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Preface

The idea to connect a system of bodies moving in space by long flexible cables
goes back to K. E. Tsiolkovsky’s work and hence has a history of more than
a century. K. E. Tsiolkovsky also understood the important effect of small
forces of gravity gradient on attitude motion and that artificial gravity could
be created by rotation of a space system about its centre of mass.

Cable systems have been used since the beginning of space research in the
second half of the 20th century. As examples we mention the “jo-jo type”
of device, used on the American spacecraft Transit-1A in 1960, or the use
of a cable by which the astronaut Leonov was connected to the spacecraft
Voskhod-2 in 1966. In 1966 during the flight of the manned spacecrafts Gemini
11 and Gemini 12 experiments were performed by connecting the spacecraft
and the final stage of the launch vehicle Agena, for the purpose of studying
the possibility of the formation of tethered systems. On Gemini 11 the tether
had been given a rotation with the angular velocity 0.0157 rad s−1, which was
done during 1.5 circulations of the spacecraft in orbit around the Earth.

An experiment of a gravity-gradient stabilisation by means of a tether
was again performed on the Gemini 12 mission during three full circulations
around the Earth. The crew expended about half of the time on deploying the
tether in a gravitationally-stable state. Despite the fact that a control system
of the spacecraft did not work, the problem of orientation of the tether was
successfully solved.

The recent interest in tethered space systems (TSS) had its origin in the
mid-seventies in connection with the proposed project of two Italian professors
G. Colombo and M. D. Grossi (Smithsonian Astrophysical Laboratory, USA)
to use a probe, hanging down on a 100 km long cable from a satellite in low
Earth orbit, to collect data of the parameters of fields of the Earth and its
atmosphere.

Cooperation between NASA on one side and the Italian Space Agency
and the European Space Agency on the other side in preparing this project
defined the main tasks for a successful development of the TSS concept. The
new possibilities of the effective use of TSS achieved during the past ten
years have made this concept one of the most promising new developments
of astronautics. Novelty and originality of problems and research techniques
of TSS behaviour attracted attention of experts all over the world. From the
beginning of the eighties of the past century the subject of TSS started to
form a separate area of space research.

At present the development of TSS is in the phase of studying full-scale

xi
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xii Dynamics of Tethered Space Systems

experiments. After performing some test missions (TSS-1, TSS-1R, SEDS-1,
SEDS-2, DMG, GHAGE, OEDIPUS) a certain level in the understanding of
the basic features of the behaviour of TSS is reached. The experimental and
theoretical research projects carried out within the last 25 years allowed to
pass to real applications making use of the advantages of this concept. The
achieved progress demonstrates great capabilities, on the one hand, for the
feasibility of particular physical experiments and flight configurations, and on
the other hand, for the proposal of new problems, whose consideration up to
now seemed to be unjustified and premature.

Nowadays TSS belongs to a class of systems of various purposes, various
design and great application potential. The dynamical problems encountered
in the research of the motion of TSS and in the realisation of their design are
even more diverse. The design process of a small independent TSS in joint
work of the authors in the frame of the INTAS projects was the reason for the
research documented in this book. Long-term and as it seems, fruitful cooper-
ation of researchers not only from different geographical regions, but also from
different fields of mechanics and space flight, resulted in a deeper understand-
ing of the problems and selecting and working on the basic problems of the
dynamics and development of TSS. An especially important and desirable aim
is to connect successfully theoretical and experimental researches. However, in
the book only material is included, which, according to the authors’ common
interest, relates to the field of mechanics. First of all, problems of non-linear
dynamics and also the problems of development of physical and mathemati-
cal models of the dynamics of TSS are studied. In modern engineering, there
exist whole classes of problems where the classical engineering approach, that
is, building an experimental device and performing a series of tests, now is
replaced by numerical simulation. Nevertheless there are processes which can
be investigated experimentally much easier than by means of mathematical
modelling and numerical simulation. Then one well-realised experiment gives
much more information than dozens of theoretical investigations. Hence, some
aspects of experimental investigations are included in this book. The selection
of this material is determined by the general idea in writing this book, which
is to present original subjects of common interest.

We hope that the book will succeed in giving the reader from the carried
out analyses of the presented problems of TSS dynamics, the appropriate in-
formation for her or his own research, concerning both the methods of research
and the combined application of theoretical and experimental methods.
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Symbol Description

a average value of distance r
b amplitude of longitudinal os-

cillations
ci arbitrary constants
e eccentricity of orbit
EF tension stiffness of cable
~er unit vector directed along con-

necting line
~Fi forces acting on end bodies
f dimensionless tension of the

cable
i inclination of orbit
J moment of inertia
l(t) current length of tether
l1 initial length of tether
l2 nominal length of tether
L relative specific moment of

momentum
L normalized relative specific

moment of momentum
mi masses of end bodies
~mC1 moment of forces
M total mass
p focal parameter of orbit
~Rk position vector of k-th body in

absolute frame of reference
~r = ~R2 − ~R1
~R position vector of mass centre

of tether about attractive cen-
tre

T tension force in the cable
tdepl duration of deployment
tp duration of pushing apart of

two bodies
u argument of latitude of orbital

motion

~Vcm initial velocity of mass centre
~V orig
1 , ~Vdepl

velocity of separation of first
body

~V fin
dipl velocity of first body at instant

of separation of second one
~Vrot velocity of separation of sec-

ond body after deployment
~Vm velocity of separation of auxil-

iary mass
~V add
1 increment of velocity of first

body
X1, Y1, Z1

absolute coordinates of mass
centre of central body

β angle between ~Vcm and the x
axis

µ gravitational constant
ν true anomaly
ψ precession angle
θ nutation angle
ΘC1 tensor of inertia of the central

body with respect to its mass
centre C1

ϕ1, ϕ2, ϕ3

Bryant’s angles
ϕ pure rotation angle
ω0 angular velocity of orbital mo-

tion
ωi angular velocity
ωπ argument of the pericentre
ωmax

pass maximum achievable angular
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3.40 Poincaré section for a solution of the system (3.85). . . . . . 131
3.41 Phase portrait in section by the plane ra = 1, dra/dt > 0. . . 132
3.42 Phase portrait in section by the plane ra = 1, dra/dt < 0. . . 133

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

0:
44

 0
6 

Ju
ne

 2
01

6 



List of Figures xix

3.43 Regular trajectory ψ0 = π/15 rad, L0 = ω0pa. . . . . . . . . . 134
3.44 Variations of h∗. . . . . . . . . . . . . . . . . . . . . . . . . . 135
3.45 Variations of h∗. . . . . . . . . . . . . . . . . . . . . . . . . . 135
3.46 Sequence of values h∗ in Tω for different values of a bar length. 136
3.47 Trajectories of pendulum motion in a plane. . . . . . . . . . 137
3.48 Sequence h1+z. . . . . . . . . . . . . . . . . . . . . . . . . . . 137
3.49 Sequence hav. . . . . . . . . . . . . . . . . . . . . . . . . . . 138
3.50 Sequence hav. . . . . . . . . . . . . . . . . . . . . . . . . . . 138
3.51 Sequence h∗ at fixed ψ = π/15 rad. . . . . . . . . . . . . . . 139
3.52 Sequence h∗ at fixed values ψ = π/15 rad and dy/dt < 0. . . 140
3.53 Variations of angle ψ maximal values. . . . . . . . . . . . . . 140
3.54 Phase portrait of the set 1. . . . . . . . . . . . . . . . . . . . 143
3.55 Phase portrait of a set L0 = ω0(pa − 0.15). . . . . . . . . . . 143
3.56 Phase portrait of the set 1 in domain of trajectory ψ =

π/15 rad. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
3.57 Phase portrait of a set in domain of resonance 8:35. . . . . . 144
3.58 Phase portrait of a set L0 = ω0(pa − 0.019). 150 points on

trajectory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
3.59 Phase portrait of an averaged system. . . . . . . . . . . . . . 146
3.60 Phase portrait of an averaged system. . . . . . . . . . . . . . 147
3.61 Phase portrait of an averaged system, z = 0.82. . . . . . . . 147
3.62 Loop of non-linear resonance 8:35. . . . . . . . . . . . . . . . 148
3.63 Envelopes of sets h1+z for ψ trajectories of the set 1 with initial

value ψ0 = 11.85 + i 0.005. . . . . . . . . . . . . . . . . . . . 148
3.64 Variation of maximal ψ values near a resonance 8:35. . . . . 149
3.65 Representation of motion trajectories at resonance of low order

as motion of ball in funnels. . . . . . . . . . . . . . . . . . . 149
3.66 Phase portrait of a non-linear resonance 1:5. . . . . . . . . . 152
3.67 Phase portrait on boundary of a resonance 3:16. . . . . . . . 152
3.68 Image of a trajectory for hg = π/(521 k). . . . . . . . . . . . 154
3.69 Image of a trajectory for hg = π/(621 k). . . . . . . . . . . . 155
3.70 Image of a trajectory for hg = π/(651 k). . . . . . . . . . . . 155
3.71 Image of a trajectory for hg = π/(751 k). . . . . . . . . . . . 156
3.72 Phase portrait of a trajectory at z = 0.2, k = 0.002 s−1, ξ =

0.00001 s−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
3.73 Phase portrait of a trajectory at z = 0.8, k = 0.001 s−1, ξ =

0.0005 s−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
3.74 Phase portrait of a trajectory at z = 0.8, k = 0.02 s−1, ξ =

0.0001 s−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
3.75 Phase portrait of a trajectory at z = 0.8, k = 0.02 s−1, ξ =

0.0004 s−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
3.76 Phase portrait of a trajectory at z = 0.8, k = 0.02 s−1, ξ =

0.0009 s−1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
3.77 Variation of a strange attractor at increase of damping. . . . 161

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

0:
44

 0
6 

Ju
ne

 2
01

6 



xx Dynamics of Tethered Space Systems

4.1 Mean value ∆λ′
∆ν calculated over one period of longitudinal os-

cillation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
4.2 Variations of L and R at r = a(1− 0.1sign(λ′ sin 2λ)). . . . . 167
4.3 Variations of relative motion parameters at r = a(1−0.1 sin 2ϕ). 170
4.4 Variations of orbital motion parameters at r = a(1− 0.1 sin 2ϕ). 170
4.5 Variations of relative motion parameters at r = a(1−0.1 sin(ν−

ϕ)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
4.6 Variations of orbital motion parameters at r = a(1−0.1 sin(ν−

ϕ)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
4.7 Geometrical parameters of a tether on an orbit. . . . . . . . 172
4.8 Variations of dumb-bell orbit parameters at λ = π/4. . . . . 174
4.9 Variations of orbital parameters at r = a(1 + 0.1 sin 2λ). . . . 175

5.1 Deployment of a system with the use of central force. . . . . 183
5.2 Deployment of a system with inclined axes of devices of sepa-

ration against the local vertical. . . . . . . . . . . . . . . . . . 185
5.3 Definition of the velocity of the mass centre of the system. . . 187
5.4 Deployment of a tether with additional mass separation. . . . 189
5.5 Separation of the first body with use of a rotating lever. . . . 189
5.6 Physical model of the tethered three bodies. . . . . . . . . . . 191
5.7 Mechanical model of the tethered three bodies. . . . . . . . . 192
5.8 System of three free bodies. . . . . . . . . . . . . . . . . . . . 194
5.9 Initial state of the system before deployment. . . . . . . . . . 195
5.10 Angular oscillations of the central body and velocity of string

extracting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
5.11 System behaviour in the plane Oxy of the absolute frame of

reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
5.12 System behaviour in the plane Oxy of the inertial coordinate

frame in the case 1 of constant Coulomb friction. . . . . . . . 200
5.13 The system behaviour in the plane Oxy of the inertial coordi-

nate frame in the case 2 of constant Coulomb friction. . . . . 200
5.14 Process of deployment of the tether in the case of the proposed

law of viscous friction. . . . . . . . . . . . . . . . . . . . . . . 201
5.15 Amplitudes of elastic oscillations of the end bodies. . . . . . 202
5.16 Scheme of experiment on determination of moment of inertia

of fly-wheel. . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
5.17 Experimental and computational values of angle φ at determi-

nation of hand-wheel moment of inertia. . . . . . . . . . . . . 206
5.18 Results of test computations. . . . . . . . . . . . . . . . . . . 207

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

0:
44

 0
6 

Ju
ne

 2
01

6 



List of Tables

4.1 Estimations for reaching the velocity that is sufficient for the
transition to a hyperbolic trajectory of one of the bodies after
cutting the tether . . . . . . . . . . . . . . . . . . . . . . . . . 167

4.2 Change of the orbit elements of the dumb-bell, λ = π/4. . . . 175

xxi

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

0:
44

 0
6 

Ju
ne

 2
01

6 



1

Tethered Systems in Space: A Short
Introduction

1.1 Basic features and areas of applications

The concept of tethered satellite systems (TSS), that is, two or more satellites
in orbit around a planet, connected by thin long cables — a length of 100 km is
not unusual — is one of the most innovative concepts of satellite flight at the
end of the 20th century. There exist numerous important practical applications
[25], some of which were already tested in several flights in orbit around the
Earth organized by NASA during the last decade of the 20th century. Some
of these applications and, if applicable, the corresponding flights are shortly
described in this report.

The large size of Tethered Systems in Space (TSS) extending from tens
of meters up to hundreds of kilometers preserving mechanical, energetic and
other connections between the end bodies is the basic difference of TSS to
traditional Space systems. The use of cables to form extended Space systems
results in a number of remarkable properties of TSS.

First, there is the possibility of interaction with the external fields of a
planet. The moment of the gravitational forces acting on the tether depends
on the square of the length of the connection. This allows to generate a highly
stable radial relative equilibrium configuration of the deployed TSS on a cir-
cular orbit. In addition, artificial forces of gravity arise on the end bodies of
the TSS resulting in a tension force in the tether. The gravy-gradient force
on a mass, m, attached to the tether at a distance, ∆r, from the system’s
centre of gravity is equal to the difference between the centrifugal and grav-
itational forces on it. An approximate value for this force [40] is given by,
FGG ≈ 3∆rmω2

o . The value of the e.m.f. (electro-magnetic force), arising in
a rectilinear conductor, due to the interaction with the magnetic field of the
Earth is directly proportionally to the length of the conductor E = −BlVs,
where B is the magnetic induction, l is the length of the conductor, Vs is the
velocity of the conductor, which is moving uniformly and perpendicularly to
the force lines. Another purely mechanical property of TSS, is connected to
the values of velocity V and centrifugal accelerations Tc

Tc = rẏ2, V = rẏ, L = r2ẏ, (1.1)

1



2 Dynamics of Tethered Space Systems

where r is the distance between the bodies of the TSS, ẏ is the angular velocity
of rotation of the tether about the centre of masses, L is the specific moment
of momentum of the tether. From (1.1) it follows, for example, that the sub-
spacecraft deployed from the basic spacecraft downwards to the Earth will
have the velocity of motion about the Earth by ∆Rω0 smaller, than the ve-
locity of motion of the mass centre, where ω0 is the angular velocity of motion
of the mass centre of the TSS in orbit. Hence the velocity of the subsatellite
is essentially smaller than the velocity of a free spacecraft at this height. The
square-law dependence of the centrifugal accelerations on the angular velocity
allows to generate the slowly rotating TSS using the thin (and light) connect-
ing string of length of hundreds of kilometers. The square-law dependence of
the moment of momentum on the length of the connection can be used for
the great ability of accumulation of moment of momentum and kinetic energy
by the TSS. For example, a rotating TSS may be used for launching of a pay-
load in an orbit as it is intended with the Skyhook or to capture and retrieve
payloads as intended in the Tether Rendezvous System [40].

The creation of small TSS is also important. By small TSS we understand
cable systems with a tether length from ten meters up to several kilometers
with masses of attached bodies from one up to hundreds kg [7, 8]. The specific
values of lengths and masses depend on the problem. The basic aspects of the
concept “small TSS” consist, first, in the difference of the mass characteristics
of these systems from the traditionally considered projects TSS-1 and TSS-
2. Secondly, the concept “small TSS” means that its realisation is directed
on the solution of some basic questions and thus the geometrical and mass
characteristics and also its equipment are chosen such that possible expenses
and risks are minimized.

The creation of small TSS is also of importance for itself. It can be used
in plasma physics [101] when the distance between the collector and emitter
in an experiment is 100–200 m. It is obvious that using a small rotating TSS
for these purposes is more effective than the use, as it is proposed in [101],
of a 100–200 meter long tower. The results of the Plasma Motor Generator
(PMG) experiment serve as confirmation.

Interest for small TSS can be considerably increased by a strong increase
of the role of microsatellites. The cable system “Spacecraft – microsatellite”
comprises all profits of the use of cables for a Space station. The specific
weight of the cable of about 1 kg km−1 corresponds fully to the requirements
of small mass and dimensions of the microsatellites. The use of mechanical,
informational and power connections will allow on the one hand to consider-
ably reduce the equipment, and consequently the mass of the microsatellite,
and will on the other hand considerably extend the class of problems solvable
with the help of microsatellites.

