which can be satisfied only when the joint spacing is relatively larger than
the incident wavelength.

When ω0 is 100π for the incident wave in Equation (10.21a), and the joint stiff-
ness kn varies from 1.0, 3.5, 6.0, 8.5 to 11.0 GPa/m, the transmission coefficient is
calculated and shown in Figure 10.11.

In Figure 10.11, the solid marks represent the transmission coefficients obtained
from the EMM and the hollow marks represent the results from the TN-method.
It is also seen from the figure that the transmission coefficients obtained from the
TN-method are close to the transmission coefficient from the equivalent medium
method.
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Equivalent Medium Model with Virtual Wave Source Method 227

10.6.3 Effective velocities

The effective velocity Ce for the incident wave vIp in an equivalent medium is a function
of the medium length to the time difference between the two peak velocities of incident
and transmitted waves, i.e.

Ce = NS
tT − tI

(10.29)

where tI and tT are the time spots for the peak velocities of vIp and vTep, respectively.
From the present study, the effective velocity of the equivalent medium is affected

by the ratio of the wave length λp over the spacing S. For example, if the incident wave
in the form of Equation (10.29) has the frequency f = 100 Hz or λp = 58.3 m and the
spacing S is 1/10λp, the effective velocity Ce can be calculated from Figure 10.5. Based
on Equation (10.29), Ce is about 3320 m/s for the one-joint case, which approaches
the effective velocity Ceff = 3322 m/s given by Pyrak-Nolte, Myer and Cook (1987):

Ceff = Cp




1 +
(

zpω0

2Kp

)2

1 +
(

zpω0

2Kp

)2

+ Cp

S
zp

2Kp


 (10.30)

where the interaction between joints and multiple reflections are ignored. The Ce of
the two-joint case is calculated from Figure 10.5(b) to be approximately 2780 m/s,
about 2365 m/s for the three-joint case from Figure 10.5(c), and about 2180 m/s for
the four-joint case from Figure 10.5(d). It is clear that the effective velocity is sensitive
to the ratio of λp/S. The reason is that the peak values of the transmitted wave are
affected by the reflected waves created by the VWSs, as shown in Figure 10.9. It is
the advantage of the present equivalent medium model to accurately account for the
discreteness of the joints.

If the joint spacing S is larger, e.g. equals to λp as shown in Figure 10.7(c), the
effective velocity Ce is calculated about 5420 m/s which matches with the effective
velocity Ceff = 5421 m/s given by Pyrak-Nolte, Myer and Cook (1987). Therefore, if
the VWS spacing is sufficiently large, the influence of the multiple reflections among
joints on the main transmitted wave is minimal, and the effective velocity Ce is the
same as that given by Pyrak-Nolte, Myer and Cook (1987). On the other hand, if the
VWS is not considered in the equivalent medium model, the effective velocity derived
from the present study agrees very well with the previous results by Pyrak-Nolte, Myer
and Cook (1987).

10.6.4 Outlooks

The EMM has obvious advantages in describing the dynamic property of jointed rock
masses and for considering the stress wave attenuation and the viscous loss in the rock
masses. By comparison with the results from the DDM method, the EMM method is
able to give satisfactory results in terms of transmitted wave form, transmission coef-
ficients and effective velocity. However, this model is only applied for one dimensional
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problems and linear joints. For more complex geological conditions with nonlinear
joints, or two or more sets of parallel joints, the applicability of EMM is yet to be
verified. Therefore, future work will focus on developing the EMM for a rock mass,
in which the joints with linear or nonlinear properties are randomly distributed.

10.7 SUMMARY

An equivalent viscoelastic medium model is proposed in this chapter for determining
the P- and S-wave transmission through a rock mass containing equally-spaced parallel
joints. In the proposed equivalent medium model, the linear viscoelastic medium having
shear and normal properties is combined with the concept of virtual wave sources.

Most existing analytical and numerical studies on wave propagation in jointed rock
mass approximate the medium as a continuous elastic solid with the effective Young’s
modulus based on either a quasi-static deformation approach for a composite material
or an effective seismic/acoustic velocity approach. These traditional equivalent models,
as limited by the elastic assumption, are not able to describe the effect of the discreteness
of the joints. Based on the present study, the equivalent viscoelastic medium model not
only predicts accurately the transmission coefficients but also derives analytically the
transmitted waveforms.

The proposed equivalent viscoelastic medium model also has obvious advantages
over the displacement discontinuity method. When the effect of the VWSs is not
prominent, the proposed equivalent model is much more efficient in analyzing wave
propagations. When the VWSs are considered, the proposed model is still able to give
analytical solutions of the wave propagations without losing efficiency and accuracy.

Although the present study involved only simplified cases with equally-spaced
parallel joints, it demonstrated that the current viscoelastic equivalent medium model
is able to produce results in wave propagation analysis as accurately as those from
the displacement discontinuity models. The present study with the explicit form of
solutions can serve as a benchmark for verification of relative numerical or analytical
studies of stress wave propagation through rock mass. Further exploration is underway
to extend the current model for more complicated joint forms and incident waves.
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Chapter 11

Polycrystalline model for
heterogeneous rock based on
smoothed particle
hydrodynamics method

Guowei Ma, XuejunWang and Lei He

11.1 INTRODUCTION

Rock materials are multiphase heterogeneous composites, consisting of mineral grains
with preexisting defects in the forms of voids and cracks in their microstructures as
shown in Figure 11.1. With the advance of experimental techniques, close observa-
tions on the specimen’s microscopic behaviour during rock failure processes become
possible. For instance, Tapponnier and Brace (1976) investigated stress-induced micro-
crack developments within different mineral components in the Westerly granite. Wong
(1982) further investigated the faulting mechanisms of different minerals in Westerly
granite with different confining pressures and temperatures and concluded that the
failure mechanism was related to both mineralogy and mineral grain orientation. Sev-
eral numerical approaches have also been put forward to study the fracture processes
of such heterogeneous materials, such as the lattice-based model (Blair and Cook,
1998), the RFPA (Realistic Failure Process Analysis) code (Tang et al., 2000), the local
degradation model based on the FLAC (Fast Lagrangian Analysis of Continua) code
(Fang and Harrison, 2002), the synthetic rock mass model (SRM) based on the PFC
(Particle Flow Code) (Potyondy and Cundall, 2004). Although they succeeded in one
aspect or another, most of these models were based on finite element or discrete element
methods that in some respects have certain limitations. For instance, the continuum-
based finite element models do not work well to capture the failure process featured
by distortion and large deformation, fracture propagation and fragmentation. The
discrete element-based methods, on the contrary, are not well defined in processing

Figure 11.1 Typical Bukit Timah granite in Singapore.
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the continuous deformations. Besides, few of these approaches can properly model
the aggregates or grains in their microstructures and appropriately account for their
effects in rock failure simulations.

Microscopically, the intact rock material is a multiphase composite consisting
of various mineral grains or aggregates with different sizes. Traditionally, by using
the SEM (scanning electronic microscope) or X-ray CT, one can capture the sample’s
internal microstructure information such as the shapes and spatial distributions of the
components, etc. Numerical specimens can therefore be rebuilt by using those already
acquired digital images (Chen, Yue and Tham, 2004). However, these techniques
are still costly for practical applications. The numerical specimen generated by using
these techniques can only reflect the characteristics on the given small piece of the real
material, and their representations are not general.

If the statistical microstructure information for these multiphase materials, for
instance their statistical components sizes and contents, can be acquired then the arti-
ficial microstructure of the specimen may be numerically constructed based on these
data to resemble the real material without losing its general characteristics. The work
done by Li et al. (2003) can be classified in this category, in which they modeled
the microstructure of granite and analyzed its failure process by the RFPA code. The
sizes and shapes of mineral grains in their model were chosen based on statistical
analysis of tested specimens. The success of their work inspires the current study in
further investigating polycrystalline rock failure by using a modified smoothed particle
hydrodynamics (SPH) method.

The present study first introduces the SPH method and its governing equations
in the continuum mechanics framework. A microstructure model is then put for-
ward to construct artificial specimens for polycrystalline rocks. The microstructure
model is applied to generate artificial granite specimens. An elasto-plastic damage
model to reflect the strength behavior of rock materials is adopted. Numerical sim-
ulations on Brazilian splitting failure are performed to verify the developed code.
Uniaxial compression tests are subsequently simulated for the constructed artificial
specimens and results are discussed. The focus of the present study is not only on the
macro-mechanical behavior of the specimens, but also on the characteristics of crack
developments during the failure process and the final failure patterns.

11.2 SMOOTHING PARTICLE HYDRODYNAMICS (SPH) METHOD

The theoretical basis of the SPH method is the interpolation theory. By introducing an
interpolation function (kernel function W) that gives the “kernel estimate’’ of the field
variables at a point, the properties of each particle are evaluated by the integrals or
the sums over the values of its neighboring particles. Considering a problem domain
� that is discretized by a group of particles, assuming W has a compact supporting
domain with a radius of kh, approximations of a function f (x) and its differential form
〈∇f (x)〉 at point i can be expressed by the discretized particles as

〈f (x)〉x=xi
=

N∑
j=1

mi

ρj
f (xj)Wxi (xi − xj, h) (11.1)
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Polycrystalline model for heterogeneous rock 233

〈∇f (x)〉x=xi
= −

N∑
j=1

mj

ρj
(f (xi) − f (xj))∇[Wxi (xi − xj, h)] (11.2)

where the summation is over all the particles (with a total number of N, including
particle i) within the supporting domain of the given particle i; the label j denotes
those influenced particles which are the neighboring particles of the particle i; h is
called the smoothing length which defines the supporting domain of the particle; and
W(x − x′, h) is the smoothing kernel function. The interpolation kernel named B-spine
(Monaghan and Lattanzio, 1985) is adopted in this study. This kernel interpolates to
the second order of the smoothing length h(o(h2)) and it is always nonnegative.

The mass and momentum conservation equations of continuum mechanics give

dρ

dt
= −ρ · ∂vα

∂xα

dvα

dt
= 1

ρ
· ∂σαβ

∂xβ

(11.3)

In the above equations, dependent variables are the density (ρ), the velocity (vα),
and the stress tensor σαβ which is defined as σαβ = pδαβ + Sαβ in terms of the pressure
p = Tr(σ)/3 and the traceless symmetric deviator stress Sαβ. The independent variables
are the spatial coordinates (xα) and the time (t). The total time derivative operator
(d/dt) is determined in the moving Lagrangian framework. The Greek subscripts α

and β are used to denote the coordinate directions. δαβ = 1 if and only if α = β, δαβ = 0
otherwise. The summation is implemented over repeated Greek indices. Stresses are
positive in tension.

Based on Equation (11.2) the density approximation given by Gray, Monaghan
and Swift (2001) is adopted when the calculation involves heterogeneous materials as:

dρi

dt
= ρi

N∑
j=1

mj

ρj
[(vα)i − (vα)j]

∂Wij

∂(xα)i
(11.4)

According to Libersky et al. (1993), the strain rate tensor ε̇αβ can be expressed by the
derivatives of the velocity in the SPH approximation as

(ε̇αβ)i = −1
2

N∑
j=1

mj

ρj

(
[(vα)i − (vα)j]

∂Wij

∂(xβ)i
+ [(vβ)i − (vβ)j]

∂Wij

∂(xα)i

)
(11.5)

Once ε̇αβ is determined, the stress rate σ̇αβ tensor is derived through the adopted con-
stitutive model. Consequently, the stress tensor σαβ is calculated by an explicit time
integration approach.

Similarly, the SPH formulation for momentum evolution is derived as

d(vα)i

dt
=

N∑
j=1

mj

(
(σαβ)i

ρ2
i

+ (σαβ)j

ρ2
j

+ �ijδαβ

)
∂Wij

∂(xβ)i
(11.6)

© 2011 Taylor & Francis Group, London, UK

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

2:
21

 1
6 

O
ct

ob
er

 2
01

5 



234 Advances in Rock Dynamics and Applications

(a) Random spatial points (b) Voronoi diagram (c) SPH representation

Figure 11.2 2-D Voronoi diagram construction and physical domain’s microstructure representation
by SPH particles.

where � is the artificial viscous pressure introduced by Gingold and Monaghan (1977)
to smooth shocks and stabilize numerical solutions.

11.3 ARTIFICIAL MICROSTRUCTURE FOR MULTIPHASE
MATERIALS

11.3.1 2D-domain discretization based on Voronoi diagram

A Voronoi diagram composed of many convex polygons is used to explicitly discretize
a physical domain. These polygons are constructed by a set of spatial points {�p} filled
in the domain. Each cell Vi is associated with one point �pi. Any point in Vi is almost
closer to the point �pi than to any other point �pj in {�p}. Such a relationship can be
described as

Vi(x) = ∩j �=i{�x|s(�xi, �x) ≤ s(�xj, �x)} (11.7)

where, xi are the coordinates of �pi; s(�xi, �x) is the Euclidean distance between �pi and
any point in the interior of Vi. The Voronoi diagram is directly constructed from a set
of points by using the software Matlab as illustrated in Figures 11.2(a) and 11.2(b).
Obviously, the coordinates of these points are vital because they control the shapes
as well as the area of generated polygons. In order to guarantee the areas of these
arbitrarily generated polyhedrons within a prescribed range, the distance of any two
spatial points in {�p} must be checked to meet

Lmin ≤ s(�xi, �xj) ≤ Lmax (11.8)

One simple method to generate these set of points is to insert randomly generated
points sequentially until they eventually saturate the whole domain. When a new point
is to be inserted, Equation (11.8) must be performed against all the accepted points.
When the domain is nearly saturated, the probability of the acceptable point becomes
low and more trial points may be rejected. Hence, the insertion of new points becomes
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Polycrystalline model for heterogeneous rock 235

difficult. When there is no satisfied point after a fairly long time, the Voronoi diagram
can then be constructed based on all accepted points.

11.3.2 Microstructure representation by SPH particles

After the Voronoi diagram is constructed, the generated polygons are classified to
represent different components, for example, different mineral grains according to
their volume ratios in rock. Considering the spatial variations in the distributions of
these components, the current work takes a stochastic approach.

A series of pseudo-random numbers is generated corresponding to these polygons
one by one. According to the statistical contents of these minerals in the polycrystalline
rock, these pseudo-random numbers are divided into several groups by their values.
Each group corresponds to one type of mineral. Thus, each polygon is specified to be
one type of artificial component according to its associated pseudo-random number
value. Once the ratio of these generated artificial components meets the requirement,
such a process stops. Otherwise, it needs repeating more times.

In order to use the SPH particles to represent the physical domain’s microstructure,
it must be determined to which polygon each particle belongs. If the particle’s center
falls inside the polygon, it is assigned to the component’s properties represented by
this polygon. By using the above method, the physical domain can be represented by
different clusters of particles to resemble the specimen’s microstructure. Figure 11.2(c)
gives an illustration of such a process by using regularly packed particles.

11.3.3 2-D granite microstructure generation

Granitic rock is generally light gray and medium grained which can be discerned easily
by the naked eye. Statistical data (Zhao, 1999) show that the Bukit Timah gran-
ite in Singapore (as shown in Fig. 11.1) is mainly composed of feldspar, quartz and
biotite grains in a ratio of around 6:3:1 with densities of 2570, 2648 and 2800 kg/m3,
respectively. The grain size generally ranges from 3.0 mm to 5.0 mm.

Two rectangular artificial rock specimens are randomly constructed based on the
above-described procedure to resemble the Bukit Timah Granite. These two specimens
have the same size, with a width of 0.05 m and a height of 0.1 m. Each is discretized by
31,250 regularly distributed SPH particles with the same smoothing length of 0.4 mm.

Random points are first generated to fill in the domain with LMin and LMax of
3 mm and 5 mm, respectively, to meet the requirement of typical granite grain size.
After the Voronoi polygons are ready, they are classified into different mineral types
by the values of the pseudo-random numbers associated with them according to the
prescribed ratio of the three kinds of minerals.

Figure 11.3 shows the two constructed artificial granite samples, named N1 and
N2 respectively. In the figure, the black grains are biotite, quartzite grains are in
light gray and the feldspar ones are in dark gray. The mineral contents of the two
artificial granite samples are close to the expected ratio as presented in Table 11.1.
Although their microstructures are different, these two artificial samples have the
common features in mineral component contents and typical grain size.
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Feldspar

Quartz

Biotite

Figure 11.3 Two artificial granite specimens.

Table 11.1 Ratios of mineral grains in the two artificial granite specimens.

Specimen Feldspar Quartz Biotite

N1 59.52% 29.94% 10.54%
N2 61.77% 29.38% 8.85%

11.4 ELASTO-PLASTIC DAMAGE MODEL

An elasto-plastic-damage model that can effectively represent the mechanical behav-
ior of rock-like material failure is presented. Similar to the Johnson-Holmquist model
(Holmquist, Templeton and Bishnoi, 2001) and the concrete damage model (Malvar
et al., 1997), the current model comprises two surfaces to represent the strengths of
intact and fractured materials. It also includes a damage scalar that describes the evo-
lution of the material from an intact state to a fractured state. The strength criterion is
based on an extension form of the unified twin shear strength (UTSS) criterion (Yu and
He, 1991; Yu et al., 2002), which includes two hydrostatic pressure-dependent merid-
ians representing the generalized tensile and compressive strength states, respectively.

11.4.1 Generalized unified twin shear strength criterion

The UTSS criterion (Yu and He, 1991; Yu et al., 2002) was established based on the
assumption that the strength behavior of material was governed by the two larger
principal shear stresses and associated normal stresses. A weighting coefficient b in
the range of 0 to 1 was introduced to reflect the effect of the second principal shear
stress. The trajectories of the UTSS criterion on the deviatoric plane with different b
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Polycrystalline model for heterogeneous rock 237

(a) Trajectories in deviatoric plane (b) Tensile and compressive meridians

Compressive meridian (θ 	 60°)
Tensile meridian (θ 	 0°) 

rt

r

rc

σ1

σ2 σ3

rt θb

rc

60°
b 	 0

b 	 1

ξ

0 
 b 
 1

Figure 11.4 Unified twin shear strength criterion.

values are shown in Figure 11.4(a). From Figure 11.4(a), with the variation of the
weighting coefficient b, many existing failure criteria, such as the Tresca criterion, the
Mohr-Coulomb criterion, the Mises-Schleicher, and Drucker-Prager criteria, etc., can
be approximated by the UTSS criterion. Besides, new yield criteria can be derived by
assigning a suitable value of b from 0 to 1. The generalized tensile and compressive
meridians corresponding to θ = 0◦ and 60◦, respectively, are plotted in Figure 11.4(b),
where r =√

2J2, ξ = I1/
√

3.
According to the UTSS criterion, when b = 1, it gives the upper bound of the

convex failure surface; when b = 0, it yields the lower bound. If the two meridians, i.e.
the generalized tensile meridian rt and the generalized compressive meridian rc with
respect to the hydrostatic pressure p are determined, the two bounds with b = 0 and 1
respectively on the deviatoric plane can be obtained by geometry analysis. Any failure
criterion satisfying the convex requirement can be derived by a linear combination
of the lower and upper bounds using the parameter b. According to Fan and Wang
(2002), the UTSS criterion on the deviatoric plane is expressed as

r =




rtrc sin 60◦

rt sin θ + rc sin (60◦ − θ)
(1 − b) + b

rt

cos θ
when 0◦ ≤ θ ≤ θb

rtrc sin 60◦

rt sin θ + rc sin (60◦ − θ)
(1 − b) + b

rc

cos (60◦ − θ)
when θb ≤ θ ≤ 60◦

.

(11.9)

In Equation (11.9), θ = 1
3 arccos

(
3
√

3J3

2(
√

J2)2

)
. The value of θb which corresponds to the

corners of the outer shape in Figure 11.4(a) can be determined as

θb = arctan
[

1√
3

(
2rc

rt
− 1

)]
(11.10)
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Figure 11.5 Regressed curves from experimental data.

The derived convex shape on the deviatoric plane has threefold symmetry. If its
shape in the range of 0 ≤ θ ≤ 60◦ is given, the full deviatoric plane is obtained. The
value of b for a specific material is determined by curve-fitting of experimental results.
Yu et al. (2002) suggested that for rock materials b took a value between 0.5 and 1.0.
In the current model, b takes 0.6 unless it is explicitly stated otherwise.

The UTSS criterion with the above simplification of the deviatoric plane is adopted
to represent rock strength behavior in the present study. The two meridians, i.e.
the variation of rt and rc with respect to the hydrostatic pressure are determined
by application of the uniaxial and triaxial compression test results of the considered
granite.

11.4.2 Determination of the meridians and the damage model

The proposed elasto-plastic damage model includes two failure surfaces for intact mate-
rial and fully fractured/damaged material respectively. The former one corresponds to
initial failure of the material, while the other one gives the residual strength of the
material. Each surface has two meridians with respect to θ = 0◦ and θ = 60◦ respec-
tively. The determined meridians of the two surfaces are depicted in Figure 11.5(a).
The strength of the partially damaged material falls in-between the two surfaces which
is characterized by a damage scalar D.

The compressive meridian indicating initial failure in terms of normalized variables
is expressed as

r∗
ic = A

(
1 − ξ∗

√
3

)N

. (11.11)

The compressive meridian representing the residual strength of fully damaged
material is given by

r∗
fc = B

(
− ξ∗

√
3

)M

(11.12)
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Polycrystalline model for heterogeneous rock 239

where, r∗
ic represents the strength of the intact material, while r∗

fc the residual strength;
A, N, B, and M are the material constants; ξ∗ is the normalized pressure and
ξ∗ = √

3p/pT ; p is the pressure variable (positive in tension); and pT is the ultimate
volumetric tensile pressure, which performs as a cut-off tensile pressure in the model.
Considering that brittle failure occurs at a low volumetric tensile pressure such as the
uniaxial tensile condition, it gives pT = σt/3, and σt is the uniaxial tensile strength.

The normalized strengths (r∗, r∗
ic, r∗

fc, r∗
D, r∗

f ) with regard to the radius on the
deviatoric plane have the general form of

r∗ = r
σc

=
√

2J2

σc
(11.13)

where σc is the uniaxial compressive strength.
It should be mentioned that the compressive meridian with respect to θ = 60◦

corresponds to a stress state of σ3 ≤ σ2 = σ1 where σ1, σ2, and σ3 are principal stresses
and positive in tension. This stress state can be obtained with quasi-triaxial testing
machines. The tensile meridian with θ = 0◦ and σ3 = σ2 ≤ σ1 requires higher confining
pressure which is difficult to be achieved in a conventional triaxial compressive test.
Therefore, the tensile meridian is derived by scaling the compressive meridian with a
constant rtc, which will be given later.

The normalize strength r∗
D for a damaged material is defined as

r∗
D = r∗

i − D(r∗
i − r∗

f ) (11.14)

where D is the scalar damage variable (0 ≤ D ≤ 1.0) and is defined as

D =
∑ �εp

ε
f
p

(11.15)

where �εp is the effective plastic strain during a cycle of integration, and ε
f
p is the

equivalent plastic strain to fracture under a constant pressure p. The expression of
ε

f
p is

ε
f
p = D1

(
1 − ξ∗

√
3

)D2

(11.16)

where D1 and D2 are two constants. The material cannot undertake any plastic strain
at p = pT . The incremental equivalent plastic shear strain is defined as

�εp =
∫ √

2
3

(ε′
αβ)p : (ε′

αβ)p (11.17)

From the above introduction, it is seen that this model has the advantage to
account for the material strength degradation from the intact state to the fully dam-
aged state by employing a scalar damage variable induced by the effective plastic
strain. The pressure-cutoff failure criterion is used to reflect the volumetric tensile
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Table 11.2 Material parameters for Singapore granite.

Parameters Symbol Unit Granite

Density ρ kg/m3 2670
Young’s modulus E GPa 75.20
Poisson’s ratio ν – 0.2
Tensile strength of intact rock σt MPa 16.1
Uniaxial compressive strength of intact rock σc MPa 157.0
Hydrostatic tensile pressure limit pT MPa 5.367
Normalized strength parameter for compressive meridian A – 0.1334
in the intact state

Normalized strength parameter for compressive meridian B – 0.04446
in the fully fractured state

Ratio of the tensile meridian radius to the compressive rtc – 0.58
meridian radius

Strength parameter for the intact material (exponent) N – 0.8536
Strength parameter for the fractured material (exponent) M – 0.8536
Parameter for damage model D1 – 1.748 × 10−4

Parameter for damage model (exponent) D2 – 0.9326
Weighting coefficient in UTSS criterion b – 0.6

failure. Thus, it captures both tension-induced brittle cracks and compression-shear
dominated crushing failure.

Parameters in the expression of the two meridians corresponding to the initial
failure and in the damage model can be determined by curve fitting of the experimental
results. For a typical granitic rock in Singapore (Zhao, 1999), the uniaxial compressive
strength σc is 157 MPa, and the tensile strength σt is 16.1 MPa. The compressive
meridians for the intact material and the fully damaged material are shown in Figure
11.5(a). For the tensile meridian curve of the intact material, we assume its shape is
similar to the compressive one. By determining a ratio rtc of the tensile radius rt to the
compressive rc at the same pressure, the tensile meridian can be derived by scaling the
compressive meridian with rtc.

According to the UTSS criterion, the equal biaxial compression test result that falls
onto the tensile meridian, which can be used to determine the ratio rtc. The biaxial
compression strength is assumed to be 1.15 times the uniaxial compressive strength.
Its corresponding coordinates on the tensile meridian curve are denoted by ξ∗ and r∗
located at point P(−36.37, 0.94) (Fig. 11.5(a)). The corresponding point P′ on the
compressive meridian at the same pressure is (−36.37, 1.61). Therefore, rtc = 0.58 is
then obtained as the ratio of the value rt at P to that of rc at P′.

For the fractured material, it is assumed that the residual strength of the fractured
rock is one-third of the intact strength as shown in Figure 11.5(a). The regressed
representation of the equivalent plastic strain to fracture by Equation 11.16 is depicted
in Figure 11.5(b).

The parameters used for the two-surface failure model are listed in Table 11.2. It
should be mentioned that these approximated parameters in Table 11.2 are derived
with limited experimental data. With more experimental data for the meridians, more
accurate parameters can be obtained. More details about a multi-surface strength
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Polycrystalline model for heterogeneous rock 241

model can be found in the works by Holmquist, Templeton and Bishnoi (2001), Malvar
et al. (1997) and Fan and Wang (2002).

11.5 NUMERICAL SIMULATIONS

11.5.1 Heterogeneity treatments in the artificial specimen

As mentioned earlier, since the heterogeneities in rock-like materials cause differ-
ent micro-cracking activities and hence macro-mechanical responses in their failures,
the heterogeneities should be properly presented and modeled in numerical analysis.
Heterogeneity modeling by using the Weibull distribution law has been successfully
employed in rock-like material failure simulations (Tang et al., 2000; Fang and
Harrison, 2002). The current approach is to model the heterogeneity due to a speci-
men’s aggregates or grains. Heterogeneity in different minerals is modeled separately.
Hence, the strength-related parameters in mineral grains with the same type are
assigned to random values according to the Weibull’s function as,

f (ω) = β

µ

(
ω

µ

)β−1

e

[
−
(

ω
µ

)β
]

(11.18)

where µ is the scale parameter giving the characteristic value of distribution ω; β is
the shape parameter describing the spatial concentration and dispersion degree of ω.
With increasing β, the generated data are more concentrated. Hence, β is called the
homogeneous index.

In the current model, the variations of the modulus, strength meridians and the
fracture plastic strains in specimen’s microstructure are considered to be the most signif-
icant factors to influence its macroscopic behaviors. Therefore, the modulus parameter
E, parameters σc, σt and D1 are selected to characterize the heterogeneity in different
types of mineral grains.

Mineral characteristic properties must be determined in order to model the het-
erogeneity on grains they represent using the Weibull distribution law. Due to lack of
reliable data, the mechanical properties of these three minerals in the artificial speci-
mens are assumed to be proportional to its Mohs hardness scale value multiplied by a
coefficient R. R depends on the artificial specimen’s heterogeneity configurations. Its
value can be determined by the uniaxial compressive strength σc (taken as 157 MPa)
divided by the strength of a trial artificial specimen with R = 1.

The hardness of the feldspar, quartz and biotite are 6, 7 and 3, respectively. Corre-
spondingly, the ratios of their characteristic modulus and strength-related parameters
(E, σc, σt and D1) to the granite macroscopic ones are 1.125R, 1.3125R and 0.5625R,
respectively. Other parameters are the same as the granite macroscopic values given in
Table 11.2.

Assume that the three normalized Weibull distributions for feldspar, quartz and
biotite are ωf , ωq and ωb, respectively. The model parameters in those mineral grains
have the relationship with the corresponding granite macroscopic ones as listed in
Table 11.2. Consequently, each SPH particle will be assigned to the same parameters
of the mineral grain it belongs to.
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Table 11.3 Parameters of mineral grains in artificial granite specimen.

Ratio of mineral’s parameter value to that
of the corresponding granite macroscopic one

Mineral components E, σc, σt, D1 others

Feldspar grains 1.125ωfR 1.0
Quartz grains 1.3125ωqR 1.0
Biotite grains 0.5625ωbR 1.0

11.5.2 Verification by simulating the Brazilian splitting test

To verify the model, numerical simulations of the Brazilian splitting test are performed
for a circular specimen which is cut out from the central part of the specimen N1.
Experimental studies found that the quartz grains have more pre-existing micro-cracks
than those in the biotite and feldspar grains. Hence, the quartz grains are given a more
heterogeneous Weibull distribution of the material properties. The homogenous index
of the feldspar and biotite grains are 50 and that of the quartz is 5. Model parameters
of the specimen’s particles follow those shown in Table 11.3, where R takes 2 by a
trial simulation. The specimen has a radius of 25 mm, containing 12,281 SPH particles
with the same smoothing length of 0.4 mm. The geometry and loading conditions for
these two specimens are illustrated in Figure 11.6(a). In the simulation, the specimen
was sandwiched between two rigid walls acted upon by velocity boundaries symmet-
rically. Particles at the upper and lower boundaries were given a constant velocity of
0.0025 m/s. The average compressive force on the two boundaries was recorded and
taken as the loading force.

The loading force versus the loading displacement curve is plotted in Fig-
ure 11.6(b). The profile of the simulated acoustic emission (AE) count is also plotted
in the figure by recording the number of damaged particles. It is commonly believed
that, during the specimen’s deformation process, a variety of micro-activities including
dislocation, twists and crack formation will cause such AE events as indicated by Cox
and Meredith (1993). By associating a single AE event with the micro-crack forma-
tion, one can deduce the specimen’s damage by the AE event record. When the particle
fails, the strain energy carried by the particle is released accordingly. Therefore, each
particle failure event can be regarded as an AE count.

The loading force increases almost linearly with the loading displacement. When
reaching the peak value, it drops down abruptly. As can be observed, the damaged
particles are predominately concentrated near the peak force region.

Figure 11.7 shows the process of crack initiation and propagation and the final fail-
ure pattern of specimen B1. The predicted cracks are represented by damaged particles
in white. The crack initiates at 98% of the peak force. It is located on the boundaries
between the quartz and biotite grains around the disc center, as indicated by the dashed
circle. Unlike the homogeneous case where the crack occurs exactly at the disc center,
crack initiation in a heterogeneous specimen largely depends on the local stress con-
ditions affected by the interactions of mineral grains and their mechanical properties.
Therefore, the first crack may take place where the stress condition is most severe as
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(a) Geometry and loading condition (b) Loading curve and AE activities
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Figure 11.6 Verification by simulating Brazilian splitting test, specimen B1.

discussed by Andreev (1995). With the increase in loading force, the central crack prop-
agates rapidly towards both ends of the disc along the loading diameter until it splits
the whole disc. Again, due to the specimen’s heterogeneity effect, it is very interesting
to observe that the crack deviates from its original path at 92% of the peak load in
the post-peak region. After the specimen is completely failed, those damaged particles
separate naturally from each other and form up a macro-crack as shown in the final
failure pattern. Hence, the white gaps between the fragments represent numerically
predicted fracture zones.

Figure 11.8 presents the profiles of the horizontal and vertical stress component
distributions along the loading diameter during the specimen’s failure process and
compares these with the theoretical solutions.

As shown in Figure 11.7 and Figure 11.8(a), the crack may not exactly initiate from
the disc center due to the heterogeneity effects in the specimen’s microstructure. Since
a crack creates new open boundaries, those particles adjacent to the open boundaries
will release their stresses. Hence, at the peak load, horizontal stresses of some particles
near the disc center unload to zero (Fig. 11.8(b)). In the post-peak region, more and
more particles along the loading diameter are affected by the developing boundaries,
as seen from Figures 11.8(c) and 8(d). Features in such a heterogeneous specimen are
different from those in a homogeneous one. The simulation results have shown that
the microstructure modeling method can well capture detailed failure process of the
granite specimen. It is also shown that the numerical results match very well with
theoretically predicted stress distributions along the loading diameter.

11.6 SIMULATIONS OF THE UNIAXIAL COMPRESSION TESTS

The validated polycrystalline model and the developed code are subsequently applied
in simulating rock specimen failure in unixial compression tests. An artificial specimen
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98% peak 99% peak 100% peak 99% post peak

180901 92% peak 181001 87% peak 181201 82% post peak Failure pattern

92% post peak 87% post peak 82% post peak Final failure pattern

Figure 11.7 Failure process of specimen B1.

N1-1 is generated. The homogenous index of both feldspar and biotite grains are
50 and that of the quartz remains 5. Model parameters of the particles follow those
shown in Table 11.3, where R takes 2. Each specimen contains 31,250 SPH particles
with a smoothing length of 0.4 mm. In the simulation, the specimen is sandwiched
between two rigid walls acted upon by velocity boundaries without friction between
the wall and specimen’s ends as shown in Figure 11.9(a). Loading velocity is kept to
a constant of 0.01 m/s. The average compressive stress in the specimen’s ends is taken
as the specimen’s macroscopic compressive stress.

11.6.1 Predicted axial stress-strain curve and failure process

The axial stress-strain curve of specimen N1-1 as well as the record of the simulated
AE count with respect to the axial strain is plotted in Figure 11.9(b). The predicted
curve again shows brittle failure of the specimen. It almost keeps linear until the peak
stress and then drops down abruptly. The AE activities become active at about 68%
peak stress (marked as the first circle on the stress-strain curve). Most of these AE
events appear around its peak stress.

The specimen’s failure process is depicted in different frames in Figure 11.10 cor-
responding to those circle marks in Figure 11.9(b). It can be seen in Figure 11.10 that
cracks first occur in the quartz and the boundaries between the quartz and feldspar
grains, as indicated by the dashed white circles. With further load (point ‘b’), those
cracks propagate along the loading direction. Subsequently, they become the trans-
granular cracks. At the peak stress (point ‘c’), new cracks are initiated at the quartz
and the boundaries of quartzes and biotites. At the post-peak stage (point ‘d’), those
cracks on the right side of the specimen propagate rapidly and extend over several
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Figure 11.8 Stress distributions along the loading diameter for specimen B1.

grains. At 95% of post peak stress (point ‘e’), many long cracks can be found in
arrays and some form a cluster. Finally, several vertical cracks split the specimen. The
specimen falls into several large pieces eventually. Spalling can also be observed at
the specimen’s edges. Further observation finds that, in the pre-peak stress stage, few
cracks are in the biotite grains. Beyond the peak strength, the crack kinks in the biotite
grains and leads to small shear faults in the specimen as observed in the final failure
pattern. Because the quartz grains are more heterogeneous, cracks are first initiated
among these grains. The phenomenon that cracks occur along grain boundaries is due
to the stiffness mismatches between different mineral grains (Janach, 1977).

11.6.2 Parametric studies

The microstructures in the two generated artificial specimens N1 and N2 reflect two
different spatial distributions of granite components. For a real granite specimen,
they are also subjected to other conditions, such as weathering and pre-stress induced
cracks, which cause their strength reduction. To investigate the above factors on granite
failures, parametric studies are performed on another three specimens, namely N1-2,
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(a) Geometry and loading 
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Figure 11.9 Uniaxial compression for specimen N1-1.
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Figure 11.10 Predicted fracture process and the final fracture pattern of specimen N1-1.
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Table 11.4 Heterogeneous configurations in mineral grains of specimens.

Homogeneous index in mineral grains

Specimen Feldspar Quartz Biotite

N1-2 50 5 50
N2-1 10 3 10
N2-2 50 5 50

N2-1 and N2-2. Their configurations are listed in Table 11.4. Among them, N1-1 and
N1-2 have the same microstructure as N1. Similarly, the microstructures in N2-1 and
N2-2 are the same as that of N2. Obviously, N1-1 and N2-1 are more heterogeneous
than N1-2 and N2-2.

Specimen N2-1 has a different microstructure compared to N1-1. The failure pro-
cess of specimen N2-1 is plotted in Figure 11.11(a). At 96% of the peak stress, the crack
appears at the boundaries of quartz and feldspar grains. With a further load at the peak
stress level, another crack occurs within the quartzes near the specimen’s middle height
close to the left side. More cracks are initiated in the post-peak region. They propagate
rapidly, predominately along the loading direction. It can be seen that a crack’s prop-
agation is more difficult in relatively hard and homogeneous feldspar grains than in
other mineral grains. The first two cracks are almost halted when they enter the feldspar
grains. The kinking and coalitions of these cracks can also be observed. Appearance
of a parallel array with step-like propagation paths of these cracks strongly suggests
that the failure has an axial splitting mode with some small shear faults. Although the
specimen N1-1 and N2-1 have different microstructures, their final failure patterns
are similar.

Specimen N1-2 has the same microstructure as N1-1. The failure process of N1-2
is plotted in Figure 11.11(b). The cracks appear firstly at quartz grains at 99% of its
peak stress. When the compressive stress approaches the specimen’s peak stress, the
transgranular cracks among the quartz and biotite grains can be found. The formed
major crack propagates rapidly parallel to the loading direction in the post-peak region.
Crack nucleation is observed within quartz grains at 82% peak stress in the post-peak
stage. Subsequently, many single isolated axial cracks are created. These cracks become
a cluster around the well-developed major crack and eventually form a fault as shown
in the final failure pattern.

Figure 11.11(c) presents the failure process of the specimen N2-2. As can be
observed, the first evident crack appears at the quartz grains at the pre-peak stage
around 99% of its peak stress. It propagates into different mineral grains rapidly
along the loading direction after the peak stress. At 99% of its peak stress in the post-
peak stage, one can observe that the crack deviated from its original path as indicated
by the dashed circles. Such deviations might be resulted by stress concentrations and
redistributions due to mismatched properties among these different mineral grains.
This failure mode is also mainly due to the axial splitting of cracks. Meanwhile, some
small shear faults are also formed.
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96% peak 100% peak 99% post peak 98% post peak 93% post peak 83% post peak

99% peak 100% peak 99% post peak 95% post peak 82% post peak 74% post peak

99% peak 100% peak 99% post peak 98% post peak 94% post peak 79% post peak

Figure 11.11 Predicted failure process of specimen: (a) N2-1 (top), (b) N1-2 (middle) and (c) N2-2
(bottom).

The above results show that the specimen’s failure process is influenced by the
spatial distributions of different grains in their microstructures as well as the specimen’s
heterogeneity. It is clear that, in N1-2 and N2-2, specimen’s failure is due to axial crack
and the consequent shear faults by the nucleation of an array of short cracks mainly
in biotite grains. However, in N1-1 and N2-1, due to the existence of many grains of
different strength-weakness, the specimens are split into many pieces by parallel vertical
cracks. The cracks are more often developed in relatively heterogeneous quartz grains.
In addition, they may take place at the boundaries between different grains due to
stress concentrations induced by the mismatching stiffness. The transgranular cracks
can be intensively observed during the post-peak stage. One can also observe that most
biotite grains keep intact until the specimen fails, while some may kink and slide to
form shear faults.
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N1-1 N1-2

Uniaxial compression test results on rock experiments (after Andreev, 1995)

N2-1 N2-2

Figure 11.12 Predicted final failure patterns and comparison with experimental results.

The predicted failure process agrees well with observations by other researchers.
Hallbauer, Wagner and Cook (1973) described how a fault is formed by stepwise join-
ing of the growing fractures with the existing macro-cracks close to the specimen’s
failure. Janach (1977) also proposed a failure model to account for the granite spec-
imen’s failure process. He explained that the observed shear fault was caused by the
formation of a diagonal array of tipped elements due to the stiffness mismatches among
those different mineral components. The predicted final failure patterns of these spec-
imens are plotted in Figure 11.12. Their differences reflect the variations in the rock
specimens in terms of spatial distribution of microstructures as well as the heteroge-
neous strength distributions among their mineral components. As can be seen, these
failure patterns agree well with those observed in the experiments (Andreev, 1995).

11.7 CONCLUSIONS

In this chapter, a polycrystalline model for simulation of multiphase material failure
has been presented by taking into account the actual contents of different components
and their characteristic sizes. A treatment of the heterogeneities in these components is
also addressed by introducing a statistical method using the Weibull distribution law.
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The polycrystalline model has been applied to construct artificial granite specimens
and it has been verified by simulating a Brazilian splitting test. Uniaxial compression
tests are further simulated by using the artificial specimens to investigate the effect
of material microstructure and mineral component spatial distributions. Results show
that both the microstructure and mineral component heterogeneities have an influence
on the specimen’s failure process and macroscopic mechanical response. The simula-
tion results demonstrate that the developed microstructure modeling method can well
represent those micro-cracking activities as well as macro-failure behavior and final
failure pattern.

Although the generated microstructure of the granite specimens can only be
regarded as an approximation of a real rock specimen, it shows potential applica-
tions in accurately simulating brittle failure of polycrystalline rock specimens, as far as
detailed information is obtained on the specimen characteristics including major com-
ponent contents, strength behavior of the components, characteristic sizes of the grains,
etc. The present approach can be further extended to three-dimensional applications.
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Chapter 12

Finite Element Method modeling
of rock dynamic failure

Chun’an Tang and Yuefeng Yang

12.1 INTRODUCTION

Numerical methods adopted for rock dynamic analysis can generally be classified into
the vibration method and the wave method. The essential difference between the two
methods is whether to consider the wave propagation in the medium under study.
The vibration method ignores the wave propagation and applies dynamic loading on
the area under study. As the problem is simplified, the vibration method can easily
be coupled with the finite element method. Since the constraint on time step is far
less than that of the wave method, the vibration method has been widely applied in
research and engineering projects. On the other hand, the wave method considers the
effect of wave propagation. The wave takes some time to propagate to other locations.
Its theory is rigorous and can reflect the response process of a medium under dynamic
loading more accurately. Therefore, the wave method has a promising prospect and
profound significance in researches.

In short, the wave method describes the wave propagation process in the medium.
The solution for wave problems can be determined by two general types of methods.
One is to solve the wave equations by integration or other mathematical methods. The
advantage of this is that various types of waves can be studied separately. However,
it requires advanced knowledge of mathematics as complex derivations are involved.
In addition, analytic solutions may not be found for some problems or sometimes
the results are complex functions. With the help of numerical methods, although the
computational work is less, the result is only for the wave field at a specific point. If the
spatial variation of the wave field needs to be investigated, point-by-point calculation
is necessary, which leads to higher cost.

The other method is numerical simulation of the wave propagation process by
using finite the difference method or finite element method. The semi-discrete method
with separate numerical time-space treatment is applied to transform the wave equa-
tions into second order ordinary differential equations. Its advantage is that the
numerical solution of the entire wave field in the time-space domain can be obtained
and various characteristics of the wave field can be illustrated intuitively. However, the
discrete method leads to errors in solutions for continuous media. One of the major
problems is the “low-pass filtering’’ phenomenon (Liao and Liu, 1986; Liu and Liao,
1989, 1990). Each element has a critical frequency, and the wave components in the
transient wave with frequency higher than the critical frequency would be filtered while
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only those with lower frequency can be passed. However, many high-frequency wave
components have great influence on wave problems and generally they should not be
discarded. In this case, a refined mesh is required to increase the critical frequency,
which increases the computational work without adding computation difficulties.

The focus of this chapter is to investigate wave propagation in rock by using the
finite element method. First, the finite element method is briefly introduced. Two major
problems in wave propagation are then discussed, namely, artificial boundary and
impact dynamic contact. The two-step method of visco-elastic boundary and dynamic
contact force proposed by Liu and others of Tsinghua University, China, is employed
(Liu and Wang, 1995a, 1995b). However, the theory and relevant researches on this
method is limited to homogeneous materials and cannot be applied directly to heteroge-
neous media. In the two-dimensional rock failure process analysis (RFPA2D) program,
the Weibull distribution and mesoscopic linearity are adopted to reflect the macro-
scopic non-linearity. RFPA2D has been applied to many studies on heterogeneous
media, which have yielded fruitful achievements and been consistent with laboratory
test results (Tang, 1997a, 1997b; Tang and Kaiser, 1998; Fu, 2000). On the basis of the
two-step method and RFPA2D analysis, the study on wave propagation is extended
to heterogeneous media. Finally, dynamic fracturing process analysis of rock material
under the Brazilian tensile test condition is conducted using RFPA2D. The analysis
aims to investigate the influence of applied stress wave amplitude on the fracturing
process and failure induced in the rock material. Heterogeneity of the rock material
is taken into account and its influence on stress wave propagation is first discussed.
Then, the dynamic failure process analyses are extended to investigate the influence
of waveforms in terms of stress wave amplitude on failure modes. These simulations
reveal that the failure modes are affected strongly by the stress wave amplitude. A
stress wave of higher amplitude generates fracturing earlier. Consequently, the higher
wave amplitude leads to intense fracture initiation near the loading point, whereas
lower amplitude leads to intense fracture initiation near the bottom where the wave
is reflected. The observation obtained from the simulations provides a new insight on
the fracturing and failure mechanism of rock under the dynamic Brazilian tensile test.
The simulation also shows that RFPA has the potential to simulate and study material
failure under dynamic loading conditions.

12.2 RFPA DYNAMIC MODELING APPROACH

12.2.1 Finite element solutions for elastic wave

For dynamic analysis by the wave method, the transient wave propagation is one of the
main issues. The finite element method is usually adopted to solve the complex tran-
sient wave propagation problem, including the central difference method, Newmark
method and Wilson-θ method. Depending on whether the stiffness matrix is decom-
posed to determine the solutions, it can be divided into the explicit integration scheme
and the implicit integration scheme. The explicit integration scheme is represented by
the central difference method, while the Newmark method and Wilson-θ method are
often adopted in implicit integration schemes. The explicit scheme is usually used in
combination with the lumped mass method. The inverse of the stiffness matrix is not
required to determine the solutions and even assembling of the overall stiffness matrix
is not needed. Under the premise of stability, it has high computation efficiency and
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Finite Element Method modeling of rock dynamic failure 255

precision. On the other hand, the inverse of the stiffness matrix has to be calculated in
the implicit integration scheme. If the consistent mass matrix is adopted, the implicit
integration would greatly increase the computation effort. However, with better stabil-
ity of the implicit integration and by setting the integration parameters in the Newmark
method, the systematic high-frequency reflection can be effectively filtered out in the
high-frequency range (Fang, 1992; Fang and Chen, 1993). Moreover, with techno-
logical advances, many efficient iterative methods have been developed, among which
the conjugate gradient (CG) method is a representative one. By applying different
preprocessing techniques, various preconditioned conjugate gradient (PCG) methods
have been proposed, among which the most important one is the symmetric succes-
sive over-relaxation preconditioned conjugate gradient (SSOR-PCG) method. Using
this method, the computation precision can be assured and the number of iterations
and computation work can be greatly reduced. Furthermore, with the introduction of
vector computers and parallel computers, the previous “serial mode’’ (the second oper-
ation can only be started after the first one is completed) is changed, and a large amount
of matrices can be computed simultaneously. Hence, the low efficiency of the implicit
method due to the large amount of computation work is improved. Consequently, the
implicit integration method, such as the Newmark method, is widely applied not only
in earthquake analysis, but also in the impact problem. In this chapter, the Newmark
method is employed to investigate wave propagation in rock under dynamic loading.

According to Hamilton’s variational principle, after discretization in the space
domain by using the finite element method, the dynamic equation can be expressed in
the following form:

Mü + Cu̇ + Ku = Q (12.1)

The following relationship of velocity and displacement is imported in the
Newmark method:

üt+�t = 1
β�t2

(ut+�t − ut) − 1
β�t

u̇t −
(

1
2β

− 1
)

üt

u̇t+�t = γ

β�t
(ut+�t − ut) +

(
1 − γ

β

)
u̇t −

(
γ

2β
− 1

)
üt+�t�t

(12.2)

Substituting into the dynamic equation, we can have

�

Kut+�t = �

Qt+�t

�

K = K + 1
β�t2

M + 1
β�t

C

�

Qt+�t = Qt+�t + M
[

1
β�t2

ut + 1
β�t

u̇t +
(

1
2β

− 1
)

üt

]

+ C
[

γ

β�t
ut +

(
γ

β
− 1

)
u̇t +

(
γ

2β
− 1

)
üt

]
(12.3)

where ut, u̇t, üt are the displacement, velocity and acceleration vector at time t, respec-
tively; K, M and C are the stiffness matrix, mass matrix and damping matrix of the
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system, respectively; γ and β are the integral coefficients in the Newmark method.
When γ ≥ 1

2 , β ≥ 1
4

(
γ + 1

2

)2
, the Newmark method is unconditionally stable.

12.2.2 Brief description of the RFPA2D model

RFPA is a program which can numerically simulate the progressive failure process
of rock. It brings the heterogeneity parameters of rock into the basic element and
realizes description of the visco-elastic boundary element method by heterogeneity at
meso-scale. The macroscopic nonlinearity of a material during the deformation pro-
cess intuitively reflects the entire process from mesoscopic basic element damage to
macroscopic failure. In order to manifest the mesoscopic heterogeneity of rock mate-
rial, the rock material is considered to be composed of uniform quadrilateral elements
and its properties are assumed to satisfy the Weibull distribution (Tang, 1997b; Chau
et al., 2004):

ϕ(α) = m
α0

·
(

α

α0

)m−1

· e−
(

α
α0

)m

(12.4)

where ϕ(α) is the statistical distribution density of meso-elements which have a certain
mechanical property α; α represents the mechanical property of meso-elements in the
material (such as strength, elastic modulus, Poisson’s ratio, bulk density etc.); α0 is
the average value of the property of the meso-elements; m defines the shape of the
distribution function and its physical meaning reflects the homogeneity of rock mate-
rial. m can be defined as the coefficient of homogeneity; the larger the value of m is,
the more homogeneous the rock material is; the smaller m is, the more heterogeneous
the rock material is. Equation (12.4) reflects the distribution of the components of a
heterogeneous material.

In the RFPA2D program, the properties of elements in meso-scale satisfy the
elasto-plastic or elasto-brittle constitutive model. When the element meets the damage
criterion, damage occurs in the element. In the numerical analysis, the Mohr-Coulomb
criterion and the maximum tensile stress criterion are adopted to judge whether dam-
age or failure occurs in the element (Zhu et al., 2006). For damaged elements, the
stiffness is reduced according to the elastic damage model. The next step of loading is
then applied until the entire analysis process is completed.

12.2.3 Elastic damage constitutive law of
meso-elements in the RFPA2D model

The meso-element is initially an elastomer and the mechanical property can be
expressed by elastic modulus and Poisson’s ratio. With increasing stress in the ele-
ment, the stress or strain state of the element will satisfy the given damage threshold
and element damage occurs. Two criteria are adopted in the RFPA program (Zhu
et al., 2006): one is the maximum tensile strain (stress) criterion, i.e. when the max-
imum tensile strain (stress) of the meso-element reaches the given limit value, tensile
damage occurs in the element; the other one is the Mohr-Coulomb criterion, i.e. when
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fcr

fc0

ft0

t0

c0

Figure 12.1 Elastic damage constitutive law of element under uniaxial stress state.

the stress state of the meso-element meets the Mohr-Coulomb criterion, shear dam-
age occurs in the element. Meanwhile, the maximum tensile strain criterion has the
priority, in other words, when the meso-element satisfies the maximum tensile strain
criterion, there is no need to consider whether the element meets the Mohr-Coulomb
criterion. Figure 12.1 shows the elastic damage constitutive law of an element under
uniaxial compression and tension.

According to the elastic damage theory, the elastic modulus of an element gradually
reduces with increasing damage. The damage equation is as follows:

E = (1 − D)E0 (12.5)

where E and E0 are the elastic modulus after damage and the initial elastic modulus,
respectively; D is the damage variable.