Apparently, one of the basic modes of motion of small TSS with a length
up to one kilometer is a fast (considerably faster than orbital) rotation of the
system about the mass centre. As it was mentioned above, basic attention was
given earlier to projects with gravitationally stabilised TSS. The Canadian
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Tethered Systems in Space: A Short Introduction 3

project BICEPS – Bistatic Canadian Experiment on Plasma in Space [57]
and the support by NASA [114] can be considered as a significant step in
opening the direction of the use of rotating TSS. The opportunity of rather
simple ways of variation of the length of the string, its tension and the angular
velocity of rotation of the system have allowed to offer the use of rotating
TSS for researches of Space plasma physics both of the high atmosphere and
magnetosphere. Research of dynamics of such a system will allow to use the
collected data for the project of creation of an artificial force of gravity.

Other opportunities of application of rotating TSS briefly are the following
[44]. A rotating TSS used in the project of an aerodynamic probe would allow
to lower a little the velocity of the motion of the probe in the atmosphere in
comparison with the orbital rotation of the TSS. Thus, it is possible that the
attached spacecraft making a rotatory motion about the mass centre will leave
the dense layers of the atmosphere after immersing in them and a longer time
will be in conditions, favorable for cooling. These conditions can be essential
for the equipment, for example, carrying out supervision, photographing parts
of the surface of the Earth. The rotating TSS passes in its rotation through
different layers of the atmosphere and can scan them. Such research of the
atmosphere can be an alternative to the research through a radially oriented
STS having on the tether a set of “beads” of gauges [47, 114]. Use of rotating
TSS expands significantly also the opportunity of their use for transport op-
erations because both kinetic energy and moment of momentum of the TSS
can be significantly increased.

Rotating the TSS about its mass centre can serve as an integrated gauge
for research of the influences of fields of the Earth. TSS will allow to ob-
tain an integrated, average estimation of the difference of influences on the
attached bodies. On a half-revolution of rotation about the mass centre the
influence will be accumulated as change of angular velocity of rotation. Hence
the project of small TSS for research of latitudinal changes of density of the
atmosphere, consisting in rotation a small TSS with two probe end bodies
with different ballistic factors is interesting.

Small rotating TSS can serve as standard of length for calibrating and mea-
surements of the characteristics of optical and radar-tracking systems located
on board and on the Earth [128].

The question of using a rotating electrodynamical TSS has remained out-
side of the attention of researchers until today too. Although this question
concerns more physics, it is obvious that use of rotating tethers in a magnetic
field as Gertz’s doublet will allow to generate in a separate conductor an alter-
nating current. The positive solution of this question would open a perspective
opportunity of the realisation of the project of an electrodynamical TSS in
vacuum, i.e., without creation of a closed current in the ionosphere, without
appropriate equipment and on higher orbits.

As it is visible, even a brief consideration of opportunities of rotating TSS
shows that their use allows to achieve new effects practically in all areas of
TSS use.
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4 Dynamics of Tethered Space Systems

1.2 Physical models of TSS in literature

Choice of one or the other physical model of a TSS is determined by the
structure of the TSS, the modes of its motion and the purposes of research.
Hence the choice should be reasonable and the chosen physical model should
correspond to the objectives of research.

Presently, developed mathematical models of TSS dynamics, despite their
distinctions in details, may be divided into two classes:

• Class of models of TSS where the string is assumed to be a continuous
visco-elastic medium connecting the satellites which are regarded as rigid
bodies.

• Class of models where TSS is assumed to be a system of connected rigid
bodies, i.e., the string is considered to be a massless mechanical connection
and its own dynamics is not taken into account.

The model of a flexible string of linearly elastic material is usually used
as a physical model for the cable. Taking into account bending and torsional
stiffnesses of the string and its plastic deformation can have an essential effect
on the dynamics of weakly loaded cables, and the modes of motion with large
transverse oscillations. Hence, the axial line of a weakly loaded cable, just
reeled off the coil, is a screw line — “a sucking-pig’s tail” (Fig. 1.1)[38]. The
stretching of the cable into a straight line often results in plastic deformations,
the laws of which essentially differ from linear elasticity. Taking into account
the stiffness of the cable for bending and twisting is necessary in investigations
of formation of loops of the cable because these effects are important in such
modes.

H

DA B

FIGURE 1.1
Sucking-pig’s tail.

Modelling of the end bodies as a rigid body is not always acceptable, be-
cause, for example, the presence of extended elastic antennas at the end bodies
in the OEDEPUS–A experiment could be one of the reasons for the rotational
instability of the system. Usually the gravitational field of the spherical Earth
is only used as a gravitational field, acting on the TSS. However, flatness of the
Earth, attraction of Moon and Sun, and other effects can cause, for example,
deviations of the TSS from the state of relative equilibrium. Hence, taking into
account the flatness of a planet has allowed to consider the interesting project
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Tethered Systems in Space: A Short Introduction 5

of perturbation of the orbital motion of the TSS from its relative equilibrium
motion [34].

Aerodynamic resistance, light pressure, interaction of the STS with the
magnetic field of the Earth and plasma, heating of the cable by solar radiation,
collision with micrometeorites, all these effects can play an essential, and in
some cases, determining role for the motion of the TSS. Their consideration in
the model of motion of the TSS and the completeness of this model depends
on the problem to be solved.

Selection of this or that physical model depends also on a mode of motion
which makes TSS. The elementary classification of modes of motion, which is
already found in the investigation of the motion of a mathematical pendulum
is the separation of rotational and librational motions.

The librational motion of a tether of two bodies in the vicinity of the state
of the stable radial equilibrium, as it was mentioned above, is the most in-
vestigated motion. For the assumption of small displacements and velocities
of the motion the problem may be linearized and is reduced to the determi-
nation of stability of the equilibrium state in view of the various mentioned
effects [130]. Hence, the research of the influence of the dynamics of the cable
in such a formulation of the problem allows the use of methods of the most
developed area of the mechanics of strings [1, 76, 100, 104], namely the theory
of stationary motions. The problem is reduced to the analysis of the ordinary
linear differential equations describing the relative equilibrium of the string
instead of equations in partial derivatives describing general dynamics of the
string.

The rotational motion of two bodies connected by a string at sufficiently
large angular velocities of rotation of the system around the mass centre pro-
vides the essential tension in the string. Therefore, for this motion the trans-
verse oscillations of the string will be small and their influence on the general
motion of the system will be insignificant, and at least at the first step of in-
vestigation these fluctuations need not to be taken into account, i.e., the string
for this mode of motion can be considered an elastic connection between the
points of attachment of the end bodies. Since basic practical problems of in-
vestigation of rotational motions of STS are connected to the investigation of
the change of parameters of rotation in view of various effects, the problem
of investigation of these motions is reduced in essence to the investigation of
the evolution of parameters of motion of distributed elastic systems.

If a significant redistribution of energy of motion is possible between its
various mechanical forms, resonant modes of motion can serve on the one
hand as the reason for destruction of the required configuration of motion of
the system, and on the other hand can be used for both effective control and
construction of stable motions of the system. In the motion of an orbital cable
system of two bodies the resonant motion can arise at commensurability of the
following average frequencies of motions: orbital motion of the mass centre,
rotational (angular) motion of the TSS about its mass centre, translational
relative (varying distance between bodies) motion, oscillations of the cable
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6 Dynamics of Tethered Space Systems

and rotational motions of end bodies about points of their attachment. It is
obvious that the resonant commensurability of frequencies can take place for
any pair of motions and for motions of the system in all degrees of freedom.
Thus, the resonant motions represent a sufficiently wide and important area of
possible motions of TSS. Up to the present time the area of resonant motions
of TSS is only weakly investigated.

Another new phenomenon, which has been discussed intensively in the
literature basically only over the last twenty years is the chaotic motion of
deterministic systems. As it is well known (see for example [130]), this phe-
nomenon is inherent to the majority of non-linear systems, and takes place
already for systems with two frequencies of motions (enough one and half de-
grees of freedom). A classification of the given motions is necessary for the
application of special numerical methods for the dynamics of TSS, since the
usual numerical methods do not work in these cases and the usual mechanical
interpretation of results of computations is not correct. This field of chaotic
motions of TSS practically has not yet been investigated.

TSS are complex mechanical systems. Wide variety of modes of their mo-
tion has essential qualitative distinctions and is determined by specific ranges
of values of their parameters. In fact, areas of librational and rotational mo-
tions, areas of regular and resonance trajectories, separatrices and chaotic
motions possess essential qualitative features [21]. These features in many re-
spects determine problems and methods of research and the range of values
of parameters of TSS matching such regimes.

1.3 Comparison of the influence of various physical
effects

We assume that the massive basic satellite B moves on a circular orbit at
height 400 km above the surface of the Earth and deployed from it, vertically
towards the Earth, is a cable AB of length l = 20 km with the free end
at A. The absence of an end mass allows to concentrate the attention only
on the unperturbed forces F , acting on the cable. On the free end A the
tension is equal to zero, and in point B it is maximum: TB ≈ 1.5ρω2l2, where
ω is the angular velocity of rotation. (See [40], p. 123). In Fig. 1.2 levels
of perturbations acting on the cable are shown: a denotes gravitational, b
elastic, c electromagnetical and d other levels of the tension TB depending on
the diameter d of the cable made of corrosion-proof steel (continuous lines)
and of kevlar (dot-and-dash lines).

The shaded strips correspond to a range of properties of heavier materials,
for example of wolfram.
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Tethered Systems in Space: A Short Introduction 7
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Magnitudes of perturbations, acting on the cable : a - gravitational, b - me-
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spond to the numbering of the various effects in the text.)
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8 Dynamics of Tethered Space Systems

1.3.1 Gravitational perturbations.

1. Flattening of the Earth. A disturbing acceleration from the harmonic J2 in
standard representation of the geopotential [46] results in a change of the ten-
sion force of the cable δT only in connection with the difference of accelerations
in different points of the TSS. If the disturbing acceleration in all TSS points
were identical, the cable would not react on it by a change of its tension (sit-
uation “of free fall”). Integration along the cable of the gradient of the radial
components of acceleration of J2 gives δTB ≈ 3ρω2l2J2(R⊕/RB)2(1−3 sin2 ϕ),
where R⊕ denotes the radius of the Earth; ϕ is current geocentric latitude.
The maximum increment of tension occurs in polar areas ϕ = ±π/2. In equa-
torial areas and at latitude ϕ = 0.96 rad the relative increment of tension is
δTB/TB ≈ 2J2 ≈ 2 · 10−3 (line 1 in Fig. 1.2, full line — for a steel cable,
dotted-and-dashed line — for a cable of kevlar).

2. Higher harmonics of the geopotential. They give a contribution to the
tension not more than δTB/TB ≤ 10−5 (lines 2).

3. Attraction by the Moon. The maximum contribution of the gradient
of the gravitational field of the Moon to the tension of the cable yields
δTB ≤ 2ρGMmR−3

m l2 (G denotes the universal gravitational constant; Mm

and Rm are mass and radius of the orbit of the Moon) or in relative values
δTB/TB ≤ 2/3(Mm/M⊕)(RB/Rm)3 ≈ 4 · 10−8 (lines 3). The contribution of
the attraction of the Moon becomes decisive for lunar cable systems but this
situation must be considered separately.

4. Attraction by the Sun. A similar estimation for the gradient of the
gravitational field of the Sun yields δTB/TB ≤ 2/3(M¯/M⊕)(RB/R¯)3 ≈
2 · 10−8 (lines 4), where M¯ and R¯ denote the mass of the Sun and the
distance to it, respectively.

5. Relativistic effects. In the relativistic approximation [62] the change of
tension yields δTB/TB ∼ v2/c2 ≈ 7 · 10−10 (lines 5), where v is the velocity of
the orbital motion and c is the velocity of light.

6. Attraction of the cable by the satellite. The force of the gravitational
attraction of the carrying satellite of mass mB and characteristic size 2rB on
the cable can be estimated as F ≈ GmBρ/rB . At typical values for the orbital
plane mB ∼ 100 t, rB ∼ 10m [65] the relation F/TB ∼ 10−9 is close to the
level of relativistic perturbations. Therefore in Fig. 1.2a the appropriate line 6
is not separately drawn from line 5. We notice that in cable systems, deployed
from Moon and Phobos, the satellite carrying the cable is a natural celestial
body and its attraction is of first order.

7. Finite thickness of the cable. The force acting on a cross section of the
cable of finite thickness dt in a Newtonian field differs from force of influence
on a material line by the value δTB/δTB ≈ 3(dt/RB)2/16 (line 7). For a cable
of thickness dt = 5mm this relation yields 10−13.

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

0:
46

 0
6 

Ju
ne

 2
01

6 



Tethered Systems in Space: A Short Introduction 9

1.3.2 Bending and friction forces in the cable

The second group of perturbations corresponds to additional forces, which
arise in an imperfect elastic flexible cable and also due to internal friction.

8. Bending stiffness of the cable. Let us consider the cable as a bar with
bending stiffness Ebend, simply supported in point B and not subjected to the
action of external forces. The eigenfrequencies of its bending oscillations will be
equal to Ωn = k2

nl−2(Ebend/ρ)1/2, where kn are roots of the equation tan k =
tanh k : k1 = 0; k2 = 3.93, . . . ; kn ≈ π(n − 3/4) [33]. The rotation of the
cable as a rigid bar corresponds to a zero root. Its shape remains straight.
Elastic bending forces do not arise. The elastic cable hanging down from the
satellite has in the first mode of oscillation a straight shape. In the orbital
plane the modal frequency is ω1 =

√
3ω, where ω is angular velocity of the

corresponding orbital motion; the highest modal frequencies of the transverse
oscillations are defined by the formula ωn =

√
1.5(n + 1)ω (n = 2, 3, . . .) [60].

At same numbers n the oscillation modes of the bar and the flexible cable
have the same number of nodes n, counted together with the point B, and
admit direct comparison.

Starting from the general definition of eigenfrequencies and eigenmodes
of oscillations of mechanical systems [33], the resulting forces at an iden-
tical bending of the cable-bar and the flexible cable relate as squares of
the frequencies Ωn and ωn. As in the scale of perturbations everything is
compared to the maximum tension TB in the cable, the maximum level
of the bending forces should be defined as F ∼ TBΩ2

nω−2
n or F/TB ∼

2/3π4n−1(n − 3/4)4(n + 1)−1Ebendρ
−1ω−2l−4. With this formula the com-

parison should begin with n = 2, as the shape corresponding to n = 1 is
straight and F = 0, Ω1 = 0. Bending stiffness of the cable plaited from n cir-
cular fibres each of diameter d1 at comparatively small longitudinal loadings,
which is available in the considered case, can be estimated as total bend-
ing stiffness of all fibres Ebend ≈ EMnπd4

1/64 [103], and then the relation
Ebend/ρ ≈ EMd2

1/16ρM holds.

For a thickness of fibres D1 = 50µm the relation F/TB for the mode n = 2
is ∼ 5·10−13 for steel (full line 8) and ∼ 2·10−12 for kevlar (dotted–dashed line
8). With the increase of the number of modes n the relation F/TB grows ∼ n2

and for n = 10 yields ∼ 10−10 and 4 · 10−10 for steel and kevlar, respectively
(line 8′). Usually the highest modes of oscillations n À 1 have no importance
for practical computation of the motion of TSS.

9. Residual deformations in the cable. If the cable was stored on a drum, a
long time after exit in free space it will try to take the form of a circular arch
of some radius R ≥ Rd (Rd denotes radius of the drum). The gravitational
gradient straightens the cable and keeps it in the vertical state. Thus because
of residual deformations in the cable the bending moment Mbend = Ebend/R
is created, which corresponds to the transversal force F = Ebend(Rl)−1 acting
at the end (Ebend is bend stiffness of a cable). For the ratio of force to tension
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10 Dynamics of Tethered Space Systems

the following estimation

F/TB ≤ 2/3Ebρ
−1ω−2l−3R−1

d ∼ EMd2
1ρ
−1
M ω−2l−3R−1

d /24, (1.2)

holds, where d1 is the diameter of the fibres in the cable. For the radius
Rd = 10 cm of the drum and the diameter of fibres d1 = 50 µm this ratio
yields 3 · 10−9 for a steel cable and 8 · 10−9 for a cable of kevlar (full and
dotted–dashed lines 9). The inclination of these lines is slightly changed due
to the necessary increase of the dimensions of the drum for an increase of the
diameter of the cable.

10. Internal friction in the cable. For an oscillating cable its fibres rub
against each other which results in loss of energy and damping of eigenoscil-
lations. The dissipation of energy takes place in the material of the fibres.
Starting from general theory of oscillations, the relation of the forces of in-
ternal friction to restoring elastic forces may be estimated as δ/π (δ denotes
logarithmic decrement of attenuation). The relation δ/π = η is called loss
coefficient [64]. In comparison with the maximum tension the force of friction
does not surpass this limit: F/TB ≤ η. For the data [63, 116, 131] for longitu-
dinal oscillations η ≤ 0.1 (line 10). The basic contribution to the losses comes
from the friction between fibres of the cable. But it essentially depends on the
tension in the cable, which defines the amount of contact between the fibres.
Increasing the tension the coupling of the fibres increases and the loss coeffi-
cient in the cable decreases coming closer to the loss coefficient in a separately
taken fibre [49]. For the data [97] the loss coefficient in various materials is
η ∼ 10−3 (line 10′).

The energy of transverse oscillations of a cable connected to a satellite
is dissipated mainly because of the interaction with longitudinal oscillations.
The additional transversal force Ffr caused by internal friction due to bending
estimated to the elastic transversal force is Ffr ∼ ηFbend, which already has
been considered and has been shown to be extremely small.

*) Reserve of strength. For comparison in Fig. 1.2b the fracture tension T∗
is depicted. It exceeds the equilibrium tension TB for a steel cable 330 times
(dashed line) and for a cable made of kevlar 2600 times (dotted–dashed line).

1.3.3 Electromagnetic forces.

These arise as result of the interaction of the cable with the geomagnetic field
and ionospheric plasma.

11. Electrostatic charge of a dielectric cable. At a height of 400 km pos-
itively charged ions basically are represented by ions of oxygen O+ with a
concentration ni ∼ 105 cm−3 [48, 81]. Their thermal velocity vi ≈ 1 km s−1,
corresponding to a temperature Θi ≈ 1500 K, is considerably smaller than the
velocity of the orbital motion v0 ≈ 8 km s−1 whereas the thermal velocity of
the electrons ve ≈ 200 km s−1, which corresponds to the same temperature
Θe = Θi, strongly exceeds the orbital velocity v0. In this case the flow of
electrons running against a noncharged cable exceeds the flow of ions by a
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Tethered Systems in Space: A Short Introduction 11

factor 101.5, and the cable is charged negatively resulting in such a potential,
for which the electronic and ionic flows are counterbalanced. The potential
of charging the side of the cable, which is directed into the orbital motion,
may be estimated with the formula ϕ ≈ −kΘee

−1 ln(ve/v0), where k is Boltz-
mann’s constant, e is charge of an electron [9, 10], which is equal to −0.4V.
The potential on the back side of the cable should be, by approximate esti-
mations, one order larger, because the impacts of ions in the “shadow” for
a quickly moving cable occurs significantly less often than the direct bom-
bardment of the forward moving surface. Similar phenomena are observed on
dielectric surfaces of ordinary satellites [9].

The electrical field of a charged cable is shielded in plasma at the ex-
pense of decreasing the concentration of electrons near the cable. Scale of
the area of shielding is defined by the Debye radius D =

√
ε0kΘen

−1
e e−2

(ne is the concentration of electrons). For a characteristic height of 400 km
the temperature Θe ≈ 1500K and the concentration ne ≈ 105 cm−3 [48, 81]
D ≈ 9mm. In the considered case the simple estimations on the basis [10, 61]
give the size of area of shielding Dec ∼ 6D and the general charge of the cable
q ∼ 2πϕε0l/ ln(Dec/dT ), where ϕ ∼ −1 V is the average over the surface of the
cable of the value of the potential of charging; ε0 is the dielectric permeability
in vacuum. In the equatorial area at a height of 400 km an induction of the
geomagnetic field B ≈ 2.6 · 10−5Tl, and the Lorentz force acting on a charged
cable is equal F = qv0B ≈ 6 · 10−8 N. This estimation is almost independent
of the diameter of the cable (dotted–dashed line 11).

12. Resistance of the plasma to the motion of a dielectric cable. The force
of resistance of the plasma to the motion of a charged cable is defined by the
flow of ions, colliding with the cable and the deviated electrical field of the
cable inside the area of shielding: F ∼ miniv

2
0Decl (mi and ni are mass and

concentration of ions), in this case F ∼ 2 · 10−4 N (dotted–dashed line 12).

13. Induced charge in a conducting cable. The electromagnetic influence
on a conducting cable, in general, differs from the influence on a dielectric
cable. The superfluous electrons, accumulated on the conducting cable, under
the action of the Lorentz force F = ev0B cos i0 move in the direction of one
end of the cable (i0 is the inclination of the orbit to the magnetic equator). If
the motion occurs from West to East and the cable is deployed downwards to
the Earth the concentration of electrons will grow towards the bottom end of
the cable. The accumulation of electrons will be stopped when the electrical
field created by them in the cable will reach the intensity E0 = Bv0 cos i0, at
which Lorentz’s force is counterbalanced by the electrical force Ee. On slightly
inclined orbits E0 ≈ 0.2 Vm−1 the potential of the bottom end of a conducting
cable of length l = 20 km reaches in comparison to a dielectric cable the large
value ϕA ≈ −4000V! Accordingly, the diameter of the area of shielding Dec

sharply grows. Simple estimations give in average along the cable the value
Dec ∼ 1.5 m and the total charge of the cable q ∼ πϕAε0l/ ln(Dec/dT ) ≈
−3 ·10−4 K. Lorentz’s force acting on the cable will be F = qv0B ∼ 6 ·10−5 N.
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12 Dynamics of Tethered Space Systems

This estimation depends also weakly on the diameter of the cable (full line
13).

14. Resistance of plasma against the motion of a conducting cable. The
formula given above remains valid also for this case, only the average effective
diameter Dec becomes greater because of the high potential of charging ϕ.
This results in an estimate of F ∼ 5 · 10−3 N (line 14).

15. Electrical current in the cable. The part of positively charged ions,
getting inside the area of shielding, hits the metallic surface of the cable and
pulls electrons out of it. The intensity of this flow increases together with the
negative charge at the bottom end of the cable. The electrons, which get lost
as the result of such impacts are filled at the expense of impacts at the weakly
charged top end of the cable. This results in an electrical current in the cable.
For the total value of the current it is possible to give an estimation on the
basis [61] IB ≈ dT leni ln(Dec/dT )

√
| ϕA | e/mi, where ni is the undisturbed

concentration of ions in the plasma. The total force, acting on a cable with a
current in a magnetic field, is estimated, as F ≈ 0.6IBBl; the coefficient 0.6
arises because of the change (variation) of the current along the cable (charge
flows down along the whole surface of the cable). By these estimations in a
metallic cable with a diameter dT = 3mm a current IB ∼ 1 A will arise that
will cause Ampere’s force F ∼ 0.3 N. Increasing the diameter of the cable
will also increase this value (dashed line 15). The obtained force is relatively
large and in this situation a detailed electrodynamical investigation will be
necessary. However, one hardly will be able to deploy a bare metallic cable
at those heights, where the concentration of electrons is large enough and the
down flow of charge in the plasma is very intensive. For the practical use of
the effect of the induced potential the conducting cable needs to be isolated
and equipped with contact devices to the plasma on its ends, as it is supposed
in the electromagnetical TSS.

1.3.4 Aerodynamic drag, solar radiation and impacts of mi-
crometeorites

16. Aerodynamic resistance. For a density of air ρa = 2.5 · 10−12 kg m−3,
which is characteristic for a height of 400 km [107], the cable with a diameter
dT = 1 mm and a length of l = 20 km is exposed to the resistance F ≈
ρav2

0dT l ≈ 3.2 · 10−3 N (v0 is the orbital velocity). The aerodynamic force
changes proportionally to the diameter of the cable (line 16) and increases
quickly if the height of flight decreases. For a tethered atmospheric probe the
influence of aerodynamics becomes decisive.

17. Light pressure. The force of light pressure depends on the angle of the
cable to the solar rays and on the reflecting ability of the cable. In any case,
for a cable with circular cross-section it does not surpass F ≤ 4/3psdT l (line
17), where ps ≈ 4.5 · 10−6 N m−2 is the light pressure on an orbit around the
Earth [46]. For a cable of diameter 1 mm, F ≤ 1.2 · 10−4 N.

18. Heating of the cable by solar radiation. A much more essential influence
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Tethered Systems in Space: A Short Introduction 13

of solar radiation results in heating of the cable. From the data [84] follows
that the extrema of thermal-mechanical loadings occur at those instances when
the cable enters and leaves the shadow of the Earth, that is, when the periods
of heating or cooling of the cable are reversed. They last only a short time
(∼ 1 min). In a steel cable of a diameter 0.9mm the maximum force is Fmax ≈
0.04TB , and in cable of same mass made of Kevlar of a diameter 2 mm the
maximum force appears one order less: Fmax ≈ 0.002TB . The average thermal-
mechanical loadings are defined by the coefficient of linear expansion of the
cable αT and by the difference of temperatures of the cable ∆Θ on its sunny
and shadowy parts of its orbit: F/TB ∼ αT ∆Θ. Results of [84] are given for a
steel cable αT = 2·10−5 K−1, ∆Θ ≈ 150K, F/TB ∼ 3·10−3 (full line 18), for a
cable from kevlar αT = −2.5·10−6K−1, ∆Θ ≈ 100K, F/TB ∼ 3·10−4 (dotted–
dashed line 18). The characteristic peak loadings are shown by lines 18′. It is
necessary to note that such loadings arise only for rigidly attaching the cable
to the basic satellite. The level of loadings sharply falls for the installation of
a longitudinal damper at the point of attachment, which is necessary in many
cases.

19. Impacts of micrometeorites. From the available scientific data on the
distribution of the masses of particles of meteoric flow [48, 75] it follows that
the basic pulse results from meteoric particles of the size of 30 − 200 µm.
For a cable with a diameter of 2mm and a length of 20 km about once a
day a particle of size 50 − 100 µm carrying on the average impulse p ∼ 8 ·
10−5 kgm s−1 will strike. The transfer of this impulse to the cable results in
its small oscillations, and the dynamic effect of this perturbation is responsible
for estimating the maximum returning force F ∼ pω ≈ 10−7 N. The thickness
of the cable has no influence on this estimation (line 19). With a change of
thickness only the average time between the impacts of particles of a given
size changes. For a thin cable dT ∼ 0.1mm the impact of such a particle will
be both its first and final, because it will break. Therefore the line 19 is not
finished on the left border.

1.4 Methods of mathematical modelling

The triple, physical model, mathematical model and methods of its analysis
form the basis of an “experiment on paper” (analytical analysis or calculation
by hand) or a “computer experiment.” The mathematical model occupies a
central place in this triple. It integrates physical models of processes with
mathematical methods of research and analysis and hence is decisive in all
processes of theoretical research.

The realisation of “experiment on paper” has common laws with the re-
alisation of full-sized experiments. For example, the success of theoretical
research depends also in many respects on the clearness of the formulated
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14 Dynamics of Tethered Space Systems

problems and the concreteness of questions, the completeness of the scope
of a problem. As a consequence, the complexity of the mathematical model
frequently contradicts the depth of the analysis of specific questions. At the
same time other environments of activity allow quickly and with minimum
expenses to obtain the response to an inquiry. Fast changeability and easy
repeatability of mathematical experiments make this method of mathemati-
cal modelling a highly effective tool of research. Sufficiently complete models
of the dynamics of TSS created up to the present time and packages of their
program realisation such as GTOSS, KKYHOOK, MODEL.3, and NEW1B
allow one to judge the serviceability of these projects of TSS in the beginning
of their development with high reliability [34]. Computational models, which
are used for the verification of the serviceability of TSS and the exact predic-
tion of its motion, take into account the highest possible properties of the real
TSS.

The mathematical modelling also provides a unique opportunity for the
analysis and development of ideas about specific laws and peculiarities of real
processes in their causal-consequential interrelation on the basis of “thought-
experiment,” when only essential elements for the analysis of the investigated
phenomenon are allocated and are kept in the mathematical model. Mathe-
matical models used for such researches displaying only separate peculiarities
of the process can be rather far away from the adequate description of real
systems (for example Keplerian motion and real motion of a spacecraft on
orbit around the Earth). But just these problems allow representation of laws
of real processes to develop. Such problems have obtained the name of “model
problems.”

Problems of the mathematical description and analysis of models of TSS
dynamics are essentially new in comparison with earlier investigated problems
of Space flight dynamics. Therefore, researches of TSS dynamics pose problems
both for the development of methods of modelling and of the mathematical
analysis of the models. So-called problem models directed first of all to the
development of methods of modelling are on the border between working com-
putational models and questions: how to describe? and how to calculate? It is
natural that this side constantly moves from simple to complex. For example,
taking into account the motion of end bodies of TSS results in equations of
dynamics where the equations of dynamics of a flexible string have boundary
conditions depending on higher derivatives. As it is known, developed algo-
rithms applying finite-differences methods for the numerical solution of the
partial differential equations assume that the boundary conditions do not de-
pend on higher derivatives. Therefore the solution of this problem is possible
either on the basis of development of appropriate computational methods or
by change of ways of construction of the model [108].

The review of works on the dynamics of TSS shows that all three types of
models — computational models, model tasks and problem models have wide
applications in the research of dynamics of TSS.
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Tethered Systems in Space: A Short Introduction 15

1.4.1 Basic model: Point masses connected by a massless
string

R

R
2

r

R
1 e

r

e
R

FIGURE 1.3
System of two tethered bodies.

The model of two point masses connected by a massless string (Fig. 1.3) is
the basic problem model of TSS dynamics allowing to investigate laws of its
motion. This model was the first model of research of TSS dynamics [86]. Even
today it is widely used in both theoretical [50] and practical researches, for
example, in investigations of processes of deployment (experiments SEDS-1,2
[39] ) and retrieval of TSS. The equations of motion of a system of two point
masses connected by a weightless string in a Newtonian field of forces are of
the following form

m1
~̈R1 = −µm1

~R1

R3
1

+ T1 ~er + ~F1,

m2
~̈R2 = −µm2

~R2

R3
2

− T1 ~er + ~F2, (1.3)

where mi are the masses of material points, ~Ri are their position-vectors with
respect to the Newtonian attraction centre, T1 ~er is the force acting along the
connecting line (elastic force of the string), ~er is the unit vector directed along
the connecting line, ~Fi is the total vector of other forces acting on the ith body
(i = 1, 2), µ is the gravitational constant.
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16 Dynamics of Tethered Space Systems

From (1.3) we obtain the equations of relative motion and the equations
of motion of the mass centre of the tether

~̈r = ~̈R2 − ~̈R1 = −T ~er + ~F , (1.4)

~̈R = −µ~R

R3
+ ~F ∗, (1.5)

where ~R =
~R1m1 + ~R2m2

M
is the position-vector of the mass centre of the

tether about the attractive centre, M = m1 + m2,

T = T1
M

m1m2
, ~F =

~F2

m2
−

~F1

m2
,

~F ∗ = (~F1 + ~F2)/M + ~F ∗gr, (1.6)

~Fgr = µ(~R1/R3
1 − ~R2/R3

2),

~F ∗gr = µ~R/R3 − 1
m

2∑

i=1

µmi
~Ri/R3

i . (1.7)

1.4.2 Model of TSS with massive string

1.4.2.1 Tether equations

More often the model of a flexible string is used as model of a cable. The
position of a point s at time t is defined by the position-vector R(s, t). The
tension forces T (s + ds, t) and −T (s, t) act on an element of the string ds of
density ρ(S) from neighbouring elements. For the considered element Newton’s
equation of motion of its mass centre is

ρ(s)ds
∂2 ~R

∂t2
= ~T (s + ds, t)− ~T (s, t)− µρ(s)ds~R

R3
+ ~Fds, (1.8)

where ~F are external forces referred to the unit length of the string. From
(1.8) we obtain

ρ
∂2 ~R

∂t2
=

∂ ~T

∂s
− µρ~R

R3
+ ~F . (1.9)

It is the usual form of the dynamical equations of a flexible string [76, 104].
By definition, the flexible string does not resist a bend and the force of its
tension is always directed along a tangent to a line of a string

~T = T~es, ~es =

(
∂ ~R

∂s

)
/

∣∣∣∣∣
∂ ~R

∂s

∣∣∣∣∣ , (1.10)
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Tethered Systems in Space: A Short Introduction 17

where ~es is unit vector of a tangent to a line of a string. The value of force of
tension is defined by the law of an extensibility. Ordinarily the Hook’s law of
extensibility is used

T = E(γ − 1), γ =

∣∣∣∣∣
∂ ~R

∂s

∣∣∣∣∣ , (1.11)

where E denotes module of elasticity of a string. At substitution (1.11), (1.10)
in (1.9) vector equation in partial derivatives of a wave type turns out.

1.4.2.2 Satellite equations

The boundary conditions are defined by motion of end bodies. The equations
of motion of the mass centres of end bodies look like (1.3)

m1
d2 ~R1

dt2
= −µm1

~R1

R3
1

+ ~eSATA + ~F1, (1.12)

m2
d2 ~R2

dt2
= −µm2

~R2

R3
2

+ ~eSBTB + ~F2,

where indices A and B designate the values of ~es and T in points of fastening
of the cable accordingly to the first and to the second bodies. The locations of
these points of fastening is defined by position-vectors ~dA and ~dB relative to
the mass centres of the appropriate bodies. The dynamic equations of motion
of the end bodies around their mass centres look like

=

J 1
~̇ω1 = − ~ω1×

=

J 1 ~ω1 + ~dA × ~eSATA +
3µ

R3
1

~eR1×
=

J 1 ~eR1 + ~M1,

=

J 2
~̇ω2 = − ~ω2×

=

J 2 ~ω2 + ~dB × ~eSBTB +
3µ

R3
2

~eR2×
=

J 2 ~eR2 + ~M2, (1.13)

where ¯̄J i denotes the tensor of inertia of an end body, ~ωi is the vector of its
absolute angular velocity around the mass centre, ~eRi = ~Ri/

∣∣∣ ~Ri

∣∣∣, ~M is the

moment of the other forces acting on ith body. Then the boundary conditions
of the motion of the string — the motion of points A and B — are defined by
the following expressions

~̈RA = ~̈R1 + ~̇ω1 × ~dA + ~ω1 × (~ω1 × ~dA),

~̈RB = ~̈R2 + ~̇ω2 × ~dB + ~ω2 × (~ω2 × ~dB), (1.14)

where ~RA, ~RB are the position-vectors of points of fastening with respect to
the Newtonian attractive centre. The creation of a stable finite difference al-
gorithm for the numerical solution of the equations (1.9)–(1.14) represents
a difficult problem. Therefore the transformation of the model to a varia-
tional problem and its solution by direct methods, for example, by Riesz’s
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18 Dynamics of Tethered Space Systems

method, frequently is performed for simpler problems. If the approach de-
scribed above for the derivation of the equations of motion can be related
to a variational differential d’Alembert’s principle, the integral principle of
Hamilton–Ostrogradski

δ

∫ t2

t1

(δA + δT )dt = 0

results in the variational statement of the problem. Here δA = δV + δW
denotes the virtual work of the potential δV and other δW forces, δT is the
variation of the kinetic energy of the system. Use of this or other assumptions
about the motion of the string and its lengthening, the completeness of the
account of internal and external forces, result in the construction of various
models of motion of TSS from linear up to essentially non-linear [13, 66, 79].