When the tensile stress in the element reaches the uniaxial tensile strength ft0, i.e.
σ3 ≤ −ft0, the damage variable can be written in the following form:

D =




0 ε > εt0

1 − λεt0/ε εtu < ε ≤ εt0

1 ε ≤ εtu

(12.6)

where λ is the coefficient of residual strength and can be determined by ftr = λft0, εt0

is the tensile strain corresponding to the elastic deformation limit, εtu is the ultimate
tensile strain, upon which the element loses its tensile capability. εt0 = ηεtu, where η is
the ultimate tensile strain coefficient.
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258 Advances in Rock Dynamics and Applications

Under multiaxial stress state, the principal strain of the element may be higher
than the ultimate tensile strain εt0. In this case, the equivalent principal strain ε shall
be calculated:

ε = −
√

〈−ε1〉2 + 〈−ε2〉2 + 〈−ε3〉2 (12.7)

where ε1, ε2 and ε3 are the three principal strains. The 〈 〉 is a calculation operator,
and can be written as follows:

〈x〉 =
{

x x ≥ 0
0 x < 0

(12.8)

In this case, the damage variable can be expressed as:

D =




0 ε > εt0

1 − λεt0/ε εtu < ε ≤ εt0

1 ε ≤ εtu

(12.9)

In order to analyze the damage behavior of the element under compression and
(or) shear, the Mohr-Coulomb criterion is selected as the second strength criterion:

σ1 − σ3
1 + sin φ

1 − sin φ
≥ fc0 (12.10)

where σ1 is the major principal stress, σ3 is the minor principal stress, φ is the friction
angle, fc0 is the uniaxial compressive strength. The damage variable is then in the
following form:

D =
{

0 ε < εc0

1 − λεc0/ε ε ≥ εc0
(12.11)

where εc0 is the compressive strain when the elastic deformation limit is reached, λ is
the coefficient of residual strength.

Under multiaxial stress state, the major principal strain can be calculated by the
following equation:

εc0 = 1
E0

[
ft0 + 1 + sin φ

1 − sin φ
σ3 − v(σ1 + σ3)

]
(12.12)

where v is the Poisson’s ratio and other parameters are defined as above.
In the RFPA program, it is assumed that the development of shear damage is only

related to the major principal strain ε1. Extended further from the above derivations,
the triaxial shear damage variable is:

D =
{

0 ε1 < εc0

1 − λεc0/ε ε1 ≥ εc0
(12.13)
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Finite Element Method modeling of rock dynamic failure 259

12.3 TRANSIENT WAVE PROPAGATION IN INFINITE MEDIUM

For simulation of transient wave propogation in an infinite medium, it is common
practice to take the near-field calculation area with finite size from the infinite medium
and introduce an artificial boundary around the calculation area. The finite element
method or other techniques can then be applied to discretize differential equations
of motion and physical boundary conditions in the time and space domains. Conse-
quently, the direct simulation of real wave propagation is realized. The commonly
used artificial boundaries include the paraxial boundary, the transmitting boundary,
the viscous boundary and the visco-elastic boundary. The paraxial boundary is an
approximation from the standard wave equations and the travelling wave is diffracted
by the physical wave velocity of the corresponding homogeneous medium. However,
the paraxial boundary cannot be applied when multiple physical wave velocities exist
on the boundary. The transmitting boundary is a kind of kinematic simulation. It can
directly model the transmitting process for various travelling waves, including surface
waves and body waves. Its precision can be guaranteed by multiple transmissions (Liao
and Liu, 1989; Liao and Yang, 1994; Liao, 2002) and is the highest among the four
boundaries. However, when multiple transmission equations are used, the effect of
finite element discretization in the space domain will result in zero-frequency drift and
high-frequency oscillatory instability. Therefore, a damping layer in the boundary and
smoothing techniques are required to eliminate the high-frequency oscillatory insta-
bility. Application of the transmitting boundary requires good understanding of the
theory and of programming, and is not suitable for secondary development on the
existing large-scale softwares and programs. The viscous boundary, which has a clear
concept, is easily implemented and widely used. However, it only considers absorp-
tion of scattered waves and may lead to low-frequency drift phenomenon. Hence, it
is not able to simulate elastic restoration of a semi-infinite medium. The visco-elastic
boundary excels the viscous boundary. It has faster computation speed and can easily
be implemented (Liu and Lu, 1997, 1998; Liu, Gu and Du, 2006). The visco-elastic
boundary can be embedded into the existing program or software conveniently (Liu,
Du and Yan, 2007) and the accuracy can meet the engineering requirements.

On the basis of visco-elastic boundary, Liu, Gu and Du (2006) derived the con-
sistent visco-elastic artificial boundary and its boundary element and proposed an

x 

y 

i j

l k
l /2l /2

h
/2

h
/2

Figure 12.2 Rectangular finite element.
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260 Advances in Rock Dynamics and Applications

equivalent visco-elastic artificial boundary element. Hence, the ordinary finite element
can be used to generate the visco-elastic boundary, which has the same calculation
accuracy with the lumped visco-elastic artificial boundary.

12.3.1 Element with equivalent stiffness

Liu, Gu and Du (2006) verified that the thickness of the artificial boundary element
has no significant effects on the simulation results. As the nodes l and k of an element
are fixed, the explicit plane stiffness matrix can be obtained. Removing the stiffness
matrix elements related to l and k, one can have the equivalent stiffness of the element
corresponding to the nodes i and j. Equation (12.14) can be adopted for calculation
and the conversion formulas for relevant parameters can be found in Equation (12.15):

[K̃] = lρ̃
6h




2c̃s 0 c̃s 0

0 2c̃p 0 c̃p

c̃s 0 2c̃s 0

0 c̃s 0 2c̃p


 (12.14)




ρ̃c̃s = hKBT

ρ̃c̃P = hKBN

G̃ = hKBT = αTh
G
R

Ẽ = (1 + ν̃)(1 − 2ν̃)
1 − ν̃

hKBN = αNh
G
R

(1 + ν̃)(1 − 2ν̃)
1 − ν̃

α = αN/αT

ν̃ =



α − 2
2(α − 1)

, α ≥ 2

0, α < 2

(12.15)

where ρ̃ is the mass density of the equivalent element; c̃s and c̃P are the S-wave and
P-wave velocity of the medium composed of equivalent elements, respectively; G̃, Ẽ
and ν̃ are the equivalent shear modulus, equivalent elastic modulus and equivalent
Poisson’s ratio of the equivalent visco-elastic boundary, respectively; h is the thickness
of the equivalent element; R is the distance between the wave source and the artificial
boundary; G is the shear modulus of the medium; KBT and KBN are the tangential
and normal spring constants of the equivalent physical system, respectively; αT and
αN are the tangential and normal coefficient of the visco-elastic artificial boundary,
respectively. The range recommended by Liu, Gu and Du (2006) is [0.35, 0.65] and
[0.8, 12], respectively.

12.3.2 Element with equivalent damping

The damping matrix of the equivalent boundary element which has the damping
proportional to the stiffness is adopted. Let

[C]B = [η̃][K]B (12.16)
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[η̃] =




η̃BT

η̃BN

η̃BT

η̃BN


 (12.17)




η̃BT = CBT

KBT
= ρcsR

αTG

η̃BN = CBN

KBN
= ρcpR

αNG

(12.18)

where η̃BT and η̃BN are the proportional coefficient related to the tangential and normal
stiffness, respectively; cs and cp are S-wave and P-wave velocity, respectively; G is the
shear modulus of the medium; ρ is the mass density of the medium; αT and αN are the
tangential and normal coefficient of the visco-elastic boundary.

According to the derivations by Liu, Gu and Du (2006), an element is extended
from the visco-elastic boundary in the RFPA2D numerical model. The relevant ele-
ment matrix can be calculated similarly to the 2D equivalent consistent visco-elastic
boundary element (Equations (12.14)–(12.18)).

The Lamb’s problem is an ideal model in geophysics firstly proposed by Lamb
(1904). The medium in the Lamb’s problem is a semi-infinite fully elastic homogeneous
medium with free surface, which can be classified into four types according to the form
of wave sources, namely: a point source acting on the medium surface, a line source
acting on the medium surface, a point source acting in the interior of the medium and
a line source acting in the interior of the medium. The earlier Lamb’s problem only
considered the vertical concentrated force, and later the other wave activiation forms
including the horizontal concentrated force and the logitudinal wave source. This is
called the generalized Lamb’s problem. By solving different types of Lamb’s problems,
some fundamental characteristics of artificially-generated seismic wave fields have been
identified.

For solving a wave propagation problem in an infinite medium, it is a common
practice to take the near-field calculation area of finite size from the infinite medium
and introduce a visco-elastic boundary around the calculation area. The purpose of
the artificial boundary is to keep the simulation result in the near field consistent
with that from infinite domain so that wave propagation in infinite domain can be
modelled realistically. As the visco-elastic boundary is theoretically derived on the
basis of cylindrical waves, the result has to be compared with that from infinite domain.
In this study, the comparison method in Liu and Lu (1997, 1998) and Liu, Gu and
Du (2006) are adopted. The result of infinite domain is obtained by the extended
finite element method (i.e. to enlarge the calculation area so as to approach the exact
solution). The extended solution is calculated by the large-scale software ANSYS and
the reliability of comparison analysis can be ensured. For convenience, the extended
solution is denoted by E.S. and the result from the visco-elastic boundary is denoted
by V.S. with the postfixed character standing for the key observation point.

Figure 12.3 shows a typical numerical model, where the dashed line represents
the visco-elastic boundary. The following parameters are adopted: elastic modulus
E = 2.5 MPa, Poisson’s ratio is 0.25, the density is 1 kg/m3, model size 4 m × 2 m, size
of finite elements �x = �y = 0.05 m and �t = 0.01 s. The calculation time is 10 s. The
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Figure 12.3 Numerical model.
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Figure 12.4 Displacement history of different observation points.

wave source is a distributed load F(x, t) = S(x)T(t) acting on the free surface along
y-axis. S(x) and T(t) are functions shown in Equation (12.19). It can be seen from
Figure 12.4 that the simulation results for key points A, B and D are very close to the
extended solutions, while the simulation result for point C is smaller than the extended
solution. As the visco-elastic boundary is derived with assumption of cylindrical waves,
the flat artificial boundary would lead to loss in accuracy. However, its accuracy is
higher than that of the viscous boundary (Liu and Lu, 1997, 1998; Liu, Gu and Du,
2006).

S(x) =
{

1 |x| = 1
0 |x| �= 1

T(t) =



t 0 ≤ t ≤ 1
2 − t 1 ≤ t ≤ 2

0 others

(12.19)

12.3.3 Infinite domain problem considering
heterogeneity of medium

The model used is similar to that for verification for homogeneous media, as shown
in Figure 12.3. A finite element model with extended boundary is established and the
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Figure 12.5 Comparison of simulated displacement along y-axis and the extended solution for different
observation points in media of different degrees of heterogeneity.

elastic modulus of the medium satisfies the Weibull distribution. The computation
model for the visco-elastic boundary is a section taken from the extended model. In
order to show the generality of comparison, four cases with different Weibull shaper
parameter m are considered, namely, m = 2, 5, 10 and 20, respectively.

Figure 12.5 compares the results from the visco-elastic boundary and the extended
solutions. It can be seen that the accurary of the visco-elastic boundary is still reason-
ably high. Therefore, the visco-elastic boundary can be applied for heterogeneous
material and its accuracy can meet the engineering requirements.

It is shown in Figure 12.6 that the shape parameter m affects the response of the
model and is directly related to material heterogeneity. The smaller m is, the more
heterogeneous the material is. When m = 20, the response of the model is close to that
of homogeneous material. When smaller m is adopted, the peak displacement of the
key point is larger. It can be seen from Figure 12.7 that the more homogeneous the
material is, the smoother the wavefront is; the more heterogeneous the material is,
the more irregular the wavefront is.

12.4 DYNAMIC CONTACT PROBLEM

In numerical dynamic analysis, solution of contact problems involves two major pro-
cesses: one is iteration of the boundary condition or contact state; another one is
calculation of contact force. In earlier days, the direct stiffness method in finite ele-
ment analysis was used to solve the contact problem (Ohte, 1973), which requires
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Figure 12.6 Displacement history along y-axis of different observation points in media with different
degrees of heterogeneity.

repeated modifications and solutions of the overall stiffness matrix and involves a
large amount of computation work. Later the hybrid method was proposed, in which
the overall stiffness matrix is solved by applying unit force on the contact point and
thus the flexibility matrix is obtained. In this way, less iterations are required, so the
computation efficiency is improved (Ou and Gong, 1988). Among various contact
element methods, the penalty function method and the Lagrange multiplier method
are most widely used. The penalty function method is simple and suitable for explicit
calculation. However, it affects the critical step time in the explicit calculation and the
singularity of the coefficient matrix in the implicit calculation. Furthermore, selection
of the proper penalty factor affects the reliability of calculation results (Chen, Pan and
Duan, 2006). The Lagrange multiplier method is accurate in calculating the contact
force. However, it is not compatible with the explicit equations and requires special
numerical treatment. When dealing with contact problems, zero diagonal items occur
in the asymmetrical coefficient matrix. Thus, it would require a huge amount of cal-
culation, and the contact surface can only be determined by trial and error (Ou and
Gong, 1988; Wen and Gao, 1994; Tworzydloa et al., 1998; Chen, Pan and Duan,
2006). In short, for any iterative method which needs to evaluate the initial con-
tact state and reassemble the stiffness matrix, even if the number of iterations can be
reduced by some techniques, the assembly of the overall stiffness matrix and solution
of control equations still results in an increase of workload. It is of great significance
for engineering practices and scientific researches to find a dynamic contact method
which is highly efficient, highly accurate and can easily be implemented. Liu and Wang
(1995a, 1995b) proposed a two-step method for dynamic contact force. The contact
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Figure 12.7 Distribution of the maximum shear stress.

force is only calculated for the contact point without reassembling the stiffness matrix.
Hence, the computation workload is greatly reduced. Liu and Wang (1995a, 1995b)
applied the two-step method in the dynamic response of contactable cracks and ver-
ified diffraction of incident P-wave on linear cracks. The method can describe the
collision between contact surfaces and reflect the effect of static and dynamic friction
between crack surfaces. Furthermore, Zhang, Chen and Tu (2004) applied the method
to analysis of seismic resistance of an arch dam and effectively considered the dynamic
interaction between blocks likely to slide in the dam abutment and the dam body. In
our study, the dynamic contact method is imported into the collision contact prob-
lem and it is verified by comparison with ANSYS_DYNA modeling. In combination
with the principle of reflection of macroscopic nonlinearity by mesoscopic linearity in
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Figure 12.7 (Continued)

the RFPA program, a simple method for collision and contact between heterogeneous
materials is proposed.

12.4.1 Relevant theories of dynamic contact model

Liu and Wang’s studies (1995a, 1995b) were based on a mechanical model which
contains cracks. Nodes on both sides of the crack form a node pair, and the slip
displacement of the node cannot be too large. As the interaction time is short and the
relative slip is small in many impact problems, the method can be widely applied. For
cases with large slip displacement, the contact searching algorithm can be adopted to
search the possible contact surfaces and pair up contacts. The relevant equations can
be established for the contact pair and hence to supplement and improve the algorithm.
This part of work will be carried out in the future.

To be clear and concise, the relevant theory and method in the literature will be
introduced in the following section, taking the 2D model as an example. The mechan-
ical model is shown in Figure 12.8, in which a crack S is present in a continuous elastic
medium. The upper side and lower side of S are denoted by S+ and S−, respectively.
S+ and S− are assumed to coincide at the initial moment. S is assumed to be smooth so
that the normal vector n and the tangential vector t of S exist everywhere (Fig. 12.8).
Under dynamic loading, S+ and S− may separate from, collide or contact with each
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Figure 12.8 Contact model.

other. When the crack surfaces contact with each other, normal and shear contact
stresses of the same magnitude and opposite direction act on S+ and S−.

The continuous medium is discretized by the finite element method. The same
distribution is set for nodes in the upper and lower sides of the crack, i.e. the nodes in
S+ and S− are in one-to-one correspondence. The force generated by dynamic contact
of the crack surfaces appears in the form of node force. By the lumped mass finite
element method, the motion equations for any node j can be expressed as follows:

MjÜj +
∑

l

KjlUl = Fj + Rj + τj (12.20)

where

Rj =




nT
j |Rj| j ∈ S+

−nT
j |Rj| j ∈ S−
0 j /∈ S

(12.21)

τj =
{

±tT
j |τj| j ∈ S
0 j /∈ S

(12.22)

nj = {cos θj sin θj} (12.23)

tj = {−sin θj cos θj} (12.24)

In Equations (12.20)–(12.24), Mj is the lumped mass of node j; Kjl is the stiffness
matrix for node j and the adjacent node l. Üj is the acceleration vector of node j; Ul is
the displacement vector of node l; Fj is the known external load vector acting on node
j; Rj and τj are the contact force vector of node j due to dynamic normal and shear
contact stresses between crack surfaces, respectively; |Rj| and |τj| are the norm of Rj

and τj, respectively; θj is the angle between the normal direction of the crack surface
S at node j and the x-axis (Fig. 12.8). The sign in Equation (12.22) depends on the
location of node j (S+ or S−) and the motion state of the node.
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When solving Equation (12.20) by the step-by-step integration method, as Rj and
τj are related to the motion state at the current moment and the moment before, the
displacement at the current moment cannot be determined directly. Hence, supple-
mentary conditions are required. According to the idea presented by Liu and Wang
(1995a, 1995b), the displacement can be divided into three parts:

UP+1
j = Uj

P+1 + �Uj
P+1 + �VP+1

j

�UP+1
j = �t2

Mj
Rp

j

�VP+1
j = �t2

Mj
τ

p
j (12.25)

where Uj
P+1

is the displacement without considering the effect of dynamic contact of
crack surfaces at the moment P; �UP+1

j and �VP+1
j are the additional displacements

caused by the dynamic contact force Rp
j and τ

p
j at the moment P, respectively. As Rp

j

and τ
p
j are unknown, the dynamic contact state of the crack has to be considered and

supplementary contact conditions are required.

12.4.1.1 Determination of Rp
j and �UP+1

j

Let i and i′ the two corresponding nodes on crack surfaces S+ and S−. The dynamic
contact forces on nodes i and i′ are of same magnitude but opposite direction. The
condition for occurrence of dynamic contact between i and i′ at moment P + 1 is:

ni(U
P+1
i′ − U

P+1
i ) ≥ 0 (12.26)

when the above formula is not satisfied, nodes i and i′ are not in contact with each
other and Rp

i and τ
p
i are zero. When the above formula is satisfied, nodes i and i′ are

in contact and Rp
i is non-zero. In this case, the actual motion of nodes i and i′ meets

the contact condition, i.e. the displacement compatibility condition:

ni(U
P+1
i′ − U

P+1
i ) = 0 (12.27)

From Equations (12.25) and (12.27), we have

RP
i = MiMi′

(Mi + Mi′ )�t2
nT

i �1i

�1i = ni(U
P+1
i′ − U

P+1
i )

�UP+1
i = Mi′

(Mi + Mi′ )
nT

i �1i (12.28)

�UP+1
i′ = − Mi

(Mi + Mi′ )
nT

i �1i (12.29)
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12.4.1.2 Determination of τ
p
j and �VP+1

j

When the corresponding nodes i and i′ are in contact, the two nodes are in different
motion state, i.e. static friction state and dynamic friction state. When the node is in
dynamic friction state, τ

p
j is related to the normal stress Rp

j and the dynamic friction

coefficient. When the node is in static friction state, the upper limit of τ
p
j can be given

by Rp
j . Liu and Wang (1995a, 1995b) derived the following equations:

�2i = ti[U
P+1
i′ − U

P+1
i ) − (UP

i′ − UP
i′ )]

τP
i = MiMi′

(Mi + Mi′ )�t2
tT
i �2i

∣∣τP
i

∣∣ = MiMi′

(Mi + Mi′ )�t2
|�2i|

∣∣τP
i

∣∣ ≤ fS
∣∣RP

i

∣∣
�VP+1

i = MiMi′

Mi + Mi′
tT
i �2i

�VP+1
i′ = − MiMi′

Mi + Mi′
tT
i �2i


 (12.30)

where fS is the static friction coefficient, RP
i is given by Equation (12.28). When the

inequalities are not satisfied, the node is in dynamic friction state.
When the node is in dynamic friction state, the following equations shall be

adopted:

τP
i = sgn(�2i)fD

∣∣RP
i

∣∣ (12.31)

sgn(x) =



1 x > 0
0 x = 0

−1 x < 0
(12.32)

At moment P + 1, the necessary and sufficient condition for node being in dynamic
friction state is:

ti(UP+1
i′ − UP+1

i ) > (UP
i′ − UP

i ), when sgn(�2i) = 1
ti(UP+1

i′ − UP+1
i ) < (UP

i′ − UP
i ), when sgn(�2i) = −1

}
(12.33)

When Equation (12.33) is not satisfied, it means that the node has changed from
dynamic friction state to static friction state. The relevant equations for static friction
state need to be recalculated.

�VP+1
i = sgn(�2i)fD

�t2

Mi
tT
i

∣∣RP
i

∣∣
�VP+1

i′ = −sgn(�2i)fD
�t2

Mi′
tT
i

∣∣RP
i

∣∣

 (12.34)
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Figure 12.9 Numerical model.

Table 12.1 Parameters of model material.

Elastic modulus (MPa) Poisson’s ratio Density (kg/m3)

Left bar 10 0.25 1000
Right bar 10 0.25 1000

In short, according to the idea proposed by Liu and Wang (1995a, 1995b), the
displacement is the summation of three parts. The contact pair is first searched, and
the displacement without considering the dynamic contact between crack surfaces is
calculated. The contact state between nodes is evaluated according to Equation (12.26).
If the nodes are in contact, Equations (12.27–12.33) can be used to find the solution
and the stress state can then be obtained.

12.4.2 Validation

In order to verify the accuracy of numerical simulation, a fundamental elastic colli-
sion problem is taken as an example in this section. The numerical model is shown in
Figure 12.9 and the material parameters are listed in Table 12.1. The left bar strikes
the right bar at a constant speed of 1 m/s. The right bar is static before the strike. Two
boundary conditions of the right bar are considered, namely, free bar and right-end
fixed cantilever bar. The model is assumed to be a plane strain problem. By comparing
with the calculation results by ANSYS_LSDYNA, it is verified that the method can be
applied to both contactable cracks and impact problems. In addition, the results are
very close to ANSYS_LSDYNA results and of high accuracy. For simple notation, R.A.
and L.A. are used to represent the average calculation results of key point A by RFPA
and LSDYNA, respectively. R.A.m2 stand for the calculation results for key point A
when m = 2. In the profile analysis, sections 1-1 and 2-2 are the vertical profiles on
which the elements are in close proximity to the free surface (Fig. 12.9). R.m2.1-1
stands for the calculation results for section 1-1 by the RFPA program, and similarly
for other notations.

12.4.3 Sample calculation 1: Impact response
of homogeneous material

12.4.3.1 Impact with free bar

The left bar strikes the right bar at a constant speed. As the two bars have the same
material properties, when the left bar stops, the displacement is about 0.2 m, as can
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Figure 12.10 Displacement history of different observation points simulated by RFPA and
ANSYS_LSDYNA for impact with free bar.

be seen from Figure 12.10. From the gradients of the displacement-time curves for key
points B and C, the gradient at point C is 1 m/s before impact. Since elastic collision
is considered in the sample calculation, the energy is fully transferred to the right bar.
Hence, the right bar moves at the same constant speed eventually. The results obey
momentum and kinetic energy theorem and prove that the simulation of collision by
this method is accurate.

The distance between two bars is 0.1 m, and the left bar strikes the right bar at a
constant speed of 1 m/s. Furthermore, the right bar is static before the strike. Hence,
the first impact time is 0.1 s. As shown in Figure 12.11, the distance of wave prop-
agation is still short at 0.106 s, and the maximal stress near the contact surfaces is
higher than other area. At 0.293 s, as the time is close to the separation time, most
energy has been transferred from the left bar to the right one, and the internal force
becomes smaller gradually. When the time is 0.4 s, the two bars have already sep-
arated from each other. Because the two bars are homogeneous and have the same
properties, the magnitude of contact force between them is the same. If a middle
plane is defined as the plane passing the middle point between the two contact sur-
faces and parallel to the contact surfaces, as shown in Figure 12.11, it can be found
that the maximal stress is symmetrical with respect to the middle plane during the
impact.
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Figure 12.11 Distribution of maximal stress simulated by RFPA for impact with free bar.

�0.25
�0.2

�0.15
�0.1

�0.05
0

0.05
0.1

0.15
0.2

0.25

0 0.2 0.4 0.80.6 1

0 0.2 0.4 0.80.6 1 0 0.2 0.4 0.80.6 1

0 0.2 0.4 0.80.6 1

D
is

pl
ac

em
en

t (
m

)

�0.25
�0.2

�0.15
�0.1

�0.05
0

0.05
0.1

0.15
0.2

0.25

D
is

pl
ac

em
en

t (
m

)

Time (s) Time (s)

Time (s) Time (s)

�0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

D
is

pl
ac

em
en

t (
m

)

�0.01

0

0.01

0.02

0.03

0.04

0.05

0.06

D
is

pl
ac

em
en

t (
m

)

R.A.
L.A.

R.B.
L.B.

R.C.
L.C.

R.D.
L.D.

Figure 12.12 Displacement history of different observation points simulated by RFPA and
ANSYS_LSDYNA for impact with cantilever bar.

12.4.3.2 Impact with cantilever bar

When the right bar is a right-end fixed cantilever bar, the displacement-time curve is
shown in Figure 12.12, and distribution of the maximal stress is shown in Figure 12.13.
Similarly, only elastic collision is considered.

As depicted in Figure 12.12, the impact course can be divided into two stages. At
the first stage, when the left bar strikes the cantilever bar, compressive deformation
is generated in the cantilever bar, and a part of the kinetic energy of the left bar
is converted to the potential energy of the cantilever bar. Moreover, the potential
energy further increases until the kinetic energy becomes zero. At the second stage,
the potential energy is converted to the kinetic energy of the left bar, and the velocity
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(d) 0.800 s

(c) 0.450 s

(b) 0.106 s

(a) 0.001 s

Figure 12.13 Distribution of maximal stress simulated by RFPA for impact with cantilever bar.

is opposite to the initial one. Therefore, the velocity of key points A and B, which
corresponds to the curve gradient in Figure 12.12, can be used to judge the stage
of energy transformation. For example, at the time of 0.106 s, the curve gradient of
displacement history at key point B is positive. So it is in the first stage. Similarly, the
state at 0.450 s can be judged to be in the second stage because the curve gradient of
displacement history at key point B is negative.

Figure 12.13 shows the distribution of maximal stress for impact with a cantilever
bar, and it can also depict the courses of contact and separation. Similar to impact
with the free bar, the maximal stress is symmetrical about the middle plane before the
wave propagates to the fixed end (Fig. 12.13b). However, when the wave is reflected
by the fixed surface, the maximal stress is no longer symmetrical. It can be found that
the stress near the right fixed surface is different from the relevant location in the left
bar. A compressive stress wave is reflected as a tensile one on a free face, but as a
compressive one on a fixed boundary. At the time of 0.8 s, the two bars have already
separated from each other. As illustrated by the curve gradient in Figure 12.12, the
left bar bounces back at the original speed, and the cantilever bar stays at its initial
position at 0.8 s.

12.4.4 Sample calculation 2: Impact response
of heterogeneous materials

Materials are not ideally homogeneous in nature. The stiffness and strength parameters
at meso-scale are stochastic. For materials with distinct heterogeneity, such as rock, if
they are simplified as homogeneous materials, the macroscopic nonlinearity cannot be
reflected. Based on the previous studies, the RFPA program can reflect the stochastic
features of a material by the Weibull distribution and the macroscopic nonlinearity can
be reflected by the linearity at meso-scale. The method has been proved to be effective
in solving the dynamic contact problems for impact between homogeneous materials
in the earlier section. It is now imported into the RFPA program to analyze the impact
problems for heterogeneous materials.

Material heterogeneity is considered for a two-bar impact case. Cases with m = 2,
5, 10 and 20 are calculated and the effect of different degrees of heterogeneity on
impact response is analyzed. It can be seen from Figure 12.14, the left bar stops at a
different location as compared with the homogeneous case. From the stress distribution
plotted in Figures 12.17 and 12.21, the wavefront is not smooth due to the effect of
material heterogeneity.
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Figure 12.14 Displacement history of different observation points for different heterogeneity.
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Figure 12.14 (Continued)

12.4.4.1 Impact with free bar

From the gradients of the displacement-time curves shown in Figures 12.14a–d, it can
be seen that the stress wave propagation in heterogeneous materials is very different
although the macroscopic speed is similar. The most prominent phenomenon is that
the time from contact to separation is longer than that for homogeneous material,
i.e. the more heterogeneous the material is (smaller m), the larger the final positive
displacement of the left bar is, and the longer the time for the right bar to reach the peak
speed. In order to better illustrate the entire process from contact to separation between
the two bars, point C is taken as a reference and set as the origin. The displacement-
time curves at points B and C for different heterogeneity coefficients are plotted in
Figure 12.14e. For the cases with same heterogeneity coefficient, the displacements at
points B and C are equal, which means that the two bars are in contact. As the initial
distance between the two bars is 0.1 m for all models, the time for first contact is the
same. However, the time for separation is different due to the effect of heterogeneity.
The smaller the value of m is, the later the separation occurs.

In order to compare the impact response for models with different heterogeneity
more comprehensively, two sections are selected for comparision of the major principal
stresses. The major principal stresses at t = 0.106 s and 0.293 s in the contact phase are
taken as examples, as the time corresponds to first contact and impending separation
for homogeneous media. Taking sections 1-1 and 2-2 as examples, it can be seen
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Figure 12.15 Major principal stresses in sectional planes for different heterogeneity.

from Figure 12.15 that the more heterogeneous the material is (smaller m), the more
fluctuated the stress is, which is different from that for homogeneous material. From
Figure 12.16, the stress curves at the two sections do not overlap with each other.
Although the contact forces in the two bars are the same when they are in contact,
the elastic moduli of the elements in sections 1-1 and 2-2 are different (considering the
Weibull distribution). Hence the stress in the corresponding element varies. The smaller
the value of m is (more heterogeneous), the more fluctuated the stress is. The larger
the value of m is, the less fluctuated the stress is, which is closer to the homogeneous
case.

Figure 12.17 shows the distribution of major principal stress for different hetero-
geneity. Taking heterogeneity into account, the property of the model is no longer
similar in meso-scale, which leads to differences in wave propagation. Firstly, the
action of impact is non-linear, as illustrated by the wavefront shown in Figure 12.17.
Secondly, when the wave propagates in bars, the wave length and the peak stress are
distinctive. In homogeneous media, the peak stress in every element is the same, but
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Figure 12.16 Comparison of major principal stresses in sectional planes for same heterogeneity.

with different arrival time. However, in heterogeneous media, the peak stress in some
elements may be higher or lower than others. In general, the smaller m is, the more
prominent the feature is. Furthermore, as shown in Figure 12.17 at 0.293 s, the smaller
m is, the larger the area in compressive stress. That means the wavelength in medium
with higher degree of heterogeneity is longer.

12.4.4.2 Impact with cantilever bar

Figures 12.18a–d show variations of displacement with time at key points for differ-
ent material heterogeneity. Figure 12.18e shows the displacement-time curves at two
contact points B and C. When the curves for points B and C coincide with each other,
the two bars are in contact. It can be found from the displacements at key points
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Figure 12.17 Distribution of major principal stress for different heterogeneity.

that smaller m leads to longer contact time. It also can be seen from the gradient of
the displacement-time curves that the left bar bounces back at approximately the same
speed and then separates from the right bar when it is back to the first contact position.
However, the smaller m is, the later the rebound occurs.

Both impact and rebound are considered in section analysis, taking the represen-
tative moments t = 0.106 s and 0.45 s. When the material is homogeneous and elastic,
the wavefront is smooth and the stresses in the two sections are consistent. Upon the
first contact, the element stresses are about 0.1 MPa. When the material heterogeneity
is considered, the element stresses in the two sections fluctuate and the stresses are
not equal (Figs. 12.19 and 12.20). The smaller m is, the less smooth the wavefront
is. The larger m is, the closer the results are to the case of homogeneous material. As
the cantilever bar is fixed at the right end, the left bar eventually bounces back at the
original speed. Although the macroscopic speed of the heterogeneous material is about
the same, the location of stress wave propagation is different for the same moment,
as shown in Figure 12.21. Figures 12.18e and f also indicate that smaller m leads to
longer contact time.

Figure 12.20 compares the major principal stresses in two sections. The stresses
corresponding to t = 0.106 s and 0.45 s are selected for illustration. Similar to impact
with the free bar, the more heterogeneous the material (smaller m) is, the more fluc-
tuated the stress is. The stress in the corresponding elements is equal (see Fig. 12.20e)
when the homogeneous bars are in contact. It is also found that the stress curves for the
two sections do not overlap for heterogeneous media. Although the contact forces are
a pair of interaction forces in the two bars when they are in contact, the elastic moduli
of the elements in sections 1-1 and 2-2 are different (considering the Weibull distribu-
tion). Hence the stresses in the corresponding elements are different. The smaller the
value of m is (more heterogeneous), the more fluctuated the stress is. The larger the
value of m is, the less fluctuated the stress is, which is closer to the homogeneous case.
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Figure 12.18 Displacement history of different observation points for different heterogeneity.

12.5 INFLUENCE OF STRESS WAVE AMPLITUDE ON ROCK
FRACTURING PROCESS AND FAILURE PATTERN
IN THE BRAZILIAN TENSILE TESTS

The dynamic mechanical response of rock materials is important to determine the
required level of protection for important constructions such military structures.
This is why some scientific researches in this field have focused on determination of
the dynamic properties and development of accurate constitutive models and failure
criteria at high strain rates (Zhao et al., 1999).

One of the important features recognized for rocks or other brittle materials is their
rate-dependence, i.e. their properties (ultimate strength, Young’s modulus, fracture
energy) are highly dependent on the loading rate. The general trend for rate effects
is an increase in dynamic strength as the loading rate increases (Barpi, 2004). Much
effort has been made to improve knowledge of the constitutive relationship for a wide
range of strain rates by developing a more realistic material law.

Although such work has received considerable attention in the past decades (Cho,
Ogata and Kaneko, 2003; Fourney, 1993; Donze, Bouchez and Magnier, 1997; Ma,
Hao and Zhou, 1998; Sato et al., 1999; Schmidt, Boade and Bass, 1979; Warpinski
et al., 1979; Zhao and Li, 2000; Zhu et al., 2004), it still remains poorly under-
stood because of the complexity associated with the dynamic response of rock that is
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Figure 12.19 Major principal stress in section planes for different heterogeneity.

fully heterogeneous. Lots of facts demonstrate that this heterogeneity feature plays a
significant role in fracture patterns of the rocks under dynamic loadings.

Experimental investigations provide good opportunities for examining the ultimate
failure patterns of rock samples. However, it is found that sometimes analyzing the
time history of failure is more important than simply examining the final outcome.
Although most of the post-experimental observations can reveal fracture patterns and
their relative proportions, they do not indicate the sequential order of the events or the
conditions for fracture initiation, propagation and coalescence. Additionally, the post-
experimental observations do not provide sufficient information about microfracture
nor evolution of stress field.

The focus of this section is to numerically investigate the failure mechanisms and
the fracture patterns of rocks using Brazilian samples under different stress wave ampli-
tude. The study is conducted by using a RFPA-Dynamics code (Zhu et al., 2004). This
includes an assessment of how the pressure wave in heterogeneous rocks affects the
dynamic fracture propagation and patterns. Different pressure stress waves in terms of
peak values are employed to consider the waveform variation of the applied dynamic
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Figure 12.20 Comparison of major principal stress in sectional planes for same heterogeneity.
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Figure 12.21 Distribution of major principal stress for different heterogeneity.
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A B

Figure 12.22 Numerical model of the sample and transmitter bars (400 × 15 elements with 5 mm
length scale for the element).

loading. The code consists of a finite element model which allows both shear and
tensile failure and fragmentation of the samples under dynamic loading.

One of the advantages of RFPA code is that it can take heterogeneity into account
in the model. Smear method with small elements (SMSE for short) is proved to be
suitable for simulating fracturing processes in rocks, since this heterogeneous material,
in spite of the relatively small grain size, develops long fracture process zones due
to bridging and interlocking of the heterogeneous local materials in the wake of the
fracture. These process zones constitute the main energy dissipation mechanism for this
kind of material (Tran, Kobayashi and White, 1999; Bower & Ortiz, 1991; Yu, Ruiz
and Pandolfi, 2004). Indeed, RFPA code with SMSE applied to heterogeneous rock has
successfully explained the dependency of some of their properties and loading methods
on the heterogeneity, shape and size of the samples under static loading conditions
(Tang et al., 2000a, 2000b). Furthermore, SMSE is also feasible for handling the
dynamic fracture appearing in rocks under dynamic loading.

Another feature of RFPA is the explicit treatment of fracture and fragmentation.
It tracks individual fractures as they nucleate, propagate, branch and possibly link
up to form fragments. It is incumbent upon the mesh to provide a rich enough set of
possible fracture paths since the model allows fracture to occur within the elements
only. However, almost no mesh dependency is expected as long as the element size
is sufficiently small to resolve the fracture process zone of the rock. The simulations
in this section give good prediction of the dependence of fracture initiation on the
stress waveforms and come out with fracture patterns very similar to the actual ones
observed in the experiments.

12.5.1 Numerical models

To evaluate the influence of heterogeneity on stress wave propagation, three samples
with different homogeneity indices, m = 2, 5 and 10, subjected to a pressure wave
input, were used for the simulations. The model with sample and bars is divided
into 400 × 15 elements with 5 mm as the length scale of the element, as shown in
Figure 12.22. The rock sample was positioned between two transmitter bars. The
parameters and calculation conditions are listed in Table 12.2.

To investigate the influence of stress waveform in terms of peak value on fracture
process and failure pattern of rocks, 2D Brazilian disc samples are used for the simula-
tions, as shown in Figure 12.23. The radius of the disc is 80 mm. A section of the finite
element layout for the disc is also illustrated in Figure 12.23. The model is divided
into 25,600 square elements. The parameters and calculation conditions are listed in
Table 12.3.

The modeling system consists of an incident boundary and a transmitter platen to
transfer the incident compressive pulse that propagates toward the sample. The pulse
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Finite Element Method modeling of rock dynamic failure 283

Figure 12.23 The numerical Brazilian disc sample and the loading conditions (the sample with 160 × 160
elements).

Table 12.2 Material properties for the models.

Setting Sample Bar

Young’s modulus 60,000 MPa 210,000 MPa
Poisson’s ratio 0.25 0.20
Homogeneity index 2, 5, 10, 100 200
Density 2.5e-6 kg/m3 7.8e-6 kg/m3

Table 12.3 Material properties for the models.

Setting Sample Bar

Young’s modulus 37,500 MPa 210,000 MPa
Poisson’s ratio 0.25 0.20
Compressive strength 205 MPa
Tensile strength 18 MPa
Homogeneity index 3 200
Density 2.5e-6 kg/m3 7.8e-6 kg/m3

is partially reflected at the border of the transmitter platen and partially transmitted
through the sample.

12.5.2 Results and discussions

12.5.2.1 Influence of heterogeneity on stress wave propagation

Rock is a heterogeneous material, and the heterogeneity plays a significant role in the
fracture process and the failure pattern. To demonstrate this influence, the stress wave
in samples that did not fracture was simulated using the model shown in Figure 12.22.
Figure 12.24 shows the stress wave propagation along the bars and the sample. The
samples with m = 2, 5, 10 and 100, which correspond to relatively heterogeneous,
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Figure 12.24 Numerically obtained stress wave propagation along the bars and the sample with m = 2.
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Figure 12.25 Numerically obtained stress wave–time curves in points A and B in the two bars.

medium homogeneous and relatively homogeneous rocks respectively, are used for the
simulations.

The numerically obtained stress waves in the medium point in the two bars are
shown in Figure 12.25. These compressive stress waves caused by the incident pressure
reached point A in the first bar at 5 µs and reached point B in the second bar at 200 µs.
Figure 12.25 shows that, after passing through the heterogeneous samples, the three
stress waveforms differ largely. This implies that rock heterogeneity has a significant
influence on dynamic stress wave propagation. After the stress wave travels through the
sample, the peak value becomes lower for heterogeneous rock than for homogeneous
rock. On the other hand, the pulse length becomes longer for heterogeneous rock
than for homogeneous rock. This influence will surely cause the failure pattern to be
different when a sample failure modeling is conducted.
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Figure 12.26 Applied pressure waveforms with three peak values of stress.

12.5.2.2 Influence of pressure stress wave amplitude on fracture process
and failure pattern

The Brazilian samples shown in Figure 12.23 are used to investigate the influence of
stress wave amplitude on fracture process and failure pattern. Figure 12.26 shows the
applied pressure waveforms with three peak values of stress, with the rise time from
t0 up to the peak stress being constant. Figure 12.27 shows the stress history obtained
in the transmitter platen during one of the simulations of a sample. The dashed line
averages the oscillations in the plateau of the incident pulse.

Selected results of the numerically obtained fracture processes and failure patterns
are presented in Figure 12.28. It should be carefully noted that in these plots, in order
to aid visualization, displacements have been magnified by a factor of 5. Also shown
in the figures are the level contours of stress magnitude, defined as the relative value of
maximum shear stress. A fully fractured surface is shaded in black, whereas the zones
that are intact or failed but not fully fractured remain in the color of level contours of
stress magnitude.

The comparison between the three cases shown in Figure 12.28 displays graph-
ically the good prediction of the dependency of dynamic fracture patterns on the
transmitted stress wave amplitude.

Snapshots of the first row in Figure 12.28 show the failure pattern and shear stress
evolution for the case of stress waveform with lower amplitude (peak value is 75 MPa).
The fractures start nucleating and propagating at about 120 µs when the peak value of
the compressive pulse is reflected from the bottom and reaches the center of the sample.
Distinct features such as the formation of double major fractures and branching are
observed. Due to the heterogeneity, the fractures are well developed in the bottom
area in the right side when the sample transmits the maximum load. The development
of these fractures generates relief waves which temporarily halt the failure process.
The stress waves subsequently travel from the left side towards the center of the disc,
inducing a further fracture growth as well as some microfracturing in the center area
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Figure 12.27 Stress history obtained in the transmitter platen during the simulation of sample with
input peak stress 150 MPa.

t 	 10 µs t 	 30 µs t 	 80 µs t 	 120 µs t 	 140 µs t 	 180 µs

t 	 20 µs t 	 40 µs t 	 60 µs t 	 80 µs t 	 100 µs t 	 110 µs
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Figure 12.28 Fracture sequence and failure patterns for the three cases with different stress wave
amplitude (with peak stress being 75 MPa, 100 MPa and 150 MPa, respectively).

part, which finally forms a main fracture. This through-fracture is clearly seen in the
snapshots in the first row in Figure 12.28.

In contrast to the first case shown in the first row of Figure 12.28, the third
case shown in Figure 12.28 reveals that, for the case of stress waveform with higher
amplitude (peak value is 150 MPa), the fractures start nucleating and propagating at
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Finite Element Method modeling of rock dynamic failure 287

about 20 µs, which is much earlier than that in the first case, shown in Figure 12.28.
A difference from the first case is that the fractures around the loading areas nucleate
due to the incident wave, not the reflected wave as in the first case. In the two sides
of the bottom support areas, however, the compressive stress waves are reflected as
tensile waves when they reach the free surface, and are then superimposed upon the
tail of the compressive waves. The superimposed stress waves developed an increasing
amount of tension. When the tensile stresses are high enough, they induce opening
fractures parallel to the surfaces. The process is also accompanied by the formation of
a new wedge-shaped inclined fracture zone due to the intensity of the pressure stress
waves near the loading area.

The predicted sequence of fracture patterns in terms of location closely followed
what we expected based on our analysis. It showed that the fracture processes and the
failure patterns are markedly affected by the stress wave amplitudes that are applied
to the samples. The nucleation of fractures and failure patterns when p0 = 75 MPa and
150 MPa shown in first line and third line in Figure 12.28 differed significantly. For
lower p0, the fractures start from the vicinity of the bottom compressive zone approxi-
mately after t = 120 µs, whereas for higher p0, the fractures occur almost immediately
after the stress wave front enters into the sample, which is 100 µs early than that for
lower p0.

It is seen from these snapshots that the failure patterns are enriched by the random
distribution of the elemental stiffness and strength.

The snapshots of the third row in Figure 12.28 further reveal the development
of profuse fracturing at the loading area which even leads to some fragmentation.
Secondary fractures, parallel to the main diametric fracture, also appear as the load
decreases, leading to the typical columnar failure of Brazilian tests (Yu, Ruiz and
Pandolfi, 2004). For smaller stress wave amplitude, the model predicts the formation
of the principal fracture that nucleates in the center of the sample and grows towards
the bearing areas, as well as some secondary fracturing parallel to the main fracture
and near the loading areas. For higher load stress wave, the simulation reports the
formation of radial fractures starting in the circular border and growing to the center.
The ability of RFPA-dynamics to account for such complex fracture patterns with
relative ease is a remarkable feature of SMSE.

12.6 SUMMARY

The focus of this chapter is to introduce a FEM-based RFPA method which can be used
to investigate elastic wave propagation and stress wave induced dynamic failure in brit-
tle and heterogeneous rocks. First, the finite element method is briefly introduced. Two
major problems in wave propagation are then discussed, namely, artificial boundary
and impact dynamic contact. When it comes to transient wave propagation in infinite
medium, the visco-elastic boundary is embedded into the RFPA2D, and the accuracy
can meet the engineering requirements. The Lamb’s problem is taken as an example to
compare the modeling results of visco-elastic boundary and the extended solutions. In
the model, the material heterogeneity is taken into consideration by assuming that the
material properties of elements satisfy the Weibull distribution. Comparison of dis-
placements at key points indicates that the visco-elastic boundary is also applicable for
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heterogeneous materials. In order to show the generality of comparison, a few cases
with different Weibull distribution are simulated. It is shown that the smaller the m
is, the more heterogeneous the material is, and the greater the peak displacement, and
the more fluctuated the wavefront. It can be seen from the stress plot that the stress
distribution is very different.

The dynamic contact method is imported into the collision contact problem and
it is verified by comparison with ANSYS_DYNA modeling. The method is also valid
for use for collision and contact between heterogeneous materials.

As an example, dynamic fracturing process analysis of rock material under the
Brazilian tensile test condition is conducted. The analysis aims to investigate the influ-
ence of applied stress wave amplitude on the fracturing process and failure induced in
the rock material. Influence of heterogeneity on stress wave propagation is discussed.
Numerical simulations of three samples with different heterogeneity demonstrate that
the heterogeneity of rock has significant influence on stress wave propagation. The
dynamic failure process analyses are extended to investigate the influence of wave-
forms in terms of stress wave amplitude on failure modes. These simulations reveal
that the failure modes are affected strongly by the stress wave amplitude. Stress wave
of higher amplitude generates fracturing earlier. The effective dynamic behavior of
samples under three different loading conditions is predicted as an outcome of the
calculations. Numerical simulations show that at lower peak load of the stress wave,
only a few larger microfractures form along the diametrical line under the applied load,
which eventually causes the sample to split. The outcomes obtained from the simula-
tions, which are very rich in information concerning fracture initiation and kinetics as
well as the stress field observation, make this method an ideal candidate for the analysis
of material failure under a fully dynamic framework. The simulations not only allow
identification of model parameters but also explain the different failure mechanisms
of rocks as a function of loading waveforms. It is seen that the model is suitable for
simulating fracture processes and the failure patterns in rock materials.
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Chapter 13

Discontinuum-based numerical
modeling of rock dynamic
fracturing and failure

Tohid Kazerani and Jian Zhao

13.1 INTRODUCTION

Benefitting from rapid advancements in computer technology, numerical methods have
provided powerful tools in rock dynamics study. For example, numerical modeling
has been used to simulate dynamic response of fractured rock masses (e.g. Chen et al.,
2000; Hildyard and Young, 2002), fracture propagation in rock and concrete under
static and dynamic loading condition (e.g. Liang et al., 2004; Zhu and Tang, 2006),
wave propagation in jointed rock masses (e.g. Chen and Zhao, 1998; Lei et al., 2006),
and acoustic emission in rock (e.g. Hazzard and Young, 2000b). A large number
of numerical methods have been applied to rock mechanics problems, such as the
Finite Element Method (FEM), Finite Difference Method (FDM), and Discrete Ele-
ment Method (DEM). These methods are classically categorized as continuum- and
discontinuum-based (Jing, 2003). However, most of the attempts have been performed
through adopting continuum-based models, which are not basically able to explicitly
simulate fracture. To overcome this shortcoming, discontinuum-based models have
been introduced. With regard to fracture and fragmentation purposes, the advantages
of discontinuum- to continuum-based models can be summarized as follows.

– Discontinuum-based models are not engaged with the flow rule, potential function
and complicated mathematical formulation needed by continuum-based ones in
order to implement nonlinear analysis.

– They are capable of representing a crack as an explicit separation within material,
whilst continuum-based ones have to simulate it indirectly through modifying
material properties.

– While predictions by continuum-based models are restricted only to fracture initia-
tion, the use of discontinuum-based methods make it possible to examine both the
initiation and propagation of fracture over time by tracking consecutive separation
of structural elements.

The dominant stream in discontinuum-based modeling is owned by the DEM. It
has been widely used in underground works (e.g. Lemos, 1993; Souley et al., 1997;
Zhao et al., 1999), laboratory test simulations and constitutive model development
(e.g. Jing et al., 1994; Min and Jing, 2003), rock dynamics (e.g. Cai and Zhao, 2000),
wave propagation in jointed rock masses (e.g. Chen and Zhao, 1998; Zhao et al.,
2006), nuclear waste repository design and performance assessment (e.g. Jing et al.,
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1995), rock fragmentation process (e.g. Gong and Zhao, 2007), and acoustic emission
in rock (e.g. Hazzard and Young, 2000b).

This chapter reviews the key concepts of the DEM and DEM-coupled methods as
well as the related studies to provide a picture of the current research state. Following
this, a distinctive application of the coupled DEM/FDM is introduced and its different
features as well as its predictions for rock compressive, tensile and fracture response are
discussed. The present study aims to explore the micro-mechanisms underlying rock
fracture and fragmentation through answering how rock micro-structure influences

– rock strength and failure in compression and tension,
– rock fracture behavior and dynamic fracture toughness,
– and fracture rate-dependent behavior observed in macroscopic scale.

13.2 DISCRETE ELEMENT METHOD

The key concept of the DEM is that the domain of interest is treated as an assemblage
of rigid or deformable blocks/particles/bodies (Cundall, 1971). The DEM is capable
of analyzing multiple interacting deformable continuous, discontinuous or fracturing
bodies undergoing large displacements and rotations. Formulation and development
of the DEM have progressed over a long period of time since the pioneering study of
Cundall.

Contact detection and contact interaction are the most important aspects in the
DEM, as the DEM is distinguished from other methods because of its ability to detect
(create) new contacts during calculation. There are several contact detection algorithms
aiming at efficiency of computation time and memory space. The details on this topic
are provided by Munjiza (2004). Jing and Stephansson (2007) have extensively pro-
vided the fundamentals of the DEM and its application in rock mechanics. According
to the solution algorithm used, the DEMs can be basically divided into two groups of
explicit and implicit formulation.

13.2.1 Explicit DEM (distinct element method)

As the explicit formulation of the DEM, the distinct element method appeared in
the early 1970s in a fundamental paper on progressive movement of rock mass as a
2D assemblage of rigid blocks (Cundall, 1971). It was further developed by Lemos
et al. (1985), Cundall and Hart (1992), and Curran and Ofoegbu (1993). The most
popular numerical representation of the explicit DEM has been implemented with
the computer codes of PFC and UDEC (Itasca, 2009a, 2009b). Other developments
were made behind or in parallel with these two. The distinct element method appears
to be the main direction of the DEM implementations for rock mechanics problems,
although the term discrete element method is more universally adopted.

One use of the explicit DEM is to represent grained materials as a dense packing of
irregular-sized particles interacting at their boundaries. This method has been known as
the Bonded Particle Method (BPM) (Potyondy and Cundall, 2004). Many researchers
have employed the BPM with circular particles to capture different failure features
of rock material and other grained media (Azevedo et al., 2008; Cho et al., 2007;
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Hazzard et al., 2000a; Jensen et al., 1999; Potyondy, 2007; Schöpfer, 2009; Tan et al.,
2008, 2009; Yoon, 2007; Wanne and Young, 2008), and some others have made use
of polygonal particles (Camborde et al., 2000; Damjanac et al., 2007; Kazerani and
Zhao, 2010; Kazerani et al., 2010).

13.2.2 Implicit DEM (discontinuous deformation analysis)

As the DEM implicit formulation, the Discontinuous Deformation Analysis (DDA)
was proposed by Shi (1988). The DDA is somewhat similar to the FEM, but accounts
for the interaction of independent blocks along discontinuities in fractured and
jointed rock masses. The DDA is typically formulated as a work-energy method,
and can be derived using the principle of minimum potential energy or Hamilton’s
principle.

The applications of the DDA are mainly in tunneling, caverns, earthquake effects,
and fracturing and fragmentation processes of geological and structural materials
(e.g. Hatzor et al., 2004; Hsiung and Shi, 2001; Zhang et al., 2007). The DDA devel-
opments include discretizing the blocks with finite elements (Shyu, 1993), handling
the contacts as stiff joints and removing penetration criteria to improve the efficiency
and to accelerate the convergence (Cheng, 1998), coupled stress-flow problems (Kim
et al., 1999), 3D block system analysis (Jiang and Yeung, 2004), higher order elements
(Hsiung, 2001), and more comprehensive representation of the fractures (Zhang and
Lu, 1998).