Wide application in practical calculations has also been obtained by the
model of a chain of concentrated masses for a heavy cable [12, 42, 78]. The
mechanical character of the discretisation of this model is obvious. As compar-
isons show, calculations with this model are well coordinated with calculations
with the non-linear model with distributed parameters even in the case of a
weakly tensed string [79].

Taking into account the bending and torsional stiffness of the cable, which
could be important in the modelling of processes of deployment and retrieval of
TSS, will influence the dynamics of the string and hence will create additional
problems with ongoing discussions concerning the proper modelling.

1.5 Known results and some problems

As it is known, basic results on the dynamics of TSS as systems with dis-
tributed parameters are obtained for stationary or quasistatic modes of motion
when the character of oscillations is linear. Sufficiently complete investigations
of these modes of TSS motion are carried out in [25, 69].

The investigation of dynamics of systems with distributed parameters in a
general case is possible only by methods of numerical integration and usually
requires significant time expenses for realisation of calculations even on fast
computers [102, 109, 110, 124]. We list some reasons why performing analysis
of the dynamics of TSS as systems with distributed parameters is extremely
complex and labourious:

• The boundary conditions of the continuous structure (the string) are de-
fined by the dynamics of the end bodies and by the way of their attach-
ment.

• The effect of external forces depends both on the motion of the cable and
the bodies of the system.
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Tethered Systems in Space: A Short Introduction 19

• The dynamical characteristics of strings, especially the properties of ex-
tension and damping, are at present investigated only for linear modes of
motion [11].

Generally speaking, the problem of construction of adequate mathemat-
ical models of TSS dynamics for essentially non-linear modes of motion, for
example, for processes of retrieval and deployment of TSS, seems to be such a
difficult problem that the creation of real TSS seems to be a problem of smaller
complexity. In fact, taking into account the torsional stiffness of the cable and
its elastic bending stiffness is essential for a cable stored in form of a band.
For the analysis of the possibility of formation of loops, plastic deformations
in the process of reeling and unreeling of the cable, the cable’s heterogeneities,
etc. form a problem of mathematical modelling which at present has not been
clearly presented.

Thus, we can speak only about specification and improvement of models,
about introduction of new characteristics, essential for the given mode of mo-
tion, about increase of degree of adequacy of models to real physical processes,
about increase of accuracy and reliability of methods of calculations. Just in
these directions investigations are conducted at the moment: [13, 31, 79, 108].

Existing models of TSS can be significantly improved both from an experi-
mental and from a computational point of view. It seems to be very important
to include the dynamics of the deployment system in the whole system dy-
namics during processes of deployment and retrieval. Until now the motion of
the string from the point of its exit from the drum is described only in inves-
tigations of TSS. In more complex models, forces of resistance of the string at
the point of its exit are given for deployment or retrieval. However, it would
be necessary to simulate more complex effects, arising during unreeling of the
string depending on the way it’s arranged on the drum. In more sophisticated
models of the system such peculiarities will play an important role and should
be investigated.

Models of TSS with distributed parameters take into consideration the
dynamics of the connecting string, the basic element of TSS. These models
are much closer to the purpose of the adequate description of TSS dynam-
ics than models of TSS as systems of connected rigid bodies. However, the
basic method of analysis of non-linear interactions using these models is the
method of numerical integration. Taking into account the complex models and
complicated methods of their numerical integration it is difficultly to assume
that the given approach will allow establishment of general laws of non-linear
dynamics of TSS.

Problems of non-linear dynamics arise as basic problems in the investiga-
tion of the dynamics of space systems in different areas of their application.
The tendency in the development of space systems, according to which, on the
one hand, their overall size is considerably increased, the stiffness decreased
and the inertial characteristics increased, and on the other hand, the accu-
racy requirements to fulfill the mission program become tougher, requires the
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20 Dynamics of Tethered Space Systems

solution of a series of fundamental problems of non-linear mechanics. Among
such problems it is especially possible to select the problem of the influence
of oscillations of masses of internal degrees of freedom on the dynamics of the
system in a central field of forces and the problem of evolution of motion of
extended systems with the allowance of coupling of relative and orbital mo-
tions. The indicated problems include problems of redistribution of energy in
resonant modes, problems of stochastisation and synchronization of motions.
The analysis of the present state of these problems and the history of devel-
opment of Astronautics shows that in many cases it is difficult to foresee and
predict effects of non-linear dynamics of systems beforehand. Therefore their
investigation first of all requires the construction of a qualitative picture of
non-linear dynamics, i.e., the development of ideas of basic regular properties
and possible effects of dynamics of systems at non-linear interactions.

Let us consider, for example, questions, the solution of which requires
creation of the TSS rotating on the orbit: How will the plane of TSS rotation
change? How will its velocity of rotation around the mass centre change?
Will resonant modes of motion be possible and what will be their effect?
The solution of such questions is connected with the indicated problems of
non-linear dynamics.

One basic peculiarity of TSS is the low stiffness of the connection of the
bodies. By virtue of it, and also by virtue of the unidirectionality of the action
of cables, modes of TSS motion with large frequencies of oscillation of internal
degrees of freedom are possible, the character of which is essentially non-
linear. In addition, these oscillations, despite of dissipation of their energy by
internal friction, can permanently be excited in TSS motion at the expense, for
example, of thermal shocks due to crossing of TSS the line of the terminator
(borders where the TSS enters and leaves the Sun shadow of the Earth).
Hence, investigation of the dynamics of rotational motion is connected to the
solution of the problem of non-linear mechanics of the influence of essentially
non-linear oscillations of bodies of internal degrees of freedom on the dynamics
of systems in a central force field.

The review of publications on this problem shows that up to the present
time there is fair amount of works on the dynamics of systems of connected
bodies with oscillatory elements (see, for example, [2, 52, 68, 98, 111, 117]).
However, the majority of investigations is carried out under the assumption
of small amplitudes and quasistatic behaviour of oscillations of the system
stipulated by finite stiffness of the connections. This assumption corresponds
to linear oscillations of the system in the internal degrees of freedom, or in
general, eliminates the effect of own elastic oscillations of the system from
the consideration. For tasks in such a formulation there are well developed
techniques of investigation at present available. Investigations of the dynamics
of systems of the bodies for oscillations of internal degrees of freedom with
large amplitude and the bodies losing connection, as well as techniques of
investigation of dynamics of such systems, to the present time remain to be
carried out.
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Tethered Systems in Space: A Short Introduction 21

The large extension of TSS stipulates an essential increase of forces and
moments influential on its motion. The correctness of the consideration of
TSS motions on the orbit of its mass centre within the framework of limited
formulation of the task must each time be confirmed. At the same time, the
research problem of long-term TSS rotation on the orbit requires the careful
analysis of the influence both of environment, and properties of connection, as
the long-term effect of even small environmental forces can result in significant
deviations of the motion from the programmed one. Hence investigation of the
dynamics of rotational TSS motion is connected to the solution of the problem
of the evolution of the motion of extended systems on orbits around the Earth.

Just the cable system has served as the basis for the description of the
gravity flyer idea [20]. However, problems of changes of aircraft attitude of
extended systems had no direct practical importance earlier and many of its
aspects remained uninvestigated until now. Hence, the analysis of the corre-
lation of orbital and relative motions in the Newtonian field of forces is far
from being completed. Further development (see [53, 74]) is needed for in-
vestigations of capabilities of mission control of systems of connected bodies
in a Newtonian field of forces by the way of redistribution of the moment of
momentum between orbital and relative motions by means of internal forces.

Let us consider the problem of possible stochastisation of motions. The
area of investigation of chaotic motions of deterministic systems is one of the
most recent areas of non-linear mechanics. Regular methods of analysis and
more engineering type methods of investigation of applied problems are absent
until now. It is natural in such a case to use the elementary model problem
of TSS dynamics keeping in it the interaction between the internal degrees of
freedom and the rotational motion of the system around its mass centre. We
will consider the motion of a system of two material points in the plane of a
circular orbit of the mass centre (Fig. 1.4) as such model with the assumption
that the external force is caused only by the Newtonian field of forces. From
(1.4) it is easy to obtain

L̇ = −3
2

µ

R3
r2 sin 2ψ, ψ̇ =

L

r2
− ω0, (1.15)

where L is the value of the specific moment of momentum of the relative
motion of the tether, L = |~r × ~̇r|, ψ is the angle between ~r and ~R, ω0 =√

µ/R3 denotes the constant angular velocity of the motion of the mass centre.
In (1.15) the gravitational influences are taken into consideration assuming
r/R ¿ 1. We assume that the distance between the masses varies periodically,
for example, r = a + b cos k(t − t0), a, k and b are constants. In this case
the model is very close to the model of two point masses connected by a
linear spring. More detailed information about this will be given in Section
3.4. For b/a ¿ 1 and ψ̇/ω0 ¿ 1 it is easy to see that according to the
Kolmogorov-Arnold-Moser theory (see [15]) the trajectories of motion of the
system are separated by invariant tori and will “forever” remain close to the
undisturbed trajectories. However, at other ratios of parameters the conditions
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22 Dynamics of Tethered Space Systems
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FIGURE 1.4
Two tethered bodies in orbit.

for stability of the undisturbed trajectories are violated and as a preliminary
phase space analysis by Poincaré’s point mapping method shows, the space
gets a complex structure, where areas of resonant, conditionally periodic and
chaotic trajectories occur.

Problems of TSS dynamics described in this section determine a circle of
problems of the theoretical investigations considered in the book.
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2

Equations of Motion of Space Tether Systems

2.1 Some remarks concerning the motion of TSS

There are typical situations in the dynamics of space systems when small
disturbances act on the system in addition to the main forces and moments
[121]. Such situations occur both for orbital motions and for many cases of
motion around the mass centre in the task of orientation and stabilisation of
the motion of space systems. In unperturbed motion due to the design of the
mechanical system the main regular properties of the motion are known. The
smallness of disturbances guarantees that on a small time interval the per-
turbed motion differs only little from the unperturbed one. Long-term effects
of perturbing forces can result in accumulation of disturbances in the motion
of a system and essentially change its characteristics in comparison with the
unperturbed motion. Therefore the main purpose of research of perturbed mo-
tions is the research of changes of characteristics of motion over a long time
interval and the determination of regular features of its evolution.

The disturbances are usually stipulated by the effect of the external force
fields on the system and depend on the motion of the system. Since the dy-
namics of space systems and the force fields are non-linear, the expressions of
the disturbances in generalized coordinates of motion of the system, in general,
are also non-linear and complicated, and the integration of these equations is
possible only in special cases. The research of dynamics of perturbed motion
by numerical methods, except for the well known shortages of these methods,
which are connected to the fact that only one particular trajectory is calcu-
lated, has one more characteristic property. In the presence of high-frequency
and low frequency oscillations in the system, the numerical research of the
perturbed motion of the system on a long-term time interval becomes prob-
lematic. High-frequency oscillations require a small integration step size that
causes an increase in the number of computations and appropriate errors. This
problem of the calculation in the dynamics of space systems has been known
for a long time. So, for example, it is known that in the tasks of calculation
of trajectories of motion of a satellite, in the investigation of the influence
of small disturbances the numerical integration in Cartesian coordinates is
useless.

The non-linear character of interaction is an essential aspect of the prob-
lem of investigation of perturbed motions of space systems. The solution of

23



24 Dynamics of Tethered Space Systems

the basic problem of investigation of perturbed motions of space systems is
connected to the necessity to draw a qualitative picture of non-linear dynamics
and to develop ideas about the main regular features and possible dynamic
effects of systems for non-linear interactions. The problems of investigation
of perturbed motion of space systems are tightly connected to the tasks of
celestial mechanics. Just for the problem of perturbed Keplerian motion, the
greatest scientists (mechanicians) created methods of research, which have
constituted the basis of modern methods of non-linear mechanics. Here it is
necessary to point out that the process of investigation of perturbed Keplerian
motion consist of two steps: use of method of osculating elements (method of
variation of parameters of Lagrange [46]) for the derivation of equations of
perturbed motion and the use of one or another method of research of the
obtained equations. The equations of perturbed Keplerian motion are charac-
terized by the fact that the effects of disturbances are described by expressions
containing small parameters and that the generalized coordinates of motion
are divided into fast and slow variables. The different forms of the equations
of perturbed Keplerian motion are the basis of research of orbital motions in
celestial mechanics.

The classical formula of the method of osculating elements consists in the
fixation of the forms of the first integrals and in the task of variation of the ar-
bitrary constants of these integrals. Such an approach results in the derivation
of equations of perturbed motion to bulky, frequently not acceptable schemes.
Hence, schemes of derivation of equations of perturbed Keplerian motion, the
first of which is based on evaluation of Lagrange’s brackets for elliptical el-
ements [112], and the second on geometrical constructions [46], turn out as
excessively bulky and hamper the introduction of new variables, convenient
for the particular task. The ideas of the method of osculating elements have
found further development in the problems of the dynamics of space flight.

The Lurie scheme of derivation of perturbed Keplerian motion [45], based
on the fixation of vectorial expressions of unperturbed motion, has consid-
erably reduced the necessary quantity of transformations. The equations de-
scribing the perturbed motion of a rigid body about the mass centre (Euler-
Puanso equations of perturbed motion [70]), derived on the basis of the ex-
tended method of osculating elements with the use of the theorem of change
of moment of momentum, have allowed fundamental research of rotational
motions of a satellite about its mass centre. Derivation of equations of per-
turbed motion of a free rigid body containing elastic and dissipative elements
[36, 37], and the offered scheme of the method of averaging has allowed us to
conduct research of a series of regular features of rigid body dynamics with
mobile masses. In [71, 118, 119, 120] the dynamics of a viscous-elastic body in
a Newtonian field of forces is considered. The equations of perturbed motion
are derived and the scheme of the method of averaging is offered. On this
basis the stationary motions (and their stability) are investigated. The list
of publications, in which certain new results on regular features of non-linear
dynamics are obtained, can be continued and essentially extended. Hence, it
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Equations of Motion of Space Tether Systems 25

would be desirable to point out the original approach of research of regular
properties of perturbed resonant motions [98]. The analysis of these works
shows that the progress in knowledge of regular properties of non-linear dy-
namics of space systems first of all is connected to the derivation of new forms
of equations of motion. The problem of derivation of equations of perturbed
motion of a system including the selection of variables of motion, is in fact a
task of mechanics. Mathematics supplies various methods of investigation of
differential equations. Derivation of equations of motion for the task of dynam-
ics is an informal process of coupling of a physical model of the investigated
object with methods of research of the mathematical model. In all problems
of dynamics, simplicity and clearness of the form of equations of motion is
important and, consequently, to a considerable degree, the success of research
is determined by proper selection of the variables describing the motion.

The proper choice of variables for the particular problem is in turn deter-
mined by the depth of understanding of regular properties and correlation of
the considered motion. In the general statement of the problems of dynamics
the successful choice of variables depends only on experience and intuition of
the researcher. In problems of perturbed motion of systems the situation is
different, since it is supposed that the perturbing effects are so small that the
main regular properties of the unperturbed motion will not be broken, at least
on a short time interval.

Therefore in problems of research of perturbed motion the choice of vari-
ables is realised on the basis of the analysis of regular properties of unper-
turbed motion. The general criteria for the choice of “evolutional variables”
are stated in [18]. Generalizing them [121] it is possible to say that the ex-
tended method of osculating elements consists in the fixation of convenient,
first of all mechanically clear, forms of unperturbed motion with their sub-
sequent variation. Our knowledge of regular properties of the dynamics of a
system is mapped into these forms. The sequence of such motion from the
supposition of regular features of the dynamics to their fixation and refine-
ment gives a powerful method of research of non-linear dynamics of systems
in general.

2.2 Two point masses connected by a massless elastic
string

The motion of a system of two point masses connected by an elastic massless
flexible string in a central Newtonian force field (Fig. 1.3) is considered. The
equations of motion of the considered system look like (1.3) or (1.4), (1.5).

We suppose from now on that the ratio of the length of the connection
r = |~r| to the distance from the centre of mass to the attracting centre R is
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26 Dynamics of Tethered Space Systems

small. Accurate in the order of
µ

R2

( r

R

)2

we obtain for orbital motion

~F ∗gr =
µ

R2

( r

R

)2 m1m2

M2
×

{
3 (~er, ~eR)~er +

3
2

[
1− 5(~er, ~eR)2

]
~eR

}
, (2.1)

and for attitude motion

~Fgr =
µ

R2

r

R

{
−~er + 3 (~er, ~eR)~eR + 3

m1m2

M

r

R

[
(~er, ~eR)~er+

1
2

(
1− 5(~er, ~eR)2

)
~eR

]}
, (2.2)

where ~eR = ~R/R, (·, ·) designates the scalar product of vectors.
The expressions (2.1), and (2.2) are obtained by expansion of expressions

(1.7) in series of r/R. Here, the following is taken into account: ~R1 = ~R −
~ρ1, ~R2 = ~R+~ρ2, ~r = ~ρ2−~ρ1, m2~ρ2+m1~ρ1 = 0. ~Fgr is the gravitational
force, which acts on the relative motion of TSS, ~F ∗gr is the force additional to
the Newtonian gravitational force acting in the orbital motion of the TSS.

Hence, the value ~F ∗gr has the order of smallness
( r

R

)2

, and ~Fgr − r

R
.

Concerning the values of perturbation accelerations ~F and ~F ∗ we suppose
their smallness in the sense that the kinetic energy of orbital motion of the
tethered system and of attitude motions are essentially larger than the work
of the appropriate perturbing forces on the considered time interval.

The relative motion of the tethered system if the perturbing accelerations
are identically equal to zero (~F ≡ 0) we call unperturbed relative motion.
Otherwise, if ~F 6≡ 0 we call the relative motion of the tethered system per-
turbed relative motion. Concepts of unperturbed and perturbed motion of the
centre of mass are introduced similarly.

Equations (1.4) and (1.5) have the same form as the equation of motion of
a material point in a central force field under the influence of perturbations.
In the general case, such equations cannot be integrated analytically because
general techniques for their investigation are not yet developed.

For the case of the Newtonian central force field (equation of motion of the
mass centre of the tethered system (1.5)) the powerful method of osculating
elements based on deriving the equations of perturbed Keplerian motion is
developed in Celestial Mechanics.

However, the direct application of this method for the general case of
a central force field is impossible. The reason is that the Keplerian motion
belongs to a narrow class of periodic motions of a point in a central field of
forces. Hence the explicit dependence between distance and angular variable
is known and the derivation of the equations of perturbed Keplerian motion
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Equations of Motion of Space Tether Systems 27

[45] is based just on these properties. In the general case of a central field of
forces the motion of a point is doubly periodical, and it is not clear at all [125]
how to obtain the explicit dependence between distance and angular variable.

Thus, the problem of research of perturbed motion of the tethered system
requires derivation of the equations of perturbed motion, i.e., development of
a technique of representation of the equations of motion in a form suitable for
research with the help of asymptotic methods of non-linear mechanics.

2.3 Unperturbed motion

The unperturbed motion of tethered systems is described by a pair of equa-
tions of motion of a point in the central force field following to (1.5), (1.6)

~̈r = −T~er, ~̈R = − µ

R2
~eR. (2.3)

One can obtain equation (2.3) from equations (1.4), (1.5) if one ignores
the disturbing accelerations.

The motion of the centre of mass is a Keplerian motion, the properties of
which are known.

In the general case of a central force the trajectory of the unperturbed
motion of points is a planar curve, the plane of which passes through the
centre of force. The equations of motion in this plane in polar coordinates
look like

r̈ − rφ̇2 = −T,

r2φ̇ = L,
(2.4)

where L is the value of the constant moment of momentum referred to the
mass of the point (the constant of areas).

If T is a function only of r, the energy integral

h =
1
2

(
ṙ2 +

L2

r2

)
+ Π(r), (2.5)

exists, where h is the constant energy referred to the mass of the point, Π(r) =∫
T (r)dr and the solution of system (2.4) is reduced to quadratures

t− t0 =
∫

dr√
f(r)

, ϕ = L

∫
dr

r2
√

f(r)
+ β, (2.6)

where

f(r) = 2h− 2Π− L2

r2
, (2.7)

t0 and β are constants. However, it is possible to solve the quadratures, i.e.,

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

0:
48

 0
6 

Ju
ne

 2
01

6 



28 Dynamics of Tethered Space Systems

to present r and ϕ as functions of t or r as function of ϕ, only in some special
cases.

Equation (2.5) describes the motion of the system with one degree of free-
dom. It is known [85, 35] that for systems with one degree of freedom in a force
field two types of motions are possible: of libration (pendular) or limitation
type (in the direction ~r).

From now on we consider the motion of tethered systems as an elastic
oscillator for which the change of variable r corresponds to librational motion,
i.e., r in an unperturbed motion changes periodically between values r1 and
r2, r1 < r2, which are the simple roots of the equation

f(r) = 0. (2.8)

following to (2.7).
Then the change of r can be represented as

r = a− b Φ(ω(t)), (2.9)

where a = (r1 + r2)/2 is the average value of the distance r, b = (r1 − r2)/2
is the amplitude of longitudinal oscillations, Φ(ω) is a periodic function with
respect to ω varied in the interval [−1, 1], ω denotes phase of longitudinal
oscillations, which is a function monotonically growing in time. The functions
Φ and ω are connected by the equation

b2

(
dΦ
dω

)2(
dω

dt

)2

= 2h− 2Π− L2

r2
. (2.10)

Equation (2.10) was obtained by substitution of (2.9) in (2.5).
Equation (2.10) allows if one of the functions Φ or ω is given to define the

other. Usually [35, 70] two ways of definition of the functions Φ and ω are
used. In the first way one defines Φ1 = cos ω1, then

ω̇1 = Q1(r) =
(

f(r)
(r − r1)(r2 − r)

)1/2

=




2h− 2Π− L2

r2

b2 sin2 ω1




1/2

,

r = a− b cosω1. (2.11)

As r1 ≤ r ≤ r2 and f(r) = (r − r1)(r2 − r)g(r) the subradical expression is
always larger than zero.

In the second way one determines ω2 =
2π

ω11
(t−t0), where ω11 is the period

of longitudinal oscillations.

ω11 = 2

r2∫

r1

dr√
f(r)

= 2

π∫

0

dω1

Q1(r)
. (2.12)
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Equations of Motion of Space Tether Systems 29

Then
dΦ2

dω2
= ±ω11

b2π

√
f(r), r = a− bΦ2(ω2), (2.13)

where the sign “+” corresponds to the decrease of r, and the sign “−” to the
increase, and Φ2(ω2) can be represented as Fourier series [85, 35]

Φ2(ω2) = B0 +
∞∑

n=1

Bn cosnω2, (2.14)

where
∑∞

n=0 Bn = 1.
It is possible to consider the angle ϕ as independent variable. Then the

longitudinal oscillations are described by the equation of Binet [45]

L2v2

(
d2v

dϕ2
+ v2

)
= T, (2.15)

where u = r−1, and the integral of energy (2.5) takes the form

h =
L2

2

((
dv

dϕ

)2

+ v2

)
+ Π

(
1
v

)
. (2.16)

The change of u can be presented in the form, similar to (2.9). Thus
the formulas determining the change of u in this representation are similar
to (2.10)–(2.14). Taking into account that the amplitude of the longitudinal
fluctuations b, average value of length a and the specific energy of the system h
following to the low of preservation of energy are connected by the dependence

h = V (a + b) = V (a− b), (2.17)

where V = Π + L2/(2r2), it is possible to make the conclusion that the longi-
tudinal oscillations in the general case are described by the formulas





r = r(h,L, ω), r(h,L, ω + π0) = r(h,L, ω),

dω

dt
= Q(r, h, L) =

(
f(r)/

(
dr

dω

)2
)1/2

(2.18)

where π0 is the period of oscillations of r with respect to the variable ω. (When
r = a + b or r = a− b then ṙ = 0, and (2.17) follows from (2.5))

The change of the angle ϕ during one period of the longitudinal oscillations
is equal

ω12 = ∆ϕ = 2L

r2∫

r1

dr

r2
√

f(r)
= 2L

π∫

0

dω1

r2Q1(r)
. (2.19)

The average frequencies of the longitudinal oscillations and rotations of a
point around the attracting centre are equal, respectively

µ1 =
1

ω11
, µ2 =

ω12

ω112π
, (2.20)
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30 Dynamics of Tethered Space Systems

and, according to the theory of conditional-periodic motions [85, 35], the func-
tion sin ϕ can be expressed in the form of Fourier series as doubly-periodic
function of variables

s1 =
2π

ω11
(t− t0),

s2 = β +
ω12

ω11
(t− t0). (2.21)

The motion becomes periodic in the case when µ1/µ2 is a rational value
which occurs for

n2ω12 + 2n1π = 0, (2.22)

i.e., ω12 and π are rationally commensurable. Then the period is equal n2ω11.
Let us consider in detail the unperturbed motion (2.4) around the centre

of mass of the tethered system of two material points with elastic massless
connection, the elastic properties of which are described by Hook’s law

T =
Cm

d
(r − d)δ, δ =

{
0, r < d
1, r ≥ d

Cm = C
m1 + m2

m1m2
, (2.23)

where C is the coefficient of stiffness of the connection, d denotes the nominal
length of the connection.

The function f(r) looks like

f(r) = 2h− δ
Cm

d
(r − d)2 − L2

r2
, (2.24)

and in this case the quadratures (2.6) are reduced to elliptic integrals. Their
solution with respect to r obviously is not possible.

The area of possible motions of the tethered system is defined by the
conditions r ≥ 0, f(r) ≥ 0. For r ≥ 0 the function f(r) has a single maximum
in the point r0:

1
2

df

dr
= −Cm

d
(r0 − d) +

L2

r3
0

= 0, (2.25)

where r0(r0 > d) corresponds to the equality of centrifugal and elastic forces,
then for 2h = Cm(r0 − d)2/d = 2h0, r1 = r2 and the motion of the teth-
ered system occurs on a circle of radius r0. As f(r) → −∞ for r → 0 and
r → ∞, the function f(r) for h > h0 has two simple real roots r1 and r2,
r2 > r0 > r1, which can be defined as roots of a polynomial of fourth degree
r2f(r). Consequently for h > h0 the tethered system performs periodic lon-
gitudinal oscillations between the values r1 and r2. The phase portrait of the
longitudinal oscillations for Cm/d = 50 s−2 and L/d2 = 1 s−1 is presented in
Fig. 2.1.

It is visible that the character of longitudinal oscillations of motion with
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FIGURE 2.1
Phase portrait of longitudinal tether oscillations.

active (stretched tether) and non-active (tether is slack) connection can es-
sentially differ.

First we consider the motion with active connection r ≥ d. The condition
of stretching the connection is equivalent to the inequality f(d) ≤ 0, and it
can be represented in form

L2

d2
≥ 2h. (2.26)

In the considered case the dependence between r1 = a− b, r2 = a + b and
h in accordance with (2.17) looks like

2h =
Cm

d
(r2 − d)2 +

L2

r2
2

=
Cm

d
(r1 − d)2 +

L2

r2
1

. (2.27)

By virtue of this dependence

b2 = a2 −
√√√√ L2a

Cm

d
(a− d)

, (2.28)

and the expression for Q1 (the formula (2.11) looks like

ω̇1 = Q1(r) =
[
Cm

d
− L2

r2
2r

2
1r

2

(
2a(r + r1)− r2

1

)] 1
2

,

r = a− b cosω1. (2.29)
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32 Dynamics of Tethered Space Systems

The character of the longitudinal oscillations reflects the most complete
form of the function Φ2(w2) calculated through numerical integration of the
formulas (2.12), (2.13) (Figs 2.2–2.4). Here we point out that the relation
of the average frequencies µ1 and µ2, and also the function Φ2(ω2) can be
represented, depending only on two constant parameters of motion. In fact,
as

f(r) = d2L∗2
[

2h

d2L∗2
− Cm

dL∗2
(z − 1)2δ − 1

z2

]
= d2L∗2f∗(z),

where z =
r

d
, L∗ =

L

d2
,

ω11 =
2
|L∗|

z2∫

z1

dz√
f∗(z)

=
ω∗11
|L∗| , ω12 =

2L∗

|L∗|

z2∫

z1

dz

z2
√

f∗(z)
= ω∗12,

µ1 =
|L∗|
ω∗11

, µ2 =
ω∗12 |L∗|
ω∗112π

,
dΦ2

dω2
= ± ω∗11

b∗2π

√
f∗(z),

where b∗ = b/d. Hence, the relation of the mean frequencies and the form of
function Φ2(ω2) depend only on two parameters

2h/(d2L∗2) = h∗, Cm/(dL∗2) = c∗.

In Figs 2.2–2.4 the changes of the function Φ2(ω2) within one period of
oscillations depending on the value c∗ are shown. This dependence is shown
for longitudinal oscillations without losing connection with a small amplitude

z1 =
r1

d
=

r0

d
− r0 − d

d
/100 = z0 − (z0 − 1)/100,

h∗ ≈ h∗0 =
2h0

d2L∗2
;

in Fig. 2.3 for longitudinal oscillations without losing connection with the al-
most greatest possible amplitude z1 = 1+(z0−1)/1000, (h∗ ≈ 1); in Fig. 2.4 for
longitudinal oscillations with losing connection z1 = 0.5, (h∗ = 4). In Fig. 2.2 it
is visible that for small amplitudes of oscillations Φ2(ω2) practically coincides
with cos ω2, i.e., the “arithmetic mean” of longitudinal oscillations (r1 + r2)/2
practically coincides with the “integrated mean.” Increasing the amplitude of
oscillations (by decreasing the “stiffness” c∗, Fig. 2.3) the “integrated mean”
Φ2(ω2) deviates more and more from zero. For the motion with losing connec-
tion (Fig. 2.4) the deviations of the “integrated mean” Φ2(ω2) from zero for
the majority of values c∗ grows, and with the increase of c∗ the change of its
sign takes place (Fig. 2.5).

In case of small amplitude of oscillations b ¿ a the longitudinal oscillations
are close to harmonic ones. In fact, according to (2.28) and (2.29)

a = r0 +
∂a

∂ε
ε + . . . = r0 + 2

r0 − d

4r0 − 3d

(
b

a

)2

+ . . . , (2.30)
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FIGURE 2.2
Function Φ2(ω2) at longitudinal oscillations with small amplitude without
loss of tension.

Q1 =

√
Cm

d
+ 3

L2

r4
0

+
1
2

L2

r4
0

√
Cm

d
+ 3

L2

r4
0

cos ω1
b

a
+ . . . .

Hence, in zero approximation with respect to the small parameter b/a
longitudinal oscillations of the tether can be described by the formula

r = r0 + b cos k(t− t0), (2.31)

k =

√
Cm

d
+ 3

L2

r4
0

.

This representation of the variable r corresponds to the solution of the
equations (2.8), T =

cm

d
(r − d), when the centrifugal accelerations L2/r3 are

taken into account with the accuracy
(

r − r0

r0

)2

. Accelerations which are not
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FIGURE 2.3
View of a function Φ2(ω2) at longitudinal oscillations without losing connec-
tion with an almost maximal possible amplitude.

taken into account look like

Fcm =
L2

r3
0

[
6
(

r − r0

r0

)2

− 10
(

r − r0

r0

)3

+ . . .

]
(2.32)

The change of the angle ϕ in this case is equal

ϕ− ϕ0 = L

t∫

t0

dτ

(r0 − b cos k(τ − t0))2
=

=
L

k

[
b sin k(t− t0)

(r2
0 − b2)(r0 − b cos k(t− t0))

+

+
2r0

(r2
0 − b2)3/2

arctan

{√
r0 + b

r0 − b
tan

k(t− t0)
2

}]
(2.33)

or if only members of first order of smallness relative to the small value b/a
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FIGURE 2.4
View of a function Φ2(ω2) at longitudinal oscillations with loss of tension.

are kept in the integrand expression,

ϕ− ϕ0 =
L

r2
0

(t− t0)− 2
b

r0

L

kr2
0

sin k(t− t0) + . . . (2.34)

At motion with loss of tension the dependence between r1 = a−b, r2 = a+b
and h, similar to (2.27), looks like

2h =
Cm

d
(r2 − d)2 +

L2

r2
2

=
L2

r2
1

. (2.35)

Hence, r1 =
√

L2/(2h) and r1 depend only on the value L and the velocity
of activating connection as 2h = ṙ2

n + L2/d2 where ṙn is the rate of change of
r at the moment of activating connection.

In free motion r1 ≤ r ≤ d (in motion with an unstrained cable δ = 0) the
quadratures (2.6) are integrated simply, and the change of r is described by
the formulas

r =
√

r2
1 + 2h(t− τ0)2,

τ0 =

√
d2 − r2

1

2h
=

d|ṙn|
2h

, t ∈ [0, 2τ0], (2.36)
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FIGURE 2.5
Change of

∫ 2π

0
Φ2(ω2)dω2 with increase of stiffness c∗ for z1 = 0.5.

where 2τ0 is the time of the free motion of the tether within one period of
longitudinal oscillations. The maximum value 2τ0 is reached for ṙ2

n = L2/d2

and is equal to d2/|L|, that is in inverse proportion to the angular velocity
of rotation of the tether around the centre of mass at the moment of losing
connection.