13.2.3 Coupled DEM with continuum-based methods

Continuum-based and discontinuum-based methods are non-ideal for modeling,
respectively, the post-failure and pre-failure behavior of rock. A combination of both
methods will enhance rock mechanics applications, including the prediction of forma-
tion and interaction of fragments. Coupled methods can benefit from the advantages
of each method while avoiding the disadvantages. Creating fractured zones with a
discontinuum-based method and intact zones with a continuum-based one forms a
direct simple coupled methodology. Examples of this kind of method include hybrid
DEM/BEM models (Lorig et al., 1986), combinations of the DEM, DFN and BEM
approaches (Wei and Hudson, 1988), and hybrid DEM/FEM models (Chen and Zhao,
1998; Munjiza et al., 1999; Ariffin et al., 2006; Morris et al., 2006; Cai, 2008; Karami
and Stead, 2008).

As a hybrid DDA/FEM, the Numerical Manifold Method (NMM) was developed
by Shi (1991). This method employs two sets of systems, one is mathematical and
defines domain approximations, and the other is physical and defines integration fields.
The main advantage of NMM is getting rid of meshing, and combining discontinuum
and continuum problems into a single framework. Hence, the NMM is reported as
suitable for fracture simulation (Chiou et al., 2002; Zhang et al., 1997). The Finite
Cover Method (FCM) has been proposed by Terada et al. (2003) to enhance the NMM
by using Lagrange multipliers for dealing with heterogeneous materials. Terada and
Kurumatani (2005) and Terada et al. (2007) have recently developed the method for
solving 3D problems.
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13.3 COHESIVE FRAGMENT MODEL

According to the heterogeneous and grained texture of rock material, the
discontinuum-based methods have been extensively employed to reproduce rock
structure as an aggregate of particles connecting together by structural bonds. Pre-
dominantly, particles are taken as rigid random-sized discs or spheres depending on
the 2D or 3D state of the modeling. Therefore, contact between the particles inevitably
occurs at points where two particles are touching each other. However, the material
constituting rock can be more realistically described as an assemblage of deformable
and sharp-cornered fragments where contacts are not necessarily punctual and fric-
tional contact planes can exist. This idealization is more analogous to the rock texture
and reproduces its fragmentation pattern more accurately.

Referred to as Cohesive Fragment Model (CFM), the present numerical study
is based on the DEM coupled with the Cohesive Process Zone (CPZ) theory, intro-
duced by Dugdale (1960). The model assumes rock material as a collection of
deformable irregular-sized triangular fragments interacting at their cohesive frictional
boundaries.

13.3.1 Universal Distinct Element Code (UDEC)

The Universal Distinct Element Code (UDEC) is adopted to implement the CFM
due to its helpful capabilities and relative ease of development (Itasca, 2009b). As
a DEM/FDM coupled code, UDEC permits 2D plane-strain and plane-stress analyses.
The CFM takes advantage of the particle/contact logic of UDEC to handle the frag-
ments and boundaries in between. Using the 2D Delaunay triangulation (Du, 1996),
a pre-processor program has been separately developed to generate arbitrary-sized tri-
angular particles. They are then discretized into the constant-strain elements (CST) to
provide deformability for the fragments.

Figure 13.1 presents a representative CFM particle assemblage used for the Brazil-
ian test simulation, along with the configuration of the model-constructing particles
and contacts.

Dynamic behavior is numerically represented by a time stepping algorithm in which
time step duration is limited by the assumption that velocities and accelerations are
constant within the time step.

Particle edge

Contact point

Particle

Figure 13.1 A representative CFM assemblage and configuration of particles and contacts.
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The solution scheme is identical to that used by the explicit FDM for continuum
analysis. The solving procedure in UDEC alternates between the application of a stress-
displacement law at all the contacts and Newton’s second law for all the particles. The
contact stress-displacement law is used to find the contact stresses from the known and
fixed displacements. Newton’s second law gives the particles motion resulting from the
known and fixed forces acting on them. The motion is calculated at the grid points of
the triangular constant-strain elements within the elastic particle. Then, application of
the material constitutive relations gives new stresses within the elements. Figure 13.2
schematically presents the calculation cycle in UDEC along with a brief review of the
basic equations.

At particle centroid

Constitutive law for contact

Constitutive law for CST

At contact

Motion rule for particle

Fc

xc
M

F 	 �Fc

k
n

At grid point

Within CST element
1

2
(uij �Îuji)�t

s

F 
	

..
u

..
θ

mp

Fl 
Fc

CST

M 	 �xc � Fc

Fc
(t��t) 	 Fc

(t)� kac ��eff

�n
2
 � �s

2 �n � 0
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 �εij 	

F 	 Fl � Fc �Î�sijnjds � mgg
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M
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�
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Figure 13.2 Calculation cycle in UDEC (Itasca, 2009b).
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13.3.2 Or thotropic cohesive contact model

The model failure behavior is controlled by the contact constitutive law. Hence, the
failure characteristics of rock, i.e. anisotropy, brittleness and rate-dependency, must be
appropriately reflected in the contact model. Therefore, the model developed adopts
an orthotropic behavior for fracture, and follows a decaying stiffness in the contact
pre-failure stage in order to represent the material damaged in the fracture process
zone. For this purpose, the stress σ applied on the contact surface is defined as

σ = σ(δeff , kt, ks, tc, cc, φc, D) (13.1)

where δeff is the contact effective displacement, and kt and ks denote the contact initial
stiffness coefficients in tension and shear, respectively. The parameters tc, cc, and
φc characterize the strength of contact. They are respectively referred to as contact
tensile strength, contact cohesion, and contact friction angle. D is the contact damage
variable. In mixed-mode separation, i.e. concurrent existence of normal and shear
displacements of contact, δeff is defined as

δeff =
{√

δ2
n + δ2

s δn ≥ 0
δs δn < 0

(13.2)

where δn and δs are the normal separation and shear sliding over the contact surface.
δn is assumed to be positive where the contact undergoes opening (tension).

13.3.2.1 Tensile behavior of contact

Contact cohesive stress in tension is expressed as

σ =




ktδeff exp(−δeff /δct) δeff ≤ δct

tc(1 − D) δeff = δmax

kredδeff δeff < δmax

}
δct < δeff ≤ δut

0 δeff > δut

(13.3)

In the hardening stage (δeff ≤ δct), the governing equation is the exponential
traction-separation law described by Xu and Needleman (1995). δct is the critical
tensile displacement of contact beyond which cohesive softening happens, and δut is
the ultimate tensile displacement of contact, at which contact entirely loses its cohesive
strength. In this stage, the stress-displacement behavior of contact is elastic, i.e. the
unloading and reloading paths are the same and no energy dissipation occurs within
contact.

In the softening stage (δct < δeff ≤ δut), contact is permitted to release energy during
unloading-reloading cycles. δmax is then defined as the maximum effective displacement
that contact has undergone (Fig. 13.3). δmax is δeff , when contact is increasingly opened,
and held fixed as it undergoes unloading or reloading, unless δeff again reaches δmax.
Substituting σ = tc and δeff = δct, and solving for δct, it is obtained as follows where
e = exp(1) is the base of the natural logarithm:

δct = e
tc

kt
(13.4)
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(a) Tensile behavior 

s s

�sres

sres

dcs

deff
dmaxdct dut

deff

kred

kt

ks

ks

ks

tc Cc

(b) Compressive-shear behavior

Figure 13.3 Stress-displacement behavior of cohesive contact model.

The damage variable is defined as follows:

D = δmax − δct

δut − δct
(13.5)

As contact undergoes softening, D irreversibly increases from 0 to 1 or remains
constant, even if multiple unloading-reloading cycles happen.

In unloading-reloading cycles (δeff < δmax), contact follows a linear stress-
displacement path. kred is then defined as the secant stiffness at the point where the
effective displacement equals δmax (see Fig. 13.3a).

13.3.2.2 Compressive-shear behavior of contact

When contact is sheared under compression, the stress-displacement law is described as

σ =
{

ksδeff exp(−δeff /δcs) δeff ≤ δcs

σres = −ktδn tan(φc) δeff > δcs
(13.6)

Similarly, the critical shear displacement of contact is calculated as follows:

δcs = e
cc

ks
(13.7)

The unloading-reloading path of contact is linear as demonstrated in Figure 13.3b,
where the contact stress increment (or decrement) is calculated through

�σ =
{

ks�δeff σ < σres

0 σ = σres
(13.8)

In each solution iteration, �σ is calculated and added to the current value of the contact
stress to update it. Finally, the normal and shear components of the contact force are
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obtained as follows, where ac is the contact surface area, which is defined based on
the contact length:

Fn =

−σ

δn

δeff
ac δn ≥ 0

−ktδnac δn < 0
(13.9)

Fs = −σ
δs

δeff
ac (13.10)

13.3.2.3 Contact fracture energy

The area under the curve in Figure 13.3a represents the energy needed to fully open the
unit area of contact surface. Since contact is the numerical representation of fracture,
the area under the curve should be equal to the Griffith’s fracture energy, Gf :

Gf =
δut∫

0

σ dδeff = tcδct(e − 2) + tc
δut − δct

2
(13.11)

13.4 SIMULATION OF COMPRESSIVE AND TENSILE RESPONSE
OF ROCK MATERIALS

The parameters involved in modeling are classified under the term micro-parameter.
Table 13.1 lists them along with the analogous material properties.

Since any CFM simulation is controlled by the micro-parameters, they must be
properly set such that the model reproduces a response similar to that of the physi-
cal material. To reach this purpose, the relation between the micro-parameters and
the model behavior should be investigated. This purpose is fulfilled by establish-
ing analytical and statistical relations, which provide physical interpretation for each
micro-parameter in terms of the model macroscopic response.

13.4.1 Contact initial stiffness coefficients

As shown by Kazerani (2011), the contact initial stiffness coefficients can be
expressed in terms of material mechanical properties. In plane-stress analysis, they
are formulated as

kt = β
3E2σt

K2
IC

and ks = β
3E2σt

2(1 + ν)K2
IIC

(13.12)

where β is a constant suggested as 0.25. In plane-strain analysis, those are defined as

kt = β
3E2σt

(1 − ν2)K2
IC

and ks = β
3E2σt

2(1 − ν2)(1 + ν)K2
IIC

(13.13)
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Table 13.1 Material properties and CFM micro-parameters.

Material property Model micro-parameter

Young’s modulus (E) ParticleYoung’s modulus (Ep)
Poisson’s ratio (ν) Particle Poisson’s ratio (νp)
Fracture toughness in Mode-I (KIC) Contact initial tensile stiffness coefficient (kt)
Fracture toughness in Mode-II (KIIC) Contact initial shear stiffness coefficient (ks)
Brazilian strength (σt) Contact tensile strength (tc)
Internal cohesion (C) Contact cohesion (cc)
Internal friction angle (φ) Contact friction angle (φc)

13.4.2 Particle elastic properties

The model global stiffness of a rock material is governed by the particle stiffness of
the contacts together. Kazerani (2011) showed for a variety of brittle materials that the
contact initial stiffness coefficients, obtained from Equations (13.12) and (13.13), are
one to three orders greater than particle stiffness. This means contacts do not have any
considerable effect on the model global elasticity. Therefore, the Young’s modulus and
the Poisson’s ratio of the particles are assumed equal to those of the material:

Ep = E and νp = ν (13.14)

13.4.3 Calibration process

The rest of the micro-parameters, i.e. tc, cc, and φc, are calculated by means of a cal-
ibration process in which the model responses are directly compared to the observed
responses of the physical material (note that given Gf and kt, δut is related to tc

and calculated through Equation (13.11)). The calibrated micro-parameters should
be unique and result in the best quantitative and qualitative agreement between the
model response and that of tested rock in terms of the Brazilian tensile strength, uni-
axial compressive strength, internal cohesion and internal friction angle. Note that
these four parameters are dependent on each other. In other words, if having three of
them for a typical material, the fourth is predictable by the Mohr-Coulomb equations.
Therefore, the tensile strength, the internal cohesion, and the internal friction angle
are considered as the parameters characterizing material mechanical response.

Since the Augig granite has been extensively tested by the Laboratory for Rock
Mechanics (LMR) at EPFL, it is selected as the representative rock to perform calibra-
tion. As a coarse aggregate rock, it is composed of minerals ranging from 2 to 6 mm
(4 mm in average). Its mechanical properties are the Young’s modulus, E = 25.8 GPa,
the Poisson’s ratio, ν = 0.23, the Brazilian tensile strength, BTS = 8.8 MPa, the uni-
axial compressive strength, UCS = 122 MPa, the internal cohesion, C = 21 MPa, the
internal friction angle, φ = 53◦, the fracture toughness in Mode-I, KIC = 1.5 MPa

√
m,

and in Mode-II, KIIC = 3.0 MPa
√

m.
According to the specimen geometry and condition in laboratory, a plane-strain

(axisymmetric) and a plane-stress analysis are respectively adopted for the compressive
and Brazilian models. The compressive cylindrical sample is 80 × 160 mm, and the
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Figure 13.4 Model geometry for simulation of compressive and Brazilian tensile tests.

Brazilian specimen is an 80 × 80 mm disk (Fig. 13.4). The friction angle between the
loading bars and the samples is assumed to be 5◦.

The particle assemblage is generated arbitrarily to capture the material heterogene-
ity and diverse fracture patterns. Both samples consist of irregular triangular particles
with an average edge size of dp = 4.0 mm, corresponding to 1122 and 452 particles
for the compressive and tensile samples. dp has been chosen according to the granite
grain size.

Using Equation (13.14), the Young’s modulus and Poisson’s ratio of the particle
are held fixed at Ep = 25.8 GPa and νp = 0.23. Considering Equations (13.12) and
(13.13), the tensile and shear initial stiffness coefficients of contact are obtained as
kt = 1.95 × 106 MPa/mm and ks = 1.98 × 105 MPa/mm for the Brazilian sample and
kt = 2.06 × 106 MPa/mm and ks = 2.10 × 105 MPa/mm for the compressive one.

As explained earlier, UDEC basically works with a dynamic algorithm. The loading
rate is set to 10 mm/sec, and a high numerical damping, i.e., 0.85% of the critical
damping, is applied to secure the quasi-static equilibrium.

13.4.3.1 Parametric study

A parametric study is carried out to determine how the model response is influenced
by the micro-parameters. As a starting point, contact cohesion and friction angle are
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Figure 13.5 Tensile and compressive strength of the model versus contact tensile strength, cohesion
and friction angle.

assumed as the rock UCS and internal frictional angle, respectively, i.e. cc = 122 MPa,
and φc = 53◦.

Based on the behavior of a CFM system, one would recognize that the model
global strength is dependent on tc. Figure 13.5a confirms that and indicates a linear
relation between tc and the tensile strength predicted by the model, σt. The relationship
for the uniaxial compressive strength of the model, σc, is nonlinear.

By establishing a linear regression fit to the data, tc is predicted to be 24.15 MPa
to fit the tensile strength of the rock. Repetition of the simulation with this prediction
gives σt = 8.73 MPa, which is satisfactorily close to the Augig granite tensile strength.
Having tc = 24.15 MPa, the sensitivity of the model to cc and φc are examined as
presented in Figures 13.5b and 13.5c, where the values of cc and φc are normalized to
their reference values, i.e. the uniaxial compressive strength and the internal friction
angle of the rock, respectively.

The results show that the model Brazilian strength is independent of both cc and
φc, while the predicted uniaxial compressive strength is highly influenced by them.
Figure 13.5c illustrates that the model uniaxial compressive strength will not change
with φc any more, when φc goes below a certain threshold, i.e. about 0.75φ. All these
results yield the fact that the model tensile strength depends only on the contact tensile
strength. Therefore, the predicted tc = 24.15 MPa is the target value of the contact
tensile strength. However, the relationship between cc and φc with the model response
is not explicit yet and needs more investigation.

13.4.3.2 Response surface method

As a statistical discipline, the Response Surface Method (RSM) provides quantita-
tive relations between a simulation response and its input factors (NIST/SEMATECH,
2003). It begins with the definition of the responses and the selection of the input vari-
ables. In this study, the unknown micro-parameters, i.e. cc and φc, are chosen as the
factors; and the assemblage macroscopic responses, in terms of the internal cohesion
C, and internal friction angle φ, are considered as the responses.

The RSM provides a series of suggestions for the micro-parameters, using which
the uniaxial and triaxial compressive tests are simulated. Each run results in a set of C
and φ as the model response. Ultimately, the relation between the individual responses
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Table 13.2 Experimental properties of Augig granite versus CFM predictions.

Property E (GPa) ν σt (MPa) σc (MPa) C (MPa) φ ( ◦)

Experimental value 25.8 0.23 8.8 122.0 21.0 53.0
Numerical prediction 25.2 0.24 8.7 125.4 20.9 53.5

and the micro-parameters is evaluated using the Fischer test in the quadratic form of
(Park and Park, 2010){

C = α0 + α1cc + α2φc + α3ccφc + α4c2
c + α5φ

2
c

φ = β0 + β1cc + β2φc + β3ccφc + β4c2
c + β5φ

2
c

(13.15)

where α0 to α5 and β0 to β5 are the multipliers provided by the RSM.
Applying this method to the Augig granite samples, and solving the obtained equa-

tions for C = 21 MPa and φ = 53◦ of Augig granite, cc = 74.57 MPa, and φc = 48.76◦
are finally obtained as the target micro-parameters. The details of this process are
published by Kazerani (2011).

13.4.4 Solution verification

The CFM predictions using the target macro-parameters are listed in Table 13.2, which
show fair agreement with the experimental measurements.

Comparisons between the curves of axial stress versus axial and lateral strain for
the laboratory test and the simulation are presented in Figure 13.6. Note that some
special aspects of rock behavior such as closure of initial flaws and pores are not
captured by the CFM. This causes stress-strain curves in the simulation to be slightly
different from those of the laboratory tests, particularly where the initial nonlinearity
is not reflected in the modeling.

As shown by Paterson (1987), rocks exhibit higher ductility under triaxial cir-
cumstances than uniaxial. Figures 13.6c and 13.6d reveal that this phenomenon fairly
captured by the CFM. The simulation gives further yielding and plastic deformation
with confinement, whilst an abrupt softening at post-peak region is observed in the
laboratory results.

Figure 13.7 qualitatively compares the CFM predictions with the laboratory obser-
vations in terms of failure mode. Good similarities are met, where the predicted
compressive failure shows the typical cleavage happening in the laboratory test. For
the Brazilian tests, the failure features, in terms of the major fault induced into the
sample and the wedge-shaped zone created at the contact points with the platens, are
also fairly well captured.

A series of simulations composed of particles with an average edge size ranging
from 2 to 7.5 mm are designed. The results, presented in Figure 13.8, indicate that
although the compressive strength has nearly no change, the tensile one decreases with
the particle size decrease.

These results yield to the conclusion that the CFM’s particles do not need to be
extremely small. They must in fact be sufficiently small to allow the model to exhibit the
actual failure patterns and processes of the rock, particularly in terms of the frequency
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Figure 13.6 Comparison of predicted stress-strain curves with those obtained in laboratory tests.

of the dominant cracks controlling the failure procedure. For grained media, particle
size is chosen mainly by the material texture and its average grain size.

13.5 SIMULATION OF DYNAMIC FRACTURE RESPONSE
OF ROCK MATERIALS

The most critical parameter characterizing fast crack propagation is dynamic fracture
toughness. It refers to the resistance of a material against fracture under high-rate load-
ing. Fracture toughness tests on rock usually resort to compression-induced tension in
order to avoid pre-mature failure due to gripping in purely tensile testing.

A disconcerting point regarding fracture toughness is that different test methods
result in different measurements. The reason is often attributed to the undesired influ-
ences of a specimen’s geometry, boundary condition and loading nature on the test
results. How to obtain a unique dynamic fracture toughness as a reliable material
property is still subject to open discussions.

Since numerical methods have provided a powerful tool to study dynamic fracture,
they can potentially aid the experiments in terms of measurement verification or per-
forming appropriate corrections (e.g. Maigre and Rittel, 1995). It will be shown how
the CFM is able to evaluate the validity of the dynamic fracture toughness measured in
the laboratory. As a representative case, the Semi-Circular Bend (SCB) test introduced
by Chen et al. (2009) is examined.
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Figure 13.7 Comparison of laboratory failure of the Augig granite with CFM predictions.

13.5.1 Semi-Circular Bend (SCB) dynamic fracture
toughness test

To make the SCB specimens, rock cores (40 mm nominal diameter) were drilled
from the Laurentian granite blocks, and sliced into discs with an average thick-
ness of 16 mm. The mechanical properties of the specimens used are the Young’s
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Figure 13.9 Schematics of the SHPB test setup and the SCB sample (Chen et al., 2009).

modulus, E = 92.0 GPa, the Poisson’s ratio, ν = 0.21, the Mode-I fracture toughness,
KIC = 1.52 MPa

√
m, the Brazilian tensile strength, BTS = 13.2 MPa, and the density,

ρ = 2630 kg/m3. The dominant constituents of the Laurentian granite are feldspar
(60%) and quartz (33%). The mineral grain size of the granite varies from 0.2 to
2 mm with average grain sizes of 0.5 and 0.4 mm for quartz and feldspar, respectively.

The SCB specimen is tested by a split Hopkinson pressure bar (SHPB) whose
schematic configuration is presented in Figure 13.9, where R, B, and a respectively
denote the radius, thickness, and depth of the initial notch of the sample. Two steel
pins, spanning S, are placed between the transmitted bar and the specimen to minimize
the disturbances that the specimen surface friction may make. More explanations about
the test and the experimental setup are published by Dai et al. (2008, 2009).

The stress intensity factor for the Mode-I fracture in the SCB specimen is
obtained as

KId(t) = ψ
SP(t)
BR1.5

(13.16)

where P(t) is the time-varying loading force. ψ = 0.96 is a dimensionless factor, which
depends on the specimen geometry. Since the specimen is in dynamic equilibrium,
P(t) = Pi = Pt. The dynamic fracture toughness, KICd, corresponds to the maximum
loading force, Pmax. The test results suggested that KId(t) evolves with a nearly linear
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Figure 13.10 Model geometry and boundary condition.

trend, as its slope can be used to represent the average loading rate as follows, where
td is when KId = KICd.

κ̇ = KICd

td
(13.17)

13.5.2 Simulation of the SCB dynamic fracture toughness test

Figure 13.10 presents the geometry and boundary condition of the model, which are
the same as in the test. The model contains a 4 mm long slit along the centerline.
Particle size is taken as the rock average mineral size, i.e. dp = 0.5 mm. As the area
in contact between the specimen and the support pins is about 1 mm2, the pins are
estimated by two fixed steel squares with 1 mm edge length.

The SHPB incident bar is simulated by the upper steel plate. It moves down to
model the bar dynamic load, where its time-dependent velocity is

v(t) =
{

vd
t
t0

t ≤ t0

vd t > t0

(13.18)

vd is the applied dynamic velocity and t0 is the arise time to reach the applied velocity.
It is assumed to be 20 µs for all the simulations. Equation (13.18) suggests that the
applied velocity gradually increases to vd. This is to help the specimen reach stress
equilibrium. For this purpose, t0 should be at least five times longer than the time
needed for wave transmission through the specimen. The time step is taken at a small
enough size at 5 × 10−10sec, which secures the analysis stability (Kazerani, 2011).

Given Equation (13.12) for plane-stress, the tensile and shear stiffness coefficients
of contact are calculated as kt = 3.63 × 107 MPa/mm and ks = 1.50 × 107 MPa/mm.
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Figure 13.11 Variation of dynamic fracture toughness versus loading rate and specimen boundary
friction.

To obtain the other micro-parameters, the calibration was repeated using the
Laurentian granite properties, which led to tc = 66 MPa, cc = 135 MPa, φc = 46◦, and
δut = 7.54 µm.

13.5.2.1 Calculation results

Three groups of simulation are designed, which are labeled as RI (φ: 0), RI (φ: 5),
and RI (φ: 10). The values in the parentheses indicate the friction angle assumed
for the specimen boundary surface, i.e. the interface of the loading plate and the
support pins with the specimen. Each group includes five runs with different applied
dynamic velocities as vd = 200, 400, 600, 800 and 1000 mm/s. In all the simulations,
no numerical damping is applied. This is to restrict the model to release energy only
through contact failure but not particle viscosity.

As presented in Figure 13.11, the difference between the fracture toughness
predicted by the model and that measured by the test is apparent. However, the rate-
sensitivity observed in the experiment is partly captured, where the predicted KICd

increases with the increase of loading rate. Nevertheless, the fitted lines to the CFM
data are all less steep than the one fitted to the test results.

Figure 13.11 also suggests that the boundary surface friction greatly increases
the CFM results. This signifies that the friction between the SCB specimen and the
loading bars can potentially alter the measurements. The reason can be explored in the
specimen motion mode. When the incident wave strikes the specimen, it splits in half,
and each part laterally slides over the pins. Therefore, the slip friction between the
pins and the specimen is mobilized, which disturbs the fracture opening process, and
consequently increases the sample resistance against fracturing. As seen, the fitted lines
to the data of the different groups have the same slope. This implies that the specimen
surface friction does not control the model sensitivity to the applied loading rate.
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(a) Slow fracture with small process zone (b) Fast fracture in extended process zone

Figure 13.12 Schematic formation of micro-cracks at fracture process zone.

13.5.2.2 Discussion

The presented results reveal that the rate-independent cohesive law with constant
Gf cannot satisfactorily reproduce the experimental measurements. This means that
structural inertia alone cannot explain the velocity-toughening effect.

Review of experimental observations on dynamic fracture (e.g. Shioya et al., 1995;
Shioya and Zhou, 1995) can help explore the reason. As schematically illustrated
in Figure 13.12, the experimental observations on brittle material fracture suggest
that the crack propagates straight forward at low crack velocities. Micro-cracking is
not then significant, and thus the fracture surface is smooth. On the contrary, many
micro-cracks are developed within the process zone when the fracture propagates at
high speed. Consequently, dynamic fracture process happens in an expanded damage
zone that causes a larger amount of energy to be dissipated. Hence, the velocity-
toughening phenomenon can be attributed to these microscopic deformations and
damage mechanisms happening at the fracture process zone.

One may argue that the correct macroscopic behavior of crack propagation would
be captured by incorporating the details of the fracture process zone into the model,
by adopting an extremely fine mesh e.g. 0.01 mm. This solution is presently impossible
due to several reasons. First, crack propagation will not then be limited to the process
zone and instead spreads over the whole specimen. Second, such a CFM simulation will
contain millions of degrees of freedom, and is most likely too huge to be implemented
by current computer facilities. Third, deformation mechanisms in the process zone,
e.g. large deformation, nonlinear hardening, visco-plasticity, and thermal softening
are so complex that their full numerical simulation seems out of reach. An alternative
solution is to develop a rate-dependent model to implicitly introduce these effects into
the calculation.

13.5.3 Rate-dependent cohesive model

In the adopted rate-dependent model, the contact opening speed, δ̇eff = ∂δeff /∂t, is
assumed as the factor controlling the energy release process within the crack-tip zone.
As shown by Kazerani (2011), for PMMA plates undergoing fast fracture, the change
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Discontinuum-based numerical modeling of rock dynamic fracturing and failure 309

in the fracture energy of contact, which represents the material fracture energy, Gf ,
can be then expressed through

G′
f = Gf

[
1 + δ̇eff

rG − (1 − α)δ̇eff

]
(13.19)

where G′
f is the rate-dependent evaluation of Gf , rG is a constant named reference

opening speed of contact, and α is the ratio of the fracture terminal velocity to the
Rayleigh surface wave speed. For PMMA, α is measured as 0.75 (Zhou et al., 2005).

Assuming contact peak strength as fixed, and since Gf is the product of the con-
tact strength and displacement, the rate-dependent ultimate displacement of contact,
δ′

ut, is estimated to follow an expression similar to Equation (13.19). Therefore, in
general form,

δ′
ut = δut

[
1 +

(
δ̇eff

rδ − (1 − α)δ̇eff

)η]
(13.20)

where η and rδ are called rate-dependency parameters.
Since any development of the contact model is needed to be consistent with the

original numerical methodology outlined in Section 3.2, the linear-decaying irreversible
cohesive law is still used. The rate-dependent tensile stress of cohesive contact is then
expressed through

σ =



ktδeff exp(−δeff /δct) δeff ≤ δct

tc(1 − D) δct < δeff ≤ δ′
ut

0 δeff > δfin

(13.21)

The damage variable, D, is determined in the same manner as described in Section 3.2.
The unloading-reloading cycles are also handled based on the suggestions outlined
there. Compared to the rate-independent (RI) model, the rate-dependent (RD) one can
be therefore illustrated as follows.

In the rate-dependent simulation, the tensile peak strength of contact is fixed at
tc = 66 MPa, while its ultimate tensile displacement is momentarily updated through
Equation (13.20). Once the contact displacement exceeds δ′

ut, its displacement is
recorded as the final displacement, δfin. From this instant on, the contact will carry no
tension.

13.5.3.1 Influence of rate-dependency parameters

A series of CFM situations are arranged to evaluate the sensitivity of the model pre-
dictions to rδ and η. For this purpose, rδ is changed from 100 to 1000 m/s and η from
1 to 3. The specimen surface friction is assumed 5◦, and vd is fixed at 1000 mm/s.
The results, plotted in Figure 13.14, show that increasing η or decreasing rδ leads to
increasing KICd. In addition, increasing η makes the CFM predictions more sensitive
to rδ. If the loading rate, calculated by Equation (13.17), was plotted for all the points
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Figure 13.13 Rate-dependent cohesion law of contact.
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Figure 13.14 Variation of dynamic fracture toughness versus rate-dependency parameters.

of Figure 13.14, it would be seen to vary between 90 and 100 GPa
√

m/s where experi-
mental KICd ≈ 5 MPa

√
m (Fig. 13.11). Figure 13.14 suggests η = 2 and rδ = 400 m/s as

the best combination to get the dynamic fracture toughness of 5 MPa
√

m.

13.5.3.2 Reproduction of experimental results

Given η = 2 and rδ = 400 m/s, the SCB specimen is again simulated. The obtained
results, labeled as RD (φ: 5), are compared to the experimental data and those of the RI
model in Figure 13.15. The results clearly show that the RD model reproduces the test
data much better than the RI model did. As seen, the slope of the fitted line to the RD
model data is nearly as steep as the one fitted to the test data. This means that the
RD model, unlike RI, is able to predict the actual rate-varying fracture toughness of
the SCB specimens.
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Figure 13.15 Variation of dynamic fracture toughness versus loading rate for RI and RD models.
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Figure 13.16 Nodal displacement vectors of particle assemblage.

Figure 13.16 depicts the nodal displacement vectors of the particle assemblage
under vd = 1000 m/s. As seen, the centre of rotation of each specimen half is located
neither at the pins nor at the contact point with the incident bar (point A). It is at points
B and C, which have no displacement. The plot shows that both the halves are sliding
over the support pins. This demonstrates that the slip friction between the specimen
and the pins is an unavoidable matter of the SCB test.

To explore the friction effects from an energy point of view, an energy analysis
is performed, where the total boundary loading work supplied to the system, W , the
current strain energy stored in the assemblage, Uc, the current kinetic energy of the
system, Uk, the total dissipated energy through the specimen surface friction, Wj, are
continuously calculated in the course of loading. The total energy released by fracture
propagation will therefore be

Wf = W − Uc − Uk − Wj (13.22)

© 2011 Taylor & Francis Group, London, UK

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

2:
27

 1
6 

O
ct

ob
er

 2
01

5 



312 Advances in Rock Dynamics and Applications

30

25

20

15

10

5

0
0 2e-05 4e-05

Time (sec)

E
ne

rg
y 

(N
·m

m
)

6e-05 8e-05 10e-05

Uc

Wj

Wf

W

Uk

Figure 13.17 Variation of different components of energy versus time for vd = 1000 mm/s.
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Figure 13.18 Variation of stress intensity factor under different values of applied dynamic velocity.

Figure 13.17 offers the energy analysis output for the RD model under
vd = 1000 m/s, and assuming 5◦ surface friction angle. It indicates that the amount
of energy dissipated through the specimen surface friction (≈6.40 N·mm) is rather
comparable to the total fracture energy (≈9.96 N·mm), although the friction angle is
assumed to be very small. This again emphasizes how significantly the frictional effects
influence the SCB test results.

Variation of the stress intensity factor versus time is plotted in Figure 13.18. Com-
parison of the results when vd = 1000 m/s with Figure 13.17 indicates that the model
strain energy as well as the stress intensity factor reaches their peaks at 50 µs.

However, Figure 13.19b demonstrates that the fracture just starts propagating
25 µs after the loading bar touches the specimen, when KId = 2.33 MPa

√
m. This means

that the peak of KId (=4.67 MPa
√

m), which is experimentally reported as the dynamic
fracture toughness, does not correspond with the instant of fracture initiation. The sim-
ulation suggests that the actual toughness value, regarding fracture initiation, is much
lower than the laboratory measurement. The same is observed under vd = 200 mm/s,
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Pre-peak (55 �s) Pre-peak (25 �s)

Peak (97 �s) Peak (50 �s)

Post-peak (118 �s) Post-peak (70 �s)

(a) vd 	 200 mm/s (b) vd 	 1000 mm/s

Figure 13.19 Details of fracture propagation under the lowest and the highest applied dynamic
velocities.

where the fracture starts propagating at 55 µs when KId = 1.40 MPa
√

m, but the peak
value (=2.40 MPa

√
m) happens some time later at 97 µs.

Under vd = 1000 mm/s, the fracture propagation ends at about 70 µs. From 80 µs
on, the specimen does not bear any more load, and all the energy components become
nearly constant (Fig. 13.17). Note that since the specimen is still in contact with the
pins, the friction work (Wj) slightly evolves and consequently the kinetic energy decays
a little.

The details of fracture propagation are illustrated in Figure 13.19, where the con-
tacts fully damaged are colored in brown thick lines, and those in cohesive softening
stage are plotted by thin red lines. It reveals that the fracture propagates much faster
under high-rate than low-rate loading. Moreover, the cohesive zone, ahead the crack
tip, broadens as the loading rate increases.
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Figure 13.19b indicates that the high-rate loading may cause local damage around
where the specimen touches the loading bars. As the particle generation is based on a
random procedure, the arrangement of contacts in each half of the specimen is different
from that in the other one. That is why the failure patterns of the specimen halves are
not the same with each other, and thus the demonstrated examples are unsymmetrical.

13.6 CONCLUSIONS

This chapter demonstrated the capability and effectiveness of the discontinuum-based
numerical modeling for rock dynamic fracture research. Besides the results presented,
the study specifically provides some critical suggestions, which are believed to be
necessary for any discontinuum-based modeling of rock fracture and fragmentation.

13.6.1 Particle size

Physical interpretation of particles varies with the microstructural characteristics of
the simulated material. For rocks, particle size is basically a matter of their physical
texture. Simulation of coarse-grained rocks needs bigger particles than that of fine-
grained ones. Since rock fracture is expected to pass through a mineral interface, the
weakest grains or mineral cement (if any), the rock fragments are at least as large as
one or several minerals. Therefore, the model particles, which numerically represent
the fragmented pieces of failed rock, do not need to be smaller than the rock grains size.

For isotropic homogeneous material, e.g. brittle polymers, particle size should
respect the considerations suggested by continuum models, e.g. it should be a rea-
sonable fraction of the stress wavelength or the length of the fracture process zone.
However, there is also a lower boundary for particle size. Since the contact stiffness
represents the stiffness of material existing in the fracture cohesive zone, only one parti-
cle is allowed to be placed within the cohesive zone thickness. Otherwise, the material
located in this zone would be modeled less stiffly than reality because there would
exist several contacts over the zone thickness, which act as springs in series. Therefore,
particle size must not be smaller than the thickness of the fracture cohesive zone.

13.6.2 Necessity of a representative contact model

Since macroscopic response of any bonded particle assemblage is dominantly con-
trolled by the contact (or bond) constitutive model, this model must be appropriately
adopted to allow the assemblage to simulate material physical response. Therefore
simulation of rock, as an anisotropic brittle material, needs a contact model providing
these qualities. That is why the CFM contact model is orthotropic, cohesive, frictional,
and rate-dependent. All these items are necessary for rock failure modeling. If contact
orthotropy is neglected, the assemblage is no longer able to follow different compres-
sive and tensile behaviors as physical rock does. Contact cohesiveness is required to
provide real rock fracture energy, and contact friction is required to present real slip
behavior of broken fragments past each other. However, the contact model should
meet all these needs by using the fewest micro-parameters possible.
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13.6.3 Numerical process of fracture energy release

No numerical damping must be applied to dynamic fracture simulations. We believe
that the key for any successful simulation of fracture is that the adopted numerical
model must be able to reproduce the actual amount of energy released in the material
fracturing process. Very importantly, this issue must not be disturbed or manipulated
at all by the application of any artificial (numerical) damping, e.g. local or Rayleigh
damping. In other words, all the energy dissipation in a particle assemblage must occur
only through the rupture of bonding elements (contacts).

13.6.4 Necessity of rate-dependent model for fracture
in micro-scale

The thesis results supported the use of the rate-dependent contact (crack) model for
dynamic fracture simulation. This approach is to let contact appropriately reproduce
the actual amount of energy released during the material fracturing process. Other-
wise, numerical energy released through contact failure is held constant whatever the
applied loading rate is. There are two points that we should pay attention to in rate-
dependent simulation: physical interpretation of rate dependency parameters and scale
of modeling.

The results obtained from dynamic fracture simulation suggest that the rate depen-
dency parameters somehow express the sensitivity of dynamic fracture response to
loading rate. However, the essence of this sensitivity is not clear yet.

Although the rate-dependent model is needed in micro-scale simulation, its neces-
sity for molecular-scale modeling is not approved. As mentioned, the key point in
accurate simulation of fracture is that the simulation properly reproduces the actual
amount of energy released through the material fracturing process. If current compu-
tational facilities allow us to establish a particle assemblage with a particle size in the
order of material molecules, the assemblage would be able to reproduce all the micro-
cracking events happening in the fracture process zone. Since this model produces
more fracture energy than the CFM does, it could possibly match the actual amount of
energy released in the fracture process zone without the rate-dependent assumption.
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Chapter 14

Manifold and advanced numerical
techniques for discontinuous
dynamic computations

Gaofeng Zhao, Gen-Hua Shi and Jian Zhao

14.1 INTRODUCTION

With the improvement in computing power of modern computers, numerical methods
have become extremely useful in scientific research. In addition to experimental meth-
ods, computer simulation using numerical methods has been proven as a powerful
and effective tool for rock dynamics. There exist a large number of numerical meth-
ods, e.g. finite element method (FEM), finite difference method (FDM), finite volume
method (FVM) and discrete element method (DEM). Generally, numerical methods
used in rock mechanics are classified into continuum based method, discontinuum
based method and coupled continuum/discontinuum method (Jing, 2003). The classi-
cal numerical methods, e.g. FEM, FDM and DEM have a few shortcomings when they
are used for discontinuous dynamics computations. For example, directly using FEM
to simulate dynamic cracking propagation problems is difficult due to the continuum
assumption which leads to FEM being unsuitable for dealing with complete detachment
and large-scale fracture opening problems (Jing, 2003). The DEM can well simulate
the fracturing process of rock by the breakage of inter-block contacts or inter-particle
bonds. However, it is not suitable for stress state analysis of the pre-failure stage.

In order to overcome these problems, some new numerical methods are proposed,
e.g. smoothed particle hydrodynamics (SPH) (Monaghan, 1988; Randles and Libersky,
1996), numerical manifold method (NMM) (Shi, 1991), extended finite element
method (XFEM) (Belytschko and Black, 1999), finite element method (FEM)/discrete
element method (DEM) (Munjiza, Owen and Bicanic, 1995; Munjiza, 2004), discon-
tinuous Galerkin method (DGM) (Reed and Hill, 1973), distinct lattice spring model
(DLSM) (Zhao, Fang and Zhao, 2010) and multi-scale distinct lattice spring model
(m-DLSM) (Zhao, 2010). These newly developed methods are not fully covered by
the classical review paper on numerical methods in rock mechanics by Jing (2003). In
this chapter, a comprehensive review on these newly developed numerical methods is
presented including their basic principles, applications, advantages and disadvantages.

14.2 NUMERICAL MANIFOLD METHOD (NMM)

NMM was developed to integrate Discontinuous Deformation Analysis (DDA) and
FEM. NMM employs two sets of cover system (Shi, 1991). One is the mathematical
cover which is used to build approximation and is independent of the problem domain.
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ME1
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Figure 14.1 Manifold element in NMM.

Another is the physical cover which contains the geometry information of the prob-
lem domain and is used to define the integration fields. The advantages of NMM are
releasing the task of meshing and combining continuum and discontinuum problems
into one framework. The foundation of NMM is manifold approximation of the dis-
placement function. The approximation method makes NMM suitable to deal with
both the continuum and discontinuum problems. In this section, the method of NMM
for building the approximation function will be presented in a concise way. The basic
unit used in NMM is called the physical cover. It can be regarded as the intersection of
the mathematic cover and the physical domain. The physical cover is equivalent to the
FEM node used in the standard FEM. Degrees of freedoms (DOF) are defined in these
physical covers to represent the deformation state of a small area. This representation
of the physical cover is more suitable for description of discontinuous problems, as the
influence domain can be separated naturally according to the topology of the studied
body. The manifold element is made up from several physical covers (see Fig. 14.1).
Details of how to construct these manifold elements can be found in the work of Shi
(1991) and Ma et al. (2009).

The approximation function in NMM is given as follows. First, the displacement
function is defined in the physical cover as

cj(x) =
n∑

i=1

bji(x) · uji (14.1)

where cj(x) is the displacement function of the jth physical cover, uji is the general
DOFs of the cover, bji(x) is the basis of the displacement function and n is the number
of DOFs. Finally the approximation function of the manifold element is written as

uh(x) =
m∑

j=1

φj(x)cj(x) =
m∑

j=1

φj(x)
n∑

i=1

bji(x)uji (14.2)
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where φj is the weight function of the cover and m is the number of physical covers of
the manifold element. The weight functions should satisfy the partition of unity (PU),
namely

m∑
j=1

φj(x) = 1 (14.3)

The manifold elements can be called the three-cover element or six-cover element in
order to distinguish them from the FEM. Equation (14.2) can be further written in a
more familiar form as

uh(x) =
n×m∑
i=1

Ni(x)ui (14.4)

where Ni(x) is the shape function of ith general degree of freedoms. Now, the inte-
gration equations of NMM on elastic dynamics can be obtained through the weighted
residual approach or the variational principle. Details of the integration equations and
treatment methods for contacts can be found in the work of Shi (1991).

It should be mentioned that the NMM is proposed much earlier than the PU theory
and other derived FEMs. Recently, it has also been called the cover-based generalized
FEM (Terada et al., 2007). Actually, the solver in manifold code is very similar to that
in the standard FEM. The distinct part of NMM is the manifold mesh generation tech-
nique which makes the method more suitable for describing continuum-discontinuum
problems. For this reason, NMM has been used for fracture progress simulation
(Chiou, Lee and Tsay, 2002; Ma et al., 2009; Terada et al., 2007) and dynamic fractur-
ing computations. For example, the stress-based Mohr-Coulomb criterion and fracture
mechanics based criterion are used by Chen et al. (2006) as the crack initiation law
and the propagation law in NMM for modeling the two hole blasting problem (see
Fig. 14.2 (a)). Another application of NMM is for dynamic large deformation sim-
ulation. An Eulerian form of explicit NMM is proposed by Okazawa et al. (2010)
to solve problems involving dynamic boundary conditions and large deformation
(see Fig. 14.2(b)). NMM is also used for stress wave propagation simulation. Non-
reflection boundary conditions and more general integration method based Newmark
assumptions are implemented into the standard NMM and have been used to model
blasting wave propagation through jointed rock masses (Fig. 14.2 (c)).

NMM has been also used for other applications, e.g. stability analysis of ancient
block structures under dynamic loading (Sasaki et al., 2009), modeling complex crack
problems by using singularity cover (Ma et al., 2009), progressive failure in heteroge-
neous solids and structures with cohesive zone model (Terada et al., 2007). Even so, a
few shortcomings also exist in NMM. For example, the small element will cause insta-
bility problems and rigid body rotation cannot be well modeled by NMM (Miki et al.,
2009). Moreover, the implementation of NMM, especially for the 3D case, is very
difficult and no commercial codes are available at present. Solving these shortcomings
is necessary for its further application on discontinuous dynamic computations.
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t t

et al

et al

t t

Figure 14.2 Applications of NMM on dynamic computations.

14.3 EXTENDED FINITE ELEMENT METHOD (XFEM)

The XFEM (Belytschko and Black, 1999) is based on the partition of unity method
(PUM) (Babuska, 1997) which allows for addition of a priori knowledge about the
solution into the approximation space of the numerical solution. XFEM focuses on
crack propagation problems. Compared with the standard FEM, XFEM has several
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Figure 14.3 The enrichment strategy of XFEM.

advantages in aspect of mesh independence. The most important feature of XFEM
is that it can perform extending crack without any remeshing. XFEM treats cracks
at element level by using the level sets technique (Prabel et al., 2007). Usually, the
Heaviside function and asymptotic functions are used to deal with the discontinuity
and singularity. The approximation function of the XFEM element is written as

uh(x) =
Standard FEM︷ ︸︸ ︷∑

Ni(x)ui +
Discontious enriched︷ ︸︸ ︷∑

Ni(x)H(f̄ (x))bi +
Crack tip enriched︷ ︸︸ ︷∑
Ni(x)

∑
γk(x)ak

i (14.5)

In this equation, the set of nodes whose support is cut by the crack and that contain
the crack tip are enriched by discontinuous and singular functions (see Fig. 14.3).

Another technique used in XFEM is the level set method. It uses a scalar function
within the domain with zero-level to represent the discontinuity. The domain is divided
into two subdomains where the level-set function is negative or positive (see Fig. 14.4).
The level-set function to describe the discontinuity in Figure 14.4 is given as

φ(x, y) =
√

x2 + y2 − r (14.6)

In practical, level-set functions are defined by values at the nodes in the domain
by standard FEM shape functions, which are written as

φh(x) =
∑
i∈I

Ni(x) · φi (14.7)

To capture the dynamic evaluation of discontinuities, level set functions need to be
correspondingly updated during calculation (Gravouil, Moes and Belytschko, 2002).
When the level set is defined on an unstructured irregular mesh, a special algorithm for
triangulation is used (Barth and Sethian, 1998). Another solution is to use auxiliary
regular structured mesh for level set representation (Prabel et al., 2007).
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Figure 14.4 Represent discontinuity by level set method.

In XFEM, elements containing a crack are not required to conform to crack
edges, and mesh generation is much simpler than in the classical FEM. Because of
these advantages, XFEM was successfully used in the simulation of crack propagation
(Stolarska et al., 2001), dynamic crack propagation (Prabel et al., 2007; Song,
Wang and Belystchko, 2008) and three-dimensional crack propagation (Pedro and
Belytschko, 2005; Sukumar, Chopp and Moran, 2003).

Examples of dynamic crack propagation are shown in Figure 14.5. It was reported
that the simulation results of XFEM compared well with the experimental results.
Recent development of XFEM includes dealing with cohesive fracturing (Asferg,
Poulsen and Nielsen, 2007), explicit formulation of XFEM (Menouillard et al., 2006),
anisotropic XFEM (Asadpoure, Mohammadi and Vafai, 2006) and considering contact
between crack surfaces (Khoei and Nikbakht, 2007; Ribeaucourt, Baietto-Dubourg
and Gravouil, 2007).

XFEM has the advantage of mesh independence and being able to deal with weak
or strong discontinuities efficiently. These merits make it suitable for fracturing process
analysis. Nevertheless, it also has its own disadvantages. For example, the global
stiffness matrix will become singular if the crack passes a very tiny part of the XFEM
element (Markus, 2005). This is an existing problem for all derived FEMs including
NMM. Implementation of XFEM into available commercial FEM code is also difficult
(Stéphane et al., 2006) since additional degrees of freedom are introduced. There
are methods to reduce the singularity caused by small element, but with the price
of sacrificing the description of discontinuity inside enriched elements. In spite of
these drawbacks, XFEM is still the most promising method for dynamic discontinuous
computation. This is mainly attributed to the success of the standard FEM idea and its
inherent merits, e.g. robust and easy to deal with complex geometry, various loading
and material conditions.

14.4 SMOOTHED PARTICLE HYDRODYNAMICS (SPH)

In recent years, a large family of meshless methods with the aim of getting rid of
mesh constraints has been developed. Their requirements for model generation are
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(a) Dynamic crack propagation of PMMA plate under compression (Prabel et al., 2007)
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(b) Edge-cracked plate under impulsive loading (Song, Wang and Belystchko, 2008).

Figure 14.5 XFEM for dynamic fracturing computations.

only the generation and distribution of discrete nodes without fixed element-node
topological relations as in FEM. Compared to mesh generation, it is relatively simple
to establish a point distribution and adapt it locally. SPH is the oldest meshless method
which was first invented to deal with problems in astrophysics (Monaghan, 1988) and
later extended to elastic problems (Libersky and Petschek, 1991). In SPH, a local
approximation function for the PDEs is built based on points grouped together in
‘clouds’. A kernel interpolation method is used to estimate a function f (x), and its
differential form ∇f (x) at point i can be represented by the discretized points following
the support domain as (see Fig. 14.6)

〈f (x)〉x=xi
∼=

N∑
j=1

mifiWxi(|xi − x|/h)/ρi (14.8)

〈∇f (x)〉x=xi
∼= −

N∑
j=1

mifi∇Wxi(|xi − x|/h)/ρi (14.9)
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Figure 14.6 SPH neighborhood and its kernel function.

where h is named the smoothing length, which is the supporting domain of the particle,
and Wxi(|xi − x|/h) is the smooth kernel function. A typical kernel function and its
derivative are shown in Figure 14.6.

For dynamic solid mechanics, the mass and momentum equations can be
expressed as

dρi

dt
= ρi

N∑
j=1

mj

ρj
[(vα)i − (vα)j]

∂Wij

∂(xα)i
(14.10)

d(vα)i

dt
=

N∑
j=1

mj

(
(σαβ)i

ρ2
i

+ (σαβ)j

ρ2
j

+ �ijδαβ

)
∂Wij

∂(xβ)i
(14.11)

where vα is the velocity, σαβ is the stress tensor, α and β are used to denote the coordi-
nate directions and �ij is the artificial viscosity to get stabilized solution (Gingold and
Monaghan, 1977). An explicit time integration method is normally used in SPH to
calculate σαβ from the constitutive model through the strain-rate tensor. Details can
be found in Monaghan (1988) and Randles and Libersky (1996). Due to its meshless
property, the applications of SPH are mainly in fragmentation analysis and blasting
simulation. For example, Figure 14.7(a) shows how concrete fragmentation under
impact loading is simulated by SPH (Rabcauk and Eibl, 2003) and Figure 14.7(b)
gives one example of blasting simulation (Randles and Libersky, 1996). Other applica-
tions include dynamic fragmentation in brittle elastic solid (Benz and Asphaug, 1995),
high distortion impact computations (Johnson, Stryk and Beissel, 1996), formation of
cracks around magma chambers (Gray and Monaghan, 2004) and strain rate effect for
heterogeneous brittle materials (Ma, Wang and Li, 2010). There are two advantages of
SPH over other methods as it is easy to be implemented and meshless. However, there
are also a few shortcomings, e.g. SPH exhibits an instability problem called the tensile
instability and a problem known as the zero-energy mode. Both of them need special
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t 	 0 t 	 100 �s t 	 200 �s t 	 300 �s

Figure 14.7 Examples of SPH on dynamic fragmentation and blasting problems.

treatment in order to produce stable and accurate results (Dyka, Randles and Ingel,
1997). Furthermore, the kernel function of SPH has great influence on the simulation
results (Fulk and Quinn, 1996), and its accuracy is not as good as FEM. Overall speak-
ing, SPH has the advantage in simulation of dynamic fragmentation and is easy to be
implemented. However, the accuracy, computational time and contact treatment are
still problematic in SPH. Solving these problems will strengthen its abilities in dynamic
discontinuous computations.

14.5 FEM/DEM METHOD

The continuum-based methods are unsuitable to capture the post-failure discontinuous
stage, while the discontinuum-based methods are unsuitable to capture the pre-failure
stage of rock. A combination of continuum and discrete methods is required in many
rock mechanics applications, such as predicting the formation and interaction of frag-
ments for projectile penetration into rock (Morris et al., 2006). Coupled continuum
and discontinuum methods can take advantages of the strength of each method while

© 2011 Taylor & Francis Group, London, UK

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

2:
28

 1
6 

O
ct

ob
er

 2
01

5 



330 Advances in Rock Dynamics and Applications

Block A

2

1

3

4

5

6
7

8 9

10

11

12

Block B

13

18

14 15 16 17

19 20 21 22

23 24 25 26 27

Figure 14.8 Blocks in FEM/DEM method.

avoiding their disadvantages. For fracturing simulation, a coupled method is required
to be able to capture both the pre-failure and the post-failure behavior after collapse
occurs (Darve et al., 2004). To develop continuum-discontinuum coupled methods,
most researchers incline to couple FEM with DEM. The review in this subsection will
be limited to the FEM/DEM method (Munjiza, Owen and Bicanic, 1995; Munjiza,
2004). This method aims at modeling dynamic failing, fracturing and fragmenting of
solids. In the FEM/DEM method, each body is represented by a single discrete ele-
ment that interacts with other discrete elements that are close to it (see Fig. 14.8). In
addition, each discrete element is divided into FEM elements. For a breakable block
(block A in Fig. 14.8), the FEM elements have separate nodes and the block can be
further broken into smaller blocks during calculation. One of the most distinct aspects
of FEM/DEM method is the contact treatment method. As reported in the book by
Munjiza (2004), the classical contact treatment cannot preserve kinematic energy bal-
ance. In the FEM/DEM method, a potential contact force concept is used to overcome
this shortcoming.