The change of the angle ϕ in free motion is described by formula

ϕ− ϕ0 = arctan
2h

L
(t− τ0) + arctan

2h

L
τ0, t ∈ [0, 2τ0]; (2.37)

and the differential of ϕ during free motion is equal to

∆ϕ = ϕk − ϕ0 = 2 arctan
2h

L
τ0 = 2arctan

d|ṙn|
L

. (2.38)

This increment grows with increase of the radial velocity of |ṙn| and de-
creases with the increase of transversal velocity at the moment of losing con-
nection. For L → 0 and |ṙn| → ∞ ∆ϕ tends to ±π. From here it follows that
the resonant ratio of low order 1:2 between the mean frequencies of longitu-
dinal oscillations and rotation of the tether around the centre of mass, “the
internal resonances” of the low order, can take place also at high stiffness of
the connection.
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Equations of Motion of Space Tether Systems 37

Dependencies of the average frequencies of the longitudinal oscillations
and the rotations of the tether on the value of the moment of momentum
and energy of oscillations are represented in Fig. 2.6 and Fig. 2.7 for Cm/d =
10 s−2.

The analysis of values of average frequencies shows that a resonant ratio µ1

and µ2 about 1:2, which is the resonance of “swing”-type, can take place only
in cases of relatively low stiffness of the connection (parameter c∗ = cmd3/L2

is rather small or for a relatively large amplitude of longitudinal oscillations
parameter h/h0 is rather large).

Since the practical use of tethers supposes rather high stiffness of connec-
tion (parameter c∗ is quite large) for reaching a resonant ratio of frequencies
µ1 and µ2 the amplitude of oscillations, and hence the velocity for reaching
connection should be so large that for the real system the connection simply

would break. In Fig. 2.8 for c∗ = 100 the change of the values µ1,
1
2
µ1 and µ2

depending on h/h0 is shown. In Fig. 2.9 respective variations of the maximum
and minimum values r − (a + b)/d, (a− b)/d, and the variation of a/d are
shown.

Therefore, if the elastic properties of the string are described by Hooke’s
Law, the conclusion about the capability of the motion of such systems in
resonance 1:2 represents most likely only theoretical interest, and investigation
of this resonant mode has no practical importance.

In the mode of motion of small amplitude longitudinal oscillations
(b/a)2 ¿ 1, with stretched connection the frequency of longitudinal oscil-
lations by virtue of (2.25) is equal to

|L|
r2
0

√
r0

r0 − d
+ 3.

Therefore, in this mode of motion the resonance 1:2 between frequencies
generally can take place only in the limit for r0 →∞.

The different character of the free motion of the system and the motion of
the system with strained tether causes the impossibility of uniform description
of motion. So, it obviously is not possible to represent the rate of change of the
phase of oscillations in the description of r under the formula (2.11) by one
function, which has no singular points. Taking into account (2.35) we obtain
that for a motion with connection

ω ∈ [γ, 2π − γ], γ = arc cos
a− d

b
, (2.39)

Q1 =
{[

Cm

d
(r2 + r − 2d)− L2

r2
2r

2
(r1 + r)

]
/(b− b cosω)

}1/2

.

And in free motion ω ∈ [0, γ] and ω2 =
2π

ω11
(t− t0),

Q1 =
(

L2

r2
1r

2

r1 + r

b(1 + cos ω)

)1/2

. (2.40)
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FIGURE 2.6
Relation of mean frequency of longitudinal oscillations on h and L∗ at cm/d =
10 s−2.
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Relation of mean frequency of tether rotation on h and L∗ at cm/d = 10 s−2.
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Dependence of µ1, µ1/2, µ2 on increasing energy of longitudinal oscillations,
c∗ = 100.

The change of the character of longitudinal oscillations is distinctly visible

from the change of the function Φ(ω2), ω2 =
2π

ω11
(t− t0) (Figs 2.2–2.4). For a

relatively stiff connection and certain parameters of motion if (r2 − d)/r0 ¿
1, it is possible to construct the approached solution for the motion with
losing connection. Using the approximate solutions (2.31), (2.34) and solutions
(2.36), (2.37) we obtain that the variation of r and of ϕ over one period of
longitudinal oscillations is described by the formulas

r = r0 − b cos(kt + γ),

ϕ = ϕ0 +
L

r2
0

t + 2
L

r3
0

b

k
(sin(kt + γ)− sin γ)

and
r =

√
r2
1 + 2h(t− τ1)2, τ1 = τ0 +

2π − 2γ

k
, (2.41)

ϕ = ϕ0 +
L

r2
0

2π − 2γ

k
− 4L

r3
0

b

k
sin γ + arctan

2h

L
(t− τ1)+

arctan
2h

L
τ1, t ∈

[
2π − 2γ

k
, 2τ0 +

2π − 2γ

k

]
,

where it is assumed that at the initial moment of time t0 = 0,rn = d, b and γ
are defined from the equations

B cos γ = r0 − d,
Bk sin γ = ṙn,

(2.42)
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Appropriate variations of maximal, minimal and mean values of r.

where ṙn is the velocity of coming on connection, and h and τ0 are defined
from formulas (2.35), (2.36).

Within the framework of the limited statement of the task, that is, the
length of the tethered system is small compared to the radius of orbit, the
regular properties of rotational TSS motion under the action of disturbances
of different physical nature are studied. For different modes of motion the
application of averaging is justified and the equations of first approximation
are constructed. On the basis of these equations the analysis is conducted and
the estimation of the evolution of the motion of a tethered system under the
action of disturbances are constructed. The estimation of accuracy of the solu-
tions of the equations of the first approximation are conducted by comparison
of the obtained solutions with numerical solutions of the full equations.

2.4 Equations of perturbed motion

2.4.1 System with an elastically attached mass

Let us consider [121] the motion of a system, containing an elastically attached
point mass (Fig. 2.10), whose motion is described by the equation

~̈r=−T (x̄, ~r)~er+ε ~F (x̄, ȳ, ~r, ~̇r), (2.43)
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FIGURE 2.10
System, containing an elastically attached point mass.

where ~r is the position vector of the point mass about some pole O of the
system, ~er = ~r/r, r = |~r|; x̄, ȳ are vectors of fast and slow variables, describing
accordingly the motion of other parts of the system

˙̄x = εX̄(x̄, ȳ, ~r, ~̇r),
˙̄y = ȳ(x̄, ȳ, ~r) + εȲ (x̄, ȳ, ~r, ~̇r),

(2.44)

where ε is a small parameter.
Let us enter the right-handed coordinate systems: CXY Z is an inertial

system of coordinates, with respect to which the motion of the system is
considered; OX1Y1Z1 is the coordinate system connected to the motion of the
system; Oxyz is the coordinate system connected to the motion of the point
mass, the axis Ox points in the direction of ~r, the axis Oz has the direction
of the vector of the moment of momentum of the point mass. Let the mutual
orientation of systems OXY Z and Oxyz be determined by Euler angles ψ, θ
and ϕ, which, respectively, represent precession, nutation and pure rotation
angles.

Let us designate by ~ω and ~ω∗, respectively, angular velocities Oxyz rela-
tive to OX1Y1Z1 and OX1Y1Z1 relative to CXY Z. Then on the basis of the
theorem of change of moment of momentum we obtain

~L′ + (~ω + ~ω∗)× ~L = ~r × ε ~F = ~M, (2.45)

where ~L = ~r × ~̇r = L~e3, ~e3 is the unit vector of the axis Oz, the prime
designates derivative of a vector with respect to time in the moving system of
coordinates Oxyz.
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42 Dynamics of Tethered Space Systems

The projections of equation (2.45) on the axes of the moving system of
coordinates look like

L̇ = M3, (ω2 + ω∗2)L = M1 = 0, (ω1 + ω∗1)L = −M2. (2.46)

Here indexes 1, 2, 3 mean projections of the vector on the axes Ox, Oy,
Oz respectively.

Using the known ratio between the components of angular velocity and
the derivatives of Eulerian angles

ω1 = ψ̇ sin θ sin ϕ + θ̇ cosϕ,

ω2 = ψ̇ sin θ cosϕ− θ̇ sin ϕ,

ω3 = ψ̇ cos θ + ϕ̇

(2.47)

from the equations (2.46) we obtain [90]

ψ̇ =
εrF3 sin ϕ

L sin θ
+ cot θ (ω∗01 sinψ − ω∗02 cosψ)− ω∗03,

θ̇ =
εrF3 cos ϕ

L
− ω∗01 cosψ − ω∗02 sin ψ,

L̇ = εrF2,

(2.48)

where ω∗01, ω
∗
02, ω

∗
03 are projections of the vector ω∗ on axes OX1, OY1, OZ1

respectively.
The equations of change of the angle ϕ we find from equality

~L = L~e3 = ~r × ~̇r = r2(ω3 + ω∗3)~e3. (2.49)

Hence,

ϕ̇ =
L

r2
− ψ̇ cos θ − sin θ (ω∗01 sin ψ − ω∗02 cosψ)− cos θω∗03. (2.50)

Taking into account that ~̈r · ~er = r̈ − (ω3 + ω∗3)2r, we obtain the equation
of change of r:

r̈ − L2

r3
= −T (x̄, ~r) + εF1. (2.51)

Thus, at the rather wide range of the angular velocity of motion of the
system its equations can be considered as equations of motion of a system
with an oscillatory element [123]:

r̈ = −T1(x̄1, r) + εF1(x̄1, ȳ1, r, ṙ), (2.52)

˙̄x1 = εX̄1(x̄1, ȳ1, r, ṙ),

˙̄y1 = ȳ(x̄1, ȳ1, r) + εȲ1(x̄1, ȳ1, r, ṙ),
(2.53)

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

0:
48

 0
6 

Ju
ne

 2
01

6 



Equations of Motion of Space Tether Systems 43

where T1 = T − L2/r3, r is the generalised coordinate of the oscillatory ele-
ment, x̄1, ȳ1 are, respectively, vectors of fast and slow variables describing the
motion of other parts of the system.

The motion of an oscillatory element is close to the motion of a conservative
system with one degree of freedom. Therefore in unperturbed motion the
solution of equations (2.52) is reduced to quadratures. In particular cases if
these quadratures are solvable in explicit form the construction of the general
solution of the equation of motion of an oscillatory element may be performed,
which does not contain implicitly preset functions. The scheme of derivation
of the equations of perturbed motion is rather simple [82]. Here we consider
cases for which to construct the general solution of the equation of motion of
an oscillatory element which does not contain implicitly specified functions,
is not possible.

Introduction of “action-angle” variables [15] formally completely solves
the problem of derivation of the equations of perturbed motion of systems,
the equations motion of which are close to integrable Hamiltonian systems.
However, the practical use of these variables has not obtained wide application,
as it is connected to the solution of a number of rather complex problems, and
the performance of generalised coordinates and velocities through “action-
angle” variables is actually connected to the use of infinite Fourier series.

For systems, close to conservative systems with one degree of freedom,
there is [90] a technique of construction of first and higher approximations,
which do not require the solution of equations of unperturbed motion in ex-
plicit form. The absence in this technique of an explicit form of equations
of perturbed motion results in a number of problems of excessively bulky
transformations and evaluations, and also hampers the choice of the variables
describing the motion convenient for the particular task.

The complexities connected to the integration of implicitly preset func-
tions, in this technique, are overcome through averaging along the generating
solution. However, in many cases this operation can not be carried out in an-
alytical form and, therefore, it is required to be conducted in each step of a
numerical integration. The technique offered below allows in many cases to
simplify the process of derivation of the equations of first approximation for
such systems, and essentially also to expand the class of systems investigated
by the method of averaging.

In unperturbed motion ε = 0, x̄1 is constant, and the equation (2.52) has
the first integral

h =
1
2
ṙ2 + Π(x̄1, r), Π =

∫
T1(x̄1, r)dr, (2.54)

where h is a constant, and the general solution is given by quadrature

t− t0 =
∫

dr√
f(~x1, r)

, f(x̄1, r) = 2h− 2Π(x̄1, r). (2.55)

Similarly to the analysis given above of the unperturbed motion (2.5)–
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44 Dynamics of Tethered Space Systems

(2.18) the variation of r can be presented in the way

r = a− b Φ(w(t)), a = (r1 + r2)/2, b = (r1 − r2)/2,

where r1, r2 are simple solutions of equation f(x̄, r) = 0, r1 < r2, Φ(w) is
periodic in the function w which is varied on an interval [−1, 1] and w is the
phase of oscillations and a monotonically increasing function in time. The
functions Φ and w are connected by the equation

b2(dΦ/dw)2(dw/dt)2 = 2h− 2Π. (2.56)

If we accept Φ(·) = cos(·) then

ẇ = Q1 =
(

f(x̄1, r)
(r − r1)(r2 − r)

)1/2

=
(

2h− 2Π
b2 sin2 w

)1/2

, (2.57)

r = a− b cos w1.

If we accept that w = (2π/ω11)(t− t0), where

ω11 = 2

r2∫

r1

dr√
f(x̄1, r)

= 2

π∫

o

dw

Q1(r)
(2.58)

is the oscillation period, the vibration mode is described by the function Φ(·):
dΦ
dw

= ±ω11

2πb

√
f(x̄1, r), r = a− bΦ(w), (2.59)

where the sign “+” corresponds to the decrease of r and the “−” sign to its
increase.

Since the oscillation amplitude is b, the mean value a and the energy
constant h are connected by the relation

h = Π(x̄1, a + b) = Π(x̄1, a− b), (2.60)

then in general the oscillation of the element can be described by the formula

r = r(x̄1, h, w), r(x̄1, h, w + π0) = r(x̄1, h, w),

ṙ = (∂r/∂w)ẇ,

ẇ = Q(x̄1, h, r) =
[
f(x̄1, r)/(∂r/∂w)2

]1/2
,

(2.61)

where π0 is the oscillation period of r depending on w.
Hence, the oscillations of the element are characterized by the oscillation

amplitude and the phase, and in general are described by the formulas (2.61).
Let us consider h and w as new variables, and relations (2.61) as the formulas
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Equations of Motion of Space Tether Systems 45

of replacement of variables. Differentiating (2.54) with respect to time by
virtue of (2.52), we obtain

ḣ = Q(∂r/∂w)εFr + (∂Π/∂x̄1) ˙̄x1. (2.62)

The second equation in (2.61) gives

ẇ = Q−
(
ḣ∂r/∂h + ˙̄x1∂r/∂x̄1

)
(∂r/∂w)−1. (2.63)

Therefore, the general set of the equations of perturbed motion of the
oscillatory element is determined by equations (2.62), (2.63).

From the derivation of the equations it is visible that any other constant of
unperturbed motion describing the oscillation frequency of the element may
be chosen instead of h. In particular, it can be some function of r1, r2. The
connection between r1, r2, h and x̄ is determined by relation (2.60). Therefore,

ṙi =
[
εFrQ

∂r

∂w
+ ˙̄x1

(
∂Π(x̄1, r)

∂x̄1
− ∂Π(x̄1, ri)

∂x̄1

)](
∂Π(x̄1, ri)

∂ri

)−1

. (2.64)

In the representation of r in the form r = a − b cos w, where w in unper-
turbed motion is determined by equation (2.57), the equations of oscillation
of the element have the form

ḃ =
{

εQ1bFr sin w1 + ˙̄x1

[
∂Π( ˙̄x1, r)

∂x̄1
− ∂Π(x̄1, r2)

∂x̄1
−

∂a

∂x̄1

∂Π(x̄1, r2)
∂r2

]}{
∂Π(x̄1, r2)

∂r2

(
1 +

∂a

∂b

)}−1

(2.65)

ẇ = Q +
(

ḃ cos w1 − ∂a

∂x̄1
x̄1 − ∂a

∂b
ḃ

)
/(b sin w1).

This form of the equations of the oscillating element is convenient because
the oscillations of the element are described by trigonometrical functions. At
the same time the dependence Q1 on w in the general case limits the effec-
tive application of the operators of averaging actually to the case of one fast
variable w in the motion of the system.

In the representation r = a − bΦ(w) where w = (2π/ω11)(t − t0), ω11 is
the oscillation period of the element in unperturbed motion, the equations of
oscillations of the element take the form

ḃ =
{

ε
2πbFr

ω11

∂Φ
∂w

+ x̄1

[
∂Π(x̄1, r)

∂x̄1
− ∂Π(x̄1, r2)

∂x̄1
−

∂a

∂x̄1

∂Π(x̄1, r2)
∂r2

]} {
∂Π(x̄1, r2)

∂r2

(
1 +

∂a

∂b

)}−1

, (2.66)

ẇ =
2π

ω11
(t− t0)−

(
ḃ Φ(w)− ∂a

∂x̄1

˙̄x1 − ∂a

∂b
ḃ

)
/

(
b ∂Φ(w)

∂w

)
.
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46 Dynamics of Tethered Space Systems

2.4.2 Motion of a mass point in the central force field

Let us consider [88] equations of motion of a mass point in the form (1.4),
(1.5)

~̈r = −T~er + ~F , (2.67)

where ~r is the position vector of the point about the centre of force, ~er = ~r/r,
r = |r|, −T~er is the acceleration of the point by the central force, ~F is the
vector of perturbing accelerations.

Let us introduce the right coordinate systems (Fig.2.11): DXY Z is the
non-rotating coordinate system with origin in the centre of force D, Dxyz
is the moving coordinate system, the axis Dz points in the direction of the
vector of moment of momentum, the axis Dx has the direction of the vector
~r. The mutual orientation of the systems DXY Z and Dxyz is determined by
Euler’s angles ψ, θ and ϕ.

X

Y

Z

x

y

z

y

j

J

J

y

j

r

D

L

FIGURE 2.11
Euler’s angles.

According to the above-stated technique (2.45)–(2.51) on the basis of the
theorem of change of moment of momentum we obtain the first group of
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Equations of Motion of Space Tether Systems 47

equations of perturbed motion

ψ̇ =
rF3 sin ϕ

L sin θ
,

θ̇ =
rF3 cos ϕ

L
,

L̇ = rF2,

ϕ̇ =
L

r2
− ψ̇ cos θ

(2.68)

and the equation of radial oscillations

r̈ − L2

r3
= −T + F1. (2.69)

The equations (2.68), (2.69) are valid for the arbitrary T . From now on
we consider that the central force is such that the unperturbed motion of the
point is described by formulas (2.4)–(2.18). Then according to the described
technique the equations of perturbed radial oscillations in general take the
form

ḣ =Q
∂r

∂ω
F1 +

L̇L

r2
, ω̇ = Q−

(
ḣ

∂r

∂h
+ L̇

∂r

∂L

)
/

∂r

∂ω
,

r =r(h,L, ω), Q = Q(h,L, ω).

(2.70)

The system of equations (2.68), (2.70) of perturbed motion in general case
contains two fast variables ω and ϕ, corresponding to the phase of oscillations
of the distance from the point up to the centre of the force and the angle of
pure rotation.

As the connection between r1, r2, h and L is given by the formula (2.17),
then

ṙi =
[
Q

∂r

∂ω
F1 + LL̇

(
1
r2
− 1

r2
i

)]
/
∂V (ri)

∂ri
, i = 1, 2, (2.71)

and in particular,

ȧ = Q
∂r

∂ω
F1

1
2

(
1/

∂V (r2)
∂r2

+ 1/
∂V (r1)

∂r1

)
+

LL̇

2r2

[(
r2
1 − r2

)
/

(
r2
1

∂V (r1)
∂r1

)
+

(
r2
2 − r2

)
/

(
r2
2

∂V (r2)
∂r2

)]
, (2.72)

ḃ = Q
∂r

∂ω
F1

1
2

(
1/

∂V (r2)
∂r2

− 1/
∂V (r1)

∂r1

)
+

LL̇

2r2

[(
r2
1 − r2

)
/

(
r2
2

∂V (r2)
∂r2

)
− (

r2
1 − r2

)
/

(
r2
1

∂V (r1)
∂r1

)]
. (2.73)
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48 Dynamics of Tethered Space Systems

For the introduction of r by r = a − b cos ω1 where ω1 in unperturbed
motion is determined by the equation (2.11), taking b and ω1 as new variables,
we may write the equations describing radial oscillations by

ḃ =
{

Q1bF1 sin ω1 − L̇

[
L

(
1
r2
− 1

r2

)
+

∂a

∂L

∂V (r2)
∂r2

]}
×

{
∂V (r2)

∂r2

(
1 +

∂a

∂b

)}−1

, (2.74)

ω̇1 = Q1 +
(

ḃ cosω1 − ḃ
∂a

∂b
− ∂a

∂L
L̇

)
/b sin ω1.

For the representation r = a−b Φ2(ω2), where ω2 =
2π

ω11
(t− t0), ω11 is the

period of radial oscillations in unperturbed motion, the equations describing
the radial oscillations look like

ḃ =
− 2π

ω11
bF1

dΦ2

dω2
− L̇

[
L

(
1

(a + b)2
− 1

r2

)
+

∂a

∂L

∂V (a + b)
∂a

]

∂V (a + b)
∂a

(
1 +

∂a

∂b

) ,

ω̇2 =
2π

ω11
−

(
ḃΦ2(ω2)− ḃ

∂a

∂b
− ∂a

∂L
L̇

)
/

(
b
dΦ2

dω2

)
, (2.75)

where functions Φ(·) and ω11 do not change in unperturbed motion, Φ2, ω11

and
dΦ2

dw2
are defined from (2.12), (2.13) for initial values of the parameters of

motion h, L.
For the description of radial oscillations of the point in unperturbed motion

by Binet’s equation (2.15) and by the integral of energy (2.16) the algorithm
of deriving the equations of perturbed motion obviously does not change.
Therefore considering the dimensionless value ϕ0 (angle of pure rotation in
unperturbed motion) as the independent variable and using the representation
1
r

= v = av − bvΦ3(w3), where

w3 =
2π

ω12
(ϕ0 − ϕ0

0),

ω12 denotes the period of longitudinal oscillations in new “time” ϕ0 (2.19),
and Φ3 is defined similarly Φ2 (2.13)

dΦ3

dω3
= ± ω12

bv2π

√
2h

L2
− v2 − 2

L2
Π

(
1
v

)
,
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Equations of Motion of Space Tether Systems 49

we obtain the equations of perturbed motion of the point in elastic connection
in the following form

dψ

dϕ0
=

F3 sin ϕ

v3L2 sin θ
,

dθ

dϕ0
=

F3 cosϕ

v3L2
,

dL

dϕ0
=

F2

v3L
,

dα

dϕ0
= − dψ

dϕ0
cos θ, (2.76)

dbv

dϕ0
=

1
v2

2π

ω12
F1bv

dΦ3

dω3
− dL

dϕ0

[
L

(
v2
2 − v2

)
+

∂av

∂L

∂V (v2)
∂v2

]

∂V (v2)
∂v2

(
1 +

∂av

∂bv

) ,

dω3

dϕ0
=

2π

ω12
−

[
dbv

dϕ0

(
Φ3(ω3)− ∂av

∂bv

)
− ∂av

∂L

dL

dϕ0

]
/

(
bv

dΦ3

dω3

)
,

where ϕ = ϕ0 +α, and the dependence between the new independent variable
ϕ0 and time t is determined by the ratio

dϕ0

dt
= Lv2.

The equations (2.76) differ from earlier derived ones by the applicability to
them of algorithms of averaging developed for the independent rotary systems
[51].

Let the perturbing accelerations have a force function, i.e., such a perturb-
ing function U exists that the projections of the perturbing acceleration on
the axes of the non-rotating system of coordinates DXY Z are defined by the
formulas

Fx =
∂U

∂X
, Fy =

∂U

∂Y
, Fz =

∂U

∂Z
.

In this case the projections of the perturbing acceleration on the axes of
the moving system of coordinates look like

F1 =
∂U

∂r
, F2 =

1
r

∂U

∂ϕ
, (2.77)

F3 =
1

r sin ϕ

∂U

∂θ
=

1
r cosϕ sin θ

(
∂U

∂ϕ
cos θ − ∂U

∂ψ

)
.

If U does not depend explicitly on time, the integral of energy exists

H =
1
2

(
ṙ2 +

L2

r2

)
+ Π− U = h− U. (2.78)
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50 Dynamics of Tethered Space Systems

2.4.3 Relative motion of a tethered system

As the equation of motion of the tethered system about the centre of mass
(1.4) and the equation of motion of its centre of mass (1.5) coincide with the
form of the equation of motion of a material point on the elastic connection
under the action of perturbations, each of these motions can be described by
the equations of perturbed motion of type (2.68) – (2.76).

As it is known, the equations of perturbed motion of the centre of mass, by
virtue of the periodicity of motion and presence of the obvious dependence be-
tween linear and angular variables in unperturbed motion can be transformed
into a simpler form. The equation of perturbed relative motion in some modes
of motion can be also transformed into a simpler form.

Let us consider the practically important case of motion of a tethered
system with small amplitude of longitudinal oscillations in the mode of motion
without losing connection. In this case the longitudinal oscillations of the
tether are close to harmonic ones, and the equations describing longitudinal
oscillations are obtained in a simpler form. In fact, if {(r − r0)/r0}2 ¿ 1,
where r0 is defined from the equality of accelerations following from elastic
and centrifugal forces (2.25), then by relating the terms of order {(r − r0)/r0}2
in the decomposition of the centrifugal acceleration to perturbing accelerations
we obtain that in unperturbed motion r performs harmonic oscillations near
the value r0 (2.31). Taking into account that for harmonic oscillations h =
1
2
k2b2, where k and b are the frequency and the amplitude of oscillations,

according to the technique of derivation of the equations of perturbed motion
we obtain

ḃ =
ḣ

k2b
= − sin ω(F1 + Fcm)

k
+

[
b

r0
sin2 ω

(
−3 + 12

L2

r4
0

k2

)
+ 2 cos ω

]
LL̇

r3
0k

2
, (2.79)

ω̇ = k + (ṙ0 + b cos ω)/b sin ω,

where

ṙ0 =
2LL̇

r3
0k

2
, k =

√
cm

d
+ 3

L2

r4
0

,

Fcm is defined by the formula (2.32).
The earlier derived equations of perturbed motion are correct in the non-

rotating system of coordinates. However, it is frequently convenient to con-
sider the relative motion in the system of coordinates connected to the orbital
motion, because in such a case expressions of projections of the perturbing
forces become significantly simpler, and the interpretation of results of the
analysis of the equations becomes simpler too. The systems of coordinates
connected to the orbital motion are rotating in the general case and conse-
quently the equations of perturbed motion relative to these coordinates are
slightly changed.
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Equations of Motion of Space Tether Systems 51

2.4.4 Motion about the orbit of the mass centre

Let us introduce the right-handed systems of coordinates: Cξηζ is the motion-
less system of coordinates with its origin in the attracting centre C. CXY Z
is a “perigee” system of coordinates, connected to the instant orbit of motion
of the mass centre, the axis CX is directed from the attracting centre to the
pericentre of the instant orbit, the axis CY lies in the plane of the instant
orbit and is directed to the centre of mass of the motion in the pericentre,
the axis CZ is in the direction of the vector of the moment of momentum
of the orbital motion (Fig. 2.12). Oxyz is the moving system of coordinates
with origin in the mass centre O of the tethered system. The axis Oz has the
direction of the vector of moment of momentum of the relative motion, axis
Ox the direction of the vector ~r.

Z

C
Y

X

X

y

Y

z Z

x
w

h

x

y

W

i

y

q

j

O

R

q
j

z

FIGURE 2.12
Coordinate systems.

The mutual orientation of the systems Cξηζ and CXY Z, CXY Z and
Oxyz is defined by Eulerian angles Ω, i, ωπ (the longitude of ascending node,
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52 Dynamics of Tethered Space Systems

the inclination of the orbit, the argument of the pericentre respectively) and
ψ, θ,ϕ.

Following the general technique we obtain that the equations of perturbed
motion of the system about the evolving orbit are equations (2.48) and (2.50),
where ω∗01, ω∗02, ω∗03 are projections of the angular-velocity vector of the
“perigee” coordinate system in the inertial system on to the axes of the first
one:

ω∗01 = Ω̇ sin i sin ωπ +
di

dt
cos ωπ,

ω∗02 = Ω̇ sin i cos ωπ − di

dt
sin ωπ, (2.80)

ω∗03 = ω̇π + Ω̇ cos i.

The form of the equation describing the change of the distance r (2.69)
obviously remains unchanged and accordingly the equations of perturbed lon-
gitudinal oscillations (2.70)–(2.76), (2.79) do not change.

Let the system of coordinates CX∗Y ∗Z∗ be considered as the orbital sys-
tem of coordinates connected to orbital motion: the axis CX∗ is in the direc-
tion of the instant radius-vector of the orbit, the axis CY ∗ is directed parallel
to the transversal of the orbit, the axis CZ∗ in the direction of the vector
of moment of momentum of the orbital motion. Then the form of equations
(2.78) does not change and only the values of projections of ~ω∗ change:

ω∗01 = Ω̇ sin i sin u0 +
di

dt
cos u0,

ω∗02 = Ω̇ sin i cosu0 − di

dt
sin u0, (2.81)

ω∗03 = u̇0 + Ω̇ cos i.

where u0 = ωπ + ν and ν is the argument of latitude and true anomaly of the
orbital motion.

Thus, equations of perturbed motion of the tethered system about the
evolving orbit are constructed. These equations and the equations of the per-
turbed motion of the mass centre form the complete system of equations of
perturbed motion of the tether, the system of equations allowing one to carry
out research making use of the method of averaging.

2.4.5 Motion of the mass centre

The equations of perturbed motion of the mass centre (the perturbed Ke-
plerian motions) are known. However, the used algorithm of derivation of
the equations of perturbed Keplerian motion differs from the scheme offered
above. We show [93] that the use of the offered scheme for the derivation of
the equations of perturbed Keplerian motion allows to reduce the number of
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Equations of Motion of Space Tether Systems 53

necessary transformations in comparison with derivation of similar equations
in [45, 70].

Taking into account that in Keplerian motion L =
√

µp, p is the focal
parameter of the orbit and changing the designation of Eulerian angles from
(2.68) we obtain

di

dt
=

R

p
cos uF̃03, Ω̇ =

R

p

sinu

sin i
F̃03,

ṗ = 2RF̃02, u̇ =
√

µp

R2
− R

p
sin u cot iF̃03, (2.82)

where

F̃03 =
√

p

µ
F03, F̃02 =

√
p

µ
F02,

F03, F02 are accordingly normal and transversal perturbing accelerations of
the mass centre.

It is natural to represent relations (2.61) in Keplerian motion as

R =
p

1 + e cos ν
,

dν

dt
=
√

µp

R2
,

Ṙ =
√

µ

p
e sin ν,

(2.83)

where e is the eccentricity of the orbit.
Taking into account that

h =
µ

2a
=

µ(1− e2)
2p

,

from (2.70) it is easy to obtain

ȧ =
2a2e sin ν

p
F̃01 +

2a2F̃02

R
,

ė = F̃01 sin ν +
[
cos ν + (e + cos ν)

R

p

]
F̃02, (2.84)

ν̇ =
√

µp

R2
+

F̃01 cos ν

e
− F̃02

(
1 +

R

p

)
sin ν

e
,

where

F̃01 =
√

p

µ
F01,

F01 is the radial perturbing acceleration of the mass centre.
From (2.82), (2.84) it follows

ω̇π = u̇− ν̇ = − F̃01 cos ν

e
+ F̃02

(
1 +

R

p

)
sin ν

e
− r

p
sinu cot iF̃03. (2.85)
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54 Dynamics of Tethered Space Systems

The equation for the time to pass through the perigee τ is defined by
differentiation of the equality obtained from (2.83) with respect to time

t− τ =
p3/2

√
µ

ν∫

0

dν

(1 + e cos ν)2
. (2.86)

Below, according to the purpose of research we use the equations of per-
turbed Keplerian motion in the following form

di

dt
=

R

p
cos u F̃03, Ω̇ =

R

p

sinu

sin i
F̃03,

ṗ = 2RF̃02

ė = F̃01 sin ν +
[
cos ν + (e + cos ν)

R

p

]
F̃02, (2.87)

ω̇π = − F̃01 cos ν

e
+ F̃02

(
1 +

R

p

)
sin ν

e
− R

p
sin u cot i F̃03,

u̇ =
√

µp

R2
− R

p
sin u cot i F̃03.

2.5 On the derivation of new forms of equations of per-
turbed Keplerian motion

In the previous section ordinary differential equations of perturbed Keplerian
motion were derived, in the form of Newton’s equations [46]. The scheme of
their derivation is based on the use of the theorem of change of moment of
momentum and on the technique of construction of the equations of perturbed
motion of the non-linear oscillatory element [90]. The main distinction of the
offered technique consists in the fact that in the derivation of the equations of
perturbed motion of radial oscillations not the first integrals of motion, but
those oscillations which are most suitable for the investigation of the particular
task, are used as the basic function.

In [70] as basis of the derivation of the equations of perturbed Keplerian
motion, not first integrals but formulas directly describing the change of vari-
ables in unperturbed motion were used. It has allowed to considerably simplify
the derivation of the equations of perturbed Keplerian motion in comparison
with earlier known forms. However, awkward differentiation of vectorial values
carried out in [70], as we see, is not necessary.

Celestial mechanics, developed during centuries by outstanding scientists,
contains a large variety of the equations of perturbed Keplerian motion [46].
These equations comprise practically all cases of orbital motion of satellites,
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Equations of Motion of Space Tether Systems 55

and they are used in the majority of problems of mechanics of space flight.
However, the mechanics of the space flight, especially nowadays, puts prob-
lems, which have already essential differences from the classical problems of
celestial mechanics. Let us show on relatively simple examples that the devel-
oped technique allows to build the new forms of the equations of perturbed
Keplerian motion. At the same time, for some problems of mechanics of space
flight, the formulation of which is different from the tasks of the celestial
mechanics, the classical forms of the equations are represented too much com-
plex, and it can appear effective to introduce new variables describing the
orbital motion. At the same time, earlier known schemes for the derivation
of equations of perturbed Keplerian motion, such as the scheme based on the
evaluation of brackets of Lagrange for elliptical orbit elements, introduced in
the course of celestial mechanics by Tisserand [112], Duboshin’s scheme [45],
based on geometrical constructions, and Lurie’s scheme [70], based on the
fixation of vectorial expressions of unperturbed motion, are represented ex-
cessively bulky which hampers the introduction of new variables, convenient
for particular problems.

Let us show by examples [93] that the developed technique allows rather
simply to build new forms of the equations of perturbed Keplerian motion. Let
us consider the motion of the satellite on a near-circular orbit. The deduced
equations of perturbed motion have a singularity at e = 0, therefore their
use in the case of eccentricities, close to zero is inconvenient. Besides, the
concept of eccentricity for orbits of satellites around the Earth close to a circle
often has not the special sense, since the deviations taken into account by the
eccentricity of the orbit from the circle are commensurable with the deviation
of orbits from Keplerian ones, introduced by disturbances, for example, by the
eccentricity of the gravitational field of the Earth.