As shown in Figure 14.9, the contact force is adopted for two blocks in contact,
one is named as the contactor and another is called the target. An infinitesimal contact
force is given by the following contact force equation:

df = [gradϕc(Pc) − gradϕt(Pt)]dA (14.12)

where df is the infinitesimal contact force by the overlap dA defined by the overlapping
area belonging to both the contactor and target. In FEM/DEM, blocks are discretized
into tri-node triangle elements for 2D and four-node tetrahedron elements for 3D.
Special equations and procedures for potential contact force equations are provided in
FEM/DEM. Details can be found in the book by Munjiza (2004).

In the FEM/DEM method, the explicit time integration method is used to solve the
system equations. Due to the continuum-discontinuum property of the method, it has
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Figure 14.9 Potential contact force between two bodies.

been widely used to simulate dynamic fracturing processes. For example, Figure 14.10
shows examples of the blasting process of a square block with an explosive charge and
the fracturing process of Brazilian disc under dynamic loading. Other applications of
FEM/DEM method include the investigation of effect of explosive and impact loading
on geological media (Morris et al., 2006), the crack propagation under mixed mode
loading (Karami and Stead, 2008) and the processes of joint surface damage and near-
surface intact rock tensile failure (Ariffin et al., 2006). The FEM/DEM method is a
powerful method to solve the fracturing process problems. However, implementation
of this method into a computer code needs complex skills and extensive efforts.

14.6 DISCONTINUOUS GALERKIN METHOD (DGM)

DGM is a generalization of the Galerkin method which is the basis of the standard
FEM. The name of DGM was first proposed by Lesaint and Raviart (1974) to link
separate domains in a weak form. Recently, DGM has been used for dynamic discon-
tinuities computations (Mergheim, Kuh and Steinmann, 2004). When DGM is used
for dynamic fracturing simulation, a splitting mesh scheme (see Fig. 14.11) is always
used. Interface elements are inserted between two adjacent elements. This treatment is
similar with that in the FEM/DEM method. The difference is that there is no dynamic
contact detection used in DGM. Moreover, the cohesive law is always used in DGM
to model dynamic failure. DGM produces block-diagonal matrices as it uses a discon-
tinuous approximation, which makes it highly parallelizable (Levy, 2010). In DGM,
dynamic computation is also taken as finite element discretization and the mass matrix
and stiffness matrix are given as

M =
∫

�

ρNTNd� (14.13)

K =
∫

�

BTDBd� (14.14)
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a b

(a) Explosive simulation (Munjiza, 2004)

(b) Failure process of Brazilian disc under dynamic loading (Mahabadi et al., 2010)

c d

Figure 14.10 Examples of FEM/DEM method on discontinuous dynamic computation.
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Figure 14.11 Splitting of a mesh in DGM.
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Figure 14.12 Interface elements for 3D and 2D cases in DGM.

where ρ is the density, N and B are respectively the interpolation matrix of displacement
and strain, D is the elastic matrix.

The most important part of DGM is the interface element (see Fig. 14.12) which
enables the method to well handle non-local behavior and failure behavior. The use of
average numerical fluxes and introduction of appropriate quadratic terms makes the
interface element keep both consistency and stability. The expression of force between
two interfaces is given (Noels and Radovitzky, 2008) as

f±
ia = ±

∫
∂1B0h

〈Ph〉 · N−NadS ±
∫

∂1B0h

[〈
β

hs
C

〉
: [[xa]] ⊗ N−

]
N−NadS (14.15)

where [[xa]] = x+
a − x−

a are the jumps in the local coordinates, Ph is the first Piola-
Kirchhoff stress tensor, N− is the unit surface normal, Na is the conventional shape
function, C is the elastic tangent moduli for stabilization, hs is the element size, β > 0
is the stabilization parameter. For dynamic computation, an explicit time integration
is used. Details of the implementation of interface elements and dynamic DGM can be
found in the work of Noels and Radovitzky (2008).

Due to the discontinuous nature of DGM, it has significant advantage for mod-
eling dynamic fracturing processes and being efficient for parallel implementation.
Figure 14.13 shows one example of DGM in modeling three dimensional fragmentation
(Levy, 2010). Moreover, the DGM is also regarded as having other advantages, such
as stable, high-order conservative, precisely tracking stress wave (Radovitzky et al.,
2010) and modeling discontinuities involving irregular meshes (Castillo et al., 2001;
Oden, Babuska and Baumann, 1998). The author considers that the DGM method
is very similar to DDA (Shi, 1988), the difference between them should be the treat-
ment of interaction between elements (blocks) and the time integration method used to
solve system equations (DGM using the explicit scheme with DDA using the implicit
algorithm). The shortcoming of DGM is the increasing of total DOFs (see Fig. 14.11)
and the contact detection is not fully considered. These limitations may constrain the
method which can be further applied in complex fracturing process problems, e.g.
dynamic compressive failure and large deformation.
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Figure 14.13 Dynamic fragmentation simulation of a hollow sphere under dynamic loading by DGM
(Levy, 2010).

14.7 MULTI-SCALE DISTINCT LATTICE SPRING MODEL (M-DLSM)

14.7.1 Distinct Lattice Spring Model (DLSM)

The classical elasticity theory could provide an adequate description of the macroscopic
mechanical response of most materials, even though they are actually heterogeneous
when viewed at the microscopic level. However, dynamic fracturing of heterogeneous
materials such as rock and concrete cannot be modeled realistically without appeal-
ing to their microstructures. This requires that a successful numerical method must be
capable of considering not only the elastic stage, but also the formulation and evolution
of micro-discontinuities. Lattice models (Bažant et al., 1990; Ostoja-Starzewski, 2002)
represent material by a system of discrete units (e.g. particles) interacting via springs,
or, more generally, rheological elements. These discrete units are much coarser than the
true atomic ones and may represent larger volumes of heterogeneities such as grains
or clusters of grains. Lattice models are close relatives of the common finite element
method (FEM) when dealing with elastic problems. Yet, due to their discrete nature,
lattice models are known to be more suitable for complex fracturing simulation. For
example, lattice models have been successfully applied to investigate the spatial coop-
erative effects of crack formation and heterogeneities in elastic-plastic (Buxton, Care
and Cleaver, 2001) and elastic-brittle (Ostoja-Starzewski, Sheng and Jasiuk, 1997)
systems. However, for lattice models composed of normal springs transmitting central
forces only, it is known that the modeled Poisson’s ratio approaches, in the limit of an
infinite number of particles, a fixed value e.g. 1/4 in three-dimensional cases. Recently,
an alternative 3D dynamic lattice spring model, DLSM (Zhao, Fang and Zhao, 2010),
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Manifold and advanced numerical techniques 335

has been proposed to overcome the restriction on the Poisson’s ratio while preserving
the rotational invariance.

The DLSM is a microstructure-based numerical model based on the Realistic
Multidimensional Inter Bond (RMIB) model (Zhao, 2010), which is an extension
of the Virtual Multidimensional Inter Bond (VMIB) model (Zhang and Ge, 2005). In
DLSM, materials are discretized into mass particles linked through distributed bonds
(see Fig. 14.14(a)). Whenever two particles are detected in contact, they are linked
together through bonds between their centre points. Based on Cauchy-born rules and
the hyper-elastic theory, the relationship between the micromechanical parameters and
the macro-material constants can be obtained as follows (Zhao, Fang and Zhao, 2010):

kn = 3E
α3D(1 − 2v)

(14.16)

ks = 3(1 − 4v)E
α3D(1 + v)(1 − 2v)

(14.17)

where kn is the spring normal stiffness, ks is the shear stiffness, E is the Young’s
modulus, v is the Poisson’s ratio and α3D is the microstructure geometry coefficient,
which is obtained from

α3D =
∑

l2
i

V
(14.18)

where li is the original length of the ith bond and V is the volume of the geometry model.
The particles and springs comprise a whole system, which represents the material. For
this system, the equation of motion is expressed as

[K]u + [C]u̇ + [M]ü = F(t) (14.19)

where u represents the particle displacement vector, [M] is the diagonal mass matrix,
[C] is the damping matrix and F(t) is the vector of external forces on particles. The
motion equations of the particle system are solved through an explicit central finite
differences scheme. The calculation cycle is illustrated in Figure 14.14(b). The details
of the implementation and verification of DLSM can be found in the paper by Zhao,
Fang and Zhao (2010) and Zhao (2010).

Due to the explicit considerations of the discontinuous microstructure of mate-
rial, the model has advantages in modeling of material failure behavior. For example,
Kazerani, Zhao and Zhao (2010) used DLSM to model dynamic cracking propagation
of PMMA by implementation of a rate-dependent cohesive law (Fig. 14.15 (a)), and
Zhu et al. (2011) applied the DLSM on modeling wave propagation through jointed
rock masses (Fig. 14.15 (b)). Moreover, the DLSM is also used in analysis of the cutting
process of coal under a single blade (Zhao and Zhao, 2010), and dynamic fracture
toughness of granite (Zhao, 2010).

In DLSM, there is no need to form the global stiffness matrix and only a local
interaction is considered during calculation. This is very suitable for large scale paral-
lel computing implementation (Zhao, 2010). The DLSM can be viewed as a meshless
method like EFG and FPM, but more closer to DEM methods. Compared with the
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pi

Neighbors

Springs

Particle forces

Contact force 
update

Relative contact 
displacements

Particle 
motion

(b) Calculation cycle (a) The physical model of DLSM 

Figure 14.14 The physical model and the calculation cycle of DLSM.

particle-based DEM, the DLSM can directly use macroscopic parameters without a
calibration process. This is regarded as the main advantage over other discrete ele-
ment based methods. Moreover, DLSM also have advantages over existing meshless
methods, e.g. EFG, FPM and SPH, on stability, no integration requirement and ease in
dealing with heterogeneity problems. Due to the meshless and natural discrete prop-
erties of DLSM, it is suitable for dynamic discontinuous computations. However, as
a newly developed numerical model, lots of work needs to be done, for example,
calibrating the DLSM modeling results with experiments, developing multi-physical
code, developing GPU-based high performance DLSM code, implementing complex
constitutive models etc.

14.7.2 Multi-scale DLSM coupled with PMM

Multi-scale modeling is regarded as an exciting and promising methodology due to its
ability to solve problems which cannot directly be handled by microscopic methods
for the limitation of computing capacitance (Guidault et al., 2007; Hettich, Hund
and Ramm, 2008; Xiao and Belytschko, 2003). For this reason, the macro-material
response can be directly obtained based on the micro-mechanical properties through
multi-scale modeling. This advantage is extremely useful and essential in the study of
material properties based on their microstructure information. It is well known that
classical elasticity theory can only provide an adequate description of macroscopic
mechanical response for most materials. It would be an unsuitable theory when facing
the micro-mechanical response of these materials which are actually heterogeneous
at microscopic level. Therefore, the microscopic modeling is necessary (Darve and
Nicot, 2005). As has been mentioned above, directly building a microscopic model
is usually impossible due to the limitation of computing resources. In this case, the
multi-scale modeling provides a good choice. The most direct way to build a multi-
scale numerical model is to combine two different scale methods. This methodology has
been widely used in the coupling of MD with continuum mechanics models (Mullins
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 (a) Dynamic crack propagation through PMMA plate
(Kazerani, Zhao and Zhao, 2010)
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(b) Wave propagation through multi-joints by DLSM (Zhu et al., 2011).

Figure 14.15 Examples of DLSM method on discontinuous dynamic computation.

and Dokainish, 1982; Tadmor, Ortiz and Phillips, 1996; Hasnaoui, van Swygenhoven
and Derlet, 2003; Ma et al., 2006).

In this section, a multi-scale model is developed to couple DLSM (Zhao, Fang and
Zhao, 2010) and NMM (Shi, 1991). The reason for choosing NMM is that it is an
advanced FEM and the background mesh used in the manifold method is independent
of the physical model. Also, the DLSM is close to FEM due to the DOFs for each
particle being the same as those of FEM nodes. These properties make it very suitable
to couple these two different methods. A three layer structure is used to combine
DLSM and NMM. The Particle based Manifold Method (PMM) is proposed to bridge
between DLSM and NMM. The PMM element simplifies the contact detection between
the particle in the DLSM model and NMM model and also serves as the cushion layer.
The basic idea of the PMM element will now be introduced. The PMM element is
realized by replacing the physical domain of the manifold element by the particle-based
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Figure 14.16 PMM element in m-DLSM.

DLSM model. The 3D PMM element used in m-DLSM is illustrated in Figure 14.16.
The eight-node FEM element is used as the mathematic element and the DLSM model
is used as the physical domain.

As the explicit integration method and lumped mass matrix are used in m-DLSM,
the mass matrix of PMM element is taken as the 1/8 of the DLSM model included in
the element:

MPME
i = 1

8

mi∑
j=1

mp
ij (14.20)

where MPME
i is the mass matrix of PMM element, mi is the number of particles included

in the PMM element and mp
ij is the mass of the particle. The stiffness matrix of the

PMM element has to be obtained from a distinct method. As the deformation energy of
the DLSM model is stored on the network of bonds between particles, the integration
domain of the PMM element is neither 2D nor 3D. Actually, as the discrete natu-
ral property of the lattice network, the integration is realized through a summarizing
operation as

KPME
i =

ni∑
j=1

Kb
ij (14.21)

where KPME
i is the stiffness matrix of the PMM element, ni is the number of bonds

included in the PMM element and Kb
ij is the stiffness matrix contributed by each lattice

bond (a pair of normal and shear springs).
The work flow of the coupled calculation cycle in m-DLSM is shown in

Figure 14.17. The DLSM and NMM computations are performed in parallel. Inter-
actions between them are finished by the PMM model. Information exchange only
happens at the beginning and the end of each cycle. The mapping of unbalance force
from particles to PMM element computation is realized by using the following equation

FME
i = NijFLS

ij (14.22)
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Manifold nodes
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Particles
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Figure 14.17 Coupled calculation cycle in m-DLSM.

where FME
i is the transferred force to the ith PMM element, Nij is the interpolation

matrix of displacement at the linked particle and FLS
ij is the calculated unbalance force

on the particle. After obtaining the unbalance force on particles and manifold nodes,
new positions of these particles and manifold nodes can be obtained by using Newton’s
second law. Then, the displacement of NMM model is mapped to the particles which
fall in the PMM model. The mapping operation is given as

uLS
ij = [Nij]TuME

i (14.23)

where uLS
ij is the mapped displacement from PMM model to the linked particle and

uME
i is displacement vector of the PMM element. The interaction between PMM and
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Figure 14.18 The failure process of the tunnel under blasting loading.
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Manifold and advanced numerical techniques 341

DLSM is realized through the interaction of the DLSM particle with the PMM particle.
The interaction between PMM and NMM is realized by sharing common manifold
nodes. The PMM model is used as the midst scale layer of the m-DLSM to realize
coupling of the DLSM and the NMM. The implementation details of this method are
given in Zhao (2010).

As the multi-scale model can largely reduce computing time required by the micro-
numerical model, it is possible to deal with some large scale problems which cannot be
handled by the micro model. As a newly developed numerical method, a few examples
are given in Zhao (2010). For example, the blasting wave propagation through rock
mass and the influence of discontinuities on the failure pattern of tunnels under a
blasting wave is simulated by m-DLSM (see Fig. 14.18), in which the left side of the
tunnel is broken under blast loading. For pure DLSM model, more than two million
particles are needed to build this computational model. It means that information
on more than ten million bonds needs to be stored, which is surely an inaccessible
problem for the normal PC. However, only about half a million particles are used for
the m-DLSM model which can easily be run on a normal PC. The m-DLSM can take
advantages of both DLSM and NMM and further reduce computational resources.
However, the implementation of the code is more complex and its functionality is
mainly dependent on DLSM which still needs further development.

14.8 CONCLUSIONS

In this chapter, a few newly developed numerical methods for discontinuous dynamic
computations are reviewed. It can be seen that developing a new numerical method is
based on a new approximation method for the displacement function, e.g. NMM, SPH
and DGM, or a new microscopic based model for elasticity, e.g. DLSM, or coupling
between different methods, e.g. m-DLSM. These newly developed methods provide
alternative choices for us when modeling discontinuous dynamic problems. However,
each of them has its own advantages and demerits, thus for real applications, selec-
tion of a suitable numerical method should depend on the properties of the problem
itself, i.e. microscopic or macroscopic, mechanism oriented or engineering oriented,
precision requirement etc. Even if there are lots of numerical methods, development of
new numerical methods is always needed to solve challenges in computational science
(de Borst, 2008), i.e. to explicitly and accurately model dynamic crack propagation
problems, multi-scale analysis and multi-physics analysis.
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Chapter 15

Earthquakes as a rock dynamic
problem and their effects on
rock engineering structures

Ömer Aydan, Yoshimi Ohta, Mitsuo Daido, Halil Kumsar,
Melih Genış, NaohikoTokashiki, Takashi Ito and Mehdi Amini

15.1 INTRODUCTION

An earthquake is an instability problem of the Earth’s crust and it is a subject of geo-
science and geo-engineering. An earthquake is caused by varying crustal stresses and
it is a product of rock fracturing and/or slippage of major discontinuities such as faults
and fracture zones.

Earthquakes are known to be one of the natural disasters resulting in huge losses
of human lives as well as of properties, as experienced in the 1999 Kocaeli earthquake.
Therefore, the prediction of earthquakes is an important field of research. Some earth-
quake prediction projects such as the Tokai Earthquake Project in Japan, the Parkfield
earthquake prediction project in USA have been recently undertaken. The most impor-
tant item in earthquake prediction is how to assess the variations of the stress state of
the Earth’s crust with time. If both the stress state and the strength of the Earth’s crust
are known at a given time, one should be able to predict earthquakes with the help of
some mechanical, numerical and instrumental tools.

When rock starts to fail, the stored mechanical energy in the rock tends to trans-
form itself into different forms of energy. Experimental studies by Aydan and his group
(Aydan, Minato and Fukue, 2001a; Aydan et al., 2003a) showed that rock exhibits dis-
tinct variations of various measurable parameters such as electric potential, magnetic
field, acoustic emission, and resistivity, besides load and displacement which are called
multi-parameters, during deformation and fracturing processes. Furthermore, some in
situ monitoring schemes were developed for structural safety of tunnels, abandoned
lignite mines and historical underground structures as well as for earthquake predic-
tion studies (Aydan et al., 2005a, 2005b, 2006a; Aydan, Ohta and Tano, 2010). These
variations may be useful in predicting the failures of rock structures in geoengineering
as well as earthquakes in geoscience (Aydan, 2008a).

The dynamic responses of geo-materials during fracturing have not received any
attention in the fields of geo-engineering and geo-science. However, these responses
may be very important in the failure phenomenon of engineering structures (i.e. rock-
burst, squeezing, sliding) and the high ground motions induced by earthquakes (Aydan,
2003a; Aydan et al., 2007). It is also known that the ground motions induced by earth-
quakes could be higher in the hanging-wall block or mobile side of the causative fault,
as observed in the 1999 Kocaeli earthquake and the 1999 Chi-chi earthquake (Aydan
et al., 2007) as seen in Figure 15.1.
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2004 Chuetsu Earthquake (Japan) 1999 Chi-chi Earthquake (UD)

Foot Wall

Foot Wall

Hanging Wall

Hanging Wall

Figure 15.1 The foot-wall and hanging-wall effects on the maximum ground accelerations.

These surface ruptures and permanent ground deformations may cause the fail-
ure of foundations of super-structures such as bridges, dams, viaducts and pylons.
The recent large earthquakes caused severe damage to pylons and the foundations of
viaducts and bridges. Therefore, it is an urgent issue how to assess the effects of pos-
sible surface ruptures in potential earthquakes and how to minimize their effect on
structures.

The 1999 Chi-chi, 2004 Chuetsu, 2005 Kashmir, 2008 Wenchuan and 2008 Iwate-
Miyagi earthquakes caused many rock slopes and rockfalls. These slope failures and
rockfalls, in turn resulted in the destruction of railways, roadways, housing and vehi-
cles. The assessment of the stability of natural rock slopes against earthquakes is very
important and one of our urgent issues is how to address it and how to devise the
methods and technology for mitigation. It should be also noted that the failure forms
induced by earthquakes might involve passive modes. The estimation of travel dis-
tance of natural slopes upon failure and their effect on engineering structures as well
as on the natural environment is also of great importance. The travel distance may
be of tremendous scale and it may cause severe damage to settlements and structures.
Although this issue is well known and some simple methods are available, the present
numerical methods are still insufficient to model post-failure motions.

It is well known that underground structures such as tunnels and powerhouses are
generally resistant against earthquake-induced motions. However, they may be dam-
aged when permanent ground movements occur in/along the underground structures.
There are several examples of damage to tunnels due to permanent ground movements
during the 1930 Tanna, 1978 Izu-Oshima-Kinkai, 1995 Kobe, 1999 Düzce-Bolu, 1999
Chi-chi, 2004 Chuetsu, 2005 Kashmir and 2008 Wenchuan earthquakes (Aydan et al.,
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Earthquakes as a rock dynamic problem and their effects 347

2010b,c). Most tunnels have non-reinforced concrete linings. Since the lining is brittle,
the permanent ground movements may induce the rupture of the linings and falling
debris may cause disasters with tremendous consequences to vehicles passing through.
Therefore, this current issue must be urgently addressed. It should also be noted that
the same issue is valid for the long-term stability of high-level nuclear waste disposal
sites.

This article is concerned with earthquakes as a rock dynamic problem and their
effects on rock engineering structures, which may be man-made or natural. In the first
part, the responses observed in the multi-parameters experiments in the laboratory are
presented so that they may be used to understand source characteristics of earthquakes
and possible utilizations in the prediction of earthquakes. In the second part, the
effects of earthquakes on rock engineering structures are described together with some
laboratory model experiments and analytical studies, and issues to be addressed are
pointed out and discussed.

15.2 MULTI-PARAMETER RESPONSES OF ROCKS DURING
FRACTURING AND SLIPPAGE OF DISCONTINUITIES

15.2.1 Multi-parameter responses of rocks during
deformation process and fracturing

Experimental studies for understanding of multi-parameter variations including elec-
tric potential, electrical resistivity, magnetic field, and acoustic emissions during
deformation and fracturing process of geomaterials, which ranges from crystals, fault
gauge-like materials to rocks under different loading regimes and environment have
been taken by Aydan and his group (Aydan, Minato and Fukue, 2001a; Aydan et al.,
2003a, 2005a, 2005b, 2007; Aydan, Ohta and Tano, 2010; Aydan, Tano and Ohta,
2010) (Fig. 15.2). Recently, the experiments have been repeated using an entirely
manually operated loading system in order to eliminate the possible electric noise on
the system (Aydan, Ohta and Tano, 2010). Furthermore, the dynamic responses of
geo-materials during fracturing have not received any attention so far. The recent
advances in measurement, monitoring and logging technologies enable us to measure
and to monitor the dynamic responses of geo-materials during fracturing and slippage.

The applied load and induced displacement were automatically measured and
stored on the hard disk of a laptop computer through an electronic logger. Electric
potentials induced during the deformation of samples were measured through two
electrodes attached to the top and bottom of samples using a voltmeter and logger unit
and data were simultaneously stored on the hard-disk of the laptop computer. The elec-
trodes were isolated from the loading frame with the use of isolators. Electric potentials
were measured either as DC and/or AC. When electrical resistivity is measured, a func-
tion generator was used to produce electric current with a given amplitude. In some of
experiments, magnetic field was also measured. In addition to the above measurement
system, acoustic emissions (AE) devices and sensors and temperature sensors were used
to measure the acoustic emissions as well as temperature variations during fracturing
and sliding of samples. The acceleration responses of the samples during fracturing
were measured by using an accelerometer, which can measure three components of
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Accelerometer

AE Sensor

Load cell

Voltmeter

Displacement
Transducers

Figure 15.2 Experimental set-up and views of uniaxial compression experiments.

accelerations up to 10 g with a frequency range of 0–160 Hz. Various rock samples
were tested. Although some of rock samples (e.g. granite, quartzite, sandstone etc.)
contain piezo-electric minerals, some rock samples were selected such that they do not
contain any piezo-electric substances, such as aragonite crystal, limestone, rocksalt,
soapstone and marls.

Various responses measured during some of experiments are shown in Fig-
ures 15.3–15.4. The detailed discussions can be found in previous articles (Aydan,
Minato and Fukue. 2001; Aydan et al., 2003a, 2005a, 2005b, 2007; Ohta, Aydan
and Tokashiki, 2008). Nevertheless, one can easily notice the distinct variations of
multi-parameters during the deformation and fracturing of rocks. As seen from the
experimental results, the deformation and fracturing of rock cause the distinct varia-
tions of electric potential, electrical resistivity, magnetic field and acoustic emissions in
addition to conventional parameters such as displacement (strain) and force (stress).
Despite the possibility of electrical noise from the loading devices in experimental
results reported and discussed by Aydan, Minato and Fukue (2001) and Aydan et al.
(2003a) previously, the same statements regarding the electric potential responses can
be quoted herein:

1 Electric potential responses are closely related to strain response and they resemble
the associated axial strain responses.

2 Bay-like variations of electric potential are distinctly observed before the rupture
of samples.

3 Seismic electrical signals (SES) are generally observed before the rupturing of
samples. These signals generally coincide with axial splitting type fracturing. How-
ever, seismic electric signals are less apparent for non-piezoelectric materials as
compared with samples containing piezo-electric substances.

4 During a step-like loading path, which may resemble multi-stage creep tests, the
measured responses of electric potential of various rock samples are closely related
to the loading paths. In particular, the rate of electric potential development during
load increment is very high and tends to decrease as the load is kept constant. How-
ever, it becomes asymptotic to an electric potential level greater than that induced
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Figure 15.3 Multi-parameter response of some rocks.

in the previous load step. As the strain rate is quite high during load increment and
tends to decrease once the load is kept constant, the electrical potential response
seems to be closely associated with the strain rate response of the sample.

Fundamentally, the observed acceleration responses are similar to each other.
The acceleration responses start to develop when the applied stress exceeds the peak
strength and it attains the largest value just before the residual state is achieved, as seen
in Figure 15.5. This pattern was observed in all experiments. Another important aspect
is that the acceleration of the mobile part is much larger than that of the stationary
part. This is also a common feature in all experiments.

The amplitude of accelerations of the mobile part of the loading system is higher
than that of the stationary part (Fig. 15.6). It is very interesting to note that the max-
imum acceleration increases as the work done increases. This feature has striking
similarities with the strong motion records of nearby earthquake faults observed in
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Figure 15.3 (Continued)

the recent large inland earthquakes. Furthermore, the waveforms of the acceleration
records of the mobile part are not symmetric with respect to the time axis.

The amplitude of accelerations during the fracturing of hard rocks is much higher
than that during the fracturing of soft rocks. This is directly proportional to the
energy stored in samples before the fracturing. The chaotic responses in accelera-
tion components perpendicular to the maximum loading direction may be observed.
These may have some important implications for the procedures and interpretation of
measurements for the short-term forecasting of failure events in geo-engineering and
geo-science.

Figure 15.7(b) shows the frequency characteristics of measured accelerations of a
sandstone sample shown in Figure 15.7(a). The integrated displacement and velocity
responses using the EPS Method proposed by Ohta and Aydan (2007a, 2007b) are
shown in Figure 15.8. It is important to note that the dominant frequency of the
mobile part has a low frequency content compared to that of the stationary part (Ohta
and Aydan, 2010).

The authors have also been performing some experiments on the elastic wave
propagation velocity under creep loading regime. One example of experimental results
is shown in Figure 15.9 for Oya tuff subjected to creep loading under a stress ratio
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Figure 15.4 Response of some soft rocks under creep loading.

of 70%. The elastic wave velocity parallel to loading axis tends to decrease as the
creep strain starts to increase during the tertiary creep phase. This observation was
also reported in the previous studies (i.e. Toksöz, 1977).

Another important feature of rocks during deformation and fracturing is the
change of their seepage characteristics. It is well known that the permeability decreases
during the initial compression due to closure of pore space and micro-cracks, and tends
to increase as the new micro-crack formation is initiated. The experiments reported
by Kawamoto, Obara and Tokashiki (1981) using a servo-controlled testing machine
indicated that the permeability of rocks becomes the largest when the peak strength is
achieved and then it decreases to a value at residual strength level, which is greater than
the initial permeability. This implies that the fluid flow rate will vary during formation
of micro-cracks and their growth in relation to various stages of deformation process.

15.2.2 Multi-parameter responses of discontinuities
during slippage

Tilting tests were carried out on samples containing a pre-existing discontinuity to
study how electric potential is induced at the initiation of sliding and during the sliding
process (Aydan et al., 2003a). Tilting tests were performed using a wooden tilting device
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Figure 15.5 Acceleration and axial stress response of sandstone and granite samples.
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Figure 15.6 The relation between work done on samples and maximum acceleration.

to measure the electric potential variations produced during the sliding on existing dis-
continuities. The tilting was imposed manually. The electrodes were attached to the top
and bottom sides of the assembled rock blocks containing a pre-existing discontinuity.
The AE sensor was also attached to the top block and a laser displacement transducer
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Figure 15.7 Acceleration response of a sandstone sample during fracturing and their Fourier spectra.

produced by KEYENCE was used to measure the translation displacement of the top
block relative to the bottom block. Another laser displacement transducer was used to
measure the amount of tilting from which the tilting angle was computed.

Figure 15.10 shows the responses of electric potential, displacement, stresses and
AE measured during tilting tests of Ryukyu limestone (non-piezoelectric) and quartzite
(piezoelectric) samples. Distinct seismic electric signals were observed during the tests
on samples just before the initiation of sliding. Tests were carried out three times and
very similar responses were obtained. The experiments further indicated that induced
electrical potentials depend upon the rate of tilting.

15.2.3 Responses of discontinuities during slippage
in stick-slip experiments

An experimental device consisted of an endless conveyor belt and a fixed frame (see
Ohta and Aydan, 2011 for details). The inclination of the conveyor belt can be varied
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so that the tangential and normal forces can easily be imposed on the sample as
desired. The belt itself was made of fiber reinforced rubber. In order to study the
actual frictional resistance of interfaces of rock blocks, the lower block was stuck
to the rubber belt while the upper block was attached to the fixed frame through
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Figure 15.10 Multi-parameter responses during tilting experiments.
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Figure 15.11 Multi-parameter responses of a discontinuity in granite during a stick-slip experiment.

a spring as illustrated in Figure 15.11(a). During experiments, displacement, accelera-
tion and acoustic emissions were measured simultaneously. The stick-slip experiments
were used to investigate the acceleration responses of the blocks of the experimental
set-up as well as the recurrence periodicity of the stick-slip phenomenon, which are
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relevant to earthquakes. During the stick-slip experiments, the following conditions
were investigated:

1 Variation of stiffness by either using different springs or weight of the upper block,
2 Variation of the velocity of the base plate and
3 Variation of the interface friction properties of blocks.

Stick-slip experiments were carried out on various natural rock blocks as well as
other types of blocks made of foam, plastic, wood and aluminium. Responses of dis-
placement, associated acceleration and acoustic emissions for stick-slip experiments
on a granite sample are shown in Figure 15.11(b). There are many interesting observa-
tions in these responses, which are relevant to earthquake prediction as well as strong
motions during earthquakes. Figure 15.11(c) shows an expanded view of responses of
displacement and acceleration of a typical slip event, in which rise time, relative slip
and stress drop can be clearly seen.

Figure 15.11(d) shows the relation between the amount of relative slip and maxi-
mum accelerations. It is noted that a linear relation holds and it should be also noted
from Figure 15.11(b) that the induced acceleration waves are not generally symmetric
with respect to the time axis.

15.2.4 Multi-parameter responses of rock during shock waves

Some experiments on the electric potential responses during shock waves were carried
with the purpose of investigating co-seismic electrical potential variations during the
passage of seismic waves. For this purpose, samples were sandwiched between two
steel platens under a given small load and were isolated from the upper and lower
platens by insulators. A hammer was used for creating shock waves by hitting the
upper platen, and electric potential, accelerations and displacement responses were
measured simultaneously. Piezo-electric and non-piezoelectric rock samples were used
for experiments. Figure 15.12 shows two examples of experiments on gypsum and
serpentine samples. The experimental results clearly show that the electric potential
variations do occur during the passage of shock waves, distinctly.

15.2.5 Multi-parameter responses of
discontinuities during seepage

It is also known that seepage through the ground induces electric field variations.
Aydan and Daido (2002) carried out a series of experiments in order to investigate
the fluid flow induced electric potential variations. A cylindrical container was used in
seepage tests. The water head variations and acoustic emissions were measured. Sili-
cious sand (No.7) was used and tap water as a seeping fluid through the pores of sand.
Two copper electrodes having a length of 80 mm was inserted at two levels with a head
difference of 10 cm. The induced electric potential was measured using a potentiometer
and the electric current was measured as DC or AC. Figure 15.13(a) shows the elec-
trical resistance variation under 0.1 mA electric current while Figure 15.13(b) shows
the electric potential variation during seepage experiments. First a rapid increase in
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Figure 15.12 Electric potential and displacement responses during shock waves.
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Figure 15.13 Electrical potential and resistance variations during seepage.

the electrical resistance occurs as the fluid flow front reaches the electrode level. After-
wards, the resistance starts to decrease for a while. Then a second peak, which is larger
than the first one, is observed. And then, the gradual decrease of electrical resistance
occurs. From this experimental result, it is clear that the fluid flow through pores of
geomaterials increase their apparent resistance contrary to the common belief, that is,
the fluid flow into induced pores during failure will decrease the apparent resistivity.
Nevertheless, the fluid flow will cause large variations on the overall electrical resis-
tance. Electric potential variation is proportional to the variation of seepage field with
a certain time lag (Fig. 15.13 (b)). When unsaturated or partially saturated sand was
filled with water rapidly, the induced electric potential increases first and then it starts
to decrease with a negative rate. The seepage of fluid through pores and fractures of
geomaterial induces an additional electrical potential. If the electric current is assumed
to be equivalent to that of the electric current supplied into the ground, then the total
electrical resistance of the ground will increase. Therefore, the apparent variation of
electrical resistance of the ground will keep increasing. This may amplify the bay-like
variation of the electrical resistance assumed in the literature. Furthermore, the varia-
tion of fluid rate during the formation of micro-cracks and their growth may enhance
electric potential variations.
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Normal faulting Thrust faulting Strike slip faulting

Figure 15.14 Fault Types.
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Figure 15.15 Fractures in a shear zone or fault.

15.3 EARTHQUAKES AND THEIR PREDICTION

An earthquake is an instability problem of the Earth’s crust. It is caused by varying
crustal stresses and it is a product of rock fracturing and/or slippage of major discon-
tinuities such as faults or fracture zones. Earthquake faults are geologically defined
as a discontinuity in a geological medium along which a relative displacement took
place. Faults are broadly classified into normal faults, thrust faults and strike-slip faults
(Fig. 15.14). Their length may range from a few microns to thousands kilometers in
a strict sense of definition. A fault is presumed to be geologically active if a relative
movement took place in a period less than 2 millions years.

It is well known that a fault zone may involve various kinds of fractures as illus-
trated in Figure 15.16 and it is a zone having a finite volume (Aydan, Ito and Ichikawa,
1993; Aydan et al., 1999a, 1999b; Aydan, Kumsar and Ulusay, 2002). In other words,
it is not a single plane. Furthermore, the faults may have a negative or positive flower
structure as a result of their trans-tensional or trans-pressional nature and the reduc-
tion of vertical stress near the earth surface as shown in Figure 15.16. For example,
even a fault having a narrow thickness at depth may cause a quite broad rupture zones
and numerous fractures on the ground surface during earthquakes due to flowering
phenomenon.

Plate tectonics theory is often quoted to explain earthquake occurrences. How-
ever, the plate tectonics theory fails to explain why earthquakes occur within the
plates. Therefore, a more broad concept must be introduced to explain the causes

© 2011 Taylor & Francis Group, London, UK

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

2:
34

 1
6 

O
ct

ob
er

 2
01

5 



Earthquakes as a rock dynamic problem and their effects 359

Negative flower structure Positive flower structure

Figure 15.16 Negative and positive flower structures due to trans-tension or trans-pression faulting.
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Figure 15.17 Acceleration and velocity fields of the earth during an entire year.

of earthquakes. It is well known that the earth travels around the sun in a given orbit.
Furthermore, its distance with the sun varies during the entire year, which induces vari-
ations of its acceleration and velocity fields (Fig. 15.17). The 24 hours long rotation
around its rotation axis with an inclination of 23.5◦ with respect to the orbit axis and
the existence of the moon revolving around the earth with a period of aaproximately
28 days induces extra forces on the earth in addition to that of the sun.

Figure 15.18 shows how forces at the earth surface change during an entire day
during a new and full moon. Furthermore, the surface area of the northern and south-
ern hemispheres receiving sunlight varies during an entire year, which undoubtedly
induces daily and year-long thermal stress cycles on the earth. All these additional
factors must cause some cyclic variations of the stress state of the earth in addition to
that caused by its gravitational system.

15.3.1 Stress conditions in the Earth’s crust

Earthquakes are produced as a result of rupturing of the earth’s crust caused by the
stress state acting in the earth. It is generally believed that the so-called tectonic stresses
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Figure 15.18 (a) Effect of moon on the velocity and acceleration of the earth per month, (b) effect of
tidal forces of moon and sun on the earth per day.

are the principal actors. The plate tectonics theory has been presumed to be able to
answer the causes of tectonic stresses and to explain why earthquakes occur along some
certain locations. However, this theory is insufficient to explain intra-plate earthquakes
since the theory is based on rigid body kinematics. The driving force for plate tectonics
is assumed to be the mantle convection, which is thought to be resulting from non-
uniform temperature distribution in the upper mantle caused by subducting plates.
There is no doubt that such a temperature difference could cause the convection. The
questions then are why the subduction of plates occurred and why the surface of the
earth is divided into several plates. There are probably no answers to these questions
in geophysics at present.

Aydan (1995) analyzed the stress state of the earth by modeling it as a spherical
body consisting of layers exhibiting thermo-elasto-plastic behavior under pure grav-
itational acceleration. Figure 15.19 shows the distribution of radial and tangential
stresses in the earth. From his study the following conclusions were drawn:

a) If the sphericity of the earth is taken into account, it is possible to explain why the
horizontal stress is larger than the vertical stress near the ground surface. In other
words, the large horizontal stress is due to gravity not due to presumed tectonic
forces resulting from unknown sources.

b) For a spherical symmetric earth, the tangential stress (lateral stress) is the maximum
principal stress and the radial stress (vertical stress) is the minimum principal stress
irrespective of the mechanical behaviour of rocks.

c) The crust and the mantle are in a plastic state, which may have some important
implications in rock mechanics and rock engineering as well as in geoscience.
In other words, the earth is not an elastic body as presumed in many different
studies.

The above approach provides very valuable information and it is a first approxi-
mation to the stress state of the earth. Although the gravitational pull is the governing
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Figure 15.19 The stress state of the earth (from Aydan, 1995).

element in shaping the stress state of the earth, slight variations from that obtained
from the gravitational model are caused by its rotation around its axis as well as its
revolution around the sun, and mantle convection due to the non-uniformity in the
thermal field resulting from the subduction of the cooler plates into the hot mantle.
As the spherical symmetry condition does not strictly hold for the earth, better estima-
tions may be done using actual geometry and distributions of materials constituting
the earth. Nevertheless, it should be noted that our knowledge on the constitutive
parameters of earth constituting materials are still insufficient.

In addition to the computational results given in Figure 15.19, rock stress measure-
ments up to now showed that the earth’s crust is under a compressive stress regime
(Zoback et al., 1985; Aydan and Paşamehmetoğlu, 1994; Aydan and Kawamoto,
1997). However, these measurements are restricted to depths less than 4 km while
large earthquakes generally occur at depths greater than 10 km.

Aydan (2000a) proposed a new method to infer the crustal stresses from the stri-
ations of faults or other structural geological features, which may be quite useful in
studying the stress state associated with past and current earthquakes. He recently
advanced this method to infer the stress state of the earth’s crust from focal plane solu-
tions. The comparisons of inferred stress states with actual measurements confirmed
the validity of the method (Aydan and Kim, 2002; Aydan, 2003a; Aydan and Tokashiki,
2003). An example of the method applied to Japan is shown in Figure 15.20.
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Figure 15.20 Directions and magnitudes of inferred maximum horizontal stresses with measurements
(from Aydan, 2003d; Inset figure from Sugawara and Obara, 1993).

Figures 15.21 and 15.22 show an application of this technique to Turkey and a
specific region along the North Anadolu Fault (NAF-KAF) of Turkey. This fault zone
is about 1500 km long and produces very large earthquakes from time to time. Figure
15.22 shows the maximum horizontal stress normalized by the vertical stress (σH/σV ).

15.3.2 Ground motions

Faulting during earthquakes results in the vibration of the surrounding medium
upon the slippage, and it terminates as a result of re-distribution of crustal stresses.
Furthermore, the crust deforms and some of the deformation is stored as elastic defor-
mation while the rest of the deformation results in permanent ground deformations
with/without relative slip during an earthquake. Some of relative slips are known as
surface ruptures. Figure 15.1 shows the ground accelerations caused by earthquakes.
The most important feature is that the ground accelerations are higher on the mobile
side of the fault than that on its footwall side. This feature is particularly of great
interest as it is very similar to the observations in the laboratory experiments on rocks
presented in Section 2. Furthermore, the ground motions are also quite high at the
ends of the earthquake fault.
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Figure 15.21 Directions of inferred maximum horizontal stresses with measurement.

The recent GPS and INSAR technologies provide us with ground deformations
in a broad area following the earthquakes. Figure 15.23 shows the ground deforma-
tion vectors measured following the 1999 Kocaeli earthquake. It is natural to expect
that these deformations induce permanent straining on the ground surface, which may
impose tremendous forces on longer or larger structures such as elevated highways,
dams, pipelines etc. Figure 15.24 shows computed principal strain variations associ-
ated with co-seismic deformations shown in Figure 15.23. The computation procedure
is based on the method proposed by Aydan (2000b).

The authors have recently showed that the permanent ground deformations may
be obtained from the integration of acceleration records. The erratic pattern screening
(EPS) method proposed by the authors (Ohta and Aydan, 2007a, 2007b) can be used
to obtain the permanent ground displacement with the consideration of features asso-
ciated with strong motion recording. This method is applied to results of laboratory
faulting and shaking table tests, in which shaking was recorded using both accelerom-
eters and laser displacement transducers, simultaneously. Furthermore, the method
was applied to strong motion records of several large earthquakes with measurements
of ground movements by GPS as seen in Figure 15.25. The computed responses were
almost the same as the actual recordings, implying that the proposed method can be
used to obtain actual recoverable as well as permanent ground motions from acceler-
ation recordings. Figure 15.26 shows the application of the EPS method to the strong
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Figure 15.22 Comparison of normalized maximum horizontal stress obtained from different
techniques along the North Anadolu Fault Zone of Turkey.
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Figure 15.23 Permanent ground deformations induced by the 1999 Kocaeli earthquake (from Reilinger
et al., 2000).
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Figure 15.24 Principal strain variations associated with co-seismic deformations of the 1999 Kocaeli
earthquake.
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Figure 15.25 Comparison of the permanent ground deformation by the EPS method with measured
GPS recordings (from Ohta and Aydan, 2007b).

motions records of the 2009 L’Aquila earthquake to estimate the co-seismic permanent
ground displacements. These results are very consistent with the GPS observations.
However, it should be noted the permanent ground deformations recorded by the GPS
does not necessarily correspond to those of the crustal deformation. Surface defor-
mations may involve crustal deformation as well as those resulting from the plastic
deformation of ground due to ground shaking. The records at ground surface and 260
below the ground surface taken at IWTH25 during the 2008 Iwate-Miyagi earthquake
clearly indicated the importance of this fact in the evaluation of GPS measurements
(KIKNET, 2008).

15.3.3 Earthquake prediction

It is often reported that various anomalous phenomena occur before, during and after
earthquakes. The anomalous phenomena are generally associated with the behav-
ior of animals, lightning, fireballs, variations of various gas emissions, groundwater
level, gravity, geomagnetic field and electric potential before, during and after earth-
quakes (Ikeya and Matsumoto, 1997; Ikeya et al., 1997; Mizutani et al., 1976). Some
earth-scientists from the former USSR, China and Japan have been the pioneers in
utilizing these phenomena as precursors of earthquakes in order to predict them. The
earthquake prediction researches in Japan, USA, former USSR and China gained a con-
siderable acceleration in the early 1970’s (Toksöz, 1977; Mogi, 1985). Particularly, the
successful prediction of the Haicheng earthquake in 1975 made many seismologists
all over the world optimistic about the earthquake prediction. However, with the fail-
ure of predicting the 1976 Tangshan Earthquake, which killed more than 250,000
people, in the following year, many geo-scientists understood that it was still prema-
ture to predict earthquakes. This resulted in the disappearance of the enthusiasm for
earthquake prediction studies and projects seen in the 1970’s among scientists and
politicians. Japan gave up the hope of success for earthquake prediction in 1997 after
the Hyogo-ken Nanbu Earthquake, which devastated Kobe City and its close vicinity.

Although mankind is still premature in predicting earthquakes, it is believed that
the accumulation of anomalous behaviors observed in each earthquake should be
carefully documented for future generations, who might be successful in doing so.
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Figure 15.26 Estimated permanent ground displacements by EPS method (from Aydan et al., 2009c).

There is no doubt that the correct information on observation should provide some
hints for such people to develop the methods for predicting earthquakes in spite of
current pessimistic views.

Earthquakes are simply the products of rupture process of rocks composing the
earth’s crust. The stored mechanical work done on the earth’s crust resulting from its
deformation is transformed into various forms throughout its rupturing process if the
energy conservation law of continuum mechanics holds. The forms of transformation
of the mechanical work done can be observed as heat flux, electric current (mag-
netic current), kinetic energy and etc. as seen in Section 2. Without any doubt, these
transformations will result in various phenomena, which may be called anomalous
phenomena.

With the birth and advancement of rock mechanics in the 1960’s, some phys-
ical backgrounds for various phenomena were established from laboratory tests on
rocks, which are directly relevant to the rupturing process of the earth’s crust. As
experimentally shown in Section 2, the rock specimen starts to behave in a non-linear
manner after a certain stress threshold. After this threshold, some fracturing starts
to take place. Each time new fractures occur, various forms of transformation of the
work done would take place and the imposed stress level increase would be stored as
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mechanical work done on the specimen. As experimentally shown in Section 2, these
transformations may be seen as

a) sound waves (acoustic emissions),
b) electric potential (magnetic) variations and pulses,
c) increase in permeability and porosity implying decrease in pore pressure, and

induced fluid flow,
d) temperature increase and heat flux,
e) gas emissions,
f) degradation of elastic properties, subsequently reduction in P and S wave velocities,
g) decrease in electrical resistivity and
h) creep.

It is experimentally known that the fracturing process becomes unstable after a cer-
tain stress level (i.e. Fig. 15.4(b)). From that level onward, the so-called secondary creep
and subsequently tertiary creep processes take place and result in the failure of the spec-
imen. Although the boundary conditions are different in actual earthquakes, the stages
of the rupture process and transformation forms of the mechanical work done
should be very similar to those observed on rock specimens tested under laboratory
conditions.

The current earthquake prediction methods are mainly observational and they are
basically too empirical. Figure 15.27 shows the basic concepts of the models for earth-
quake prediction adopted in the 1970’s. The methods available may be categorized as
follows:

a) Tilting or ground deformation anomaly method,
b) Creep method,
c) Ground water level anomaly method,
d) Elastic wave velocity anomaly method,
e) Electrical resistivity anomaly method,
f) Electric field anomaly method,
g) Magnetic field anomaly method,
h) Seismic gap method,
i) Gas emission anomaly method,
j) Gravity anomaly method, and
k) Anomalous animal behaviour method (Ikeya et al., 1997).

Although Nur (1972) tried to unify some of these methods into a dilatancy-
diffusion method, there is presently no world-wide accepted approach, based on a
sound universal theory. In many sites such as Parkfield in USA and Tokai region in
Japan, some of these methods are simultaneously used.

In this section, the applicability of some of these techniques to earthquake
prediction is presented with the consideration of the evaluations of the authors
so far.
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Figure 15.27 The basic concepts of earthquake prediction models of USA and the former USSR the
1970’s (after Toksöz, 1977).
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Figure 15.28 M6 class earthquake prediction models for the Parkfield region.

15.3.3.1 Stick-slip phenomenon and earthquake recurrence period concept

Earthquake prediction projects such as the Tokai Earthquake Project in Japan and
the Parkfield Earthquake Project in USA have been initiated using the earthquake
recurrence period model based on the stick-slip phenomenon. Although the stick-slip
phenomenon is a valid concept, our experiments in the laboratory clearly showed that
the recurrence period is not always constant even for apparently the same discon-
tinuity and environmental conditions (see Ohta and Aydan (2009, 2010) for details
and Figure 15.11). Multi-parameter observations have been undertaken for short-term
prediction. The recent Parkfield earthquake on September 28, 2004 validated the pre-
diction methodology based on the recurrence concept (Fig. 15.28 (a)). Nevertheless,
the 2004 Parkfield earthquake implied that predictions should take into account the
scattering range (Fig. 15.28(b)). Although this example clearly showed that it is difficult
to make short-term prediction by this model, it can definitely be used for identifying
regions with a high risk of earthquake occurrence provided that reliable past seismic
data are available.

15.3.3.2 Effect of solar system on earthquake occurrence

An example of the effect of moon phases, the variation of yearly orbital acceleration of
the earth around the sun, and the variation of heat input from the sun, on earthquake
occurrence in Turkey for 1999 is given in this section. The values of functions for each
parameter are subtracted from the average values and the resulting value is normalized
by the average value as shown in Figure 15.29. Although the weighting of each param-
eter may be different, the total effect should be the sum of these parameters in addition
to the sunspot index. A first glance at the figure implies that some co-relations exist
between the earthquake occurrence and moon phases. It seems that the earthquake
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Figure 15.29 The relations between the earthquake magnitude and moon-phase, heat flux input.

occurrences, particularly those with great magnitude, are more likely during the new-
moon and full-moon periods. In addition to the effect of moon phases, the variation
of orbital acceleration of the earth and thermal stresses induced by the variation of
heat flux input from the sun should have some effects. The effect of the variation of
orbital acceleration of the earth around the sun should be minimum during summer
and maximum during winter periods (see Fig. 15.17). The effect of the heat flux will
have an effect on temperature distributions of the atmosphere and the crust, which
should induce some cyclic thermal stresses. Although time variation of temperature
distribution may be shifted from the theoretical heat input function due to the heat
conduction characteristics of atmosphere, the resulting thermally induced stress varia-
tions must be compressive during hot periods and tensile during cold periods. Although
some good co-relations exist among the parameters listed here, the weighting of each
parameter on the overall stress state changes of the crust is still unclear.

15.3.3.3 GPS method

As stated previously, if the stress state and the yielding characteristics of the earth’s
crust are known at a given time, one may be able to predict earthquakes with the help
of some mechanical, numerical and instrumental tools. The GPS method may be used
to monitor the deformation of the earth’s crust continuously with time. From these
measurements, one may compute the strain rates and probably the stress rates. The
stress rates derived from the GPS deformation rates can be effectively used to locate
the areas with high seismic risk as proposed by Aydan, Kumsar and Ulusay (2000).
Thus, daily variations of derived strain-stress rates from dense continuously operating
GPS networks in Japan and the USA may provide high quality data to help understand
the behaviour of the earth’s crust preceding earthquakes.

First we describe a brief outline of the GPS method proposed by Aydan (2000b,
2004a, 2006b). The crustal strain rate components can be related to the deformation
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rates at an observation point (x, y, z) through the geometrical relations (i.e. Eringen,
1980) as given below:

ε̇xx = ∂u̇
∂x

; ε̇yy = ∂v̇
∂y

; ε̇zz = ∂ẇ
∂y

;

γ̇xy = ∂v̇
∂x

+ ∂u̇
∂y

; γ̇yz = ∂ẇ
∂y

+ ∂v̇
∂z

; γ̇zx = ∂ẇ
∂x

+ ∂u̇
∂z

(15.1)

where u̇, v̇ and ẇ are displacement rates in the direction of x, y and z respectively. ε̇xx,
ε̇yy and ε̇zz are strain rates normal to the x, y and z planes and γ̇xy, γ̇yz, γ̇zx are shear
strain rates. The GPS measurements can only provide the deformation rates on the
earth’s surface (x (EW) and y (NS) directions) and it does not give any information
on deformation rates in the z direction (radial direction). Therefore, it is impossible to
compute normal and shear strain rate components in the vertical (radial) direction near
the earth’s surface. The strain rate components in the plane tangential to the earth’s
surface would be ε̇xx, ε̇yy and γ̇xy. Additional strain rate components γ̇yz and γ̇zx, which
would be interpreted as tilting strain rate in this article, are defined by neglecting some
components in order to make the utilization of the third component of deformation
rates measured by GPS as follows:

γ̇zx = ∂ẇ
∂x

; γ̇zy = ∂ẇ
∂y

(15.2)

Let us assume that the GPS stations are re-arranged in a manner so that a mesh is
constituted similar to the ones used in the finite element method. It is possible to use
different elements as illustrated in Figure 15.30. Using the interpolation technique used
in the finite element method, the displacement in a typical element may be given in the
following form for any chosen order of interpolation function:

{u̇} = [N]{U̇} (15.3)

where {u̇}, [N] and {U̇} are the deformation rate vector, shape function and nodal
displacement vector of a given point in the element, respectively. The order of shape
function [N] can be chosen depending upon the density of observation points. The
use of linear interpolation functions has already been presented elsewhere (Aydan,
2000b, 2003c). From Equations (15.1), (15.8) and (15.3), one can easily show that
the following relation holds among the components of the strain rate tensor of a given
element and displacement rates at nodal points:

{ε̇} = [B]{U̇} (15.4)

Using the strain rate tensor determined from the Equation (15.4), the stress rate
tensor can be computed with use of a constitutive law such as Hooke’s law for elastic
materials, Newton’s law for viscous materials and Kelvin’s law for visco-elastic materi-
als (Aydan, 1997a; Aydan and Nawrocki, 1998). For simplicity, Hooke’s law is chosen
and is written in the following form:


σ̇xx

σ̇yy

σ̇xy


 =


λ + 2µ λ 0

λ λ + 2µ 0
0 0 µ






ε̇xx

ε̇yy

γ̇xy


 (15.5)
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Figure 15.30 Finite elements for GPS method.

where λ and µ are Lame’s constants, which are generally assumed to be λ = µ = 30 GPa
(Fowler, 1990). It should be noted that the stress and strain rates in Equation (15.5) are
for the plane tangential to the earth’s surface. From the computed strain rate and stress
rates, principal strain and stress rates and their orientations may be easily computed
as an eigenvalue problem.

To identify the locations of earthquakes, one has to compare the stress state in the
earth’s crust at a given time with the yield criterion of the crust. The stress state is the
sum of the stress at the start of GPS measurement and the increment from GPS-derived
stress rate given as:

{σ} = {σ}0 +
t∫

T0

{σ̇}dt (15.6)

If the previous stress {σ}0 is not known, a comparison for the identification of the
location of the earthquake cannot be done. The previous stress state of the earth’s crust
is generally unknown. Therefore, Aydan, Kumsar and Ulusay (2000) proposed the use
of maximum shear stress rate, mean stress rate and disturbing stress for identifying the
potential locations of earthquakes. The maximum shear stress rate, mean stress rate
and disturbing stress rate are defined below:

τ̇max = σ̇1 − σ̇3

2
; σ̇m = σ̇1 + σ̇3

2
; τ̇d = |τ̇max| + βσ̇m (15.7)

where β may be regarded as a friction coefficient. It should be noted that one (vertical)
of the principal stress rates is neglected in the above equation since it can not be
determined from GPS measurements. The concentration locations of these quantities
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may be interpreted as the likely locations of the earthquakes as they imply the increase
in disturbing stress. If the mean stress has a tensile character and its value increases, it
simply implies the reduction of resistance of the crust.

As Aydan, Kumsar and Ulusay (2000) have shown previously, the recent earth-
quakes in Turkey fall within the maximum shear stress concentration regions. Similarly
close correlations exist between mean stress rate and disturbing stress rate concentra-
tions and epicenters of the earthquakes. Therefore, the concentrations of maximum
shear stress rate and disturbing stress rate may serve as indicators for identifying the
location of potential earthquakes. The high mean stress rate of tensile character may
also be used to identify likely earthquakes due to normal faults (Aydan, Kumsar and
Ulusay, 2000). Figure 15.31 shows the contours of disturbing stress rate together with
the epicenters of the earthquakes with a magnitude greater than 4 which occurred dur-
ing 1995 and 1999 using the GPS data reported by Reilinger et al. (1997). Particularly,
the epicenters of the 1999 Kocaeli, 1999 Düzce-Bolu, 2000 Orta-Çankırı and 2000
Honaz-Denizli earthquakes coincide with the regions of concentration of these stress
rates. Therefore, the GPS method implies that it is possible to locate the earthquakes.

Aydan (2003c, 2004a) also showed that the time of occurrence of earthquakes
in terms of weeks may be possible using the GPS measurements recorded during the
2003 Miyagi-Hokubu earthquake (Figs. 15.32 and 15.33). As noted from Figure 15.33,
the stress rate components of Yamoto-Rifu-Oshika element indicated that remarkable
stress variations started in October 2002. However, the strain rate components of
the elements of Yamoto-Oshika-Onagawa, Yamoto-Onagawa-Wakuya and Yamoto-
Wakuya-Miyagi-Taiwa started to change remarkably at the beginning of May, 2003
about 1 month before the M7.0 Kinkazan earthquake that occurred on May 26, 2003.
The high rate of variations continued after the M7.0 earthquake and resulted in the
July 26, 2003 Miyagi-Hokubu earthquakes. Variations seen in Figure 15.31 before
the earthquake resembles those observed in creep tests. As the variations of disturb-
ing stress rates were greater than those of mean and maximum shear stress rates,
Aydan (2004a) concluded that the disturbing stress rate may be a good indicator of
regional stress variations and precursors of following earthquakes. Therefore, the time
of the earthquake may be obtained from the GPS measurements. However, the mag-
nitude of the earthquake is still difficult to do so. Nevertheless, the area of stress rate
concentrations with a chosen value may be used to determine the magnitude. As a
result, the fundamental parameters of the earthquake prediction, i.e. location, time
and magnitude, may be determined from the evaluation of GPS measurements. How-
ever, there are still some technical problems associated with GPS observations and
artificial disturbances as pointed by Aydan (2003c, 2004a).

15.3.3.4 Multi-parameter method and its application to the 2003 Buldan earthquake

The first author and his co-workers (Aydan et al., 2005a; Kumsar et al., 2010) estab-
lished a multi-parameter observation network in Denizli basin in order to investigate
the relation between earthquakes and the changes within the earth-crust in Denizli
region (Fig. 15.34). We show multi-parameter responses measured in relation to the
2003 July 23 Buldan earthquakes (Figs. 15.35–15.39).

There was earthquake activity in Buldan and surroundings of Denizli on 23rd of
July 2003. An earthquake with a magnitude of 5.2 occurred at 07:56 a.m. on 23 July
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Figure 15.31 Displacement rate, computed disturbing stress rate and earthquakes.
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Figure 15.32 GPS stations and configuration of GPS mesh (from Aydan, 2004a).

Figure 15.33 Time series of disturbing stress rates of GPS elements (from Aydan, 2004a).
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Figure 15.34 Multi-parameter measurement network in Denizli Basin.
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Figure 15.35 Bubbling (puf-puf) counts at Tekkehamam station.

2003. There were aftershocks with magnitudes of 4.1 on the following days. On 26th
of July 2003, another earthquake with a magnitude of 5.6 happened near Buldan at
11:26 a.m. local time. This earthquake caused no life loss, but some damage to kerpiç
and stonewall houses. The epicentre of the earthquakes was scattered north of Buldan.
The nearest station to the earthquake activity was Tekkehamam station.

Bubble (Puf-Puf) count is defined as the number of bubbles hitting the sensor in
a unit time in thermal spring mud. Normally the response of the Puf-Puf count is
similar to the response of tidal waves. If there is an extraordinary difference on the
Puf-Puf count, this can be related to an earthquake activity in the region. There was
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Figure 15.38 Temperature variations at Tekkehamam station.

© 2011 Taylor & Francis Group, London, UK

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

2:
34

 1
6 

O
ct

ob
er

 2
01

5 



Earthquakes as a rock dynamic problem and their effects 379

58

57

56

55

54

53

50
M5.6

M5.2 45

40

35

30

25
5 10

July
15 20 25 30

H
ut

 te
m

pe
ra

tu
re

 T
a 

(°
C

)

S
pr

in
g 

te
m

pe
ra

tu
re

 T
s 

(°
C

)

Cukurbag

Ts

Ta

Figure 15.39 Temperature variations at Cukurbag station.

an important increase of the Puf-Puf counts 2 days before the M5.2 earthquake in
Buldan. The activity of the Puf-Puf count continued as the earthquake activity was on.
After 3 days, an earthquake with a magnitude of 5.6 occurred. When the magnitude
of aftershocks became less than 3.5, the Puf-Puf count went down to a low level
(Fig. 15.35). This shows that there is a correlation between the earthquake activity of
the region and the Puf-Puf count changes.

At Çukurbağ station there are some electric potential variations, which may be
related to the earthquakes with magnitudes of 5.2 and 5.6 (Figs. 15.36 and 15.37).
The changes in the EW direction of Honaz station and the NS direction at Çukurbağ
station started at the same time 2 days before the 5.2 magnitude. When the earthquake
of 5.6 magnitude occurred, the electric potential value at the Honaz station in the NS
direction was down to a minimum value and then the data plot started to increase. This
type of change was also observed by Aydan, Minato and Fukue (2001) and Aydan et al.
(2003a) in the laboratory experiments, some of which are also explained in Section 2.
The changes at the Honaz and the Çukurbağ stations point out the possible changes
of the regional crustal stresses.

Figures 15.38 and 15.39 show temperature changes of thermal water of hot-springs
and atmosphere in the housing huts of the thermo recorder loggers at Çukurbağ and
Tekkehamam. There were temperature changes of the thermal waters at Çukurbağ
and Tekkehamam stations on 13th of July. There was a decrease at Tekkehamam
between 20–25th of July. At Çukurbağ thermal spring, there was an increase of the tem-
perature. Before the M5.2 earthquake, there was no temperature measurement for the
thermal spring. Although the number of earthquakes and measurement period are still
limited, a fairly good correlation exists with the crustal multi-parameter observations
and earthquake activities, and these preliminary results are very promising.

15.4 EFFECTS OF EARTHQUAKES ON ROCK
ENGINEERING STRUCTURES

It is well known that the Earth’s crust is ruptured and contains numerous faults and
various kinds of discontinuities, and it is almost impossible to find a piece of land
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without faults. During the construction of large or long structures such as tunnels,
dams, power plants, roadways, railways, power transmission lines, bridges, elavated
expressways etc., it is almost impossible not to cross a fault or faults. Therefore, one of
the most important items is how to indentify which fault segments observed on ground
surface will move or rupture during a future earthquake.

In addition to that, it is impossible to say the same ground breaks would
re-rupture in the next earthquake in regions with thick alluvial deposits. Furthermore,
the movements of a fault zone may be diluted if a thick alluvial deposit is found
on the top of the fault. The authors will describe the model experiments and actual
observations on the effects of earthquakes on rock engineering structures in this section.

15.4.1 Model experiments

Model experiments on rock engineering structures are one of the tools used in rock
engineering since early times. If the design values are to be obtained directly from the
model experiments, the similitude law between the model and actual structure is
the most critical issue. As it is difficult to model an actual structure in a reduced
scale of the geometry, stress conditions and constitutive parameters of materials, the
model experiments should be used to validate the mathematical models for structural
response under controlled conditions and material properties of the model experiments,
and to study the mechanism of failure, which may be an extremely difficult task even in
numerical analyses. The author and his co-workers prefer the second approach (Aydan
et al., 2010a). Therefore, the model experiments presented in this section are intended
to illustrate what we should expect under natural conditions and to understand the
underlying mechanism of the response and stability of rock engineering structures
subjected to earthquakes and earthquake faulting.

The authors used some model set-ups to investigate the effects of shaking or fault-
ing due to earthquakes. Figure 15.40 shows an experimental device for investigating the
effect of faulting under gravitational field. The orientation of faulting can be adjusted
as desired. The maximum displacement of faulting of the moving side of the faulting

Figure 15.40 A view of the faulting experimental set-up.
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Earthquakes as a rock dynamic problem and their effects 381

experiments was varied between 25 and 100 mm. The base of the experimental set-up
has a box of 780 mm long, 250 mm wide and 300 mm deep, and it can model rigid
body motions of base rock. This experimental device is used to investigate the effect
of forced displacement due to faulting on rock slopes and underground openings. The
displacement and accelerations were measured simultaneously.

Dynamic testing of the models was performed in the laboratory by means of a
one-dimensional shaking table, which moves along the horizontal plane (Fig. 15.41).
The waveforms of the shaking table are sinusoidal: saw tooth, rectangular, trapezoidal
or triangle. The shaking table has a square shape with 1000 mm long sides. It has
a frequency interval between 1 Hz and 50 Hz, a maximum stroke of 100 mm, and

Figure 15.41 View of model experiments using the shaking table.
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Figure 15.42 Views of the model truss bridge before and after experiments.

a maximum acceleration of 6 m/s2 with a maximum load of 980.7 N. The model frame
was fixed on the shaking table to receive the same shaking with that of the shaking
table during the dynamic test. The accelerations acting on the shaking table and the
models were recorded during the experiment, and saved on a data file as digital data.
The displacement responses were recorded using laser displacement transducers.

15.4.1.1 Model experiments on foundations

Several experiments were carried out to investigate the effect of faulting on a bridge
and its foundations. The bridge was a truss bridge just over the projected fault line.
Figure 15.42 shows truss bridge models above the jointed rock mass foundation.
Figure 15.42(a) shows views of the bridge model before and after the experiments,
subjected to the forced displacement field of vertical normal faulting mode. Bridge
foundations were pulled apart and tilted. The vertical offset was 0.37 times the bridge
span. Similarly Figure 15.42(b) shows the bridge model before and after the experi-
ments subjected to the forced displacement field of 45◦ thrust faulting mode. Bridge
foundations were also pulled apart at the top and compressed at the bottom, and tilted
as seen in Figure 15.42(b).

15.4.1.2 Model experiments on rock slopes

Model experiments on rock slopes were carried out by subjecting the model to shaking
or forced displacement field due to faulting. Although some of these have not been
completed yet, the experiments so far should be sufficient to explain the fundamental
features of response of rock slopes under the assumed conditions. Model experiments
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0,180� 45� 60�

90� 120� 135�

Figure 15.43 Failure modes of rock slope models with breakable material.

were carried out using either breakable blocks and layers or non-breakable blocks.
Breakable blocks are made of BaSO4, ZnO and Vaseline oil, which is commonly used
in base friction experiments (Aydan and Kawamoto, 1992; Egger, 1979). Properties
of block and layers are described in detail by Aydan and Amini (2009). When rock
slopes are subjected to shaking, passive failure modes occur in addition to active modes
(Aydan et al., 2009a; 2009b; Aydan and Amini, 2009). Figures 15.43 and 15.44 show
examples of slope failures consisting of breakable and non-breakable blocks and/or
layers. The experiments also show that flexural toppling failure of passive type occur
when layers (60◦) dip into valleyside.

The authors have initiated a new experimental program on the effect of faulting
on the stability and failure modes of rock slopes. The first series of experiments were
carried out on rock slope models with breakable material under a thrust faulting action
with an inclination of 45◦ (Fig. 15.45). When layers dip towards valleyside, the ground
surface is tilted and the slope surface becomes particularly steeper. As for layers dipping
into mountain side, the slope may become unstable and flexural or columnar toppling
failure occurs. Although the experiments are still insufficient to draw conclusions yet,
they do show that discontinuity orientation has great effects on the overall stability of
slopes in relation to faulting mode. These experiments clearly show that the forced dis-
placement field induced by faulting has an additional destructive effect besides ground
shaking on the stability of slopes.

15.4.1.3 Model experiments on shallow undergound openings

The authors have been performing model experiments on underground openings for
some time (Aydan, Shimizu and Karaca, 1994; Genis and Aydan, 2002). The first series
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IP-0,180� IP-15� IP-75�

CCP-90� IP-130� IP-150�

Figure 15.44 Failure modes of rock slope models with non-breakable material.

0-180�

135� 150�

45�

Figure 15.45 The effect of thrust faulting on the model rock slopes.

of experiments on shallow undergound openings in discontinuous rock mass using non-
breakable blocks were reported by Aydan, Shimizu and Karaca (1994), in which a limit
equilibirum method was developed for assessing their stability. These experiments have
now been repeated using the breakable material following the observations of damage
to tunnels caused by the 2008 Wenchuan earthquake. The inclination of continuous
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0, 180� 45� 60�

90� 120� 135�

Figure 15.46 Failure modes of shalllow tunnels ajacent to slopes with breakable material.

discontinuity plane varied between 0◦ and 180◦. Figure 15.46 shows views of some
experiments. Unless the rock mass model failed itself, the failure modes were very
similar to those of the model experiments using hard blocks. In some of experiments
with discontinuities dipping into the mountain side, flexural toppling of the rock mass
model occurred. The comparison of the preliminary experimental results with the
theoretical estimations based on Aydan’s method (Aydan, 1986; Aydan, Shimizu and
Karaca, 1994) are remarkably close to each other (Ohta and Aydan, 2011).

The authors have also been performing some model experiments on the effect
of faulting on the stability and failure modes of shallow undergound openings.
Figure 15.47 shows views of some model experiments on shallow undergound open-
ings subjected to the thrust faulting action with an inclination of 45◦. Underground
openings are assumed to be located on the projected line of the fault. In some experi-
ments three adjacent tunnels were excavated. While one of the tunnels was situated on
the projected line of faulting, the other two tunnels were located in the footwall and
hanging wall side of the fault. As seen in Figure 15.47, the tunnel completely collapsed
or was heavily damaged when it was located on the projected line of the faulting. When
the tunnel was located on the hanging wall side, the damage was almost none in spite
of the close approximity of the model tunnel to the projected fault line. However, the
tunnel in the footwall side of the fault was subjected to some damage due to relative
slip of layers pushed towards the slope. This simple example clearly shows the damage
state may differ depending upon the location of tunnels with respect to fault movement.

There are many semi undergound openings or half tunnels in mountainous areas.
Similar situations may also appear in the vicinity of cliffs next to the sea or rivers.
Figure 15.48 shows examples of experiments on model half-tunnels in continuous and
layered rock mass. The failure occurred due to bending.

© 2011 Taylor & Francis Group, London, UK

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

2:
34

 1
6 

O
ct

ob
er

 2
01

5 



386 Advances in Rock Dynamics and Applications

Before 0-180˚

45˚

0-180
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135
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Figure 15.47 Effect of faulting on underground openings.

15.4.1.4 Model experiments on masonry structures

A series of model experiments on the seismic response and stability of masonry struc-
tures such as arches, castle walls, dams, retaining walls, bridges, pyramids, towers and
buildings were performed using a shaking table (see Aydan et al., 2003b for details).
In these model studies, masonry structures were constructed using Ryukyu limestone
blocks as building materials.

a) Experiments on arches

Five arch configurations denoted as Type A, B, C, D and Type-E, and four (Type A,
B, D, E) of which are commonly used in Shuri Castle in Okinawa Island, Japan were
tested (Fig. 15.49). The remaining arch form (Type-C) is quite common almost all over
the world. The arches of Shuri Castle generally consist of two monolithic blocks in
the form of a semi-circle or an ovaloid shape while the Type-C arch consists of several
blocks and has a semi-circular shape. As the shaking table was uniaxial, the effect of
the direction of input acceleration wave was investigated by changing the longitudinal
axis of the arches. In this section, only some of experiments will be presented due to
lack of space.
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Before

After During

Before

Figure 15.48 Effect of shaking on overhanging cliffs or half-tunnels.

(a) Type-A (b) Type-C (c) Type-D

Figure 15.49 Model arch types.

Figure 15.50 shows the failure state of Type-A arch for shaking directions of 0◦,
45◦ and 90◦. The experimental results indicated that the common form of failure for all
arch types for a shaking direction of 0◦ is sliding at abutments and inward rotational
fall of arch blocks subsequently. As for 90◦ shaking, the arch failed in the form of
toppling. The failure for 45◦ shaking was a combination of sliding and toppling. The
experiments clearly indicated that the amplitude of acceleration waves, which cause
failure, was the lowest for 90◦ shaking while it was the maximum for 0◦ shaking.
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(a) Shaking direction of 0°

(b) Shaking direction of 45° (c) Shaking direction of 90°

Figure 15.50 Failure modes of arch type-A.

Figure 15.51 Failure modes of 2D and 3D pyramids for horizontal shaking.

b) Experiments on pyramids

Both 2D and 3D models of pyramids consisting of limestone blocks were tested. In all
experiments, the governing mode of failure was due to relative sliding among the layers
of blocks as seen in Figure 15.51. If the motion of the blocky layer is not obstructed by
the roughness of the block interfaces, the pyramids keep their original configuration
during motion. However, if the inter-block sliding is obstructed by some asperities,
then block separation starts to take place gradually as shown in Figure 15.51. The
failure of pyramids is purely governed by the frictional properties of block interfaces.
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Figure 15.52 Castle walls before and after shaking.

c) Experiments on castle walls

The walls of many castles and historical cities all over the world are built either verti-
cally or inclined. Furthermore, the outer shells of the walls are built with neatly placed
blocks of stone while the core generally consists of rubble material. A series of exper-
iments were carried out to see the effect of the inclination of the outer shell with the
consideration of the basal inclination of the foundation blocks. The inclinations of the
castle wall were 73◦, 84◦ and 90◦ with 0◦ and 7◦ basal inclinations of the foundation
block. Figure 15.52 shows the failure of castle walls with an inclination of 84◦ for with
0◦ and 7◦ basal inclinations of the foundation block. The experiments showed that the
decrease in wall inclination results in higher resistance against shaking. Furthermore,
walls with a 7◦ basal inclination have a higher resistance against shaking as compared
with walls with a 0◦ basal inclination. The fundamental mode of failure is toppling.
However, some inter-block sliding may be caused and the gap may be filled by backfill
material, which may result in more unstable wall configuration after each wave passes
through.

d) Experiments on retaining walls

In model tests, the aim was to investigate the height/width ratio, the inclination of
retaining walls and back-filling material. In tests, the ratio of width to height was
varied between 0.25 and 0.625. The wall inclinations were 73◦, 84◦ and 90◦ with 0◦
and 7◦ basal inclinations. The back filling material was sand N7 and sandy gravel.
Figure 15.53 shows some views of the model experiments on retaining walls for two
types of back-filling materials. The fundamental model of failure was toppling (rota-
tional failure) for walls with greater height/width ratios. After each shaking cycle,
the interface gap was filled with a wedge of back-filling material, which resulted in an
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Figure 15.53 Failure modes of retaining walls.

unstable wall configuration. If the walls are inclined and/or have a 7◦ basal inclination,
they can resist high acceleration amplitudes. This may also explain why such walls are
more stable as compared with that of walls with 90◦ inclination during earthquakes.

e) Experiments on houses

The experiments were carried out on single story houses having a heavy roof. In exper-
iments, plastic blocks were used. The model houses were built in such way that two
sidewalls would be parallel to ground shaking while the other two walls would be
subjected to out-of plane loading. Figure 15.54 shows some views of the experiments.
The experiments clearly showed that the walls which are subjected to out-of plane
loading, tend to collapse first while the sidewalls parallel to shaking tend to fail by
inter-block sliding. The ground shaking causing total collapse of the sidewalls parallel
to the direction of shaking should be such that the accumulated relative displacement
of the inter-block sliding should exceed the half length of the block in the respective
direction. The experiments also showed that the corners of the buildings are quite
prone to fail first due to the concentration of two failure modes at such particular
locations.

15.4.2 Effects of earthquakes on actual rock structures

The first author has been involved with earthquake reconnaissance since 1992
(Aydan and Hamada, 1992). In this section, the effects of earthquakes on various
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Figure 15.54 Some views of experiments on model houses.

structures are described (see Aydan, 1997b, 2003b, 2004b, 2006a, 2008b; Aydan and
Kawamoto, 2004; Aydan and Tokashiki, 2007; Aydan et al., 1999a, 1999b, 2000,
2006a, 2009a, 2009b, 2009c; Aydan, Kumsar and Toprak, 2009; Aydan, Ohta and
Hamada, 2009; Aydan, Tokashiki and Sugiura, 2008; Aydan and Kumsar, 2010;
Kumsar, Aydan and Ulusay, 2000; Ulusay, Aydan and Hamada, 2002 for details).

15.4.2.1 Foundations and dams

Intraplate earthquakes may result in surface ruptures. Although it is difficult to estimate
how surface ruptures will appear near the ground surface due to the reduction of
vertical stress, they may induce negative or positive flower structures depending upon
the sense of faulting. These surface ruptures may cause the failure of foundations
of super-structures such as bridges, dams, viaducts and pylons (Aydan et al., 1999a;
Aydan, 2003b). The foundation may sometimes be catastrophic as observed in the
foundation failure of Matsurube Bridge by the 2008 Iwate-Miyagi earthquake due
to columnar toppling, and Shikang Gravity Dam by the 1999 Chi-chi earthquake by
thrust faulting (Fig. 15.55). The earthquakes of 1995 Kobe, the 1999 Kocaeli, Chi-chi
and Düzce-Bolu, and 2008 Wenchuan earthquakes caused severe damage to pylons
(Fig. 15.56). The 1999 Kocaeli and Düzce-Bolu earthquakes damaged the foundations
of viaducts and bridges.
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(a) Matsurube bridge (toppling) (b) Shikang gravity dam (faulting)

Figure 15.55 Damage to bridge and dam foundations (partly from Aydan, 2003b).

(a)1999 Kocaeli earthquake (b) 1995 Kobe earthquake (c) 1999 Chi-chi earthquake

Figure 15.56 Damage to pylons due to faulting (from Aydan, 2003b).

15.4.2.2 Slope failures and rockfalls

The 1999 Chi-chi, 2004 Chuetsu, 2005 Kashmir, 2008 Wenchuan and 2008 Iwate-
Miyagi earthquakes caused many rock slopes and rockfalls (Fig. 15.58). These slope
failures and rockfalls, in turn resulted in the destruction of railways, roadways, housing
and vehicles. The failed rock mass body in the Aratozawa Dam landslide shown in
Figure 15.57 by the 2008 Iwate-Miyagi earthquake luckily did not move into the
reservoir, so that the incident similar to that of the Vaiont dam did not occur.

The assessment of the stability of natural rock slopes against earthquakes is very
important and one of our urgent issues is how to address it and how to deploy the
methods and technology for mitigation. It should also be noted that the failure forms
induced by earthquakes might involve passive modes in addition to failures modes
classified by Aydan, Shimizu and Ichikawa (1989).
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(a) Chiufengershan (1999 Chi-chi Eq.) (b) Shiraiwa (2004 Chuetsu Eq.)

(c) Hattian (2005 Kashmir Eq.)

(e) Aratozawa dam landslide

(d) Beichuan (2008 Wenchuan Eq.)

(f) Toppling slope failure (Isawa Valley)

Figure 15.57 Views of some slope failures caused by different earthquakes.

Rockfalls are generally observed in the areas where steep rock slopes and cliffs
outcrop. Some rockfalls may induce heavy damage to structures. Nevertheless, rock-
falls are the result of falls, after the initiation of failure, of individual rock blocks in
the modes of sliding, toppling or combined sliding and toppling (Aydan, Shimizu and
Ichikawa, 1989; Aydan, Shimizu and Kawamoto, 1992a). The fall of rock blocks due
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(a) 2008 Wenchuan Eq. (b) 2009 L’Aquila Eq. (c) 2009 Pariaman Eq.

Figure 15.58 Rockfalls and their effects.
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Figure 15.59 Comparison of empirical relations with observations.

Table 15.1 Parameters of equation (15.8) for disrupted and
coherent landslides.

Condition A B

Disrupted 0.10 0.9
Coherent 0.08 0.9

to sliding mode occurs when the relative sliding exceeds their half width. As for top-
pling failure, the shaking should be large and long enough to cause the rotation of
individual blocks. The height of block should generally be larger than the base width.

Keefer (1984) studied landslides in the USA and other countries, and he proposed
some empirical bounds for landslides, which are classified as disrupted or coherent.
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Earthquakes as a rock dynamic problem and their effects 395

The empirical bounds of Keefer are not given specifically as a formula. The author
compiled landslides (it would be better to name them as slope failures) caused by
earthquakes according to Keefer’s classifications and these are plotted in Figure 15.59.
Besides the empirical bounds of Keefer, the following empirical equation is proposed for
the maximum distance of disrupted and coherent landslides as a function of earthquake
magnitude and fault orientation (Aydan, 2007; Aydan et al., 2009a):

R = A ∗ (3 + 0.5sin θ − 1.5sin2 θ) ∗ eB·Mw (15.8)

Constants A and B of Equation (15.8) for disrupted and coherent lanslides are
given in Table 15.1. Since ground accelerations differ according to the location with
respect to fault geometry, the empirical bounds proposed herein can provide some
bases for the scattering range of observations.

Aydan (Aydan, 2006a; Aydan, Shimizu and Ichikawa, 1989) proposed a method
based on the limit equilibrium approach to determine the limiting stable slope angle
under the given seismic, geometrical and physical conditions. Figure 15.61 shows
a plot of the lower slope angle of various rock slopes versus the inclination of the
thoroughgoing discontinuity set whose strike is parallel or nearly parallel to the axis
of the slope (please note that the overhanging slopes are not considered in this figure).
Stable slopes are denoted by S and failed slopes by F. The plotted data include the data
on presently stable natural rock slopes and rock slopes failed due to earthquakes. Most
of the data are compiled by the authors. In the plots, the stability charts of a slope with a
ratio of t/H : 1/75 for cross continuous and intermittent patterns ξ = 26.5◦ for η = 0.0
are also included to have a qualitative insight rather than a quantitative comparison.
The chosen value of t/H is arbitrary and may not correspond to the ratios of slopes
plotted in the figure. The plotted cases confirm the qualitative tendency described in
Figure 15.60. It is also interesting to note there are almost no failed slopes when the
slope angle is less than 25–30◦ and most of the failed slopes have a slope angle greater
than 25–30◦. This is in accordance with the conclusion of Keefer (1984). Nevertheless,
it is also noted that there are a great number of stable slopes having slope angle greater
than 25–30◦. This implies that slope angle and the height of slopes cannot be the only
parameters determining the overall stability of natural rock slopes. Therefore, the
orientations of discontinuity sets, their geometrical orientations with respect to slope
geometry, and their mechanical properties and loading conditions must also play a
great role in determining the stable angles of natural rock slopes. The results shown in
Figure 15.60 may serve as guidelines for a quick assessment of the stability of natural
rock slopes and how to select the slope-cutting angle in actual restoration of the failed
slopes.

15.4.2.3 Underground structures

It is well known that underground structures such as tunnels and powerhouses are
generally resistant against earthquake-induced motions. However, they may be dam-
aged when permanent ground movements occur in/along the underground structures.
There are several examples of damage to tunnels due to permanent ground movements
during the 1930 Tanna, 1978 Izu-Oshima-Kinkai, 1995 Kobe, 1999 Düzce-Bolu, 1999
Chi-chi, 2004 Chuetsu, 2005 Kashmir and 2008 Wenchuan earthquakes (Aydan, Ohta
and Tano, 2010; Aydan et al., 2010a).
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Figure 15.60 The relation between slope angle and bedding plane angle for stable (S) and failed (F)
case histories in recent earthquakes.

Figure 15.61 Views of the collapsed section of Bolu tunnel and its surface depression.

The underground structures damaged by earthquakes worldwide are described in
detail by Aydan et al. (2009a,b, 2010b). The damage to underground structures may
be classified as:

a) shaking induced damage (Fig. 15.61)
b) portal damage (Fig. 15.62) and
c) permanent ground deformation induced damage (Fig. 15.63).

Permanent ground deformation induced damage is generally caused either by fault-
ing or slope movements. Most tunnels have non-reinforced concrete linings. Since the
lining is brittle, the permanent ground movements may induce the rupture of the lin-
ings and falling debris may cause disasters with tremendous consequences to vehicles
passing through. Therefore, this current issue needs to be urgently addressed. It should
be also noted that the same issue is valid for the long-term stability of high-level nuclear
waste disposal sites.
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Earthquakes as a rock dynamic problem and their effects 397

Figure 15.62 Examples of damaged portals of tunnels.

Figure 15.63 Earthquake damage at Jiujiaya Tunnel due to permanent deformations.

As suggested by Aydan et al. (2009b, 2010a), there may be two possible ways
to deal with this issue. The first alternative would be to line the concrete lining with
thin steel platens together with rockbolts. The other alternative may be to use fiber-
reinforced polymers together with rockbolts to line the inner side of the concrete lining.

Earthquakes are also reported to cause some damage to mines. It is well known that
the strike-slip faulting caused some damage in coalmines during the 1976 Tangshan
earthquake. It is also reported that some collapse and damage to abandoned room and
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Figure 15.64 Caving and sand boiling inYamato town (from Aydan and Kawamoto, 2004).

Figure 15.65 Caving or damage to natural caves in L’Aquila earthquake.

pillar mines do occur from time to time. The 2003 Miyagi-Hokubu earthquake caused
severe damage to abandoned mines in Yamoto town (Aydan and Kawamoto, 2004).
The damage was in the form of caving (sink-hole) and water discharge. Figure 15.64
shows some examples of damage observed.

Karstic caves are geologically well-known to form along generally steep fault zones
and fractures due to erosion as well as solution by ground water (i.e. Aydan, 2008b;
Aydan and Tokashiki, 2007). Earthquakes may cause collapse or damage to natural
caves. Aydan, Kumsar and Toprak (2009) and Aydan et al. (2009c) described some
examples of damage to natural caves by the 2005 Nias earthquake and 2009 L’Aquila
earthquake. Figure 15.65 shows examples of collapse or damage to natural caves
caused by the 2009 L’Aquila earthquake.

In mountainous regions, half tunnels may have been excavated for various
reasons. These half tunnels result in overhanging slope configurations. Similar situ-
ations are also observed along seashores and riverbanks. Rockfalls or collapses of
half tunnels or overhanging slopes were observed in the 2005 Kashmir earthquake
and 2008 Wenchuan earthquake. Figure 15.66 shows several examples observed
in these earthquakes. Some rockfalls resulted in crushing vehicles and subsequently
casualties.

Aydan et al. (2010a) compiled cases histories and developed databases for three
different categories of damage, namely, faulting induced (18 cases histories), shaking
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Figure 15.66 Rock falls from overhanging slopes or half tunnels.
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Figure 15.67 Relation between distance (Rf ) from surface trace of the fault and damage level
index (DLI).

induced (98 case history) and slope failure induced (47 cases histories). They also
proposed a new classification of damage for underground openings, in which 7 levels
of damage are defined. They proposed an empirical relation for delineating the damage
levels as a function of distance and orientation from the fault, magnitude of earthquake
and shear wave velocity of rock mass. Figure 15.67 shows a plot of the empirical
function. As seen from the figure, the proposed relation by Aydan et al. (2010a) can
closely estimate the observed damage level index of underground openings subjected
to earthquakes.
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15.5 NUMERICAL SIMULATIONS

In this section, numerical simulations of the response of underground structures
subjected to ground shaking, fault propagation and its effect on structures are pre-
sented and discussed. The numerical simulations of some masonry structures are also
presented.

Aydan and Mamaghani proposed the discrete finite element method (DFEM) for
blocky systems, which is based on the principles of the finite element method (Aydan,
Mamaghani and Kawamoto, 1996; Mamaghani et al., 1994; Mamaghani, Aydan and
Kajikawa, 1999; Tokashiki et al., 1997a, 1997b). It is possible to handle deformable
blocks and contacts that specify the interaction among them. Small displacement theory
is applied to intact blocks while blocks can take finite displacement. Blocks are poly-
gons with an arbitrary number of sides, which are in contact with neighboring blocks,
and are idealized as a single or multiple finite elements. Block contacts are represented
by a contact element, which has a finite thickness.

15.5.1 Simulation of post-failure motions
of rock blocks and slopes

Aydan and Mamaghani (Aydan, Mamaghani and Kawamoto, 1996; Aydan et al.,
1997; Mamaghani et al., 1994; Mamaghani, Aydan and Kajikawa, 1999; Mamaghani
and Aydan, 2000) simulated the post-failure motions of rock blocks and slopes. We
briefly describe some of the numerical simulations and details can be found in the
referred articles.

First the dynamic stability of square and rectangular blocks on a plane with an
inclination of 30◦ was analyzed by the DFEM. The rectangular block was assumed
to have a height to breadth ratio h/b = 1/3. The friction angles for square and rect-
angular blocks are φ = 25◦ and φ = 35◦, respectively. Figure 15.68 shows computed
configurations of the square block of size 4 m × 4 m and a rectangular block of size
12 m × 4 m. The square block slides on the incline (time step �t = 0.04 sec) while the
rectangular block topples (time step �t = 0.01 sec). These predictions are consistent
with the kinematic conditions for the stability of a single block in the previous exam-
ple as well as with the experimental results reported by Aydan, Shimizu and Ichikawa
(1989). It should, however, be noted that the discretization of the domain, mechanical
properties of blocks and contacts, and time steps may cause superficial oscillations and
numerical instability.

It is also worth noting that any hyperbolic type equation system requires a certain
kind of damping (viscosity) to attain stationary solution, which requires information
on the viscous characteristics of rocks and discontinuities. Since time-dependent char-
acteristics of discontinuities and intact rocks are less studied and experimental data
are still limited, the inertia term is neglected in the computations reported hereafter
using the DFEM.

The next two examples are concerned with circular sliding and planar sliding of
rock slopes. The material properties and boundary conditions were given in detail
elsewhere (Aydan et al., 1997). Figure 15.69 shows the configurations of the slope
for each failure mode at each computation step. The displacement of the failure body
for a circular sliding tends to become asymptotic to a certain value following the
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Scale (4 m)

Square block Rectangular block

Figure 15.68 Dynamic stability of a block on an incline.

(a) Circular sliding mode

Scale (m)
0 5

(b) Planar sliding mode

Figure 15.69 Numerical simulation of various slope failure modes.

rapid motion as the inclination of the sliding surface decreases after each computation
step. As for planar sliding failure, a separation at the vertical discontinuity occurs
and sliding along the inclined discontinuity takes place. The displacement of a sliding
block increases as the computation step number increases as the failure plane remains
the same.

The estimation of travel distance of natural slopes upon failure and their effect on
engineering structures as well as on the natural environment is also of great impor-
tance (Aydan, 2006a; Aydan and Ulusay, 2002; Aydan and Kumsar, 2010; Aydan
et al., 2006b). The travel distance may be of tremendous scale and it may cause severe
damage to settlements and structures. Although this issue is well known and some
simple methods are available (i.e. Aydan, Shimizu and Kawamoto 1992b; Tokashiki
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Figure 15.70 Comparisons of computed results for Chuifengershan landslide.
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Figure 15.71 Comparisons of computed results for Shiraiwa landslide.

and Aydan, 2010), the present numerical methods are still insufficient to model post-
failure motions. The accelerations records at a nearby station denoted TCU089 (CWB,
1999) were used in computations for the simulation of the post-failure motions of the
Chiufengershan landslide. The computed response of displacement and velocity of the
mass center and its path are shown Figure 15.70 together with the material and geo-
metrical properties used in computation. As noted from the figure, the path of the
mass center during motion is well estimated by the mathematical model.

Computations were carried out for Shiraiwa landslides (also called Myoken,
Uragara or Yokowatashi). Figure 15.57(b) shows a view of the Shiraiwa landslide.
The rock mass is andesitic tuff with a layered structure. The landslide took place in
the form of plane sliding and hit the railway lines. The acceleration records at Ojiya,
which is about 4 km south of the site, were used in computations. Figure 15.71 shows
the absloute displacement, horizontal and vertical position of the landslide mass center
in time space together with the EW component of Ojiya strong motion recorded by
the K-NET(2004) and shear strength properties of the failure surface. The comparison
of the computed position of the mass center with that obtained from the geometry of
the landslide body is almost the same.

Another example of computation was carried out for the landslide in the reser-
voir of Aratozawa dam caused by the 2008 Iwate-Miyagi earthquake as shown in
Figure 15.72. The maximum ground accelerations at Aratozawa dam were 865, 810
and 1024 gals for EW, NS and UD components, respectively. The landslide body was
1350 m long and 800 m wide. Although the thickness ranges from place to place,
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Figure 15.72 Comparisons of computed results for Aratozawa Dam landslide.

the highest landslide scarp was about 100 m. There are loosely cemented sandstone
layers of volcanic origin, sandwiched by relatively impermeable marl-like mudstone.
These sandstone layers played a major role in the landslide. The author carried out
some laboratory tests on samples collected from the site. The computational results
were based on the laboratory results and topographical maps before and after the
landslides.

15.5.2 Numerical simulation of dynamic response
of underground openings

A series of parametric numerical analyses on the shape of underground openings under
different high in-situ stress regime and direction and amplitude of earthquake induced
acceleration waves was carried out. The details of these numerical analyses can be
found in publications by Genis (2002) and Genis and Gercek (2003). Figure 15.73
compares yield zone formations around circular and horseshoe-like tunnels subjected
to in-situ hydrostatic stress condition (Po = 20 MPa) under static and dynamic condi-
tions. In the analyses, the rock mass behavior is assumed to be elastic brittle-plastic. The
wave form used for dynamic analysis is the acceleration record taken at Erzincan dur-
ing the 1992 Erzincan earthquake. The plastic zones around the underground openings
are almost circular for the circular tunnels while it is almost elliptical for horseshoe-like
tunnels although the acceleration record was uni-directionally applied.

Genis and Aydan (2007) carried out a series of numerical studies for the static and
dynamic stability assessments of a large underground opening for a hydroelectric pow-
erhouse. The cavern is in granite under high initial stress condition and approximately
550 m below the ground surface. The area experienced in 1891 the largest inland
earthquake in Japan. In the numerical analyses, the amplitude, frequency content and
propagation direction of waves were varied. We just present numerical results under
the same frequency and amplitude of sinusoidal acceleration wave while changing
its propagation direction as shown in Figure 15.74. The numerical analyses indicated
that the yield zone formation is frequency and amplitude dependent (Genis and Aydan,
2007; Aydan, Ohta and Tano, 2010; Aydan et al., 2010a). Furthermore, the direction
of wave propagation has also a large influence on the yield zone formation around

© 2011 Taylor & Francis Group, London, UK

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

2:
34

 1
6 

O
ct

ob
er

 2
01

5 



404 Advances in Rock Dynamics and Applications

Static Dynamic

Figure 15.73 Yield zone formations around a deep opening with different shapes.

the cavern. When maximum ground acceleration exceeds 0.6–0.7 g, it results in the
increase of plastic zones around the opening. Thus, there will be no additional yield
zone around the cavern if the maximum ground acceleration is less than these threshold
values.

Genis and Aydan (2008) also reported some numerical studies on the stability of
abandoned room and pillar mines under both static and dynamic loading conditions.
They further showed the possible collapse mechanism of the abandoned mines next to
a cliff along the Kiso River in Mitake town in Central Japan.

15.5.3 Fault propagation simulations

In this section, a pseudo-dynamic procedure of the DFEM is employed so that intact
blocks and block contacts can behave elasto-plastically. The method of analysis is a
pseudo time stepping incremental procedure. To model the elasto-plastic response of
materials and contacts in numerical analysis, the initial stiffness method was employed
together with the use of Updated Lagrangian Scheme.
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Earthquakes as a rock dynamic problem and their effects 405

Figure 15.74 Yield zone formation around underground powerhouse for different directions of input
ground motions (adapted from Genis and Aydan, 2007).

The details of computations can be found in the article by Aydan (2003b). The
thickness of the fault plane was selected as 10 mm in view of past experiences. In the
simulations, the fault plane was modelled through contact elements. The fault plane
behaves elastically when the normal and shear stresses are below its yield strength.
However, if yielding takes place, its behaviour is simulated as an elastic-perfectly plas-
tic behaviour. In normal and thrust faulting the displacements having an amplitude of
10 cm are imposed at the boundary nodes as indicated in Figure 15.75 both in x and
y directions. As for the strike-slip faulting simulation, the prescribed displacements of
10 cm are imposed only in the y-direction at selected points shown in Figure 15.75(b).
Figures 15.76(a)–(c) show the deformed configurations of the model at computation
steps 1 and 10. The computed results for Step 1 correspond to initial elastic responses
after the prescribed displacement conditions being imposed. Results at computation
Step 10 correspond to the fault propagation if yielding along the fault plane takes
place. After a certain number of computation steps, the deformation of the fault tends
to become stationary for the prescribed displacement boundary conditions. The prop-
agation of faults starts at the bottom side and migrates towards the ground surface as
expected. These three specific examples clearly show that the method used is capable
of simulating the fault propagation processes for three different faulting modes.
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0 15 mMesh scale
0 15 mMesh scale

Normal
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x

(a) Normal faulting and thrust faulting mesh (b) Strike-slip faulting mesh

Figure 15.75 Finite element meshes and boundary conditions used in simulations.

15.5.4 Fault-Structure interaction simulation

The most important aspect in earthquake engineering is the interaction between struc-
tures and fault breaks. For this purpose, a truss structure straddling over the projected
fault trace on the ground surface was considered, and normal faulting and thrust fault-
ing conditions are imposed through prescribed displacement at selected points as in the
previous computations. Figure 15.77 shows the finite element meshes and boundary
conditions used in simulations (see Aydan, 2003b for details). Figure 15.78 shows the
deformed configurations at computation steps 1 and 10 for normal and thrust type-
faulting modes. In both cases, the truss structure tilts. While the thrust type faulting
causes the contraction of trusses, the normal faulting condition results in the exten-
sion of trusses and separation of the supporting members fixed to the ground. These
responses resemble to those shown in Figure 15.56.

15.5.5 Simulation of response of masonry structures

In this sub-section, we describe several applications of DFEM method and some analyt-
ical methods developed for retaining walls (Mamaghani, Aydan and Kajikawa, 1999;
Aydan, Tokashiki and Sugiura, 2008).

Figure 15.79(a) shows a masonry arch bridge analyzed using the DFEM under
static loading. The dimension of the blocks perpendicular to the xy plane is taken as
w = 1.0 m. The arch is stable under its own weight. It is still stable when the distributed
uniform traction load per unit length over the arch is less than 1.47 kN/m. However,
if the traction load exceeds that level (step 27), the arch starts to become unstable.

A two-dimensional pyramid configuration was considered as shown in Fig-
ure 15.79(b). Two concentrated loads (F1 = 4.9 kN and F2 = 127.4 kN) were applied
together with the application of gravity. As seen from the computed configurations,
the inter-block sliding occurs and the pyramid tends to become unstable after each
computation step.

The next three analyses were carried out under purely dynamic conditions. The
wave forms shown in Figure 15.80 were used and the responses computed for each
wave form are shown in the respective figures. Basically, a 12 m high and 4 m wide
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(a) Normal faulting
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Figure 15.76 Deformed configurations at Steps 1 and for (a) normal faulting; (b) thrust faulting;
(c) strike-slip faulting simulations.

masonry tower, a 12 m wide and 12 m high masonry wall, and a 12 m high masonry
arch model were modelled. Figures 15.81, 15.82 and 15.83 show the computed
responses for each structure. For plotting the deformed configurations, the displace-
ment in the deformed configurations is amplified by 50 times to make the mode of
failure (deformed configuration) more visible from the initial configuration. Although
the masonry tower was stable at the end of shaking, there was relative sliding among
blocks and the base. Furthermore, the separation of blocks occurred at the top. As for
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Mesh scale
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Thrust faulting with stucture
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(a) Normal faulting mode

(b) Thrust faulting mode
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0 20 m
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Figure 15.77 Finite element meshes and boundary conditions for fault-structure interaction
simulations.

the masonry wall, similar results were observed. In particular, block rotation at the
top was quite visible.

Figure 15.83(b) shows that the arch slid at the base at the time step 23 under Acc.
No. 1 and the crown blocks of the arch started to fall apart while the side columns
were still stable. The columns slid relative to the base, and they tended to topple in
two opposite directions. The blocks tended to separate within the side columns.
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Figure 15.78 Simulations of the fault-structure interaction for normal faulting and thrust conditions.

As for Acc. No. 2 at time step 23, there is no slide at the base of the arch while the
crown blocks are separated and tend to fall apart. At time step 23, the side columns
of the arch exhibit relatively stable behavior under Acc. No. 2 as compared with Acc.
No. 1. However, under Acc. No. 2 at time step 50 (10 seconds), the side columns of
the arch slide at the base and the arching action disappears while the blocks start to
fall apart. As expected, the toppling (failure) modes of the side columns of the arch
differ, depending on the nature of the imposed form of acceleration waves, as shown in
Figure 15.83. Figure 15.83(d) shows the displacement responses with time of a nodal
point at the top right corner of the arch corresponding to Acc. No. 1 and Acc. No. 2.
The results indicated that, as expected, the displacement of the side column of the
arch with time is much more severe under Acc. No. 1 as compared with Acc. No. 2,
especially in the early stage of loading. Under both of the imposed acceleration waves,
the reaction of the toppled columns forces the crown block to move upward. This is
because of the geometrically symmetric configuration of the structure and outward
inclination of the crown block contact interfaces at the center of symmetry.
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Figure 15.79 Pseudo-dynamic simulation of an arch and pyramid.
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Figure 15.80 Wave forms used in computations.

The Kameyama earthquake occurred at 12:19 JST on April 15, 2007 and it had a
magnitude (Mj) of 5.3 on the magnitude scale of the Japan Meteorological Agency. The
earthquake injured 12 people and caused some structural damage (Aydan, Tokashiki
and Sugiura, 2008). The earthquake caused the collapse of the northern corner of the
Kameyama Castle (Fig. 15.84). The collapsed north wall of the castle is about 5 m
high with an inclination of about 70◦ and block sizes of 50–60 cm. The block size
of older parts of the castle walls is more than 100 cm and their inclination is about
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Figure 15.81 Initial and deformed configurations of the masonry tower and the displacement response
of the top right corner.
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Figure 15.82 Initial and deformed configurations of the masonry wall and the displacement response
of the top right corner.
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Figure 15.83 Initial and deformed configurations of the masonry arch and the displacement response
of the top right corner.

(a) Eastward view of NE corner (b) Southward view of NE corner

Figure 15.84 Views of intact and collapsed section of Kameyama Castle.

50◦. Furthermore, the other walls of the castle are more than 10 m high. In the com-
putations, the NS component of the acceleration records taken at Kameyama strong
motion station of K-NET was used and the responses of the castle wall during shaking
for sliding and toppling failure modes were computed. The computed displacement
responses shown in Figures 15.85 and 15.86 correspond to those of the wall mass cen-
ter. The sliding mode indicates that the wall would be displaced about 160 cm while
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Figure 15.85 Computed displacement and velocity response of mass center for sliding mode of failure.
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Figure 15.86 Computed displacement and velocity response of mass center for toppling mode of
failure.

the toppling mode implies rotation of about 10◦ (45/250). These results imply that
the earthquake shaking was sufficient to induce both sliding and toppling modes of
failure. Nevertheless, the effect of sliding mode is more dominant. Since the displace-
ment exceeds the wall width, it may be inferred that the failure of the castle wall was
a natural consequence of earthquake shaking.

15.6 CONCLUSIONS

An earthquake is an instability problem of the Earth’s crust caused by the varying
crustal stresses. It involves rock fracturing and/or slippage of major discontinuities
such as faults and fracture zones.
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When rock starts to fail, the stored mechanical energy in the rock tends to trans-
form itself into different forms of energy. As shown in Section 2, experimental studies
by Aydan and his group showed that rock indicates distinct variations of various
measurable parameters such as electric potential, magnetic field acoustic emission,
resistivity etc. besides load and displacement, which are called multi-parameters, dur-
ing deformation and fracturing processes (Fig. 15.1). These variations may be useful
in predicting the failures of rock structures as well as earthquakes in geoscience.

The experimental results clearly indicate that the deformation, fracturing and
sliding processes induce electric potential in geomaterials.

The magnitude of induced electric potential depends both upon the piezo-electric
characteristics of minerals or grains, and the moment caused by the separation of elec-
trons of minerals as a result of deformation and inter-crystal or inter-grain separation
and/or sliding during dislocations as a result of fracturing or sliding.

The amplitude of accelerations of the mobile part of the loading system is higher
than that of the stationary part. This feature has striking similarities with the strong
motion records of nearby earthquake faults observed in the recent large inland earth-
quakes such as the 1999 Kocaeli earthquake of Turkey, 1999 Chi-chi Earthquake of
Taiwan and the 2003 Miyagi Hokubu earthquake of Japan (see Fig. 15.1). Further-
more, the waveforms of the acceleration records of the mobile part are not symmetric
with respect to the time axis.

The amplitude of accelerations during the fracturing of hard rocks is higher than
that during the fracturing of soft rocks. This is directly proportional to the energy
stored in samples before the fracturing.

The experimental results clearly indicate that the surface morphology of disconti-
nuities greatly influences the periodicity of the stick-slip cycle and dynamic responses
during the slip phases. However, the recurrence time is not constant even when the
surface conditions of the discontinuity and loading conditions are almost the same.
The maximum acceleration becomes larger as the system stiffness becomes higher for
the same amount of slip. This may imply that the system stiffness has a great influ-
ence on the amplitude of the acceleration upon the slippage besides the effect of other
parameters.

The recurrence period decreases as the friction angle decreases. Furthermore, the
maximum acceleration increases in relation to the amount of relative slip. This may
be related to the difference between static and kinetic friction angles of the interfaces
in relation to the surface roughness.

It is geometrically possible to compute strain rate components on a plane tan-
gential to the earth’s surface from the variation of coordinates of stations of Global
Positioning System (GPS) at a given time interval.

As seen in the previous applications to the GPS measurement in Turkey (Aydan
et al., 2000c; Aydan, 2003c), the mean, maximum shear and disturbing stress rates can
be quite useful for identifying the areas with a high seismic risk. They may be further
useful for earthquake prediction in the near future (in the order of months). However,
they cannot be used for very near future predictions, say, in the order of several hours
to days unless the sensitivity of the measurements is substantially improved.

The major slope failures (landslides) are greatly influenced by the geological struc-
ture of the rock mass as well as the shaking characteristics of earthquakes. Specifically,
the orientation and shear strength properties of bedding planes, schistosity and existing
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Earthquakes as a rock dynamic problem and their effects 415

faults are of great importance. Therefore, the stability assessment of natural and cut
slopes must strictly consider this fact in the risk assesments of slope failures due to
earthquakes.

The scale and number of slope failures are much larger on the hanging wall side
of the earthquake fault as compared with those on the footwall side. Higher ground
motions on the hanging wall side and the permanent ground movements are probably
the major causes for this observational fact.

The consideration of failures of natural rock slopes has received very little attention
in earthquake engineering and regional seismic risk assessments. However, the recent
earthquakes showed clearly that the scale of natural slope failures is much larger than
that for cut slopes. Therefore, much attention must be given to the possibility of natural
rock slopes with the due considerations of facts indicated in this chapter.

Model experiments on various underground openings showed that they are strong
against shaking. Nevertheless, the existence of discontinuities makes them vulnerable
to collapses particularly in the case of shallow underground openings. This may have
some important implications for areas where shallow abandoned mines, underground
shelters and new and old tunnels exist.

The GPS measurements of ground deformations during earthquakes (M > 6)
clearly indicated that permanent ground deformations do occur. Permanent ground
deformation may result from different causes such as faulting, slope failure, liquefac-
tion and plastic deformation induced by ground shaking. They may cause tremendous
forces on long and/or large underground structures such as tunnels, powerhouses and
underground storage facilities for oil, gas and nuclear wastes.

Plastic zones around underground openings may form during the passage of seis-
mic waves. The maximum amplitude and frequency content of the seismic waves may
have some influence on the shape and size of plastic zone formations.

Case histories compiled by the authors indicated that the damage to underground
structures might be classified as shaking induced damage, portal damage and perma-
nent ground deformations induced damage. Permanent ground deformation induced
damage is generally caused either by faulting or slope movements.

The relation proposed by Aydan et al. (2010b) for assessing the seismic damage to
underground structures under various circumstances may serve as guidelines. However,
further refinement may be possible with more data on the underground structures.

Underground openings crossing faults and fracture zones may be enlarged to
accommodate relative slips along faults and fracture zones. The lining of the open-
ings should be ductile to accommodate permanent ground deformations at such zones.
Furthermore, the brittle linings of the existing underground structures should be lined
with ductile thin plates or fiber-reinforced polymers together with rockbolts at fracture
and fault zones, where permanent ground deformations may occur.

The Discrete Finite Element Method (DFEM) is used for the simulation of fault
propagation and fault-structure interaction. In the simulations, fundamental fault-
ing modes such as normal, thrust and strike-slip faulting mechanisms are considered.
The computational results clearly demonstrated that the DFEM is capable of simu-
lating both the fault propagation and fault-structure interaction, although a simple
version of this method is used. Nevertheless, it is possible to use the other versions of
the DFEM depending upon the available information on the characteristics of solid
and fault planes.
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Chapter 16

Constraining paleoseismic PGA using
numerical analysis of structural
failures in historic masonry
structures: Review of recent results

Yossef H. Hatzor and GonyYagoda-Biran

16.1 INTRODUCTION

Seismic hazard is defined in terms of the probability of exceeding a certain ground
motion in a specific area, and is typically discussed in terms of Peak Ground Accel-
eration (PGA). Predicted PGA values for specific regions are commonly reported in
national seismic building codes and therefore PGA is used extensively in earthquake
engineering practice throughout the world. A new method to constrain expected earth-
quake PGA values, by back analysis of finite block displacements in historic masonry
structures, is presented here. To demonstrate the new approach two archeological
masonry structures that exhibit seismogenic damage are used as illustrative examples:
1) a 2000 year old Nabatean (Roman Period) arch in which the keystone slid down-
ward during an earthquake of an uncertain date (Fig. 16.1a), and 2) a 1400 year old
Byzantine church in which a series of parallel granite and marble columns toppled down
in the same direction, most probably due to an earthquake that struck the region in 749
AD (Fig. 16.1b). Both sites are located along the seismically active Dead Sea rift system.

The preserved and damaged structures are first mapped in great detail in the field,
and on the basis of the acquired geometrical data a mesh of discrete blocks is generated
numerically, representing the presumed un-deformed structural configuration. Then,
the discrete block system is loaded numerically by dynamic input functions until the
deformed configurations that best fit the preserved damaged configurations in the field
are obtained. As a first order approximation harmonic, sinusoidal, input acceleration
functions are used so that the most likely amplitude (PGA) as well as frequency and
duration of the input motion are obtained directly as a result of the analysis. The
analysis can be repeated with real earthquake records to further constrain the dynamic
motion parameters.

We proceed with forward modeling performed for a simulated fracture pattern
in an existing discontinuous rock slope – the upper terrace of King Herod’s palace in
Masada (Fig. 16.1c). Here we show how natural fracture patterns may be simulated
to form a numerical block system mesh not restricted to any particular block shape.
The generated mesh is loaded with a real earthquake record and the most likely failure
modes that could result from earthquake loading are obtained as a result of the analysis.

The numerical approach used in this study is the implicit, discrete, Discontinuous
Deformation Analysis (DDA) method developed by Dr. Gen-hua Shi (1993), the theory
of which is briefly reviewed next.
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(a) (b) (c)

Figure 16.1 Analyzed field case studies: (a) key stone displacement in a Roman arch, (b) toppling of a
series of columns in a Byzantine church. (c) The highly fractured rock slope at the North
face of Masada – Kind Herod’s palace.

Following a brief summary of the theory, the accuracy of the DDA method is
validated using analytical solutions before its application for real case studies is pre-
sented. We feel that by demonstrating the validity of DDA and its applicability for
geotechnical earthquake engineering studies, it is now possible to safely proceed with
more complicated tectonophysical studies for analyzing the kinematics of plate motion
along tectonic boundaries.

16.2 BRIEF SUMMARY OF DDA THEORY

Discontinuous Deformation Analysis (DDA) is useful for investigating the kinemat-
ics of blocky rock masses. DDA models a discontinuous material as a system of
individually deformable blocks that move independently with minimal amount of
interpenetration. The formulation is based on dynamic equilibrium that considers the
kinematics of individual blocks as well as friction along the block interfaces. The
displacement and deformation of the discrete blocks are the result of the accumula-
tion of small time steps. The equilibrium equations are derived by minimizing the
total potential energy of the block system � with respect to the displacement at block
center D:

∂�P

∂D
+ ∂�V

∂D
+ ∂�I

∂D
+ ∂�E

∂D
+ ∂�σ

∂D
+ ∂�c

∂D
= 0 (16.1)

where P, V , I, E, σ, and C are the point load, body force, inertia force, elastic
force, initial stress, and contact force, respectively. Application of an appropriate
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Review of recent results 425

integral variation and expanding terms in the equation above results in the equations
of motions:

MD̈ + CḊ + KD = F (16.2)

where M, C and K represent the mass, damping, and stiffness matrices of a geometri-
cally non-linear system of equations subject to a time varying load F. The components
of the matrices M, C, K, and F are extensively discussed in Shi (1993). In this study we
use the original two dimensional version of DDA in which each block i in the general
block system has six degrees of freedom, and the resulting displacement components
(u, v) of an arbitrary point (x, y) in X and Y directions are derived using a first order
approximation:

(
u
v

)
=
(

1 0 −(y − yo) x − xo 0 (y − yo)/2
0 1 (x − xo) 0

(
y − yo

)
(x − xo) /2

)



uo

vo

ro

εx

εy

γxy


 = [Ti][Di]

(16.3)

where the six degrees of freedom for block i are: rigid body translations (uo, vo), rigid
body rotation angle (ro) with a rotation center at (xo yo), and the normal and shear
strain components (εx, εy, γxy). In matrix form [Ti] is the first order displacement func-
tion and [Di] is the vector displacement variables of Block i. The algebraic equation
for the increase in displacement is solved for each time increment by substituting the
appropriate terms for acceleration and velocity, provided by a time integration for-
mulation similar to Newmark direct integration method with parameters β = 0.5 and
γ = 1.0, into the general equation of motion (Doolin and Sitar, 2004; Wang, Chuang
and Sheng, 1996). The result is a system of equations for solving the dynamic problem
which, after collecting terms on both sides, are typically expressed as:

K̂D = F̂ (16.4)

Or in matrix form:


K11 K12 K13 . . . K1n

K21 K22 K23 . . . K2n

K31 K32 K33 . . . K3n

. . . . .

Kn1 Kn2 Kn3 . . . Knn







D1

D2

D3

.

Dn


 =




F1

F2

F3

.

Fn


 (16.5)

where Kij is a 6 × 6 coefficient sub-matrix, Di is a 6 × 1 deformation matrix of block i
and Fi is a 6 × 1 loading matrix of block i. Sub-matrices [Kii] depend on the material
properties of block i and sub-matrices [Kij] are defined by the contacts between blocks
i and j.

The solution to the system of equations (16.5) is constrained by inequalities asso-
ciated with block kinematics: the “no penetration – no tension’’ condition between
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426 Advances in Rock Dynamics and Applications

blocks. The kinematic constraints on the system are imposed using the penalty method.
The minimum energy solution is one with no tension or penetration. When the system
converges to an equilibrium state, the energy of the contact forces is balanced by the
penetration energy, resulting in inevitable, but very small, penetrations. The energy
of the penetrations is used to calculate the contact forces, which are, in turn, used to
calculate the frictional forces along the interfaces between blocks. Shear displacement
along the interfaces is modeled using the Coulomb-Mohr failure criterion.

Three user-specified, numeric control parameters are required in DDA: The nor-
mal contact spring stiffness (g0), the time step size (g1), and the assumed maximum
displacement per time step ratio (g2). The possible range for these control parame-
ters in relation to the size of the problem is discussed in Shi’s thesis (Shi, 1988), and
optimal values for dynamic applications are reported by Tsesarsky, Hatzor and Sitar
(2005). A user specified energy dissipation coefficient (k01) allows distinction between
“dynamic’’ (k01 = 1) and “static’’ (k01 = 0) analyses. “Dynamic’’ analysis implies that
at the beginning of a time step each block element inherits its terminal velocity at
the previous time step, whereas “static’’ analysis implies that the initial velocity for
each block element in every time step is always zero. Variations of the value of k01
in the range of 0.9 < k01 < 1 allows introduction of up to 10% kinetic damping into
the dynamic system as demonstrated for natural rock slopes (Hatzor et al., 2004) and
for shaking table experiments (Tsesarsky, Hatzor and Sitar, 2005). Implementation of
more robust damping algorithms in DDA contact mechanics is the subject of intensive
current research (Ohnishi et al., 2005).

The validity and accuracy of DDA has been studied extensively over the past
decade and a comprehensive review is presented by MacLaughlin and Doolin (2005);
new DDA validations pertaining to the specific goals of this research are reported by
Kamai and Hatzor (2008).

16.3 SEVERAL DYNAMIC DDA VALIDATIONS

Several DDA validation studies are performed for calibration purposes using existing
or originally developed analytical solutions. The first case is for two-dimensional (2D)
dynamic forward and backward sliding of a block which responds to induced cyclic
motions in an underlying block; in the second case the 2D dynamic rocking of a column
subjected to a sine impulse function applied at its centroid is studied; the third example
is from a real rock slope problem where the “block slumping’’ failure mode is used for
validation, and the fourth case is the study of the well-known problem of a block on
an incline, in three dimensions.

16.3.1 Block response to induced displacements at foundation

DDA allows application of time-dependent displacements to “fixed’’ points in the
block system, defined and positioned by the user. This feature may be used to simulate
seismic ground motions at the foundation and to investigate the response of overlying
stone structures. An analytical solution for the response of a single block resting on a
block that is subjected to time-dependent displacement input function was developed
(Kamai and Hatzor, 2008) to study the validity and applicability of this approach. The
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0

Figure 16.2 The modeled DDA block system constraining the motion of Block 2 to horizontal slid-
ing only. Block 0 is the foundation block, Block 1 receives the dynamic input motion
(horizontal – cyclic), and Block 2 responds (after Kamai and Hatzor, 2008).
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Figure 16.3 Comparison between analytical (line) and DDA (symbols) solutions for the response of a
block to cyclic displacements at the foundation (after Kamai and Hatzor,2008): (a) influence
of cyclic displacement amplitude (f = 1 Hz and µ = 0.6), (b) influence of friction coefficient
along interface (D = 0.5 m, f = 1 Hz).

analyzed system consists of three blocks: a fixed foundation block (0), the activated
block (1), and the responding block (2) as shown in Figure 16.2 above.

The displacement function for block 1 is in the form of a cosine function, starting
from 0:

dt = D(1 − cos(2πωt)) (16.6)

where D is the amplitude of the harmonic wave, and the corresponding response of
block 2 is investigated.

In order to compare between DDA and the analytical solution, the mode of failure
of the analyzed block in DDA had to be constrained to sliding in one direction only
without rotation or vertical motions. This was achieved by modeling the responding
block as a flat element minimizing all other degrees of freedom other than horizontal
sliding, as in the analytical solution.

A sensitivity analysis for input amplitude and interface friction was performed
and the results are presented in Figure 16.3 above. In the left panel the response of
Block 2 to changing amplitudes of motion (D) under a constant input frequency of 1 Hz
and friction coefficient of 0.6 is presented. The cumulative displacement is in direct
proportion to the amplitude, as expected. Note that the three displacement curves
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Figure 16.4 Free body diagram and sign convention for the rocking column analysis (after Makris and
Roussos, 2000).

follow the periodic behavior of the input displacement function (T = 1 sec.), and that
divergence between curves starts after 0.25 sec. where the displacement function has
an inflection point. In the right panel the response of Block 2 to changing friction
coefficients (µ) along the interface under constant displacement amplitude of 0.5 m
and input frequency of 1 Hz is presented. The accumulating displacement is in direct
proportion to the friction coefficient up to 0.5 sec., where the input displacement
function changes direction. After that point the accumulating displacement for µ = 0.6
is larger than for µ = 1, since the high friction works in both directions: forward and
backward. Note that curves for µ = 0.1 and µ = 0.6 follow the periodic behavior of
the displacement function, whereas the curve for µ = 1.0 is in delay of about 0.25 sec.

16.3.2 Dynamic rocking of a free standing column

Makris and Roussos (2000) studied the dynamic rocking of a column subjected to a
sinusoidal input acceleration function for the free body diagram shown in Figure 16.4
above.

The solution for the dynamic rocking of a column subjected to an input loading
function of a half-sine pulse is obtained in two stages:

1) Instantaneous response – dynamic motion which takes place simultaneously with
application of the input acceleration function: üg (t) = apsin

(
ωpt + ψ

)
from t = 0

to t = 0.5 sec., where ω is 2π (f = 1 Hz) and the phase angle (ψ) is ψ = sin−1
(

αg

ap

)
,

2) Consequent motion – rocking oscillations after pulse termination from t = 0.5 sec.
and onwards. Naturally when the pulse terminates the input acceleration dimin-
ishes (üg(t) = 0, hence ap = 0) and the coefficients of integration are updated
for changing rotation angle and angular velocity. Furthermore, following each
impact (@ θ = 0), the angular velocity and the coefficients of integration are
recalculated as well.
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Figure 16.5 Solution for dynamic column rotation (b = 0.2 m, h = 0.6 m). (Top) ap lower than required
for toppling, (Bottom) ap sufficient for column toppling. Solid line – analytical solution,
Open circles – DDA results (afterYagoda-Biran and Hatzor, 2010).

The analytical and DDA solutions for column width and height of b = 0.2 m and
h = 0.6 m are presented in Figure 16.5. In the top frame results obtained for amplitude
ap = 5.43 m/s2 (0.5535 g), a value slightly lower than required for overturning, are
shown, hence only column rocking is obtained. In the lower frame results obtained
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with an amplitude of ap = 5.44 m/s2 (0.5545 g), the minimum value required for over-
turning are shown, and indeed column overturning is obtained ∼1.5 sec. after pulse
termination.

In the DDA model the column rests on a fixed base and is subjected to dynamic
input at its centroid. The friction angle along the interface is set to 89 degrees to avoid
sliding, as in the analytical solution which ignores sliding. The optimal values for
DDA numerical control parameters (g1, g2 in (Shi, 1993)) are obtained following an
optimization study performed for a numerical shaking table experiment (Tsesarsky,
Hatzor and Sitar, 2005). The optimal contact spring stiffness value (g0 in (Shi, 1993))
is selected by iterations, until the numerical computation returns the correct value of ap

necessary for column overturning as in the analytical solution. The numerical control
parameters used here are: (k01 = 1, g2 = 0.0075, g1 = 0.0025 sec, g0 = 83 ∗ 106N/m,
and E = 3 GPa, ν = 0.25).

A remarkably good agreement between the analytical and numerical solutions is
suggested by the data presented in Figure 16.5. The accuracy of the numerical solution
with respect to the analytical solution can be assessed in terms of the relative numerical

error
(∣∣∣ θanl. − θnum.

θanl.

∣∣∣ · 100%
)
. As can be seen in Figure 16.5 after initial perturbations

the numerical error rapidly decreases below 1%. Note that the DDA solution deviates
from the analytical solution as soon as the first impact between the rocking column
and the fixed base occurs. This deviation may be explained by the way damping is
addressed in the two solutions. While in the analytical solution the motion during
impact is energetically damped due to conservation of angular momentum following
the constant value of the coefficient of restitution which is used (Makris and Roussos,
2000), in DDA oscillations at contact points are restrained due to inherent algorithmic
damping (see Doolin and Sitar, 2004; Ohnishi et al., 2005).

The same procedure is repeated to find the solution for a full sine input function,
with ω = 2π. The comparison between analytical and numerical solutions is presented
in Figure 16.6 for column width and height of b = 0.5 m and h = 1.5 m, respectively.

Again in the top frame ap is slightly lower and in the lower frame ap is slightly higher
than the peak acceleration required for overturning, as obtained from the analytical
solution. The difference between the two values used for input in the two simulations is
0.003 m/s2 or 0.0001g, suggesting an extremely high DDA accuracy. The spring normal
stiffness found by optimization is different than for the previous run (g0 = 64 ∗ 106

N/m), probably because of the difference in column stiffness due to the change in
column geometry between the two cases. The other DDA input parameters are as in
the half sine validation listed above. As in the previous validation for a half sine input
the error remains very small until the first impact occurs, after which the error begins
to increase. Naturally from the definition of relative error (see above), which depends
on the actual value of θ at each time step, greater error is expected for very small values
of θ, and vice versa.

16.3.3 Block slumping at the Snake path cliff, Masada

In a segment along the East face of the Masada mountain, locally known as the
“snake path’’ cliff, a prismatic block resting on an easterly dipping bedding plane and
separated from the cliff by two orthogonal “tension cracks’’, apparently exhibits a
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Figure 16.6 Analytical (solid line) and numerical (open symbols) solutions for column rocking under full
sine input function (b = 0.5 m, h = 1.5 m): (Top) ap slightly lower than required for toppling,
(Bottom) ap just sufficient for column toppling (afterYagoda-Biran and Hatzor, 2010).
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Figure 16.7 Plan (a) and bird eye (b) view of the top of the Masada monument. Block 1, located
immediately above the old cable car station, is delineated (after Hatzor, 2003).

“block slumping’’ failure mode (Goodman and Kieffer, 2000). The block, 15 m high,
10 m wide, and weighs 13.7 MN (1400 ton), rests directly above the old cable car
station and is situated along the path of a new bridge connecting between the new
cable car station and the entrance gate to the monument at the mountaintop (Block 1
in Fig. 16.7). The block has clearly separated from the cliff over geologic and historic
times by an accumulated displacement of up to 20 cm. Current displacement rates were
monitored by Hatzor (2003) in connection with an overall dynamic stability analy-
sis for the snake path cliff that culminated in the reinforcement of several removable
blocks along the bridge path.

The tall and slender geometry of Block 1 makes it susceptible to the “block slump-
ing’’ failure mode, initially proposed by Wittke (1965) and extended to multiple blocks
by Kieffer (1998). Because the resultant weight vector trajectory of Block 1 acts on the
steeply inclined plane (see free body diagrams in Fig. 16.8), sliding will commence by
mobilizing shear strength along both the steep and the shallow inclined planes simulta-
neously. Thus, rotation around a center located outside of the block may take place –
a failure mode defined as “Block Slumping’’ (Goodman and Kieffer, 2000).
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Figure 16.8 Block 1: (a) – Free body diagram, (b) – Actual geometry (after Hatzor, 2003).

It is intuitively clear that once slumping is initiated joint water pressures rapidly
dissipate as a joint, with a wide base and sharp edge at the top, is formed behind the
block at onset of motion.

The forces acting on a block that undergoes block slumping are shown in
Figure 16.8a. Assuming the friction angles on the two sliding planes are equal (φ1 = φ2)
three equilibrium equations are necessary for solution of the contact forces N1 and N2

and the mobilized friction angle φmobilized:

∑
FV = 0:W = N1 cos α1 + N1 tan φ1 sin α1 + N2 cos α2 + N2 tan φ2 sin α2 (16.7)

∑
M0 = 0:Wdw + N2 tan φ2d′

2 = N2d2 (16.8)

∑
MC = 0:Wx = N2 tan φ2AC + N1 tan φ1OC (16.9)

where α1 and α2 are the inclinations of the sliding plane and the “tension crack’’
respectively. Simultaneous solution of the three equations for the geometry of Block 1
(Fig. 16.8b) yields a mobilized friction angle value of φmobilized = 22◦.

To test the validity of this solution DDA is employed. The exact two-dimensional
geometry of Block 1 is studied under gravitational loading with different values of inter-
face friction angle as the only varied parameter between simulations. The actual friction
angle of Masada discontinuities was studied experimentally (Hatzor et al., 2004) using
tilt tests, tri-axial tests, and direct shear tests. The obtained failure envelopes are shown
in Figure 16.9. The peak friction angle obtained from direct shear tests on rough sur-
faces is 41◦. The residual friction angle, obtained from tri-axial tests performed on
filled saw-cut planes is 23◦. The analytical solution for block slumping indicates that
for friction angle values lower than 22◦ Block 1 will exhibit back slumping by simul-
taneous shear along both interfaces. Therefore, for rough interfaces with available
friction angle of 43◦ the block may be assumed to be stable. However, for interfaces
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Figure 16.9 Failure envelopes for filled saw-cut (open circles) and rough (open triangles) discontinuities
from Masada.

Figure 16.10 DDA results for Block 1 with interface friction angle of 20◦ and gravitational loading for
t = 0, 0.8, 1.6, and 2.5 sec.

possessing residual friction angle value of 23◦ the block may be considered at limit
equilibrium considering the block slumping mode.

The original configuration of Block 1 is shown in the left panel of Figure 16.10. The
block remains static until the input friction angle on the interfaces in DDA is reduced
to 21◦ after which sliding ensues along both interfaces simultaneously. The dynamic
deformation progress for interface friction angle of 20◦ is shown in Figure 16.10 where
clearly the block slumping mode is obtained, confirming the analytical solution that
requires a minimum friction angle of 22◦ for stability. It is important to note here that
in DDA the failure mode is a result of the analysis and not a pre assumption.

16.3.4 Block on an incline in three dimensions

The 3D-DDA validation is performed with a simple model of a block on an incline using
an existing analytical solution. The model is composed of two blocks: a base block of
a triangular prism shape (10 m ∗ 10 m, 5 m width) with inclination angle β = 45◦, and
a sliding square prism shaped block (1 m ∗ 1 m ∗ 0.5 m) (see Fig. 16.11).
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Figure 16.11 The 3-D model used for the 3D-DDA validation of a block on an incline.

The base block is fixed in space by 7 fixed points, therefore cannot move, and the
sliding block is loaded by two loading points, for the 3rd step of the validation study.

16.3.4.1 Step one: grav itat ional load ing

The first step of the validation study is subjecting the sliding block to gravity loading
only. Down slope displacements are compared with displacements calculated by an
analytical solution for the problem, presented below.

The analytical solution for this problem is as follows: The forces acting on the
block on an incline are the gravitational force and the frictional force. The downslope
destabilizing force can be expressed as Fd = mg sin β (where m is the block’s mass and β

is the inclination angle of the base block). The stabilizing force, i.e. the frictional force,
can be expressed as Fs = mg cos β tan φ (where φ is the friction angle of the interface
between the base block and the sliding block). Therefore the downslope acceleration,
that is the resultant force acting on the block divided by the mass, is

a = g sin β − g cos β tan φ. (16.10)

Double integration over time of the acceleration term will give the displacement
(with zero initial velocity and displacement)

d(t) = 1
2

at2 = 1
2

g(sin β − cos β tan φ)t2 (16.11)

The time step interval (g1) is set here to 0.001 sec, the maximum displacement
per time step ratio (g2) to 0.002, and contact spring stiffness (g0) to 4 ∗ 108 N/m. The
down slope displacement history is compared for three values of friction angle: 10, 20
and 30◦ (remembering the inclination angle of the slope is 45◦).

The left panel of Figure 16.12 presents the results of the 1st step of the val-
idation study. Note the good agreement between the analytical and numerical
solutions. The right panel of Figure 16.12 presents the relative numerical error

(error = dispanaly − dispnumer

dispanaly
× 100%). After 0.2 sec the numerical error drops to values

below 1% demonstrating good agreement between the two solutions.

© 2011 Taylor & Francis Group, London, UK

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

2:
37

 1
6 

O
ct

ob
er

 2
01

5 



436 Advances in Rock Dynamics and Applications

14

12

10

8

6

4

2

0
0 0.5 1 1.5

Time (sec) Time (sec)

� 	 30�

� 	 20�

� 	 10�

D
ip

la
ce

m
en

t d
ow

n 
th

e 
sl

op
e 

(m
)

2 2.5 3

1000

100

10

1
0.50 1 1.5

0.01

0.001

0.0001

0.000001

0.00001

0.0000001

0.1

R
el

at
iv

e 
er

ro
r 

(%
)

Analytical solution, � 	 10�

Analytical solution, � 	 20�

Analytical solution, � 	 30�

DDA solution, � 	 10�

DDA solution, � 	 20�

DDA solution, � 	 30�

Figure 16.12 Left: Down slope displacement histories of a block on an inclined plane subjected to
gravity alone. Legend: curves – analytical solution, symbols – DDA solution. Right:
The relative numerical error.

16.3.4.2 Step two: gravitat ional loading and init ial velocity

The next step of the validation study is applying initial velocity to the sliding block,
and comparing the down slope displacements of the block to the ones computed
by the analytical solution. Similar to the analytical solution presented in step one,
double integration over time of the acceleration term is performed, this time remem-
bering that there is initial velocity to the block, therefore the term for the downslope
displacement is:

d (t) = 1
2

at2 + v0t = 1
2

g (sin β − cos β tan φ) t2 + v0t (16.12)

The model used in this validation step is identical to the previous one, with
input numerical parameters: g1 = 0.0001 sec, g2 = 0.002, g0 = 4 ∗ 108 N/m and input
physical parameters: ρ = 2.7 g/cm3, E = 40 GPa, ν = 0.18, φ = 20◦.

The initial velocities are set in the horizontal (x) direction to three different values:
0.01 m/sec, 0.1 m/sec and 1 m/sec. Results for downslope displacement history are
presented in the left panel of Figure 16.13. The agreement between the analytical and
the numerical solutions is good for all three different velocities, as can be verified by
the relative numerical error plotted in the right panel of Figure 16.13 – less than 1%
after 0.5 sec of the analysis.
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Figure 16.13 Left: Down slope displacement histories of a block on an inclined plane subjected to
gravity and initial velocity. Legend: curves – analytical solution, symbols – DDA solution.
Right: The relative numerical error.

16.3.4.3 Step t hree: gravitat ional and 1-D sinusoidal acceleration

The third step of the validation study is comparing the downslope displacements
of the block computed by an analytical solution, with those computed by the DDA,
when the sliding block is subjected to a 1-D horizontal sinusoidal acceleration in the
form of a(t) = A sin(ωt), as well as gravitational acceleration.

The analytical solution is as follows: as the friction angle of the sliding surface
(50◦) in this validation step is higher than the inclination angle (45◦), block sliding
will initiate only when the acceleration has reached the value of the yield acceleration
and beyond. This type of analysis has been referred to as Newmark’ type analysis
(Goodman and Seed, 1966; Newmark, 1965). Newmark (1965) and Goodman and
Seed (1966) have shown that in the case of a block on an incline, the yield acceleration
is ayield = tan(φ − β)g. Once the sinusoidal input acceleration has reached or exceeded
ayield, at time t1, the block begins to gain downslope velocity and displacement. When
the sinusoidal input acceleration drops again below the value of ayield, the velocity
decreases, as the block is restrained by the frictional force, until it reaches zero and
the block stops. When the sinusoidal input acceleration exceeds ayield again at time t2,
motion will again initiate and so on, as in Figure 16.14.

In order to obtain the Newmark displacement, one must perform double
integration over time of the downslope acceleration term, which in this case is

a(t) = [A sin(ωt) cos β + g sin β] − tan φ[g cos β − A sin(ωt) sin α] (16.13)

Double integration of this term yields (after Kamai and Hatzor, 2008):

d(t) = g�(sin β − cos β tan φ)(1/2t2 − θt + 1/2θ2)�
+ A

ω2
[(cos α + sin α tan φ)(ω cos(ωθ)(t − θ) − sin(ωt) + sin(ωθ))] (16.14)
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Figure 16.14 Newmark’ type analysis. Shaded areas are the times at which acceleration exceeds ayield.
(after Goodman and Seed, 1966).

Since block movement initiates only once ayield is reached or exceeded, double inte-
gration of the downslope acceleration is performed as long as the velocity is greater
than 0.

The model used in this validation step is identical to the previous one, with
the numerical parameters as follows: g1 = 0.0001 sec, g2 = 0.002, g0 = 7 ∗ 108 N/m.
Physical parameters: block density = 2.7 gr/cm3, E = 40 GPa, ν = 0.18, φ = 50◦.

Left panel of Figure 16.15 presents the downslope displacement history, calculated
by the Newmark analysis and the DDA code. The agreement between the two is good,
and can again be expressed in terms of relative error, presented in the left panel of
Figure 16.15. During most of the analysis the error remains below 3%.

16.4 BACK ANALYSIS OF STONE DISPLACEMENTS IN OLD
MASONRY STRUCTURES

16.4.1 Keystone displacement in a Roman masonry
arch – Mamshit

Mamshit is the last Nabatean city built in the Negev on the trade route between Petra,
Hebron, and Jerusalem (Negev, 1988). A unique structural failure is noticed in a tower
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DDA solution. Right: The relative numerical error.

Figure 16.16 The DDA block system for the embedded arch at Mamshit. The modeled masonry wall
rests on two fixed blocks.The lines intersecting the arch blocks represent material lines,
and a measurement point (circle) is assigned for the keystone.

at the corner of the Eastern Church, where a key stone has slid approximately 4 cm
downwards out of a still standing semicircular arch (Fig. 16.1a).

The numerical analysis of the arch at Mamshit is performed on a block system that
contains the arch, with its accurate measurements from the field, confined by a uniform
masonry wall. The arch is intersected by ‘material lines’ (Shi, 1993) which enable us to
assign separate sets of mechanical parameters for the wall and the arch. These simulate
the great difference between the hewn stones of the arch itself and the heterogenic
confining wall material by assigning intact rock stiffness values to the arch stones
(Earch = 17 GPa) and soil-like stiffness values to the wall stones (Ewall = 1 MPa) because
DDA does not yet contain specific features to model joint infilling. A measurement
point is assigned at the keystone, and its vertical displacement is tracked versus time
(Fig. 16.16).
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Figure 16.17 DDA results for the keystone at Mamshit (after Kamai and Hatzor, 2008): (a) Influence
of input motion amplitude on vertical keystone displacement (f = 1 Hz), (b) Influence of
input motion frequency on vertical displacement of keystone (A = 0.5 g).

A very interesting and unique structural behavior is revealed through the sensitivity
analyses of structural response to changing amplitude of motion. Instead of an intu-
itive proportion between induced motion amplitude and degree of damage, measured
here by the magnitude of the displacement vector at the measurement point, there is
apparently a structural “preference’’ to a certain range of amplitudes. The keystone at
Mamshit exhibits the greatest displacement under specific amplitudes, not necessarily
the largest. Figure 16.17a shows that the keystone of the arch at Mamshit exhibits the
greatest downward displacement under an amplitude of 0.5 g, when everything else is
kept equal. Downward displacement increases with acceleration amplitude up to an
amplitude of 0.5 g. When the acceleration amplitude is greater than 0.5 g, the keystone
response exhibits strong fluctuations and even a shift in displacement direction.

Structural response to frequency of motion is usually discussed in terms of the
natural period of the structure, at which the structure will develop a resonance mode
and collapse. Since the studied failures are local and not complete, each mode of
failure will have its own natural period which can be different from that of the whole
structure. The structural sensitivity to frequency, revealed in our sensitivity analyses, is
significant considering that the common terminology for seismic risk evaluation uses
mainly PGA (Peak Ground Acceleration) and largely ignores frequency.

In the case of the keystone at Mamshit a clear preference is detected for frequencies
in the range of 1–1.5 Hz; only under those input frequencies is the downward displace-
ment of the keystone continuous, and accumulates more than 3 cm of displacement,
similar to the amount of displacement measured in the field (Fig. 16.17b). Lower or
higher frequencies result in other modes of failure such as oscillations in the case of low
frequencies (e.g. 0.5 Hz) and “locking’’ of the structure in the case of higher frequencies
(e.g. 5–10 Hz in Fig. 16.17b).

A very important observation is made when a real earthquake record, that
of Nuweiba 1995, is used as input motion (Fig. 16.18). The original record, de-
convoluted to rock response (Hatzor et al., 2004), is amplified by 15 in order for its
PGA to reach the same amplitude of the synthetic motions used for the results which
are plotted in Figure 16.17B, namely 0.5 g.
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Figure 16.18 The Nuweiba 1995 record after de-convolution to rock response (Hatzor et al., 2004).
The rectangle marks the 10 seconds that were used for the analysis of the Mamshit block
system.

Though the Nuweiba quake loads the structure with a wide range of frequencies
and with two simultaneous components of motion (horizontal and vertical), the struc-
tural response to the natural quake is very similar to that of the simple sinusoidal ones,
though more moderate (See Fig. 16.17b). This finding strongly suggests that the results
of the sensitivity analysis, using synthetic records of horizontal motion only, are valid
enough to be further discussed.

16.4.2 Pillar collapse in a Byzantine Church – Susita

The archeological site of Susita is located at the top of a diamond shaped plateau 350 m
above the Sea of Galilee. Susita, or by its Greek name Antiochia-Hippos, was founded
during the Hellenistic period, after 200 BC (Segal et al., 2004). During the Hellenistic
period it belonged to the Decapolis, a group of ten cities that were regarded as the cen-
ters of Greek culture in the region. The Southeastern church at Susita, the collapsed
columns of which are analyzed in this paper, was built during the Byzantine period.
The church columns are monolithic consisting of red and grey granites which were
transported most likely from the Aswan region in Egypt (Segal et al., 2004), as well as
of some white and green marbles. One row of collapsed columns that originally sup-
ported the roof of the southeastern church can clearly be seen today (Fig. 16.1b). The
collapsed columns rest parallel on the ground surface, all pointing in the same direction
(Fig. 16.1b). Susita is believed to have been destroyed during the large earthquake of
749 AD (Amiran, 1996). This conclusion stems from several historical observations:
1) after 750 AD tax collection has moved from Susita to a different, nearby city, 2) no
evidence for life in Susita has been found in archeological excavations after 750 AD,
3) the latest coins found in Susita excavations are dated to the Umayyad dynasty (early
Arabic period) which ended at 750 AD.
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Figure 16.19 DDA block system used for a model column at Susita (after Yagoda-Biran and Hatzor,
2010).

Some of the columns that have collapsed are broken, most columns are displaced
by some finite distance from their bases, and some columns have rolled on the ground
after the collapse.

There are two fundamental assumptions in the following numerical treatment
that must be declared in advance: 1) the numerical analysis is carried out for dynamic
excitation of free standing columns. The results thus obtained pertain therefore to
free standing columns and not for the entire structure which must have included some
kind of roof. Although the roof must have been rather light, this assumption must be
considered when regional seismic hazard is deduced from our results, 2) the dynamic
analysis is carried out in two dimensions while the actual columns are three dimensional
entities. At present we are conducting very preliminary investigations with 3D-DDA
but the results reported here are only valid for two dimensions, for which an analytical
solution also exists (Makris and Roussos, 2000).

The DDA block system used in this research for a typical Susita column is presented
in Figure 16.19.

The input material properties for the column are: E = 40 GPa, ν = 0.18,
ρ = 2700 kg/m3, and friction angle between column base and pedestal φ = 45◦. These
values are obtained by engineering judgment and not by actual testing because it is
not permissible to extract samples from the site. Nevertheless, the numerical anal-
ysis results do not seem to be very sensitive to material property variations, within
reasonable bounds.

The input numerical control parameter values (k01, g1, g2 in (Shi, 1993)) are as in
the validation study. The parameter for which the numerical analysis is most sensitive,
the normal contact spring stiffness, is found by iterations using the analytical solution
at the instantaneous response stage when only free oscillations are obtained under
input peak acceleration value sufficiently small so as to avoid column toppling. An
optimal contact spring stiffness of g0 = 2 ∗ 108 N/m is thus obtained. The optimal g0
value was determined for very low values of θ to avoid sliding deformations which are
not considered in the analytical solution but partake in the deformation both in reality
and in DDA computations.
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Figure 16.20 DDA results for the collapsed Susita columns: (a) required PGA for overturning under one
input loading cycle. Solid triangles – stable columns,solid diamonds – overturned columns,
solid line – stability boundary. (b) required PGA for overturning under three input loading
cycles. Solid triangles – stable columns, solid diamonds – overturned columns, solid line –
stability boundary (afterYagoda-Biran and Hatzor, 2010).

Once optimal numerical control parameters are found, forward DDA modeling
can be performed for various input motion frequencies and amplitudes. DDA results
for one and three cycles of a sinusoidal input function are presented in Figure 16.20.

Under a single loading cycle the required amplitude for overturning clearly
increases with frequency (Fig. 16.20a). For example, the amplitude required for over-
turning at 5 Hz is 4.6 g, far greater than the expected PGA for this region, 0.3 g (S.I.I.,
2004). Input loading frequencies of 1 Hz and 2 Hz return PGA values of 0.2 g and 0.6 g
respectively, much closer to the expected PGA for this region. The required PGA for
overturning also increases with frequency for three loading cycles, but at a smaller rate
(Fig. 16.20b), and attain a “steady state’’ value of 1 g for 3 Hz frequencies and above.

Results of previous studies (Psycharis, Papastamatiou and Alexandris, 2000) sug-
gest that for 1 Hz frequencies or below the required PGA for overturning is independent
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of the number of loading cycles, since the column will overturn during the first cycle or
soon after it. For higher frequencies however, three loading cycles seem to better repre-
sent earthquake thresholds (Psycharis, Papastamatiou and Alexandris, 2000). It may
seem more appropriate therefore to adopt the numerical results obtained for 3 cycles
of input acceleration if only sinusoidal input motions are considered. The range of
threshold PGA values thus obtained however is still too large: 0.2 g < PGA < 1 g.

A possible way to constrain the obtained threshold PGA range is by assuming that
the columns failed when rocking at their natural resonance frequency. However, it
can be shown mathematically that a natural resonance frequency for a free standing
column does not exist (Yagoda-Biran and Hatzor, 2010). Therefore, an alternative
approach is needed for constraining PGA from back analysis of column overturning.

We overcome these two shortcomings by considering the frequency content of true
earthquake records by subjecting the modeled column to real accelerograms recorded
during strong earthquakes which occurred in tectonic settings similar to those as in
the Dead Sea rift (DSR) system, namely where strike slip rather than normal or reverse
faulting takes place. Possible candidates are the San Andreas Fault system in California
as well as past strong earthquakes recorded along the DSR system.

We show below results obtained with such an approach for the modeled columns
at Susita using real earthquake recordings with three component acceleration time
histories. As our analysis is restricted for now to two dimensions, the analyzed accelero-
grams are applied twice for each earthquake, where in each simulation a different
horizontal component (E-W or N-S) is aligned with the horizontal axis of the mod-
elled column. In all simulations the vertical component is applied as well, so as to allow
also for vertical motions in the analysis. The following earthquakes are modelled:

– The 1995 Nueiba (Red Sea) earthquake, as recorded in Eilat, Israel (Hofstetter,
Thio and Shamir, 2003). The recording station was about 60 km north of epicenter.
Magnitude: 7.2, V-PGA: 0.11 g, H-PGA: 0.09 g, measured on fill.

– The 1995 Nueiba (Red Sea) earthquake, as recorded in Eilat, Israel and decon-
voluted for rock (Zaslavsky and Shapira, 2000). The recording station was
about 60 km north of epicenter. Magnitude: 7.2. V-PGA: 0.11 g, H-PGA: 0.06 g
(Fig. 16.18).

– The 1989 Loma-Prieta earthquake, as recorded in Yerba Buena Island. The record-
ing station was about 80 km north of epicenter. Magnitude: 6.9. V-PGA: 0.02 g,
H-PGA: 0.05 g.

– The 1940 Imperial Valley earthquake, as recorded by the 117 El Centro array
#9. The recording station was about 11.5 km north of epicenter. Magnitude: 6.5.
V-PGA: 0.2 g, H-PGA: 0.35 g.

– San Francisco Bay area design earthquake. Magnitude 8, V-PGA: 0.55 g, H-PGA:
0.7 g (Law and Lam, 2003).

The modeled time histories are applied to “loading points’’ located at the cen-
troids of the column and the pedestal (see Fig. 16.19), while the foundation block
remains fixed. Each earthquake record is used twice as explained above, resulting in
10 different simulations. To determine the threshold PGA required for column over-
turning under the modelled earthquake the input records are up-scaled or down-scaled
(by multiplying the entire record by a scalar), until column toppling is obtained. The

© 2011 Taylor & Francis Group, London, UK

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

2:
37

 1
6 

O
ct

ob
er

 2
01

5 



Review of recent results 445

0.45

0.4

T
hr

es
ho

ld
 P

G
A

 r
eq

ui
re

d 
fo

r 
co

lu
m

n 
ov

er
tu

ni
ng

 (
g)

0.35

0.3

0.25

0.2

0.15 B
ay area X

 0.4e-w

B
ay area X

 0.52n-s

E
I C

entro X
 1.1e-w

E
I C

entro X
 1n-s

N
ueiba deconvoluted for

rock X
 5-e-w

N
ueiba deconvoluted for

rock X
 4-n-s

N
ueiba on fill X

 3 e-w

N
ueiba on fill X

 2.5 n-s

Lom
a  P

rieta X
 6 e-w

Lom
a  P

rieta X
 12 n-s

Scaled earthquake component

Figure 16.21 Threshold PGA required for column overturning obtained by subjecting the model to 10
different earthquake records.The original records were either down-scaled or up-scaled
until column overturning was obtained (afterYagoda-Biran and Hatzor, 2010).

results of these analyses are plotted in Figure 16.21 below. Surprisingly, the thresh-
old PGA values thus obtained remain constrained within relatively narrow bounds,
between 0.2 g and 0.4 g, even though the records are from different earthquakes, mea-
sured on different subsurface conditions, and have different frequency contents. This
approach narrows down quite significantly the range of possible threshold PGA values
that could have been responsible for the detected damage at Susita. Furthermore, the
expected PGA for this region of 0.3 g (S.I.I., 2004) falls nicely within this constrained
PGA range obtained by our approach.

16.5 DYNAMIC DEFORMATION IN JOINTED AND FRACTURED
ROCK SLOPES: THE CASE OF HEROD’S PALACE, MASADA

16.5.1 Geological and seismological setting

The top of Mount Masada consists of essentially bare hard rocks. The rocks are mainly
bedded limestone and dolomite, with near vertical jointing. Structurally, the entire
mountain is an uplifted block within the band of faults which forms the western
boundary of the Dead Sea Rift, a seismically active transform (Garfunkel and Ben-
Avraham, 1996; Garfunkel, Zak and Freund, 1981). A review of the tectonics and
seismicity of the area is provided by Niemi et al. (1997). According to the Israel seis-
mic building code (S.I.I., 2004) the Dead Sea valley has been classified as a region in
which earthquake-induced peak horizontal ground acceleration (PGA) exceeding 0.2 g
at the bedrock level is expected with a 10% probability within any 50 year window.
This is analogous to a 475 year average recurrence interval for such acceleration.
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Inspection of the historic earthquake record (Amiran, Arieh and Turcotte, 1994;
Ben-Menahem, 1991) suggests that the strongest shaking events which have actually
affected Mount Masada within the past two thousand years, were due to about ten
identified earthquakes with estimated magnitudes in the range of M = 6.0 ± 0.4 and
focal distances probably in the order of several kilometers to a few tens of kilometers
from the site. Under these assumptions it is highly likely that some of these earthquakes
have caused at Mount Masada bedrock PGA’s reaching and even exceeding 0.2 g, in
general agreement with predictions for a 2000 year period based on the aforementioned
building code assumptions.

One of the most notable historic earthquakes in this region occurred probably
in the year 362 or 363, with a magnitude estimated at 6.4 (Ben-Menahem, 1991)
or even 7.0 (Turcotte and Arieh, 1988). Reported effects included seismic seiches in
the Dead Sea and destruction in cities tens of kilometers from the Dead Sea, both
east and west. This is probably the earthquake identified by archeologists as “the
great earthquake which destroyed most of the walls on Masada sometime during the
second to the fourth centuries’’ (Netzer, 1991). The most recent of the major historic
earthquakes near Mount Masada occurred on July 11th, 1927. This earthquake was
recorded by tens of seismographs, yielding a magnitude determination of 6.2 and an
epicenter location 30 ± 10 km north of Masada. It also caused seismic seiches in the
Dead Sea and destruction in cities tens of kilometers away (Shapira and Eck, 1993).
Recent findings on paleoseismicity in the region are reported by Salamon et al. (2007).

16.5.2 Documented historical stability as control for
numerical simulations

The fortifications built by King Herod on Mount Masada about two thousand years
ago included a casemate wall surrounding the relatively flat top of the mountain (Net-
zer, 1991). Clearly, because of its defensive function, the outer face of this wall was
built so as to continue upward the face of the natural cliff, as much as possible. The
outer wall was therefore founded typically on the flat top within several decimeters
from its rim. Locally it was even founded slightly beyond the rim, on a somewhat lower
ledge of rock. On the aforementioned three palace terraces, jutting at the northern tip
of the mountain top, construction was again carried out up to the rim and beyond
in order to achieve architectural effects and utilize fully the limited space. Thus, the
remaining foundations effectively serve to delineate the position of the natural rim of
the flat mountain top and associated northern terraces about 2000 years ago. Miss-
ing portions along such foundation lines indicate locations in which the rim has most
probably receded due to rockfalls, unless the portions are missing due to other obvious
reasons such as local erosion of the flat top by water or an apparent location of the
foundation on fill beyond the rim.

Inspections of the entire rim of the top of Masada reveals that over almost the
entire length of the casemate wall, which is about 1400 m long, the rock rim has not
receded during the past two thousand years more than a few decimeters, if at all. Only
over a cumulative total of less than 40 m, i.e. about 3% of the wall length, are there
indications of rockfalls involving rim recessions exceeding 1.5 m, but not exceeding
4.0 m. Since the height of the nearly-vertical cliffs below the rim is in the order of tens
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of meters, these observations attest to remarkable overall stability in the face of the
recurring earthquakes.

On King Herod’s palace terraces there has been apparent widespread destruction,
mostly of walls and fills which were somehow founded on the steep slopes. However,
in the natural cliffs themselves there are few indications of rockfalls involving rim
recessions of more than a few decimeters. Remarkably, most of the high retaining
walls surrounding the middle and lower terraces are still standing, attesting to the
stability of the rock behind them. In the upper terrace, on which this study is focused,
there appears to be only one rockfall with depth exceeding several decimeters. It is a
local rockfall near the top of the 22 m cliff, in the northeast, causing a rim recession of
about 2.0 m. It is notable that this particular section of the terrace cliff was substantially
modified by the palace builders, perhaps de-stabilizing the pre-existing natural cliff.

Rare aerial photographs of Mount Masada dated December 29th 1924, i.e. pre-
dating the 1927 earthquake were also inspected. Comparison with recent aerial
photographs would have been capable of detecting rim recessions exceeding about one
meter, if any had occurred in the northern part of the mountain. None were found,
suggesting that the 1927 earthquake did not cause any significant rockfalls there (the
southern part was less clear in the old photographs).

The information presented above essentially constitutes results of a rare rock-
mechanics field-scale “experiment’’. Two thousand years ago the Masada cliff top was
marked by construction. The mountain was later shaken by several major earthquakes,
with deep bedrock accelerations certainly exceeding 0.1 g and probably even exceeding
0.2 g. Observations at the present stage of the “experiment’’ show that all the cliffs
surrounding the top of Mount Masada essentially withstood the shaking, with some
relatively minor rockfalls at the top of the cliffs.

The above is a substantial result of a full-scale “experiment’’ on the real rock
structure. Therefore, a fundamental test of any model of this structure is that it must
essentially duplicate the above “experiment’’.

16.5.3 Rock mass properties

The rock in Masada is a massive and dense dolomite with low porosity (2%–8%) and
density of 2,730 kg/m3. The rock mass is bedded with local karstic voids between beds.
The bedding planes are generally clean and tight, with crushed dolomite infilling in
places.

Herod’s palace, also known as the North palace, is built on three terraces at the
north face of Masada. The rock mass structure at the foundations consists of two
orthogonal, sub-vertical, joint sets striking roughly parallel and normal to the NE
trending axis of the mountain, and a set of well developed bedding planes gently
dipping to the north (Fig. 16.22b). The joints are persistent, with mean length of
2.7 m. The bedding planes, designated here as J1, dip gently to the north with mean
spacing of 60 cm. The two joint sets, J2 and J3, are closely spaced with mean spacing
of 14 cm and 17 cm respectively (Fig. 16.22a).

The uniaxial compressive strength of intact rock samples exceeds 315 MPa, and
typical values of Elastic modulus and Poisson’s ratio are 40 GPa and 0.18 respec-
tively. These strength and elasticity parameters are relatively high with respect to values
determined experimentally for other dolomites and limestones in Israel (Hatzor and
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Figure 16.22 Rock mass structure at the Northern Palace – Masada (after Hatzor et al., 2004):
(a) Joint length and spacing distribution, (b) Joint orientation (upper hemisphere
projection of poles).

Palchik, 1997; Hatzor and Palchik, 1998). The shear strength of discontinuities was
discussed above, and the experimental failure envelopes for rough and saw cut surfaces
are presented in Figure 16.9, which indicated the Coulomb-Mohr failure criterion is
nicely obeyed. While residual friction angle (23◦) is used for stability analysis in the
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Figure 16.23 Synthetic trace map of the upper rock terrace of Herod’s Palace in Masada using the
statistical joint trace generation code (DL) of Shi (Shi, 1993).

“snake path’’ cliff where individual blocks are extremely large, in the North face of the
mountain, where the average block size is much smaller it would be reasonable to base
the design and the analysis on the available friction angle for rough joints, namely 41◦.

16.5.4 Numerical generation of block mesh

The results of numerical analyses are extremely sensitive to: (a) the input mechanical
and physical properties, (b) the geometrical configuration, namely the computed mesh,
and (c) the input loading function. The geometrical configuration (b) is particularly
important in distinct element methods where rock blocks and mesh elements are one
and the same. In the previous section the determination of mechanical parameters was
discussed. In this section the most suitable mesh configuration is discussed, followed
by a discussion of the appropriate dynamic input motion.

Two principal joint sets and a systematic set of bedding planes comprise the rock
structure at Herod’s palace (Fig. 16.22). An E-W cross section of the upper terrace
is shown in Figure 16.23, computed using the statistical joint trace generation code
(DL) of Shi (Shi, 1993). It can be seen intuitively that while the east face of the rock
terrace is prone to sliding of wedges, the West face is more likely to fail by toppling of
individual blocks. Block theory mode and removability analyses (Goodman and Shi,
1985) confirm these intuitive expectations.

While it is quite convenient to use mean joint set attitude and spacing to gener-
ate statistically a synthetic mesh, the resulting product (Fig. 16.23) is quite unrealistic
and bears little resemblance to the actual slope. The contact between blocks obtained
this way is planar, thus interlocking between blocks is not modeled. Consequently
the results of dynamic calculations may be overly conservative and the computed
displacements unnecessarily exaggerated.

In order to analyze the dynamic response of the slope realistically a photo-
geological trace map of the face was prepared using aerial photographs (Fig. 16.24a),
and the joint trace lines were digitized. Then, the block-cutting (DC code) algorithm
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Figure 16.24 (a) The upper terrace of Herod’s palace, Masada, (b) Photo geological trace map.

Figure 16.25 Deterministic joint trace map of the terrace prepared using the photogeological map of
the upper terrace (Fig. 16.7) and the block cutting algorithm (DC) of Shi (Shi, 1993).

of Shi (Shi, 1993) was utilized in order to generate a trace map that represents more
closely the reality in the field (Fig. 16.24b). Inspection of Figure 16.24 reveals that
block interlocking within the slope is much higher and therefore the results of the for-
ward analysis are expected to be less conservative and more realistic. The deterministic
mesh shown in Figure 16.25 is used therefore in the forward modelling discussed below.

The trace lines obtained from the mapping were used as input to the block cutting
program (DC) of Shi (Shi, 1993) to obtain the block system mesh, consisting of finite
blocks for which all the information including area and contacts with adjacent blocks
in the mesh is stored for further forward analysis (Fig. 16.25).

16.5.5 Selection of appropriate input motion

In this research we chose to use the recorded time history of the Mw = 7.1 Nuweiba
earthquake which occurred in November 1995 in the Gulf of Eilat (Aqaba) with an
epicenter near the village of Nuweiba, Egypt. The main shock was recorded at the
city of Eilat where the tremor was felt by people, and structural damage was detected
in houses and buildings. The city of Eilat is located 91 km north from the epicenter
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Figure 16.26 Time history of the Mw = 7.1 Nuweiba earthquake (Nov. 22, 1995) as recorded at the
city of Eilat on a thick fill layer of Pleistocene alluvial fan deposits.

and 186 km south of Masada, on the northern coast of the gulf of Eilat (Aqaba).
Figure 16.26 shows all three components of the accelerogram that were recorded in
Eilat. The peak ground acceleration (PGA) of the Nuweiba record as measured in Eilat
was 0.09 g.

The Eilat seismological station is situated on a thick fill layer of Pleistocene alluvial
fan deposits. The recorded accelerogram therefore represents the response of a site
situated on deep fill layer rather than on sound bedrock. Therefore, direct application
of the original Eilat record for the case of the Masada rock site would be inappropriate.
In order to obtain a “rock response’’ record for the Nuweiba event it would be necessary
therefore to remove the local site effect of the fill layer, which typically amplifies
ground motions, and to produce a corresponding “rock’’ response using an appropriate
transfer function. This mathematical procedure is known as de-convolution.

In this research a one-dimensional multi-layer model for the fill was utilized with
the key parameters being shear wave velocity, thickness, and density for the horizontal
fill layers. The material and physical parameters were determined using both seismic
refraction survey data and down-hole velocity measurements. The appropriate transfer
function was developed by optimization of both theoretical and experimental results
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Figure 16.27 Deconvolution of the Eilat Fill record (Fig. 16.26) for bedrock response (after Hatzor
et al., 2004).

(Zaslavsky and Shapira, 2000). The resulting de-convoluted record for rock response
is shown in Figure 16.27.

Although the Masada site is situated directly on rock, a significant topographic
effect was recorded in the field (Hatzor et al., 2004) and it should therefore be con-
sidered in the development of the relevant input motion for the site. An empirical
response function for Masada, developed on the basis of the field study discussed in
Section 5.2 above, is shown in Figure 16.28. Three characteristic modes are found at
1.06, 3.8, and 6.5 Hz. The resulting time history is shown in Figure 16.29. The DDA
forward modelling is performed using the modified input motion shown in Figure 16.29
below.

16.5.6 Forward DDA analysis

To test the hypothesis that the studied fractured rock slope withstood several episodes
of shaking with PGA = 0.2 g, the modified Nuweiba record (Fig. 16.29) was up scaled
to PGA = 0.2 g and was used as input loading function for the realistic block mesh
shown in Figure 16.25 using the forward modelling code (DC) of DDA. The results of
the numerical simulation are shown graphically in Figure 16.30 for the 10 most critical
seconds of the event, from t = 15 s to = 25 s. Inspection of the graphical output reveals
that under that level of excitation only minor damage should be anticipated, primarily
in the form of block toppling in the west slope and local block sliding in the East slope.
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Figure 16.28 An empirical response function for the topographic site effect at Masada (after Hatzor
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Figure 16.29 The Nuweiba record modified for rock response including local topographic site effect
at Masada (after Hatzor et al., 2004).
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Figure 16.30 DDA prediction of fractured rock slope response to modified Nuweiba record scaled to
PGA = 0.2 g.

These results are confirmed by the presence of intact structures at the rim of the cliff.
The complete details of the numerical analysis are discussed by Hatzor et al. (2004).

16.6 SUMMARY AND CONCLUSIONS

In this paper a powerful numerical tool is discussed, the discrete discontinuous defor-
mation analysis (DDA) method. Following a brief review of DDA theory several
validations against analytical solutions are presented. These validations prove that
DDA is suitable for dynamic applications for discrete systems such as masonry struc-
tures or fractured rock masses. Application of DDA for seismic hazard studies is
demonstrated using firstly back analysis of finite block displacements in old masonry
structures, and then by performing forward modelling of an existing fractured rock
slope. The back analysis study allows us to constrain the peak ground acceleration
of the seismic event that caused the observed damage. The forward modelling study
demonstrates the ability of the method to predict damage patterns in discontinuous
rock masses. DDA results in the study of deformed masonry structures are supported
by PGA predictions of the seismic design code in Israel, values arrived at in a com-
pletely different and independent approach. DDA results for the fractured rock slopes
are confirmed by field observations concerning mapped failure modes in the two oppo-
site faces of the analyzed slope, as well as the still standing 2000 year old structures
on the rim of the analyzed cliff.

Acknowledgment: This research is partially supported by the ISRAEL SCIENCE
FOUNDATION, through grant No. 556/08.
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Chapter 17

Explosion loading and tunnel
response

Yingxin Zhou

17.1 INTRODUCTION

Damage to rock tunnels from shock loading resulting from explosions in rock is of great
interest to the engineer designing for tunnel blasting and for protection of underground
structures, including underground explosives storage safety. However, prediction of
the explosion loading and the damage criteria to be used in design, can present some
difficulties due to the highly variable nature of the rock mass and the varying conditions
under which explosions can take place. Different sources of explosion loading may
produce significantly different effects, because of the many factors at play. A review
of the literature reveals large variations in the ground shock prediction equations and
definitions of tunnel damage. It is thus important to have a rational approach to the
prediction of the explosion loading and the analysis of tunnel response and damage.
A clear understanding of the characteristics of the loading sources and how the various
factors affect the explosion effects is essential to this approach.

A series of large-scale tunnel explosion tests were conducted between 2000 and
2003 to validate the safety design for underground ammunition storage, including
response of tunnels. While design for measuring ground shock loading and tunnel
response was relatively easy, initial design of the test tunnel presented some engineering
challenges in the prediction of the dynamic loading, tunnel damage assessment, and
dynamic rock support for the tunnel facility which was designed to last a few years
under repetitive explosion loading. The design was made more difficult by the general
lack of design guidelines on ground shock prediction, damage criteria, and dynamic
rock support. This chapter discusses some of the design issues, lessons learned and
results from the tests. Case studies of rock damage will also be discussed and compared
with results of analytical solutions and large-scale tests. The effects of the various
factors on damage will be discussed and quantified where possible.

A vigorous treatment of dynamic tunnel response, including the explosion pro-
cess, will logically require the use of the dynamic properties of rock and the dynamic
constitutive relations. However, such a treatise is beyond the scope of this chapter.
Interested readers can refer to publications by Zhao (2000), Li, Zhao and Li (1999,
2000), Li et al. (2001), Zhao et al. (1999a), Zhao and Li (2000) and Zhao, Li and Cai
(2000). This chapter will focus on the engineering aspects of the problem.
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17.2 PREDICTION OF GROUND SHOCK LOADING

17.2.1 Sources of explosion loading and their characteristics

Ground shock can result from one of the following main sources: blasting in mining
and civil engineering construction, conventional weapons, and accidental explosion of
stored explosives. This section discusses the characteristics of these explosions. It will
not discuss ground shock loading from nuclear explosions.

17.2.1.1 Tunnel and mine blasting

In rock blasting for tunnel excavation or mining, explosives are charged into drill holes,
and detonated in multiple delays. In a typical tunnel face of 60–100 m2, the maximum
charge weight per delay is in the order of 100 kg. For larger caverns or open pit mining
where benching blasting is used, the charge weight per delay can be higher, up to few
hundred kg per delay. In special blasting applications (e.g. large chamber blasting), the
charge weight can be as large as a few hundred tons.

Explosives used for commercial operations are generally of a lower strength (com-
monly ANFO and bulk emulsions) compared to TNT and other explosives used in
weapons. Thus, consideration should be given to the equivalent charge weight if a
ground shock equation based on different explosives is used. Blasting from mining
or construction work is repetitive by nature, so analysis of their effects on adjacent
structures must take into account possible fatigue effects. Allowable limits set for such
blasting are usually much lower than those for storage purposes.

17.2.1.2 Conventional weapons

In military or civil defence applications, all protective design is based on an assumed
threat of a certain weapon grade. Depending on the type of weapons, and the value of
the facility as a target, the charge weight can range from a few kg to 2,000 kg. Penetra-
tion of weapons or cratering is also an important factor in ground shock prediction.
Some weapons detonate on contact or with very limited penetration, while others are
designed to penetrate deep into the ground before explosion. These will have strong
effects on the ground shock wave generated in the ground. When a weapon penetrates
deeply to the ground, the explosion is usually fully coupled and generates much higher
ground shock than shallow or contact explosions, where a substantial amount of the
explosion energy is transmitted to the air in the form of airblast. For the purpose of
ground shock calculation, a scaled burial depth, expressed in m/kg1/3, of 1.0 for hard
rock and 1.2 for soft rock is considered sufficient to prevent any cratering (Depart-
ment of the Army, 1961). Explosives of weapons grade generally have much higher
explosion strength than commercial explosives.

17.2.1.3 Accidental explosion in explosives storage

In underground explosives storage, accidental explosion is often the design basis in
terms of internal and external safety. The charge weight varies within a wide range and
is typically a few tens to a few hundred tons. However, the explosives (or weapons)
are usually stored in rock caverns with large empty space for operations and other
technical installation, resulting in relatively low charge weight per unit volume (or
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loading density). This effect is called decoupling and can significantly reduce the ground
shock generated in the ground. Accidental explosions are also extremely rare, typically
with a probability of one in a few thousand years. The amount of explosives in an
accidental explosion can vary significantly. As such, designing for explosives storage
is generally based on an assumed maximum credible event (MCE), often expressed
in equivalent quantities of TNT. Due to the extremely low probability of explosion,
allowable limits for ground shock resulting from an accidental explosion in storage
are generally much higher than those set for repetitive blasting work.

17.2.2 Ground shock equations

Explosions in rock generate a dynamic stress wave, or ground shock, that propagates
through the geological media. This stress wave is typically represented by the time
history of the acceleration or particle velocity. Figure 17.1 shows the time histories of
acceleration, particle velocity, and displacement from a decoupled underground explo-
sion in hard rock. The velocities and displacements were obtained from integration of
the recorded acceleration time history.

For the purpose of engineering design, the dynamic load generated from an under-
ground explosion in rock can be represented by the peak particle velocity (PPV), which
has been shown by studies to be the most representative parameter when describing
the ground motion and tunnel response (Dowding, 1984).

The PPV from a fully coupled explosion can be given in the following general
form:

V = H
(

R
QB

)−n

(17.1)

where H and n are constants for a certain geology and explosion set up; R = actual
distance, m; Q = charge weight, kg. The term R/Q1/3 is the scaled range, expressed in
m/kg1/3.

The exponent B, representing the energy scaling law, is a function of the geometry
of the charge and reflects the energy transmission from the explosive to the surround-
ing medium. Many mining applications tend to use ½, or the square root scaling, while
most military applications tends to use 1/3 or cube root scaling. While the PPV equa-
tion developed from tests is essentially a curve fitting exercise, the exponent B should
approximately follow the values indicated in Table 17.1. From an energy point of view,
this argument is generally true for distances that are relatively small with respect to the
dimensions of the charge. At a sufficiently large distance (compared to the explosive
geometry), the geometry effect should decrease and the exponent should approach 1/3
(cube root scaling). For the purpose of this chapter, all discussions will use the cube
root scaling.

In Equation (17.1), it can be said that H gives the initial shock magnitude trans-
mitted to the ground, while n governs how the shock wave propagates, or attenuates,
through the ground. For hard rock, most values of n are in the vicinity of 1.5, although
there is a general trend for n to increase with decreasing rock quality. Table 17.2 shows
some typical values of H, B, and n found in the literature.
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Figure 17.1 Time histories of acceleration, particle velocity and displacement.
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Explosion loading and tunnel response 461

Table 17.1 Scaling law and charge geometry.

Shape of Charge Exponent B Remarks

Spherical 1/3 Typical of explosives testing and tunnel blasting
Cylindrical 1/2 Multiple MS delay surface bench blasting
Plane 1 Long row of closely spaced holes detonating simultaneously

Table 17.2 Typical values for the constants H, B and n.

K value,
mm/s Exponent n Exponent B Remarks Reference

1099 1.4 1/3 Fully coupled tests in granite Zhou et al., 2000
21–804 0.88–2.8 1/3 Cube Root: China & Japan Tao, 1979
1200 1.6 1/2 Square Root: Mining (USBM), Nichols et al., 1971

Civil engineering
1130 1.77 1/2 Hong Kong granite tunnel blasting Smith & Mortan,

1986
700 1.5 0.467 Average Swedish bedrock Holmberg and

Persson, 1980
11430– 2.7–2.8 1/3 Fully coupled tests conducted in Johnson, Rozen and
12000 soft limestone and chalk using Rizzo, 1988

500 kg of TNT
2.8 1/3 Tests of de-decoupled explosions Joachim, 1990

conducted in hard limestone
(Magdalena tests) for explosives
storage safety

12700 1.77 1/3 Fully coupled tests in Klotz II Hultgren, 1987
1800 2.5 1/3 Decoupled tests in hard limestone Murrel and Joachim,

Linchburg Mine, Nex Mexicao, USA. 1996
Seismic velocities ranging from
3,636 m/s to 5,738 m/s. Loading
density ranging from 10 to 48 kg/m3

700 2.0 1/3 Granite rock Hendrych, 1979
193–1930 1.6 1/2 Down hole bench blasting Oriard, 1972
50–220 1.10 1/2 Coyote (large chamber) blasting Oriard, 1972

The parameters H and n are generally a function of the soil/rock quality but
can be affected by other factors such as types of explosives and scale of the explo-
sion. For example, the initial value H has been shown to be related to the acoustic
impedance coupling between the explosives and the rock wall for fully coupled
explosions (Fig. 17.2). Likewise, data from Johnson, Rozen and Rizzo (1988) and
Zhou and Ong (1996) show that the higher the acoustic impedance of the rock mass,
the lower the attenuation coefficient, n.

A second point to note is the strength of explosives. Typically, commercial explo-
sives have lower strengths compared to TNT and military explosives. However, in
many PPV equations we reviewed, this point is seldom highlighted.

Finally, the scale of the explosion also has a strong influence on the PPV equation.
Oriad (1972) presented several figures for PPV as a function of the scaled distance,
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Figure 17.2 Coupling of blast pressure to rock wall for various types of rock. Data based on low
density TNT (Density = 1,000 kg/m3,Velocity of Detonation = 4,850 m/s) in fully coupled
explosions (Tao, 1979).

based on tens of thousands of data points from open pit blasting. The most important
point of this chapter is the observation that at the same scaled range, PPV values for
small charge amounts are much larger than those for coyote (large) blasts. Similar
observations are also reported by Perret and Bass (1975) and Madshus and Langberg
(1999).

As can be seen from Table 17.2, empirical PPV equations of the form in
Equation (17.1) are inherently highly site-specific. Unless similar rock properties are
present, the application of these equations may not be appropriate. Based on earlier
work by Johnson, Rozen and Rizzo (1988), McMahon (1992), and Dowding (1985),
Zhou and Ong (1996) developed a modified PPV equation that incorporates the rock
mass density and seismic velocity.

V = 0.5C2.17

ρC

(
R

Q1/3

)−n

(17.2)

From the above equation, the initial value is:

H = 0.5C2.17

ρC
(17.3)

where H = m/s; ρ = rock mass density, kg/m3; and C = seismic wave velocity, m/s.
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Explosion loading and tunnel response 463

The attenuation coefficient, n, is typically 1.5 for hard rock and can be more than
2.0 for softer rock. For softer rock with a C < 1,500 m/s, the following equations can
be used to estimate n:

n = 2.31e
87390

ρC (17.4)

17.2.3 Decoupled explosions

Decoupling occurs when the explosive charge does not fill up the volume completely,
and at least some parts of the charge are not in direct contact with the rock. Here
decoupling refers exclusively to volumetric decoupling.

Decoupling is the norm for underground explosive storage in rock caverns, where
space is required for operations inside a chamber. In blasting, decoupling is often used
to control rock damage, typically in controlled blasting or in the perimeter holes of
tunnel face blasting, in the form of reduced charge density or alternative empty holes,
to control. In some underground explosion tests, it is known that decoupled explosions
were used to conceal the actual quantity of explosives in the test.

When decoupling occurs, the peak particle velocity generated by the same quantity
of explosives at the same distance is substantially reduced.

Prediction of ground shock due to decoupled explosions is more complicated
because of several factors affecting the transfer of explosion energy to the ground.
Basically, two types of techniques can be used for predicting the peak particle velocity
from decoupled explosions. The first method uses the wall or chamber pressure as the
starting point and then predicts the ground shock based on some form of wave theory.
The prediction cannot easily be done in analytical form unless significant simplifica-
tions are made. The second method applies a decoupling factor to the predicted ground
motion based on a fully coupled explosion of the same quantity. The decoupling factor
is often given as a function of the loading density, expressed in kg/m3.

17.2.3.1 Decoupling factor

Assuming the same attenuation coefficient for both coupled and de-coupled explosions,
Zhou and Jenssen (2009) showed a decoupling factor as a function of the explosives
density and attenuation coefficient n, as follows:

fd = 1
ρn/3

(w)n/3 (17.5)

where w = loading density, kg/m3; and n = ground shock attenuation coefficient, and
ρ = mass density of the explosives.

This equation satisfies the condition that the decoupling factor always approaches
1 as the loading density approaches the density of the explosives.

For n = 1.5 and an explosive density of 1600 kg/m3, the de-coupling factor
becomes:

fd = 0.025(w)0.5 (17.6)
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Figure 17.3 Comparison of decoupling factors.

Several decoupling factors are also found in the literature (Hultgren, 1987; McMahon,
1992; Joachim and Smith, 1988; Zhou and Ong, 1996; Zhou and Jenssen, 2009).
Figure 17.3 shows a comparison of the various coupling factors. The de-coupling
factor in Equation (17.6) is similar to the de-coupling factor derived by Hultgren
(1987) for hard granite rock (uniaxial compressive strengths of 200 MPa and RQD
values of 90–100%) and that of Joachim. It seems that these decoupling equations are
primarily derived for hard rock. It is conceivable that the decoupling factor for softer
rock may be different.

Several factors contribute to the difficulty with predicting the effects of decoupling.
First, a truly decoupled explosion requires the explosives to be placed in the centre,
with roughly equal distance to the rock walls. This, however, is almost never the
case, at least for explosive storage, where the explosives are usually in contact with or
much closer to the floor. The direct contact will result in a direct transmission of some
shock energy to the floor. Second, data on the effects of loading density may not be
fully representative as such tests are usually conducted in a fixed volume with varying
charge weights, rather than with a fixed charge weight with varying volumes. Third,
the geometry of the charge and that of the rock chamber and their relative dimension
have a strong influence on the coupling of explosion energy. Finally, the effects of
impedance coupling are normally not included. As discussed in the previous section,
the impedance coupling of explosives and rock has been shown to be very important
in energy transfer.

17.2.3.2 Chamber wall pressures

As discussed earlier, chamber pressure is sometimes used as a boundary condition
for predicting ground shock without the use of decoupling factor, especially for rela-
tively low loading densities in underground storage conditions. Typically, the chamber
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Explosion loading and tunnel response 465

pressure is given as a function of the loading density, as shown in the following equation
given by Strange, Dornbusch and Jr. Rooke (1995):

P = 2.25w0.72 (17.7)

Where P = peak chamber pressure in MPa; and w = loading density, kg/m3.
This pressure can then be converted to the peak particle velocity by the following

relationship:

V = P/(ρC) (17.8)

This method has several shortcomings. First, variations of predicted chamber pressure
are large (Strange, Dornbusch and Jr. Rooke, 1995; McMahon, 1994), and most
equations for chamber wall pressure have been derived based on tests conducted in steel
tubes which assume perfectly rigid and reflecting chamber walls. Numerous numerical
simulations of large-scale tests using hydrocodes, which have been proven to be valid
using data from shock tubes, tend to over-predict blast pressure by a factor of at
least two. Various factors have been examined and the response of the rock chamber
walls has been identified as a major contributing factor. Second, the conversion of
pressure to peak particle velocity and the subsequent propagation must assume overly
simplified relationships. Most analytical solutions reported in the literature so far use
a one-dimensional elastic wave theory. Third, if the explosives are in contact with the
floor of the storage chamber, the transmitted ground shock (or pressure) can never be
measured and its value as compared with the chamber pressure is not known. Finally,
the oxygen balance of the explosives has a strong effect on the degree of after-burning
of the detonation products and thus the chamber pressure, depending on the loading
density. For example, TNT will have a complete combustion with loading densities
up to 0.5 kg/m3. For loading densities higher than 0.5 kg/m3, the peak chamber gas
pressure as a function of the loading density will be lower due to the lack of oxygen
in the chamber for after-burning. Figure 17.4 shows the peak chamber gas pressure as
a function of the loading density for various types of explosives.

17.2.4 Correction for charge geometry

For close range explosions, the charge shape and geometry can have significant effects
on the ground shock. For the same charge weight, a slender charge shape will produce
less ground shock compared to a spherical charge at the same distance from the charge
centre. The charge shape effect has been shown to be primarily a function of the
distance from the charge and the aspect ratio of the charge (Ouchterlony et al., 1997;
Hao and Wu, 2001). Where the charge length is significant compared to the distance,
the effects of the charge shape should also be accounted for by applying a correction
factor to the charge weight. According to Ouchterlony et al. (1997), the charge weight
can be corrected by applying the following factor:

f = a tan
(

H
2R

)
/(H/2R) (17.9)

where R = distance, H = charge length, f = is in radians.

© 2011 Taylor & Francis Group, London, UK

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

2:
38

 1
6 

O
ct

ob
er

 2
01

5 



466 Advances in Rock Dynamics and Applications

100

10

1

0.1

0.01
0.01

ANFO

RDX

C-4

TNT

HBX-3

0.1 1

Loading density (kg/m3)

P
ea

k 
ga

s 
pr

es
su

re
 (

M
P

a)

10 100

Figure 17.4 Average peak chamber gas pressure as a function of loading density for various explosives
(NATO, 2006).

Figure 17.5 shows the charge weight correction factor as a function of the ratio
of distance to the charge length based on Ouchterlony et al. (1997). As can be seen,
the charge shape effect diminishes as the ratio of distance to charge length becomes
greater than 1. For explosives storage, PPV equations have been derived directly as a
function of the chamber geometry which shows an average PPV reduction of 20–30%
for a storage chamber with a length-to-width ratio of 4:1 compared to a chamber with
2:1 ratio (DSTA, 2002).

17.3 TUNNEL RESPONSE

Essentially, rock damage can be in the form of crushing or spalling, depending on the
proximity of the rock to the explosion source. The definition of spalling itself is also
subject to discussion. In many discussions, the word spalling has been taken to mean
the “peeling off’’ of loose rock pieces.

17.3.1 Spall analysis

In this section, a simple spall analysis is presented based on a 1-D elastic saw-tooth wave
pulse (Zukas, 1982) travelling along a rock bar. While this is a simplified representation
of reality, it nevertheless provides some good insights into the physical meaning of rock
and tunnel damage.

The velocity of the first spall is given as follows:

VSP = 2σm − σDT

ρC
= 2ppv − σDT

ρC
(17.10)
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Figure 17.5 Correction factor for charge weight as a function of charge geometry.

where VSP = velocity of the first spall; σm = magnitude of incipient stress;
σDT = dynamic tensile strength of rock; ρ = rock mass density, kg/m3, or N/m3/(m/s2)
or Ns2/m4; C = seismic wave velocity in rock, m/s.

The amplitude of the incipient stress can be related to the peak particle velocity
by:

σm = ppv(ρC) (17.11)

The threshold PPV for spalling can be obtained by setting Equation (17.10) to zero:

ppv = 1
2

σDT

ρC
(17.12)

The thickness of the first spall can be estimated using the following equation:

t1 = λ

2
σDT

σm
= λ

2
σDT

ppv(ρC)
(17.13)

where λ = wavelength = C/f , and f = frequency.
The effect of frequency is obvious. From ground shock tests conducted in hard

rock, typical frequencies of the stress wave range from 100 Hz to 500 Hz.
The maximum level of stress is reduced by σDT every time a spall is formed. The

total number of spalls is given by the following equation:

n = 1
2

+ σm

σDT
= 1

2
+ ppv(ρC)

σDT
(17.14)
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Figure 17.6 One-D spall calculations for a typical granite rock.

Assuming an average frequency of 250 Hz for granite, and dynamic tensile strength of
21.36 MPa, a mass density of 2650 kg/m3, and a seismic velocity of 5500 m/s, we can
estimate the threshold ppv for spalling as:

ppv = 21.36 × 106

2(2650)(5500)
= 0.733 m/s

The thickness of the first spall is:

t1 = 21.36 × 106(5500 m/s/250 Hz)
2(0.733)(2650)(5500)

= 22 m

The above calculation shows that the incipient spalling ppv is 733 mm/s for a one-
dimensional rock column. The spalling ppv threshold for in-situ rock mass may be
higher due to the 3-D confining effects. For the given strength and ppv, the thickness
of the 1-D rock column is 22 m, suggesting that the degree of damage is very limited,
and from a practical point of view, tunnel damage would not be visible.

Figure 17.6 shows the thickness of the first spall and the total number of spalls
possible calculated for a granite rock. It can be seen that the number of spalls will only
increase to 2 at an incipient ppv close to 2–3 m/s.

17.3.2 Damage criteria

Assessing the response and damage of rock subjected to dynamic loading requires a
set of damage criteria. It is extremely important to have a common understanding
of the definition of damage, before any meaningful discussion of tunnel damage can
be made. Unfortunately, there currently exist no established damage criteria for rock
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Table 17.3 Damage criteria for hard Scandinavian bed rocks (Persson, 1997).

Tensile Stress Strain Energy
Pep, m/s (MPa) ( J/kg) Typical Effect

0.70 8.7 0.25 Incipient swelling
1.00 12.5 0.5 Incipient damage
2.50 31.2 3.1 Fragmentation
5.00 62.4 12.5 Good fragmentation
15.0 187 112.5 Crushing

Table 17.4 Tunnel Damage Criteria for Unlined Rock Tunnels (Li & Huang, 1994).

Rock Parameters Peak ParticleVelocity, mm/s

Unit Comp. Tensile
Rock Weight strength Strength No Slight Medium Serious
Type (g/cm3) (MPa) (MPa) Damage Damage Damage Damage

Hard 2.6–2.7 75–110 2.1–3.4 0.27 0.54 0.82 1.53
Rock 2.7–2.9 110–180 3.4–5.1 0.31 0.62 0.96 1.78

2.7–2.9 180–200 5.1–5.7 0.36 0.72 1.11 2.09

Soft 2.0–2.5 40–100 1.1–3.1 0.29 0.58 0.90 1.67
Rock 2.0–2.5 100–160 3.4–4.5 0.35 0.70 1.07 1.99

and rock support. Most of the damage definitions found in the literature are not well
defined. Various terms have been found in the literature to describe damage, often with
significant differences in definition and practical meaning. Rock damage at the micro-
crack level may be interesting for numerical modelling, but for engineering applications
such damage criteria are not very useful. Thus, the damage criteria discussed in this
chapter typically refer to rock damage at the macro level.

Table 17.3 shows the damage criteria for Swedish hard rock by Persson (1997),
which were developed based on a similar analysis as shown in Section 3.1, with obser-
vations of physical effects. These criteria suggest threshold damage (incipient damage)
at a ppv of 1 m/s.

Li and Huang (1994) discussed damage criteria for rock tunnels, with the following
damage definition:

– Slight damage – initial cracking
– Medium damage – partial collapse
– Serious damage – large-area tunnel collapse.

The respective values of ppv for the various types of rock mass are shown in
Table 17.4. The ppv for slight damage seems to correspond to initial swelling described
by Persson (1997).
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Figure 17.7 Tunnel damage zones (Hendron, 1977).

Table 17.5 Comparison of UET Tests (Hendron, 1977) and 1-D calculation.

Damage Zone 1 2 3 4

Damage Tight closure General failure Local failure Intermittent failure
Free-field radial strain NA 40 13 3–6
Free-field ppv, m/s NA 12 4 0.9–1.8
Calculated thickness of 0.3–1.4 1–4.2 2–18.5
1st spall, m

Calculated number of spalls 11 4 1

Damage threshold values from other studies can be found in Coates (1981),
Dowding (1984), Kartuzov (1976), Oriad (1972), Philips et al. (1992), and Siskind
(1997).

Perhaps the most comprehensive study of tunnel damage is the US Army’s Under-
ground Explosion Tests (UET), as reported in Hendron (1977). The study classifies
tunnel damage into four damage zones (Fig. 17.7).

From Figure 17.7, it can be said that what is referred to as intermittent failure
is most likely random spalling of loose rocks. Serious spalling (or damage) does not
occur until the ppv reaches 4 m/s.

Using the methodology described in Section 3.1, a similar calculation has been done
for the sandstone rock of the UET tests and shown in Table 17.5. From Table 17.5,
the number of spalls corresponding to a ppv of 4 m/s for Zone 3 damage (local failure)
is 4, which would seem to fit the physical description of tunnel damage quite well.

17.3.3 Damage of rock tunnel with support

Studies have been done to examine the potential damage of rock support due to blasting
ahead of the tunnel face. It has been found that even very close to the blasting face,
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Explosion loading and tunnel response 471

Table 17.6 Explosive testing tunnel response (Dowding, 1984).

Type Strain % PPV, m/s

Unlined tunnel
Joint movement, fall of loose stones 0.3
Intermittent failure 0.015 2.0
Local failure 0.04 3.6
Complete closure 0.1

Lined tunnel
Cracking of liner 0.02 1.0
Displacement of cracks 1.3
Local failure 0.15 7.4
Complete failure 0.8 40.0

damage to the rock bolt grout and shotcrete is negligible. Studies carried out by Stjern
and Myrvang (1998) and Ortlepp and Stacey (1998) have shown that ppv up to 1 m/s
will not cause any measurable damage of the rock support. For lined tunnels, Dowding
(1984) suggested that the threshold PPV would roughly double that for unlined tunnels
(Table 17.6). Again, it is important to make a distinction between tunnel support by
rock bolts and shotcrete, and tunnel support by concrete liners.

17.3.4 Observations of tunnel damage

Based on the above one-dimensional analysis and comparisons with several studies of
rock or tunnel damage, the following observations can be made:

– Most observations from field tests suggest initial tunnel damage is a result of falling
loose rocks, rather than damage of the rock material created by the shock wave.

– The threshold damage based on theoretical cracking most likely will not result in
any visible damage of a tunnel for engineering purposes.

– Visible tunnel damage in competent rock will not occur until the incipient ppv
reaches about 1–2 m/s. This value will double for tunnels with lining support.

– For practical applications, the tunnel damage criteria defined in the UET tests
seems to be the most realistic.

17.4 LARGE-SCALE TESTING

17.4.1 Test tunnel facility

From 2000 to 2001, several large-scale tests have been conducted in a rock tunnel
facility in Älvdalen, Sweden, site of the existing Klotz Group tunnel (Chong et al.,
2002). The tests were conducted to validate the safety design for underground explo-
sives storage, including response of tunnels. While the design for measuring ground
shock loading and tunnel response was relatively easy, the initial design of the test
facility presented some engineering challenges in the prediction of the dynamic loading,
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Figure 17.8 Test tunnel facility layout, chamber sections, and areas with dynamic rock bolts.

tunnel damage assessment, and dynamic rock support for the tunnel facility which was
designed for repetitive explosion loading.

The test facility was constructed in a rock mass consisting of mostly red porphyry
with some grey granitic intrusions. Fresh intact rock has uniaxial compressive strengths
of 200–250 MPa. The rock mass quality is considered “good’’ with average Q values of
15–20. It consists of a detonating chamber connected by a series of tunnels. Adjacent
and parallel to the chamber is a slot tunnel at criterion separation distance (0.6Q1/3)
to test and monitor response of an adjacent chamber (Fig. 17.8). The average rock
cover over the chamber area is about 100 m. The chamber has a width of 8.8 m, a
height of 4.2 m, and length of 33 m. The slot is 2-m wide and has the same height of
the chamber. The main tunnel connecting the chamber and slot is 4.5 m. The actual
separation between the chamber and slot tunnel is about 13 m based on a maximum
Net Explosives Quantity (NEQ) of 10 tons.

As the tunnel was designed to last through four years of explosion testing, includ-
ing fragment loading, dynamic rock bolts (Ansell, 1999) were used to support the
detonation chamber and the areas within 0.6Q1/3 from the chamber wall, as shown
by the shaded area in Figure 17.8c. The dynamic bolts have a smooth section which
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Explosion loading and tunnel response 473

Table 17.7 Test setup and objectives.

No. NEQ (kg) ChargeType Objectives

1 10 Fully coupled bare Ground shock calibration.
charge

2 500 Bare charge Bare charge test at loading density 0.5 kg/m3 for airblast
calibration

3 10,000 Bare charge Bare charge test at loading density 10 kg/m3 as reference test
4a 2,500 Bare charge Bare charge test at loading density 2.5 kg/m3 at intermediate

loading density
4 10,000 Cased munitions Effects of fragment loading and debris flow in tunnels at

loading density 10 kg/m3

allows them to detach from the grout and deform plastically under high dynamic loads.
In the chamber, plain shotcrete was applied in two layers, with a wire mesh in between.

17.4.2 Test setup and test objectives

A total of 5 tests were carried out, with all detonations in the same chamber. Table 17.7
shows the test setup and test objectives. With the exception of Test #1, the charges
for all other tests were evenly distributed in 10 tables in the chamber with the bottom
raised to about 800–900 mm above the floor. Details of the tests and instrumentation
are discussed in a separate paper (Chong et al., 2002). This chapter will only discuss
results of ground shock measurements and observations of tunnel response.

17.4.3 Ground shock instrumentation

Ground shock gauges were installed in the following locations (Fig. 17.9):

– A horizontal hole perpendicular to the chamber axis.
– A vertical hole above the chamber centre.
– Along the wall of the slot tunnel at 13-m from the chamber wall.

Strain gauges were also installed on two dynamic rock bolts installed along the
middle of the slot tunnel wall.

Using ground shock prediction methods discussed earlier, the predicted incipient
PPV for the slot tunnel wall was found to be between 0.75 and 1.49 m/s. Details of
the ground shock prediction can be found in Chong et al. (2002). Table 17.8 shows a
summary of the PPV calculations for the slot tunnel wall.

17.4.4 Results and observations of damage

Based on observations after the tests, the amount of damage sustained in the tunnel
system was surprisingly less than anticipated. Figure 17.10 shows some photos of the
chamber and the slot tunnel after the detonations.

For the 10-ton and 2.5-ton tests, ten craters of a similar size were created on the
floor below the ten charges after each detonation. The ten craters of similar size also
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Figure 17.9 Section view of ground shock instrumentation and charge distribution in chamber.

Table 17.8 Summary of predicted PPV on slot tunnel wall.

Charge weight 10,000 kg

PPV for fully coupled explosion (13 m away from 5000(R/Q1/3) − 1.5
chamber wall) = 5000(14/100001/3) − 1.5

= 10,760 mm/s
PPV correction for charge geometry (chamber 0.6–0.8
length to width ratio 4:1)

Decoupling factor (loading density of 10 kg/m3) 0.116–0.23
Predicted PPV for slot wall (incipient) 10,760 × 0.6 × (0.116 − 0.23)

= 748–1,485 mm/s

confirmed complete detonation of all charges. There was no rock fall from the roof
or walls. In the 10-ton bare charge test, there were very few spots of observed spall
of the shotcrete. For the 155-mm cased charges, there were more shotcrete spalls on
the chamber walls due to the directional loading of the steel fragments. Even so, no
bare rock was observed in the chamber wall, except in one location near the branch
tunnel, where a piece of rock fell off. The surprisingly low damage in the chamber
might be due to the “burned’’ shotcrete resulting from Test#3, which may have made
the shotcrete into some form of sandy material. This sandy material could have acted
as an energy-absorbing layer against the fragments of Test #4b, thereby limiting the
tunnel wall damage.

In the slot tunnel, no damage of the shotcrete or bare wall was observed. The only
exception was at a gauge hole, where the shotcrete had been damaged during drilling
and subsequently dropped to the tunnel floor due to the ground shock loading. The
loose material on the floor showed some movement from Test #3. All lights and fixtures
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Slot tunnel showing soil movement after
Test #3

Chamber with craters after detonation (Test #3)

Light fixtures in slot tunnel after Test #4b Chamber after detonation (Test #4b)

Figure 17.10 Photos of the detonation chamber and slot tunnel after Tests #3 and #4b.

in the slot tunnel remained fully functional after the tests. The relatively small damage
of the rock separation is also confirmed by the low strains recorded on the rock bolts
from Test #3 (Fig. 17.11). The calculated seismic velocities of the slot wall show an
8% reduction after Test #3 (from 4,636 m/s to 4,268 m/s) and subsequently remained
unchanged (Table 17.9). The initial change was probably due to loosening of the joints,
rather than new fractures created in the rock mass. Thus, it was concluded after Test
#3 that the dynamic rock bolts were not necessary due to the relatively low dynamic
loads.

For Tests #3 and #4b, the average PPV recorded on the slot wall was 1.4 m/s
and 0.97 m/s, respectively (Fig. 12). Since the PPV’s are recorded on the slot tunnel
wall (perpendicular to it), their values represent the reflected ground shock wave. The

© 2011 Taylor & Francis Group, London, UK

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

2:
38

 1
6 

O
ct

ob
er

 2
01

5 



476 Advances in Rock Dynamics and Applications

�0.15

�0.10

�0.05

0.00

0.05

0.10

0.15

0 5 10 15 20 25

Time (ms)

S
tr

ai
n 

(m
ill

is
tr

ai
n)

�0.15

�0.10

�0.05

0.00

0.05

0.10

0.15

0 5 10 15 20 25

Time (ms)

S
tr

ai
n 

(m
ill

is
tr

ai
n)

TT6

TT7

Figure 17.11 Dynamic strain recorded on rock bolts installed from the slot tunnel (Test #3).

Table 17.9 Calculated seismic velocities in slot tunnel wall for Tests 1–3.

Peak
Chamber Average PPV Calculated
Pressure, onTunnel Time of Seismic

Test and Charge MPa Wall, mm/s Arrival, Ms Velocity, m/s

Test 1–10 ton bare TNT 100 1390 3.07 4,636
Test 2–2.5 ton bare TNT 622 3.26 4,268
Test 3–10 ton TNT (1450 50 977 3.28 4,294

155 mm shells)
Ratio of SeismicVelocity — 0.93
after Test 2
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Figure 17.12 Comparison of measured PPV on the slot wall.

Table 17.10 Summary of PPV data on slot tunnel wall and calculated equivalent TNT.

Items Test #3 Test #4b

Min PPV, m/s 0.94 0.62
Ratio of Min PPV 1.00 0.66
Max PPV, m/s 1.70 1.84
Ratio of Max PPV 1.00 1.09
Average PPV, m/s 1.39 0.98
Ratio of Avg PPV 1.00 0.70
Equivalent TNT Ratio 1.00 0.54

equivalent free field PPV at the same distance would be roughly one half of the recorded
value. Test #4b produced a lower ground shock due to casing effects of the 155-mm
shells with equivalent TNT of 0.54 based on ground shock measurements. This casing
effect is also confirmed from blast pressure measurements, which showed equivalent
TNT from 0.45 to 0.67 of bare TNT (Chong et al., 2002). Table 17.10 shows the
equivalent TNT calculated from the measured PPV values on the slot tunnel wall.

In the blast door niche area outside the detonation chamber and the main tunnel
immediately next to it (located at 0.4Q1/3 from the chamber), there was no visible
damage of the rock wall or roof, despite repeated blasts.

17.4.5 Effects of decoupling

Results of ground shock measurements are plotted in Figure 17.13, along with the
PPV equation for fully-coupled detonation from earlier tests conducted at the same
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Figure 17.13 Comparison of peak particle velocities from coupled and de-coupled tests.

site (Hultgren, 1987). The distance for ground shock in Figure 17.13 is measured
from the chamber centre.

This decoupling effect can be seen clearly from Figure 17.13, where at the same
scaled range of 1 m/kg1/3, the average peak particle velocity was 15 m/s, 1 m/s, and
0.4 m/s, for fully coupled and loading densities of 10 kg/m3 and 2.5 mg/m3, respec-
tively. The respective decoupling factor for the PPV, for loading densities of 10 kg/m3

and 2.5 mg/m are 0.067 and 0.027. In other words, at a distance of about 22 m, the
peak particle velocity produced by a 10,000 kg explosion with a loading density of
10 kg/m3 will produce only about 7% of the PPV of a fully coupled charge of the same
quantity.

In summary, based on results from large-scale tests in Sweden, for loading densities
up to 10 kg/m3 in hard rock, the tunnel separation to prevent tunnel damage can be
safely reduced from the current 1.0Q1/3 to 0.6Q1/3. Chambers sited at 0.6Q1/3 are
expected to remain fully functional if access is available after an accidental explosion.
For the main tunnel located at 0.4 Q1/3 from the end of a chamber, no significant
damage is expected after the explosion of a designed quantity. It is clear that for
loading densities up to 10 kg/m3, requirements for separation distances for hard rock
based on the current codes are overly conservative.
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17.5 CONCLUSIONS

In assessing tunnel damage from dynamic loading, accurate prediction of the ground
shock loading is very important. The prediction must consider the type of explosion
source and influencing factors such as the geology and rock mass properties, charge
geometry, and loading density. The effects of explosion loading on tunnels are very
much a function of the loading density. The same distance and same quantity of explo-
sives, the peak particle velocity produced by an explosion of 10 kg/m3 is less than 10%
of that by an explosion of a fully coupled explosion. Assessment of tunnel damage
for engineering purposes should follow a common understanding and definition of
damage criteria.

Based on a literature review, theoretical analysis and the results of the tests, it
can be concluded that damage of unlined tunnels in competent rock does not seem to
begin until the incipient PPV reaches a value of at least 1–2 m/s. With the addition of
tunnel support (such as rock bolts and fibre reinforced shotcrete), it is expected that the
tunnel can sustain a much higher load, probably at least 2–4 m/s in ppv. For such load
cases, normal static rock support is probably sufficient although the use of steel fibre
reinforced shotcrete is recommended for its high energy capacity. The use of dynamic
support in hard rock is not necessary unless the dynamic loading, as expressed by the
incipient peak particle velocity, reaches more than 2–4 m/s.
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Chapter 18

Rock support for underground
excavations subjected to dynamic
loads and failure

Charlie Chunlin Li

18.1 INTRODUCTION

In highly stressed rock masses, rock failure is an unavoidable matter after excavation.
In certain circumstances, rockburst events occur, causing casualties and equipment
damage. In shallow tunnels where rock stresses are low, the main objective of rock
support is to stabilize the loosened rock blocks after excavation. The task of support
elements, such as rock bolts and steel sets, is to prevent the loosened blocks from
falling. This means that in shallow locations, the loading condition for the support
element is the dead weight of the blocks. In this case, the strength of the bolts has to
be larger than the dead weight of the potentially falling blocks. In other words, strong
rock bolts have to be used in shallow locations. This obeys the principle of structural
mechanics which states that a structure fails when it yields. In highly stressed rock
masses, rock blocks seldom become loosened in underground openings. Instead, rock
fails because of elevated stresses that are beyond the strength of the rock. In this case,
the loading for the support system is no longer dead-weight controlled, but rather
a displacement controlled process. The well-known Ground Response Curve (GRC)
describes such a loading process (Carranza-Torres and Fairhurst, 2000). The more
displacement is allowed, the less the need for support pressure to stabilize the ground.
In high stress rock conditions, the rock support should be strong and also ductile,
i.e. it should be able to absorb a good amount of deformation energy prior to failure.

In this chapter, we shall have an overview of the definitions of rockburst, current
research results in dynamic rock support, available energy-absorbing rock bolts, prin-
ciples of dynamic rock support, and dynamic test methods and facilities of support
elements/systems.

18.2 ROCKBURST EVENTS

All rockburst events are related to high in-situ stresses in rock masses. Moreover, rock-
burst events usually occur in hard and brittle rocks. In accordance with the triggering
mechanism, a rockburst event is either classified to strain burst or fault-slip burst.
Strain burst refers to a burst event that is directly related to a stress concentration in
the nearby field of an underground opening. After excavation, the tangential stresses
in the superficial rock become elevated. In extreme cases, the stresses are so high that
the rock is not capable of sustaining them. At this moment, the rock bursts out and
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Figure 18.1 Rock pieces that burst down from the roof in a deep metal mine.

the elastic energy stored in the rock is released in a violent manner. The epicentre of
a strain burst event is the place where the burst occurs. The superficial rock usually
becomes finely fragmented with thin and knife-sharp slices of rock being spread all
over the site. Figure 18.1 shows such a burst event that occurred in massive quartzite
at a depth of approximately 1000 m in a mine. The quartzite rock mass was almost
discontinuity free. Immediately after excavation blasting, the rock started to spall slice
by slice from the roof surface. All the materials in the pile shown in the picture burst
down from the roof after mucking.

Underground excavation results in a tangential stress concentration in the rock
surrounding the opening, while on the other hand a reduction in the radial stress in the
rock mass. The reduction in the radial stress will lead to a decrease in the normal stresses
on some pre-existing faults in the rock mass and therefore a reduction in the shear
resistance on the faults. Slippage may occur on the faults. Such fault slippage will induce
strain/stress waves that propagate spherically outward from the epicentre where the
slippage occurs, as shown in Figure 18.2. In the mining industry, this is called a seismic
event. At great depths, the rock usually becomes fractured after excavation, owing to
stress concentrations. When the strain waves released from the fault slippage reach
the underground opening, a rockburst event may be triggered so that the fractured
rock is burst down to a certain depth, which is the so-called fault-slip rockburst. Fault
slippage usually releases a significant amount of energy. As a result, a fault-slip burst
may cause more serious damage to underground infrastructures than a simple strain
burst event. A rock pile from a fault-slip burst is composed of irregular rock pieces,
ranging from finely fragmented pieces to large blocks. Figure 18.3 shows such a rock
pile in a deep mine drift. The rockburst event was triggered by a fault-slippage located
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Rock support for underground excavations subjected to dynamic loads and failure 485

Figure 18.2 Fault-slip rockburst event.

Figure 18.3 A fault-slip rockburst in a deep metal mine (Simser, 2001).

about 100 m from the mine drift. Fault-slip seismic events usually occur at a distance
of tens to hundreds of metres from underground openings in deep mines.

The volume of rock excavation is usually on a very large scale in a mine. A mine
stope, where ore is mined, can be tens to hundreds of metres in height and several
hundred metres in length. Even though the mined-out space is backfilled with waste
rocks and/or tailing sands in most cases, such a large mined-out space will disturb
the in-situ stresses in a large portion of the rock surrounding the opening. Because of
the large-scale stress disturbance, both strain burst and fault-slip burst could occur in
deep mines. The excavation of tunnels and civil caverns usually disturbs the rock mass
on a relatively small scale. For that reason, it is more common for strain burst than
fault-slip burst to occur in civil excavations.
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18.3 REVIEW OF PREVIOUS WORK

Many rockburst studies have been conducted in mining countries such as South Africa,
Australia and Canada in the past years. Rockburst was thoroughly studied in The
Canada Rockburst Research Program from 1990 to 1995. The program was estab-
lished as a collaborative research project to investigate the problem of rockburst in
Canadian mines after some serious rockburst incidents took place in Canada. The
overall objective of the 5-year project was to obtain an understanding of how and
why mines become susceptible to seismicity and rockburst problems, to determine
what needs to be done in order to minimize the effect of rockbursts and how the
damage caused by these seismic events is controlled. The results of the program are
summarized in a six-volume handbook (CAMIRO, 1995) that covers topics of mining
in burst-prone ground, rockburst support, seismic monitoring, numerical modelling,
mining seismology and case histories.

In the handbook, rockburst damage mechanisms are classified into three cate-
gories: rock bulking due to fracturing, rock ejection due to seismic energy transfer
and rockfall due to seismic shaking. Rock bulking due to fracturing usually results
in an increase in volume. If the fracturing occurs in an unstable and violent manner,
it is often referred to as a strain burst, which is perhaps the most common form of
damage in both civil and mining excavations in burst-prone ground. Rock ejection
due to seismic energy transfer occurs in a manner in which rock blocks are violently
ejected from the periphery of an excavation, while a seismic event occurs nearby. The
seismic energy is transferred to the blocks which then become kinetically active. This
mechanism is considered to be a primary cause of rockburst damage in deep mines.
Rockfall due to seismic shaking occurs when an incoming seismic wave accelerates a
volume of rock that was previously stable under static conditions. The seismic shaking
triggers the fall, although gravity is an important factor in this failure.

The severity of rockburst damage is represented by minor, moderate and major
classes. Minor damage involves only a shallow skin of fractured or loosened rock less
than 0.25 m in thickness. Moderate damage implies that the rock is heavily fractured
and may have been violently displaced, and is generally characterized by fractured or
loosened rock between 0.25 m to 0.75 m in thickness. Major damage involves the deep
fracturing or presence of damaged rock to a depth of more than 0.75 m. Most ground
support components would be broken or damaged when a drift sustains major damage.

In regard to rock support, a support element can provide one or more than one
of the following three primary functions: to reinforce the rock mass, to retain broken
rock and to hold the retaining elements (McCreath and Kaiser, 1992). Reinforcing
the rock mass is to strengthen it and prevent a loss of strength, thus helping the rock
mass to support itself. Retaining broken rock is required for safety reasons on the one
hand, while on the other hand it prevents progressive failure that would lead to an
unravelling of the rock mass.

Rock blocks may be ejected when subjected to a seismic wave. The ejection velocity
can be obtained by performing back-calculations of the ejected rock mass (Tannant
et al., 1993):

ve = d
√

g
2h cos2 θ + sin θ

(18.1)
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h

d

ve

θ

Trajectory of rock thrown 
during a rockburst

where θ is the initial angle of motion measured upwards from the horizontal plane and
g is the gravitational acceleration. Rockburst damage becomes evident when ejection
velocities exceed 3 m/s. Back-calculations of ejected rock masses reveal that the ejection
velocity of the ejected rock mass under a severe rockburst is approximately 5 m/s, even
though the velocity of small rock pieces could be up to 10 m/s. A study by Yi and
Kaiser (1993) confirmed an assumption that rock ejection velocity is approximately
equal to the peak particle velocity (ppv) under typical mining and seismicity conditions.
Their study also demonstrated that ejection velocities are greater than the peak particle
velocity only when the ejected blocks are very small. Therefore, the kinetic energy Ek

of an ejected block of rock can be determined by:

Ek = 1
2

m × v2
e ≈ 1

2
m × ppv2 (18.2)

where m is the mass of ejected rock, ve is the ejection velocity and ppv is the peak
particle velocity. The basic demand on a dynamic rock support system is that it can
stop the motion of the ejected rock in order to bring the kinetic energy to zero. This
demand means that the support elements should have the capability of absorbing the
kinetic energy released from the potentially ejected rock.

18.4 PHILOSOPHY OF DYNAMIC ROCK SUPPORT

A large amount of elastic energy is stored in deeply located rock prior to excavation.
The elastic energy stored in one cubic metre of rock, which is called energy density,
is expressed by

∑
σ2

i /2/E, where σi (i = 1, 2 and 3) are the in-situ principal stresses
and E is the Young’s modulus of the rock. Taking a deep mine in Scandinavia as an
example, the vertical rock stress at a depth of 1000 m is about 27 MPa, whereas the two
horizontal principal stresses are roughly 2.3 and 1.4 times the vertical stress (Li, 2006).
The energy density in the rock is then calculated to be 50 kJ/m3, with an assumption
that the Young’s modulus of the rock is 60 GPa. There is no doubt that all the stored
energy will be released when the rock is subjected to strain burst failure, though only a
small portion of it, possibly a few to tens kJ, is dissipated for rock fracturing. The rest
of it would be transformed to kinetic energy to eject broken rock pieces away from
their original positions.
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Figure 18.4 Examples of support elements to provide surface containment. (a) Finely shattered rock
contained by mesh (Simser, 2001). (b) A combination of mesh and lacing to enhance the
surface containing effect in a deep mine in South Africa.

In some cases, the stress concentration in the near field of an opening is not intense
enough to create strain burst as opposed to only creating surface-parallel extension
fractures. This is the so-called spalling/slabbing failure of rock. With such a failure
mode, the fractured rock party does not completely lose its integrity; consequently, it
is still able to carry some load and a certain amount of elastic energy is still stored in
the rock slabs. When a fault-slip event occurs nearby, the seismic waves break the rock
slabs and eject them into the opening. In this case, the kinetic energy of the ejected
rock party is the sum of the elastic energy stored in the rock party and the seismic wave
energy. The latter could be very powerful indeed. Because of this, a fault-slip rockburst
could be more violent than a strain burst.

The analysis above indicates that the total energy released from the rock is dis-
sipated for rock fragmentation and rock ejection when a rockburst event occurs. In
order to prevent a rock party from being ejected, the support system has to be able to
dissipate the energy released from the rock. It has been observed in the field that the
ejected rock pieces are large in places where light rock support is applied, while in heav-
ily supported places the ejected rock party is usually quite fragmented and contains a
certain amount of fine powders. This implies that well contained rock would not only
be subjected to fracturing but also grinding between rock pieces, which leads to fine
powders. The grinding would dissipate enormous amounts of energy. The more the
energy is dissipated by fracturing and grinding, the less or even no ejection that occurs.
Figure 18.4a shows an example in which the mesh and mesh straps provided a surface
containment to such a satisfactory degree that the rock was finely shattered behind
the surface-containing mesh. Surface containment is usually achieved by mesh, strap,
shotcrete, lacing or various combinations of them. Figure 18.4b shows an example of
a surface containment using mesh and lacing in a South African mine. A satisfactory
surface containment is a necessary measure for dynamic rock support.
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Figure 18.5 Strength bolt (rebar), ductile bolt (Split Set) and energy-absorbing bolt.

The elements in a support system, such as bolts, cables and meshes, are also able
to absorb a certain amount of the released energy through their deformations. A satis-
factory dynamic support system must be able to provide a good surface containment,
while also being able to absorb a large amount of kinetic energy through the support
elements.

Conventional rock bolts such as encapsulated rebar and a Split Set absorb little
energy because of either a small deformation capacity (for rebar) or a small load-
bearing capacity (for a Split Set). In recent years, efforts have been made to develop
energy-absorbing rock bolts to enhance the energy absorption of hanging elements in
dynamic rock support systems.

Fully-encapsulated rebar may be the most commonly used support element in
both civil and mining engineering, and is widely adopted because of its high load-
bearing capacity. The shortcoming of rebar is its small deformation capacity. Rebar is
a suitable support element in cases where a dead weight, for instance, a loosened rock
block, needs to be stabilized. In high stress rock masses, however, rock bolts have to
be ductile in order to avoid premature failure of the bolt. A Split Set is a typical ductile
support element which has been used for a long time to deal with squeezing/bulking
rock conditions. A Split Set has a good ductility, although its load-bearing capacity is
much smaller than rebar. In securing burst-prone rocks, the desired support elements
should not only be able to accommodate large rock deformations (i.e. be ductile), but
also be able to carry a high load. Such a type of element is called an energy-absorbing
support element. Taking a rock bolt as an example, the load-bearing capacity of the
ideal energy-absorbing rock bolt should be as high as, or close to, rebar, while at the
same time being able to accommodate large deformations. In other words, it should be
capable of absorbing a large amount of energy. Referring to Figure 18.5, three types
of rock bolts are defined from an energy-absorbing point of view:

– Strength rock bolt: This type has a high load-bearing capacity, but deforms little
prior to failure. Rebar is a typical strength rock bolt.
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– Ductile rock bolt: This type is able to accommodate a large rock deformation,
though its load-bearing capacity is limited. A Split Set belongs to this category.

– Energy-absorbing rock bolt: This type has a high load-bearing capacity, and at the
same time it is able to accommodate a large rock deformation. In other words, an
energy-absorbing rock bolt is both strong and ductile.

When subjected to dynamic loading, the philosophy of ground support is no longer
to balance the dead weight, but instead to help the rock to dissipate the dynamic energy.
The dynamic force is not a constant, but rather a function of the stiffness of the support
system. It is known from Newton’s second law that the momentum of a mass, mv, is
equal to the product of force and time, i.e. mv = Ft, when the momentum is transferred
from one object to another in collision. m stands for the mass, v for the velocity, F for
the force between the objects in collision and t for the acting time. For a given ejected
rock mass at an ejection velocity, its momentum (mv) is a constant. Thus, a short
acting time will result in a high collision force, while a long acting time leads to a low
collision force. Dynamic ground supporting is a process of transferring momentum
from the ejected rock to the support system. In the case of a stiff support system, the
acting time for the momentum transfer is short so that the force induced on the support
system would be high. In this case, the dynamic force may be beyond the strength of
the support system, and the support system could be destroyed. In the case of a soft or
ductile support system, the system would yield at a certain level of force, and deform
together with the ejected rock to a certain extent. As a result, the acting time is longer
than that in the case of a stiff support, and the kinetic energy of the ejected rock is
dissipated during this process. The objective of a dynamic support system is to absorb
the kinetic energy. Hence, ductility is crucial for a support system in burst-prone rock
conditions.

Figure 18.6 shows a fault-slip induced rockburst event in a deep metal mine in
Canada. The rock was already fractured prior to the occurrence of the burst event.
The roof was shaken down when the fault-slip burst occurred. In the area, both conven-
tional fully-encapsulated rebar bolts and energy-absorbing bolts were used for ground
support. All the energy-absorbing bolts in the collapsed area survived the event, though
the rebar failed in the manner of a brittle snap failure, see the close-up right-hand
picture in Figure 18.6. Nevertheless, the energy-absorbing bolts did not prevent the
collapse of the roof. This was due to a shortcoming of the support system in the sur-
face containment. If the support system had a better surface containing function, the
energy-absorbing bolts would help the roof rock to sustain the burst event without the
occurrence of the roof collapse.

A dynamic support system is composed of surface support elements and holding
elements, see Figure 18.7. The task of the surface support elements is to provide a
good containment to the surface so that the surface rock does not disintegrate when it
becomes damaged by the rockburst event. Therefore, a full coverage of the surface is
necessary in order to achieve a satisfactory surface containment. The surface support
should be ductile enough to accommodate large rock dilations. Wire mesh and fibre,
or mesh reinforced shotcrete, are two types of surface support elements that have been
used in many burst-prone mines. Ductile thin liners with a full surface coverage may
be an even better solution for surface containment in the future. The holding support
elements have two roles to play in a support system. The first is to limit rock dilation
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Rock support for underground excavations subjected to dynamic loads and failure 491

Figure 18.6 A fault-slip induced rockburst in a deep metal mine. The right picture is a close-up of the
collapsed roof.

Holding 
elements

Epicenter of 
seismic event

Strain 
waves

Surface 
elements

Figure 18.7 A sketch illustrating fault-slip burst waves and support elements in a dynamic support
system.

and the second is to hang surface support elements so that the load on the surface
elements is transferred into the rock mass through the holding elements. Rock bolts
with a length of 2–3 m are the most commonly used holding elements in mines today.
Long cable bolts (4–6 m long) can be added as a second layer of holding elements in
mines where large rockburst events are expected.

All the support elements, particularly the holding elements (i.e. bolts and cables),
in a dynamic support system must be energy absorbent. The energy absorption capacity
of any dynamic support system is limited no matter what types of elements are used
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in the support system. When designing a dynamic support system, one must bear in
mind that it is not the support system that absorbs all the burst energy. The aim of
the support system is to contain the rock surface and limit the rock dilation. A well
contained and dilation-limited rock party would absorb a large amount of energy
through rock fragmentation and grinding/friction. The more fragmented the rock is,
the more energy is dissipated.

18.5 ENERGY-ABSORBING ROCK BOLTS

Energy-absorbing rock bolts are the most important elements in a dynamic support
system. A few of these bolts which are available so far are briefly introduced in this
section.

18.5.1 Cone bolt

The cone bolt was invented in South Africa in the 1990s (Jager, 1992). It may well
be the first energy-absorbing rock bolt designed to combat rockburst problems. The
original cone bolt was designed for cement grout. A cone bolt consists of a smooth steel
bar with a flattened conical flaring forged to one end, see Figure 18.8a. The smooth
bar is coated with a thin layer of wax, so that it will be easily de-bonded from the grout
under pull loading. The cone bolt was modified later for resin grout in Canada (Simser,
2001). The modified cone bolt (MCB) is similar to the cement cone bolt, although the
difference is that an MCB has a blade at its far end for resin mixing, see Figure 18.8b.

Cone bolts are fully grouted in boreholes. The bolt is designed so that the defor-
mation of the dilating rock is transferred to the bolt via the face plate, thus pulling
the conical end through the grout, performing work and absorbing energy from the
rock. The working mechanism of the bolt demands that the strength of the grout must
be precisely as designed in order to achieve the designed performance. The reality is
that it is not easy to control the strength of the grout, which means that the designed
performance of the bolt is not guaranteed. Figure 18.9 shows the results of pull tests
conducted in the field (Simser et al., 2006). The static load capacity varies over a
relatively large range. The results of dynamic drop tests also vary over a large range,

Cone

Smooth bar

Cone Resin
mixer

(a) Cement cone bolt (b) Resin cone bolt

Figure 18.8 The cone bolt.
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Rock support for underground excavations subjected to dynamic loads and failure 493

see Figure 18.10 (St-Pierre, 2007). The load capacity of the cone bolt depends on the
mechanism of the bolt deformation. The bolt deforms either through a ploughing of
the cone in the grout, an elongation of the bolt shank or a combination of them. The
cone bolt is anchored in a two-point manner in the borehole, so there is a risk that the
bolt will lose its reinforcement function if the face plate loses contact with the rock.

18.5.2 Durabar

Durabar is an element evolved from the cone bolt. The anchor of Durabar is a crinkled
section of the smooth bar plus a smooth tail at the far end, see Figure 18.11. When
the face plate is loaded, the anchor slips along a waved profile under the pull. The
maximum displacement is equal to the length of the tail, which is approximately 0.6 m.
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Figure 18.9 Static pull tests of MCB 33 mm resin bolts in the field (Simser et al., 2006).
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Figure 18.10 Impact load of the cone bolt in dynamic drop tests (St-Pierre, 2007).
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Figure 18.11 Durabar.
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Figure 18.12 Static pull test result of a Durabar (Dahle and Larsen, 2006).

Similar to the cone bolt, Durabar is also a two-point anchored tendon. The static pull
test results of a Durabar are shown in Figure 18.12. No results of dynamic tests are
available for Durabar thus far.

18.5.3 Hybrid bolt

The hybrid bolt is composed of two bolt elements: a rebar resin-grouted in a Split Set,
see Figure 18.13. Installation of the hybrid bolt is conducted in three steps. Step 1:
Push a Split Set into the borehole and set epoxy cartridges (fast and low settings) in
the tube of the Split Set; Step 2: Spin a rebar in the Split Set; Step 3: Tighten up the nut
to apply a pre-load to the rebar.

Pullout tests show that the ultimate pull load of the hybrid bolt is up to 160 kN,
and its displacement capacity is similar to a Split Set, see Figure 18.14. No results of
dynamic tests are available for hybrid bolts thus far.
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Figure 18.13 The hybrid bolt. (a) the process of installation, (b) a hybrid bolt in situ. (Mercier-Langevin
and Turcotte, 2007).
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Figure 18.14 Results of pull tests done in the field on hybrid bolts (Mercier-Langevin and Turcotte,
2007).

18.5.4 Inflatable bolt

Swellex is a typical inflatable rock bolt that has been used in civil and mining engi-
neering for a long time, shown in Figure 18.15. The bolt interacts with the rock mass
through the friction between the cylindrical surface of the bolt and the wall of the
borehole. The recently developed Mn24 version of the bolt has a much better energy
absorption capacity than the standard Swellex (Charette, 2007). Figure 18.16 demon-
strates the static and dynamic performances of the bolt. The tests show that the static
load capacity of the bolt is higher than the dynamic load capacity. The tests by Charette
(2007) showed that the energy absorption of Mn24 Swellex is 18–29 kJ.

18.5.5 Garford solid bolt

A Garford dynamic bolt consists of a steel solid bar, an anchor and a coarse threaded
steel sleeve at the end, see Figure 18.17. The bolt is designed for use with resin grout.
The threaded sleeve is used to mix resin substances. This bolt is characterized by its
engineered anchor which allows the bolt to stretch by a large amount when the rock
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Figure 18.15 A sketch of the Swellex rock bolt (Li and Håkansson, 1999).
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Figure 18.16 Static and dynamic performance of inflatable bolts. The static test specimen is Mn24
Swellex and the dynamic test specimen is Omega bolt.They are equivalent to each other.
The embedment length of the specimen is 1 m. (Player,Villaescusa and Thompson, 2009)

DebondedAnchorMixer

Figure 18.17 Garford dynamic solid bolt.

dilates. The anchor is a thick wall steel cylinder which is pressed to the solid steel bar at
a position 350 mm from the far end of the bar. The diameter of the solid bar is reduced
from its original size to a smaller one in the position of the anchor. The anchor is resin
encapsulated in the borehole. When the rock dilates between the anchor and the face
plate, the solid bar is pulled through the hole of the anchor so that an extruding process
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Figure 18.18 Dynamic force-displacement response for Garford solid bolts (Varden et al., 2008).

BarAnchorSleeve

Figure 18.19 Roofex rock bolt (Charette and Plouffe, 2007).

of the steel bar takes place. The extruding force remains at an approximately constant
level when the bar is stretched. The bolt can accommodate an elongation of 390 mm
prior to failure. Figure 18.18 shows the results of dynamic tests for the Garford bolt
(Varden et al., 2008).

18.5.6 Roofex

Roofex is a ductile bolt developed for dynamic rock support. It consists of an anchor-
ing unit and a smooth bar, see Figure 18.19. The anchor is encapsulated with resin
in the borehole. The smooth bar slips through the anchor, generating a constant fric-
tional resistance of about 80 kN, see Figure 18.20. This yield load is designed slightly
lower than the yield load of the bar material. The results of dynamic drop tests for
different input energies are shown in Figure 18.21. The dynamic load of Roofex is
approximately 60 kN.

18.5.7 D-Bolt

The D-Bolt is made of a smooth steel bar that has a number of integrated anchors
spaced along its length, see Figure 18.22 (Li et al., 2009; Li, 2010). The anchors are
wider than the bar shank in order for the bar to be automatically centralized in the
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Figure 18.20 Redraw of the results of static pull tests for Roofex (Charette and Plouffe, 2007).
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Figure 18.21 Redraw of the results of dynamic drop tests for Roofex at input energies (Charette and
Plouffe, 2007).

borehole after installation. The bolt is fully encapsulated in a borehole, using either
cement grout or resin. The anchors are firmly fixed in the grout, while the smooth bar
sections between the anchors have no or a very weak bonding to the grout. When rock
dilates between two adjacent anchors, the anchors will restrain the dilation so that a
tensile load is induced in the smooth bar between the anchors. The section elongates
a few millimetres elastically and then becomes yielded. After that, the bar section
elongates plastically until the ultimate strain limit is reached. Both the strength and
deformation capacity of the steel plays a role in this process. The ultimate strain of mild
carbon steels, which are usually used for rebar bolts, is about 15–20% for a standard
test length of approximately 200 mm. Figure 18.23 shows the pull test results of two
D-Bolt sections that are 825 mm long. The bolt sections are elongated 100–120 mm at
a load level of roughly 200 kN. Figure 18.24 shows the results of dynamic drop tests of
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Figure 18.22 Layout of the D-Bolt.
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Figure 18.23 Pull test results of two D-Bolt sections, bolt diameter is 22 mm and the stretch length is
825 mm.

the bolt. The tested sections were 22 mm in diameter and 850 mm in length. The two
samples were tested with input energies of 36 and 39 kJ, which corresponds to a drop
mass of 2 452 kg and 2 675 kg, respectively, being dropped from a height of 1.5 m. The
850 mm long section absorbed about 39 kJ of dynamic energy prior to failure.

The D-Bolt absorbs deformation energy by fully mobilizing the strength and defor-
mation capacity of the bolt steel. Every smooth section of the D-Bolt between two
adjacent anchors works independently. Therefore, the failure of one section (or loss
of one anchor) only has a local effect on the bolt’s reinforcement capability. The other
sections (or anchors) still provide reinforcement to the rock. This performance of the
D-Bolt is a significant improvement in comparison to two-point anchored rock bolts.
For example, if the anchoring function at the bolt plate is lost because of rock crushing
under the plate, the D-Bolt only loses reinforcement in the short thread section, and
the other sections are not affected at all. For two-point anchored rock bolts, however,
the reinforcement would be lost after the loss of the plate.
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Figure 18.24 Dynamic drop test results of two D-Bolt sections, bolt diameter is 22 mm and the stretch
length is 850 mm.

18.6 DYNAMIC SUPPORT PRINCIPLES USED IN SOME
COUNTRIES

18.6.1 Australian support principle

The Australian support philosophy is to bolt the failed rock with tightly-spaced Split
Sets (2.4 m long) and then nail the bolt-reinforced failed rock by the use of long cables to
the deeply located competent rock strata in squeezing rock conditions. The rock surface
is retained with a mesh, strap and mesh shotcrete. In burst-prone rock conditions, it is
2.4 m and 3 m long cone bolts which are used in conjunction with meshes or fibre/mesh
shotcrete to construct a dynamic support system.

18.6.2 Canadian support principle

The Canadian support philosophy is to integrate the failed rock by short bolts (2.4 m
long) in conjunction with meshes and sometimes fibre/mesh shotcrete. The types of
bolts used are rebar, Split Sets, and cone bolts in cases of seismic rock conditions.
Rebar is still preferred in many burst-prone mines because of its high load capacity,
even though it is a stiff rock reinforcement element.

18.6.3 South African support principle

The idea of ductile support elements was initiated in South Africa in the 1990s. The
South African rock support philosophy is to dissipate the dynamic energy within the
rock that is reinforced with energy-absorbing bolts. The dynamic energy is partially
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absorbed by the energy-absorbing bolts and partially dissipated through fragmentation
of the rock contained by the surface support elements. Lacing is quite often used in
South African support systems.

In South Africa, drifts excavated in high stress rock are typically supported by
energy-absorbing bolts such as cone bolts, Durabar, Split Set and cables (Durrheim,
2007). The primary bolting is a ring of 1.2 m bolts. The secondary bolting consists of
a ring of 2.4 m bolts, mesh, 50 mm thick steel or polyester fibre shotcrete and lacing.
The bolting pattern is usually 1 m × 1 m, and yielding props are used when needed.

In some South African gold mines, mining stopes are only about 1 m high.
Preloaded yielding props are used to secure the stope, but short bolts are sometimes
installed in the roof face. Preconditioning is conducted ahead of the advance face to
mitigate the stress concentration to a far depth.

18.6.4 Scandinavian support principle

Similarly to the Canadian rock support, the Scandinavian support philosophy is to
integrate the failed rock by short rebar bolts in conjunction with surface liners. Split
Set is not used in Scandinavian mines. LKAB and Boliden are now testing energy-
absorbing rock bolts. It is expected that energy-absorbing support elements will be
soon introduced in some of their mines. The surface liner is either steel-fibre or plain
shotcrete, with the former being used the most often.

18.7 DYNAMIC TESTING METHODS OF SUPPORT ELEMENTS

In the past decade, several dynamic testing facilities have been constructed for bolt
testing in Canada, Australia and South Africa. An overview of dynamic testing of
rock support was given by Hadjigeorgion and Potvin (2007). The testing principles
of those facilities are similar. The dynamic load is applied by dropping a mass over a
predefined distance onto a tendon installed in a simulated borehole. Thick wall steel
tubes are usually used to simulate the borehole. The tendon to be tested is grouted in
the hole of the tubes and a mass drops onto the target, either on the face plate of the
tendon or on the lower tube. Three most reported testing facilities are briefly presented
in this section.

18.7.1 CANMET dynamic test facility

The CANMET dynamic test facility is at the CANMET Mining and Mineral Sciences
Laboratories, Ottawa, Canada, see Figure 18.25. The facility is primarily used to test
rock bolts. Each test is conducted by dropping a known mass, from a known height,
onto a plate connected to a tendon grouted inside a steel tube. The energy input is
controlled by the drop height and the mass. The drop height can be varied from
0 to 2.1 m, with the maximum drop mass being 3 000 kg (Plouffe et al., 2008). The
maximum energy input of the facility is thus 62 kJ and the maximum impact velocity
is 6.5 m/s. The mass is lifted with an electromagnet, which in turn is lifted by a pair of
cranes mounted in parallel on top of the machine. By cutting the power to the magnet,
the mass freely falls onto the sample.
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Figure 18.25 The CANMET dynamic test facility.

18.7.2 WASM dynamic test facility

The WASM dynamic test facility is at the Western Australian School of Mines (WASM),
Kalgoorlie, Australia, see Figure 18.26. The facility has a maximum impact velocity of
6 m/s and a drop mass of 2 000 kg, thus providing a maximum input energy of 36 kJ.
Dynamic loading is applied to test samples through momentum transferring. For bolt
testing, the bolt is installed in a split steel tube. The drop mass and bolt sample are
lifted by a beam to a predefined height. The beam and the mass, as well as the sample,
freely fall and the beam is then stopped by two pads at the bottom of the frame. The
momentum of the falling package is then transferred to the bolt. This type of loading
has some similarity to the dynamic loading of a tendon installed in situ.

18.7.3 SIMRAC dynamic test facility

The SIMRAC dynamic test facility is at the Savuka mine near Johannesburg in South
Africa, see Figure 18.27. For bolt testing, the drop mass can be up to 2 706 kg and be
dropped from a height of 3 m, corresponding to a maximum input energy of 80 kJ and
an impact velocity up to 7.7 m/s. This facility can be also used to test other support
elements such as props, mesh and shotcrete. Figure 18.28 shows a test arrangement
for a prop support system. For those tests, a deck of 5.5 × 6.5 m is constructed. The
central area of the deck, 3 × 3 m, consists of three Voussoir beams, each compris-
ing 12 reinforced concrete blocks of 1 × 1 × 0.25 m. These blocks are held together
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Figure 18.26 The WASM dynamic test facility.
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Figure 18.27 The SIMRAC dynamic test facility in South Africa.

under a tension load of 200 kN and props, mesh and shotcrete are set up under the
deck. In Figure 18.28, the dead weight on the deck is 20 000 kg and the drop mass
is 10 000 kg.

18.8 CONCLUSIONS

Rockburst events occur in highly stressed rock masses. There are two types of rock-
bursts: strain burst and fault-slip burst. Strain burst is directly related to stress
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Figure 18.28 Dynamic testing of props on the SIMRAC test facility: the dead weight is 20 000 kg and
the drop weight is 10 000 kg.

concentration in the roof and walls after excavation, while fault-slip rockburst is asso-
ciated with seismicity in the near field of excavation. A fault-slip rockburst is usually
more violent and damaging than a strain rockburst.

Rockburst damage mechanisms are classified into three categories: rock bulk-
ing, rock ejection and rockfall. Rock bulking due to fracturing usually results in an
increase in volume. Rock ejection due to seismic energy transfer occurs in a manner in
which rock blocks are violently ejected from the periphery of an excavation. Rockfall
occurs when an incoming seismic wave accelerates a volume of fractured, but statically
stable rock.

In the case of rock ejection, the support system has to be capable of absorbing
the kinetic energy of the ejected rock. A satisfactory dynamic support system should
not only have the capability to absorb deformation energies, but should also be able
to contain the potentially ejected rock so that a portion of the energy is dissipated
through rock fragmentation and grinding/friction under confinement.

Energy-absorbing rock bolts are needed in a dynamic support system. Ideally, a
rock bolt should be not only strong, but also ductile. Among the available energy-
absorbing rock bolts, the cone bolt, Durabar, the Garford solid bolt and Roofex are
two-point anchored in the rock; the D-Bolt is multi-point anchored; and the hybrid bolt
and inflatable bolt interact frictionally with the rock mass along their entire lengths.

The dynamic support philosophies are slightly different in different countries,
but they all have accepted the use of energy-absorbing elements and recognized the
importance of surface containment in a dynamic support system.

A dynamic support system may be comprised of three layers: a surface support
layer, a short bolt layer and a long cable layer. The surface support layer provides a
surface containment to avoid rock disintegration on the surface. The short bolt layer
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limits rock dilation. Rock fracture, fragmentation and friction occur in the dilation-
limited volume so that a portion of the burst energy is dissipated in this process. The
cable layer limits the movement of the bolt-reinforced rock party, and absorbs an extra
amount of deformation energy.

All of the dynamic test methods of support elements are similar in their testing
principle. The dynamic load is applied by dropping a mass onto the tendon installed in
thick wall steel tubes. Three of the most widely reported test facilities are the CANMET
dynamic test facility in Canada, the WASM facility in Australia and the SIMRAC
facility in South Africa.
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List of symbols

A: the cross-sectional area
A0: the initial area of the sample
Ap, As: the amplitudes of harmonic P- and S-waves, respectively
B: the interpolation matrix of strain
C: the one dimensional longitudinal stress wave velocity
[C]: the damping matrix
Ce: the effective velocity from EMM
Ceff : the effective velocity from existing analytical equations
cd: the dynamic cohesion
cj(x): the displacement function of the jth physical cover
Cp, Cs: the P- and S-wave propagation velocities, respectively
D: the scalar damage variable
D: the elastic matrix
d: the fracture closure
[Di]: the vector displacement variables of Block i
E: Young’s Modulus
Etra, Eref , Einc: the transmitted, reflected and incident wave energies
etra, eref : the transmitted and reflected energy rates
Evp, Evs: the normal and shear stiffness in a viscoelastic medium contributed by a rock
joint, respectively
fc0: the uniaxial compression strength
fd: the de-coupling factor
fp, fs: the frequencies of P- and S-waves, respectively
fS: the static friction coefficient
Fj: the known external load vector acting on node j
F(t): the vector of external forces on particles
G: the shear modulus of rock material
H: the Heaviside step function
h: the particle penetration
I: the amplitude of incident wave
kne: the effective normal fracture stiffness
KI: the stress intensity factor
Kjl: the stiffness matrix for node j and the adjacent node l
Kn: the normalized normal stiffness
Kp, Ks: the normal and shear stiffness of a rock joint, respectively
l: the length of the input bar of SHPB
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L: the length of the sample
m: the particle mass
[M]: the diagonal mass matrix
Mj: the lumped mass of node j
n: the number of DOFs
N: the number of fractures
N: the interpolation matrix of displacement
Ni(x): the shape function of ith general degree of freedoms
P: peak chamber pressure
P1: the dynamic force on the incident end of SHPB
P2: the dynamic force on the transmitted end of SHPB
Pmax is the maximum load
Q: charge weight
R: the reflection coefficient
r∗
fc: the residual strength

r∗
ic: the strength of the intact material

Rj: the contact force vector of node j due to dynamic normal contact stress between
crack surfaces
|Rj|: the norm of Rj

S: the joint spacing
Sαβ: the traceless symmetric deviator stress
t: time
�t: the time interval
t1
tra, t1

ref , t1
inc: the final times of transmitted, reflected and incident waves

t0
tra, t0

ref , t0
inc: the initial times of transmitted, reflected and incident waves

tI, tT : the time spots for the peak velocities of vI1 and vTe1, respectively
T: the transmission coefficient
|T1|: the magnitude of transmission coefficient across a single fracture
|TN |: the magnitude of transmission coefficient across multiple parallel fractures
|T2|: the magnitude of transmission coefficient across two parallel fractures
[Ti]: the first order displacement function of Block i
u: the displacement
u−(n, j + 1): the displacement at time j + 1 before the fracture at distance n
u+(n, j + 1): the displacements at time j + 1 after the fracture at distance n
uji: the general DOFs of the cover
Üj: the acceleration vector of node j
Ul: the displacement vector of node l
u̇, v̇, ẇ: the displacement rates in the direction of x, y and z respectively
{u̇}, [N], {U̇} : the deformation rate vector, shape function and nodal displacement vec-
tor of a given point in the element, respectively
V : the peak particle velocity
W : elastic energy carried by a stress wave
WG: the total fracture energy
xk: the length of the rock mass along the wave propagation path
zk: the wave impendence and zk = ρCk (k = p for P-wave, k = s for S-wave)
Zp: the P-wave impedance
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α: the dimensionless crack length
αk: the phase shift per unit length (k = p for incident P-wave, k = s for incident S-wave)
αm: the critical dimensionless crack length
αT , αN : the tangential and normal coefficient of the visco-elastic boundary
σc: the static uniaxial compressive strength
βk: the wave attenuation parameter (k = p for incident P-wave, k = s for incident
S-wave)
γ: the ratio of layer thickness to incident wavelength
γ̇xy, γ̇yz, γ̇zx: the shear strain rates
δij: the Kronecker delta
ε: the strain
ε1, ε2, ε3: the three principal strains
εe: the effective strain
εp, εs: the normal and shear strains, respectively
εt0: the tensile strain corresponding to the elastic deformation limit
εtu: the ultimate tensile strain
ε̇xx, ε̇yy, ε̇zz: the strain rates normal to the x, y and z planes
ε̇: the stain rate
η̃BT , η̃BN : the proportional coefficient related to the tangential and normal stiffness,
respectively
ηvp, ηvs: the normal and shear viscosities of a rock joint, respectively
θj: the angle between the normal direction of the crack surface S at node j and x-axis
λ: the wavelength
λ, µ: the Lame constants
λk: the wave length for incident P- or S-wave when k = p or s
λp: the P-wave wavelength
v: the particle velocity
v0: the velocity of the striker
v1: the velocity at the incident bar end of SHPB
v2: the velocity at the transmitted bar end of SHPB
vIk: the incident P- or S-wave (k = p for incident P-wave, k = s for incident S-wave)
vp, vs: the particle velocities along normal and shear directions, respectively
vtra, vref , vinc: the particle velocities of transmitted, reflected and incident waves
vTddk: Transmitted P- or S-wave from DDM when k = p or s
vTek: Transmitted P- or S-wave from EMM when k = p or s
vTep,1: Transmitted wave from direct wave propagation
vTep,2: Transmitted wave from multiple reflections between joints
v+(n, j + 1): the particle velocity at time j + 1 after the fracture at distance n
v−(n, j + 1): the particle velocity at time j + 1 before the fracture at distance n
ξ: the nondimensional joint spacing (ratio of joint spacing to wavelength)
�: the artificial viscous pressure
ρ: density
σ: the stress tensor
σ1, σ2, σ3: the three principal stresses
¯̇σ: the average loading rate
σij: the stress in direction ij
σmax: the maximum (failure) stress
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σp, σs: the normal and shear stresses, respectively
σs: the initial stress
σsc: the uniaxial compressive strength at quasi-static loading rate
σt: the tensile strength
σtd: the dynamic tensile strength
σ̇dc: the dynamic loading rate
σ̇sc: the quasi-static loading rate
σ+(n, j + 1): the normal stress at time j + 1 after the fracture at distance n
σ−(n, j + 1): the normal stress at time j + 1 before the fracture at distance n
τ: the fracture process incubation time
τj: the contact force vector of node j due to dynamic shear contact stresses between
crack surfaces
|τj| : the norm of τj

τp, τs: the time of retardation of the Voiget element with normal and shear properties
ν: the Poisson’s ratio
φ: the friction angle
φj: the weight function of the cover
ψ: the phase angle
ω: wave angular frequency
ωk: the angular frequency of the incident P- or S-wave when k = p or s
ω0: the angular frequency of the incident wave

© 2011 Taylor & Francis Group, London, UK

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

2:
39

 1
6 

O
ct

ob
er

 2
01

5 


	Advances in Rock Dynamics and Applications
	Table of Contents
	Contributing Authors
	Preface

	Chapter 1: Introduction
	1.1 SCOPE OF ROCK DYNAMICS
	1.2 ISRM COMMISSION ON ROCK DYNAMICS
	1.3 ABOUT THIS BOOK
	REFERENCES

	Chapter 2: An overview of some recent progress in rock dynamics research
	2.1 INTRODUCTION
	2.2 STRESSWAVE PROPAGATION AND ATTENUATION
	2.2.1 Dynamic loads and stress waves
	2.2.2 Theoretical approaches for wave propagation
	2.2.3 Numerical modelling of wave propagation
	2.2.4 Laboratory and field investigation
	2.2.5 Wave across multiple joint sets

	2.3 LOADING RATE EFFECTS ON ROCK STRENGTH
	2.3.1 Dynamic tests on rock strengths
	2.3.2 Loading rate effects on rock material strengths
	2.3.3 Fracture dynamics and strain rate mechanisms
	2.3.4 Rock dynamic strength criteria

	2.4 NUMERICAL MODELLING OF ROCK DYNAMIC FRACTURING
	2.4.1 Numerical methods for fracturing modelling
	2.4.2 Micromechanics modelling of rock dynamic fracturing using UDEC
	2.4.3 Particle-based Manifold Method (PMM) for multiscale rock dynamics modelling

	2.5 PROSPECTS OF ROCK DYNAMICS RESEARCH
	REFERENCES

	Chapter 3: Split Hopkinson pressure bar tests of rocks: Advances in experimental techniques and applications to rock strength and fracture
	3.1 INTRODUCTION
	3.2 PRINCIPLES OF SPLIT HOPKINSON PRESSURE BAR AND NEW TECHNIQUES
	3.2.1 The split Hopkinson pressure bar system
	3.2.2 Standard analysis of SHPB
	3.2.3 The pulse-shaping technique
	3.2.4 The momentum-trap system
	3.2.5 The laser gap gauge (LGG)

	3.3 DYNAMIC COMPRESSIVE TEST
	3.3.1 Introduction
	3.3.2 Data reduction
	3.3.3 Sample preparation
	3.3.4 Slenderness ratio
	3.3.5 Frictional effect

	3.4 DYNAMIC BRAZILIAN DISC TEST
	3.4.1 Introduction
	3.4.2 Data reduction
	3.4.3 Test without pulse-shaping
	3.4.3.1 Dynamic force and failure sequence
	3.4.3.2 Failure sequence from high speed camera

	3.4.4 Test with pulse-shaping
	3.4.4.1 Dynamic force and failure sequence
	3.4.4.2 Validation of the quasi-static data analysis
	3.4.4.3 Determination of the fracture onset and dynamic tensile strength


	3.5 DYNAMIC FRACTURE TEST
	3.5.1 Introduction
	3.5.2 Semi-circular bend (SCB) method
	3.5.2.1 Methodology
	3.5.2.2 SCB test without pulse-shaping
	3.5.2.3 SCB test with pulse-shaping
	3.5.2.4 Fracture energy and propagation toughness
	3.5.2.5 Results

	3.5.3 Cracked chevron-notched Brazilian disc (CCNBD) method
	3.5.3.1 Methodology
	3.5.3.2 Stable-unstable crack propagation transition
	3.5.3.3 Results

	3.5.4 Comparison of dynamic CCNBD results with dynamic SCB results

	3.6 CONCLUSIONS
	REFERENCES

	Chapter 4: Modified Hopkinson bar technologies applied to the high strain rate rock tests
	4.1 INTRODUCTION
	4.2 PRINCIPLES AND FUNCTIONING OF THE JRC-MHB WITH QUASI-STATICALLY PRE-STRESSED LOADING BAR
	4.3 TENSILE AND COMPRESSIVE IMPACT TESTS OF PLAIN CONCRETE WITH THE JRC-MHB
	4.3.1 Special tensile tests with the MHB for high resolution measurement of elastic limit and elastic modulus of rocks
	4.3.2 Important recommendations for analysis of test records of high strain rate tests performed with the MHB

	4.4 LABORATORY MEASUREMENTS OF ROCKS UNDER STATIC MULTIAXIAL COMPRESSION
	4.5 CONCLUSIONS
	REFERENCES

	Chapter 5: Wave shaping by special shaped striker in SHPB tests
	5.1 INTRODUCTION
	5.2 ADVANTAGE OF HALF-SINE WAVE FOR LARGE DIAMETER SHPB TESTS
	5.2.1 Stress equilibrium during specimen deformation
	5.2.2 Less dispersion and better uniform stress at bar section
	5.2.3 Constant strain rate deformation of specimens

	5.3 GENERATING HALF-SINE WAVES BY SPECIAL SHAPED STRIKERS
	5.3.1 Impact by striker and the generated stress wave
	5.3.2 Inverse design of striker for a specific wave

	5.4 SHPB TESTS WITH SPECIAL SHAPED STRIKER
	5.4.1 Configuration of SHPB system with special shaped striker
	5.4.2 Test procedures on SHPB with special shaped striker
	5.4.2.1 Specimen preparation
	5.4.2.2 System preparation
	5.4.2.3 System calibration
	5.4.2.4 Testing

	5.4.3 Data processing

	5.5 DYNAMIC CHARACTERISTICS OF ROCK OBTAINED FROM SHPB WITH SPECIAL SHAPED STRIKER
	5.5.1 Strain rate effect of rock under dynamic loading
	5.5.2 Size effect of rock under dynamic loading
	5.5.3 Dynamic strength of rock under coupling static and dynamic loads

	5.6 CONCLUSIONS
	REFERENCES

	Chapter 6: Laboratory compressive and tensile testing of rock dynamic properties
	6.1 INTRODUCTION
	6.2 DYNAMIC COMPRESSION TESTS FOR ROCK MATERIAL
	6.2.1 Test equipment
	6.2.1.1 Compressive loading frame
	6.2.1.2 Axial dynamic loading system
	6.2.1.3 Data acquisition system

	6.2.2 Sample set-up and test technique
	6.2.2.1 Sample preparation and test set-up
	6.2.2.2 Test procedure
	6.2.2.3 Determination of loading rate

	6.2.3 Experimental results
	6.2.3.1 Uniaxial compression
	6.2.3.2 Triaxial compression


	6.3 DYNAMIC TENSION TESTS FOR ROCK MATERIAL
	6.3.1 Dynamic Brazilian test system and procedures
	6.3.2 Dynamic 3-point flexural test system and procedures
	6.3.3 Experimental results

	6.4 SUMMARY
	REFERENCES

	Chapter 7: Penetration and perforation of rock targets by hard projectiles
	7.1 INTRODUCTION
	7.2 TERMINOLOGY
	7.3 EXISTING METHODS OF ANALYSIS AND PREDICTION
	7.3.1 Empirical methods
	7.3.2 Analytical methods
	7.3.3 Numerical modelling

	7.4 PENETRATION AND PERFORATION OF GRANITE TARGET PLATES
	7.4.1 Ballistic tests
	7.4.1.1 Compressed gas gun facility
	7.4.1.2 Projectiles and Targets

	7.4.2 Analytical Modelling
	7.4.2.1 Projectile Force
	7.4.2.2 Plug resistance

	7.4.3 Limit velocities
	7.4.3.1 Ballistic limit
	7.4.3.2 Protection limit


	7.5 RESULTS AND DISCUSSIONS
	7.6 CONCLUDING REMARKS
	REFERENCES

	Chapter 8: Incubation time based fracture mechanics and optimization of energy input in the fracture process of rocks
	8.1 INTRODUCTION
	8.2 MODELING INTERACTION OF THE WAVE COMING FROM INFINITY WITH THE CRACK
	8.2.1 Incubation time fracture criterion
	8.2.2 Dependence of the energy inputs for fracture on the load amplitude and duration

	8.3 THE CASE OF A LOAD APPLIED AT THE CRACK FACES
	8.3.1 Optimization of the load parameters to minimize energy cost for the crack growth
	8.3.2 Application to the problem of impact crater formation
	8.3.3 Minimization of fracture energy in the case of contact interactions

	8.4 CONCLUSIONS
	REFERENCES

	Chapter 9: Discontinuous approaches of wave propagation across rock joints
	9.1 INTRODUCTION
	9.2 METHOD OF CHARACTERISTICS FOR ONE-DIMENSIONAL P-WAVE PROPAGATION ACROSS JOINTED ROCK MASSES
	9.3 PARAMETRIC STUDIES ON WAVE ATTENUATION ACROSS PARALLEL JOINTS
	9.4 EFFECTS OF SINGLE JOINT AND PARALLEL JOINTS ON WAVE TRANSMISSION
	9.5 OUTLOOKS
	REFERENCES

	Chapter 10: Equivalent Medium Model with Virtual Wave Source Method for wave propagation analysis in jointed rock masses
	10.1 INTRODUCTION
	10.2 CONVENTIONAL EFFECTIVE ELASTIC MODULI METHODS
	10.3 EQUIVALENT VISCOELASTIC MEDIUM MODEL FOR ROCK MASS WITH PARALLEL JOINTS
	10.3.1 Wave equations for linear viscoelastic medium
	10.3.2 Virtual wave source (VWS)

	10.4 DETERMINATION OF THE PARAMETERS
	10.4.1 Single joint case
	10.4.2 Parameter determination from single joint analysis

	10.5 VERIFICATIONS OF EMM WITH VIRTUAL WAVE SOURCE METHOD
	10.5.1 Periodical function expression for an arbitrary incident wave
	10.5.2 Result comparison and verification of the equivalent medium model

	10.6 APPLICATIONS AND OUTLOOKS
	10.6.1 Transmitted wave
	10.6.2 Transmission coefficient
	10.6.3 Effective velocities
	10.6.4 Outlooks

	10.7 SUMMARY
	REFERENCES

	Chapter 11: Polycrystalline model for heterogeneous rock based on smoothed particle hydrodynamics method
	11.1 INTRODUCTION
	11.2 SMOOTHING PARTICLE HYDRODYNAMICS (SPH) METHOD
	11.3 ARTIFICIAL MICROSTRUCTURE FOR MULTIPHASE MATERIALS
	11.3.1 2D-domain discretization based on Voronoi diagram
	11.3.2 Microstructure representation by SPH particles
	11.3.3 2-D granite microstructure generation

	11.4 ELASTO-PLASTIC DAMAGE MODEL
	11.4.1 Generalized unified twin shear strength criterion
	11.4.2 Determination of the meridians and the damage model

	11.5 NUMERICAL SIMULATIONS
	11.5.1 Heterogeneity treatments in the artificial specimen
	11.5.2 Verification by simulating the Brazilian splitting test

	11.6 SIMULATIONS OF THE UNIAXIAL COMPRESSION TESTS
	11.6.1 Predicted axial stress-strain curve and failure process
	11.6.2 Parametric studies

	11.7 CONCLUSIONS
	REFERENCES

	Chapter 12: Finite Element Method modeling of rock dynamic failure
	12.1 INTRODUCTION
	12.2 RFPA DYNAMIC MODELING APPROACH
	12.2.1 Finite element solutions for elastic wave
	12.2.2 Brief description of the RFPA2D model
	12.2.3 Elastic damage constitutive law of meso-elements in the RFPA2D model

	12.3 TRANSIENT WAVE PROPAGATION IN INFINITE MEDIUM
	12.3.1 Element with equivalent stiffness
	12.3.2 Element with equivalent damping
	12.3.3 Infinite domain problem considering heterogeneity of medium

	12.4 DYNAMIC CONTACT PROBLEM
	12.4.1 Relevant theories of dynamic contact model
	12.4.1.1 Determination of Rpj and ΔUP+1
	12.4.1.2 Determination of τpj and ΔVP+1

	12.4.2 Validation
	12.4.3 Sample calculation 1: Impact response of homogeneous material
	12.4.3.1 Impact with free bar
	12.4.3.2 Impact with cantilever bar

	12.4.4 Sample calculation 2: Impact response of heterogeneous materials
	12.4.4.1 Impact with free bar
	12.4.4.2 Impact with cantilever bar


	12.5 INFLUENCE OF STRESS WAVE AMPLITUDE ON ROCK FRACTURING PROCESS AND FAILURE PATTERN IN THE BRAZILIAN TENSILE TESTS
	12.5.1 Numerical models
	12.5.2 Results and discussions
	12.5.2.1 Influence of heterogeneity on stress wave propagation
	12.5.2.2 Influence of pressure stress wave amplitude on fracture process and failure pattern


	12.6 SUMMARY
	REFERENCES

	Chapter 13: Discontinuum-based numerical modeling of rock dynamic fracturing and failure
	13.1 INTRODUCTION
	13.2 DISCRETE ELEMENT METHOD
	13.2.1 Explicit DEM (distinct element method)
	13.2.2 Implicit DEM (discontinuous deformation analysis)
	13.2.3 Coupled DEM with continuum-based methods

	13.3 COHESIVE FRAGMENT MODEL
	13.3.1 Universal Distinct Element Code (UDEC)
	13.3.2 Orthotropic cohesive contact model
	13.3.2.1 Tensile behavior of contact
	13.3.2.2 Compressive-shear behavior of contact
	13.3.2.3 Contact fracture energy


	13.4 SIMULATION OF COMPRESSIVE AND TENSILE RESPONSE OF ROCK MATERIALS
	13.4.1 Contact initial stiffness coefficients
	13.4.2 Particle elastic properties
	13.4.3 Calibration process
	13.4.3.1 Parametric study
	13.4.3.2 Response surface method

	13.4.4 Solution verification

	13.5 SIMULATION OF DYNAMIC FRACTURE RESPONSE OF ROCK MATERIALS
	13.5.1 Semi-Circular Bend (SCB) dynamic fracture toughness test
	13.5.2 Simulation of the SCB dynamic fracture toughness test
	13.5.2.1 Calculation results
	13.5.2.2 Discussion

	13.5.3 Rate-dependent cohesive model
	13.5.3.1 Influence of rate-dependency parameters
	13.5.3.2 Reproduction of experimental results


	13.6 CONCLUSIONS
	13.6.1 Particle size
	13.6.2 Necessity of a representative contact model
	13.6.3 Numerical process of fracture energy release
	13.6.4 Necessity of rate-dependent model for fracture in micro-scale

	REFERENCES

	Chapter 14: Manifold and advanced numerical techniques for discontinuous dynamic computations
	14.1 INTRODUCTION
	14.2 NUMERICAL MANIFOLD METHOD (NMM)
	14.3 EXTENDED FINITE ELEMENT METHOD (XFEM)
	14.4 SMOOTHED PARTICLE HYDRODYNAMICS (SPH)
	14.5 FEM/DEM METHOD
	14.6 DISCONTINUOUS GALERKIN METHOD (DGM)
	14.7 MULTI-SCALE DISTINCT LATTICE SPRING MODEL (M-DLSM)
	14.7.1 Distinct Lattice Spring Model (DLSM)
	14.7.2 Multi-scale DLSM coupled with PMM

	14.8 CONCLUSIONS
	REFERENCES

	Chapter 15: Earthquakes as a rock dynamic problem and their effects on rock engineering structures
	15.1 INTRODUCTION
	15.2 MULTI-PARAMETER RESPONSES OF ROCKS DURING FRACTURING AND SLIPPAGE OF DISCONTINUITIES
	15.2.1 Multi-parameter responses of rocks during deformation process and fracturing
	15.2.2 Multi-parameter responses of discontinuities during slippage
	15.2.3 Responses of discontinuities during slippage in stick-slip experiments
	15.2.4 Multi-parameter responses of rock during shock waves
	15.2.5 Multi-parameter responses of discontinuities during seepage

	15.3 EARTHQUAKES AND THEIR PREDICTION
	15.3.1 Stress conditions in the Earth’s crust
	15.3.2 Ground motions
	15.3.3 Earthquake prediction
	15.3.3.1 Stick-slip phenomenon and earthquake recurrence period concept
	15.3.3.2 Effect of solar system on earthquake occurrence
	15.3.3.3 GPS method
	15.3.3.4 Multi-parameter method and its application to the 2003 Buldan earthquake


	15.4 EFFECTS OF EARTHQUAKES ON ROCK ENGINEERING STRUCTURES
	15.4.1 Model experiments
	15.4.1.1 Model experiments on foundations
	15.4.1.2 Model experiments on rock slopes
	15.4.1.3 Model experiments on shallow undergound openings
	15.4.1.4 Model experiments on masonry structures

	15.4.2 Effects of earthquakes on actual rock structures
	15.4.2.1 Foundations and dams
	15.4.2.2 Slope failures and rockfalls
	15.4.2.3 Underground structures


	15.5 NUMERICAL SIMULATIONS
	15.5.1 Simulation of post-failure motions of rock blocks and slopes
	15.5.2 Numerical simulation of dynamic response of underground openings
	15.5.3 Fault propagation simulations
	15.5.4 Fault-Structure interaction simulation
	15.5.5 Simulation of response of masonry structures

	15.6 CONCLUSIONS
	ACKNOWLEDGEMENTS
	REFERENCES

	Chapter 16: Constraining paleoseismic PGA using numerical analysis of structural failures in historic masonry structures: Review of recent results
	16.1 INTRODUCTION
	16.2 BRIEF SUMMARY OF DDA THEORY
	16.3 SEVERAL DYNAMIC DDA VALIDATIONS
	16.3.1 Block response to induced displacements at foundation
	16.3.2 Dynamic rocking of a free standing column
	16.3.3 Block slumping at the Snake path cliff, Masada
	16.3.4 Block on an incline in three dimensions
	16.3.4.1 Step one: gravitational loading
	16.3.4.2 Step two: gravitational loading and initial velocity
	16.3.4.3 Step three: gravitational and 1-D sinusoidal acceleration


	16.4 BACK ANALYSIS OF STONE DISPLACEMENTS IN OLD MASONRY STRUCTURES
	16.4.1 Keystone displacement in a Roman masonry arch – Mamshit
	16.4.2 Pillar collapse in a Byzantine Church – Susita

	16.5 DYNAMIC DEFORMATION IN JOINTED AND FRACTURED ROCK SLOPES: THE CASE OF HEROD’S PALACE, MASADA
	16.5.1 Geological and seismological setting
	16.5.2 Documented historical stability as control for numerical simulations
	16.5.3 Rock mass properties
	16.5.4 Numerical generation of block mesh
	16.5.5 Selection of appropriate input motion
	16.5.6 Forward DDA analysis

	16.6 SUMMARY AND CONCLUSIONS
	REFERENCES

	Chapter 17: Explosion loading and tunnel response
	17.1 INTRODUCTION
	17.2 PREDICTION OF GROUND SHOCK LOADING
	17.2.1 Sources of explosion loading and their characteristics
	17.2.1.1 Tunnel and mine blasting
	17.2.1.2 Conventional weapons
	17.2.1.3 Accidental explosion in explosives storage

	17.2.2 Ground shock equations
	17.2.3 Decoupled explosions
	17.2.3.1 Decoupling factor
	17.2.3.2 Chamber wall pressures

	17.2.4 Correction for charge geometry

	17.3 TUNNEL RESPONSE
	17.3.1 Spall analysis
	17.3.2 Damage criteria
	17.3.3 Damage of rock tunnel with support
	17.3.4 Observations of tunnel damage

	17.4 LARGE-SCALE TESTING
	17.4.1 Test tunnel facility
	17.4.2 Test setup and test objectives
	17.4.3 Ground shock instrumentation
	17.4.4 Results and observations of damage
	17.4.5 Effects of decoupling

	17.5 CONCLUSIONS
	REFERENCES

	Chapter 18: Rock support for underground excavations subjected to dynamic loads and failure
	18.1 INTRODUCTION
	18.2 ROCKBURST EVENTS
	18.3 REVIEW OF PREVIOUS WORK
	18.4 PHILOSOPHY OF DYNAMIC ROCK SUPPORT
	18.5 ENERGY-ABSORBING ROCK BOLTS
	18.5.1 Cone bolt
	18.5.2 Durabar
	18.5.3 Hybrid bolt
	18.5.4 Inflatable bolt
	18.5.5 Garford solid bolt
	18.5.6 Roofex
	18.5.7 D-Bolt

	18.6 DYNAMIC SUPPORT PRINCIPLES USED IN SOME COUNTRIES
	18.6.1 Australian support principle
	18.6.2 Canadian support principle
	18.6.3 South African support principle
	18.6.4 Scandinavian support principle

	18.7 DYNAMIC TESTING METHODS OF SUPPORT ELEMENTS
	18.7.1 CANMET dynamic test facility
	18.7.2 WASM dynamic test facility
	18.7.3 SIMRAC dynamic test facility

	18.8 CONCLUSIONS
	REFERENCES

	Subject Index
	List of symbols