Classically, in case of small eccentricities, in the equations obtained for
the general case, new variable are introduced, the variables of Lagrange λ1

and λ2, λ1 = e sin ωπ, λ2 = e cosωπ. Thus the equations of perturbed motion
do not have singularities at e = 0, but as reference trajectory for an almost
circular orbit, Keplerian motion on an elliptical orbit is chosen.

Since motions on elliptical and circular orbits have qualitative differences,
the introduction of variables of Lagrange results in complication of the equa-
tions. For introduction of variables of Lagrange it is necessary to pay for their
redundant awkwardness. Thus, for example, λ1, λ2, describing the form of the
orbit in these equations, depend on the normal component of the perturbing
forces, though it is obvious that the normal component should not influence
the form of the orbit. Certainly, the techniques of research of these equations
developed in celestial mechanics and the obtained results quite pay back for
the redundant awkwardness of these equations.

From the point of view of mechanics in the case of an almost circular orbit
of motion of a satellite as reference orbit of unperturbed motion it is natural
to consider a circular Keplerian orbit.

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

0:
48

 0
6 

Ju
ne

 2
01

6 



56 Dynamics of Tethered Space Systems

In this case instead of (2.83) let us suppose

R = p (1 + b1), Ṙ = b2

√
µ/p, (2.88)

and consider (2.88) as the formulas of introduction of the new variables b1, b2.
By virtue of the statement of the problem b1 and b2 are small, bi ¿ 1, (i =
1, 2).

Differentiating the first equation (2.88) with respect to time we obtain

Ṙ = ṗ (1 + b1) + p ḃ1, ⇒ ḃ1 = b2

√
µ/p3 − 2(1 + b1)

2
F02.

Differentiating the second equality (2.88), taking into account (2.69),
(2.82), we obtain

R̈ = ḃ2

√
µ

p
− 1

2
b2

√
µ

p3
ṗ =

µp

R3
− µ

R2
+ F̃01, ⇒

ḃ2 = b2(1 + b1)F̃02 + F̃01 −
√

µ

p3

b1

(1 + b1)3
.

Thus, for an orbit close to a circular one the equations of perturbed Kep-
lerian motion look like

Ω̇ = z
sin u

sin i
F̃03,

di

dt
= z cosuF̃03,

γ̇ = 2zsF̃02,

∆u̇ =
√

µ

p3
0

(
1

s3/2z2
− 1

)
− Ω̇ cos i,

ḃ1 = b2

√
µ

p3
− 2z2F̃02,

ḃ2 = b2zF̃02 + F̃01 −
√

µ

p3

b1

z3
,

(2.89)

where z = 1+ b1, s = 1+γ, p = p0(1+γ), ∆u = u−u0, p0, u0 are accordingly
focal parameter and the argument of latitude of the referenced unperturbed
circular orbit, u̇0 =

√
µ /p3

0 , γ is small value following from the problem
statement.

After the introduction of the transformation of variables

R = p0(1 + b1), Ṙ = b2

√
µ

p0
(2.90)
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Equations of Motion of Space Tether Systems 57

the equations of motion take the form

Ω̇ = zs−1F̃03
sin u

sin i
,

di

dt
= zs−1F̃03 cos u,

∆u̇ =
√

µ

p3
0

(√
s

z2
− 1

)
− Ω̇ cos i,

ḃ1 = b2

√
µ

p3
0

,

ḃ2 =
√

µ

p3
0

γ − b1

z3
+

√
p0

µ
F01,

γ̇ = 2zsF̃02,

(2.91)

where the same notations, as in (2.89), are used.
The obtained new forms of equations (2.89), (2.91) can effectively be used

in the task of fast numerical analysis of motion of a satellite on orbits close
to a circle, when the results obtained in celestial mechanics can not be used
(for example, in the problems of development both of the analysis of attitude
control systems and stabilisation of satellites about the mass centre, when the
calculation of parameters of orbital motion is necessary; usually this calcula-
tion does not require high accuracy, but often, for example, because of action
of aerodynamic forces, it is impossible to take advantage of the approximated
final formulas).

Let us point out that it is better to execute the numerical integration of
equations (2.89), (2.91) with respect to the new independent variable u0, the
argument of latitude of the unperturbed orbit.

Let us also point out that equations (2.89), (2.91) allow essentially sim-
plify obtaining the final approximated formulas of change of orbit parameters.
Hence, the known formulas of disturbances of orbital motion from the second
zonal harmonics [46] for circular orbits for equations (2.91) are obtained sim-
ply as the result of the first iteration of an allocation procedure.

Let us consider now the problem of motion of two bodies on the neighbor-
ing orbits. This problem is relevant for understanding of motions of groups
of satellites and the motion of a basic satellite and a subsatellite. In these
problems it is natural to describe the motion of other bodies in relation to
the orbit of the basic satellite (to the basic orbit). As the inclination of orbits
is small, the use of the Euler angles is unacceptable. In celestial mechanics,
in this case artificial reception (introduction of an average longitude or La-
grange’s variables ) for the avoidance of degeneration in the equations is used
[46].

From the point of view of mechanics such a method is considered a little
bit artificial. Everything said before about the introduction of variables of
Lagrange for the motion of satellites on almost circular orbits is valid also in
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58 Dynamics of Tethered Space Systems

this case. For small inclinations it is natural to use another triple of angles
of orientation, namely angles convenient for small inclinations of the basic
planes.

Let us introduce the right-handed coordinate systems with the origin in the
attracting centre C. CX∗Y ∗Z∗ is a non-rotating coordinate system. CXY Z is
the coordinate system connected to the basic orbit, and the axis CZ is directed
to the binormal of the orbit. Cxyz is the coordinate system connected to the
motion of the subsatellite. The axis Cx is directed from the attracting centre
to the mass centre of the subsatellite, the axis Cz is in the direction of the
vector of moment of momentum of its orbital motion (binormal of the orbit).

Let us select Bryant angles ϕ1, ϕ2, ϕ3 [126] (aircraft angles, ϕ1, ϕ2, ϕ3

— respectively yaw, pitch and roll angles) as angles of orientation of Cxyz in
CXY Z.

Let ~ω be the angular-velocity vector Oxyz in OXY Z, and ~ω∗ be the
angular-velocity vector OXY Z with respect to OX∗Y ∗Z∗. Then on the basis
of the theorem of change of moment of momentum we obtain

~L′ + (~ω + ~ω∗)× ~L = ~R× ~F ∗. (2.92)

Using the relations between projections of the angular velocity on the axis
of the moving system of coordinates and derivatives of the Bryant’s angles

ω1 = ϕ̇1 cos ϕ2 cosϕ3 + ϕ̇2 sin ϕ3,

ω2 = −ϕ̇1 cosϕ2 sinϕ3 + ϕ̇2 cos ϕ3,

ω3 = ϕ̇1 sin ϕ2 + ϕ̇3,

we obtain similarly to (2.48), (2.50)

ϕ̇1 =
RF03

L

cos ϕ3

cos ϕ2
+

1
cos ϕ2

(ω∗2 sin ϕ3 − ω∗1 cosϕ3) ,

ϕ̇2 =
RF03

L
sinϕ3 − (ω∗1 sin ϕ3 + ω∗2 cos ϕ3) ,

ϕ̇3 =
L

R2
− ω∗3 − ϕ̇1 sin ϕ2.

(2.93)

Or expressing ω∗1 , ω∗2 , ω∗3 through projections ~ω∗ on axes CXY Z ω∗01, ω∗02,
ω∗01, we obtain

ϕ̇1 =
R

p

cosϕ3

cosϕ2
F̃03 − ω∗01 − tanϕ2(ω∗02 sin ϕ1 − ω∗03 cos ϕ1),

ϕ̇2 =
R

p
sin ϕ3F̃03 − ω∗02 cosϕ2 − ω∗03 sin ϕ1,

ϕ̇3 =
√

µp

R2
+

1
cos ϕ2

[ω∗02 sin ϕ1 − ω∗03 cos ϕ1 −
R

p
cos ϕ3 sin ϕ2F̃03]. (2.94)
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Equations of Motion of Space Tether Systems 59

Depending on the system of coordinates connected to the orbital motion
of the basic satellite, ω∗01, ω∗02, ω∗03 have different forms. In the orbital system
of coordinates

ω∗01 = Ω̇a sin ia sin ua +
dia
dt

cos ua,

ω∗02 = Ω̇a sin ia cosua − dia
dt

sin ua,

ω∗03 = u̇a + Ω̇a cos ia.

(2.95)

In the “perigee” system of coordinates [16] the axis CX is directed along the
position vector of the pericentre of the basic orbit. We have

ω∗01 = Ω̇a sin ia sin ωπa +
dia
dt

cos ωπa,

ω∗02 = Ω̇a sin ia cosωπa − dia
dt

sin ωπa,

ω∗03 = ω̇πa + Ω̇a cos ia. (2.96)

In the half-connected system CX∗Y ∗Z∗, for which axis CX∗ lies in the
equatorial plane of the Earth and coincides with the direction of the ascending
node of the basic orbit,

ω∗01 =
dia
dt

, ω∗02 = Ω̇a sin ia, ω∗03 = Ω̇a cos ia. (2.97)

The index “a” designates the variables appropriate to the motion on the basic
orbit (of the basic satellite). In all cases following from the formulation of the
task ϕ1, ϕ2 are small values.

In order to obtain the complete equations of perturbed relative motion of
the subsatellite, the equation (2.92) should be supplemented by the equations
of relative change of the focal parameter and the distance from the attracting
centre.

We enter new variables δ, bC1, bC2 as follows

pc = pa(1 + γc), Rc = Ra(1 + bc1), Ṙc = Ṙa + bc2

√
µ

Ra
. (2.98)

The index “c” designates variables of orbital motion of the subsatellite.

Because of the explained technique it is possible to obtain the following
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60 Dynamics of Tethered Space Systems

equations:

γ̇c = 2
Ra

pa

[
(1 + bc1)F̃02c − F̃02a(1 + γc)

]
,

ḃc1 = bc2

√
µ

R3
a

− Ṙa

Ra
bc1,

ḃc2 =
√

µ

R3
a

[
pa

Ra

(
1 + γc

(1 + bc1)3
− 1

)
+ 1− 1

(1 + bc1)
2

]
+

√
Ra

µ
(F01c − F01a) +

1
2
bc2

Ṙa

Ra
, (2.99)

Equations (2.94), (2.96) are equations of perturbed motion of the subsatel-
lite varying about the orbit of the basic satellite. They may be easily linearized
along the basic orbit.

For the motion on a circular orbit it is possible to use the following trans-
formation of variables

pc = pa(1 + γc), Rc = pa(1 + bc1), Ṙc = bc2

√
µ

pa
. (2.100)

Then

γ̇c = 2(1 + bc1)F̃02c − 2(1 + ba1)F̃02a(1 + γc),

ḃc1 = bc2

√
µ/p3

a − 2(1 + bc1)(1 + ba1)F̃02a,

ḃc2 = bc2(1 + ba1)F̃02a +
√

µ

p3
a

γc − bc1

(1 + bc1)3
+

√
pa

µ
F01c,

(2.101)

where γc ¿ 1 and bi ¿ 1 by virtue of the statement of the tasks. Equa-
tions (2.94), (2.101) allow with the use of (2.91) to construct the effective
computational scheme.
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3

Analysis of the Motion of TSS

3.1 Regular attitude motions of TSS

3.1.1 On application of the averaging method

The method of averaging is a mathematically justified method of research
and it is based on a number of strictly proven theorems [32, 51, 80, 123]. On
the other hand, the method of averaging is based on the wide evidence of
its successful practical application in the investigation of various problems.
And due to its “physicality” the method of averaging was used in celestial
mechanics and for problems of non-linear oscillations much earlier than it has
been mathematically justified. Now the domain of application of the method
of averaging is a little wider than the domain where it is justified. Thus,
generally speaking, the results of researches can be incorrect and hence direct
comparison with results of numerical integration of the complete equations is
the only way of checking its validity.

Now the method of averaging is a ramified, well advanced tool of applied
research containing various algorithms (schemes, operators) of averaging. Si-
multaneously the formal application of these algorithms is possible only in
cases of rather simple systems of equations (for example, with one rotating
phase [82]). For the investigation of rather complex systems the application
of the method of averaging assumes the determination of the area of the in-
vestigated motion, the mode of motion and the choice of the most suitable
algorithm of averaging. In other words, the application of the method of av-
eraging for the investigation of rather complex systems represents a certain
problem. The attempts of formal application of the method of averaging some-
times does not give meaningful results [77].

Thus, for the research of complex problems of dynamics by the method
of averaging it is necessary to correlate the system of the equations of the
problem with mathematically justified systems, to carry out the choice of the
scheme of averaging and to reduce the system of the equations of the problem
to the appropriate form. As the formulation of the theorems of the method of
averaging and their proof is given in the language of mathematical analysis,
it is necessary to estimate numerically real deviations of averaged trajectories
from true ones. The successful application of the method of averaging is pos-
sible also when the problem is not resulting into mathematically reasonable

61



62 Dynamics of Tethered Space Systems

cases. Thus the qualitative analysis of possible modes of motion and the strict
numerical control of results are especially necessary.

The right parts of the equations of perturbed motion of the considered sys-
tem, generally speaking, are periodic with respect to each of the three angular
variables: ω is the phase of longitudinal oscillations, ϕ is the angle of pure
rotation of the system about the mass centre, ν is the angle of pure rotation
of the mass centre. I.e., the equations of perturbed motion contain three ro-
tating phases. The relations between average frequencies of oscillations of the
system on these variables depend on initial parameters of motion and elastic
properties of the tether and can be various. Therefore methods of research of
perturbed motion should be various also.

We from now on assume that the stiffness of the tether is high enough and
the average frequency of longitudinal oscillations significantly surpasses the
frequency of the average orbital motion. Concerning the average frequency
of rotation of the tethered system around the mass centre depending on the
considered mode of motion various assumptions are made. Basic attention is
given to the evolution of parameters of motion of the system quickly rotating
about the mass centre, i.e., to the mode of its rotational motion about the mass
centre if the average frequency of rotation of the tethered system significantly
surpasses the frequency of average orbital motion.

In such a statement of the problem the equations of motion of the sys-
tem refer to the most difficult class to be researched, the so-called “strongly
perturbed systems” [51], the methods of research of which are far from being
complete. A classical example of a strongly perturbed system is the problem
of the motion of the mass centre of the Moon in the field of attraction of
the Earth and the Sun. The history of construction of satisfactorily accurate
solutions of this problem comprises more than a hundred years.

It is known [51] that the application of the method of averaging to strongly
perturbed systems depending on the operator of smoothing and the choice of
generating (nonzero) solutions can give both good and incorrect (even ab-
surd) results. Therefore, depending on the relation of average frequencies and
the mode of motion of the system we apply various operators of smoothing:
the operator of averaging along the generating solution and the operator of
averaging with respect to the fast variable. We compare the solution of the av-
eraged equations with results of numerical solutions of the complete equations
of motion in each case.

3.1.2 Influence of gravitational oscillations

It is everywhere supposed in this chapter that the values of order ε1
2 are

negligible small, where ε1 = r/R (Fig. 1.3). The influences of the central
Newtonian field of forces on the relative motion of the tethered system with
accuracy to the members up to ε1

2 are described by the perturbed function

U =
1
2

µ

R3
r2

(
3(~er, ~eR)2 − 1

)
, (3.1)
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Analysis of the Motion of TSS 63

where ~er = ~r/r, ~e1 is the unit vector of the axis Ox, ~eR = ~R/R is the unit
vector of the local vertical. The trajectory of the mass centre with the same
accuracy is the unperturbed Keplerian orbit.

The projections of the perturbed acceleration of the Newtonian field of
forces on the axes of the moving system of coordinates are

F1 =
µ

R3
r
(
3(~e1, ~eR)2 − 1

)
,

F2 = 3
µ

R3
r(~e1, ~eR)(~e2, ~eR), (3.2)

F3 = 3
µ

R3
r(~e1, ~eR)(~e3, ~eR),

where ~ei are unit vectors of the moving system of coordinates, (~e1, ~eR) =
cos θ sin ϕ sin(ν−ψ)+cos ϕ cos(ν−ψ), (~e3, ~eR) = − sin θ sin(ν−ψ), (~e2, ~eR) =
cos θ cos ϕ cos(ν − ψ) sin ϕ cos(ν − ψ). One can obtain equation (3.2) either
directly from equation (2.2), or from equation (3.1) with help of equation
(2.77).

We assume that the angular velocity of rotation of the system about its
mass centre is essentially larger than the angular velocity of its orbital motion,
namely, the square of the ratio of the second one to the first one is a small

value
µ

p3

r4

L2
= ε2 ¿ 1. Concerning the velocity of change of the phase of

longitudinal oscillations we assume that its value has the order not smaller
than the value of angular velocity of relative rotation.

3.1.3 Motion due to longitudinal oscillations of small ampli-
tude

We consider in the beginning the mode of motion without loss of tension
(without disappearance of the stress of stretching of the tether) with, in com-
parison with length of the tether, small amplitude of longitudinal oscillations
of the system (b/r0)2 = ε3 ¿ 1 [5]. Such a mode of motion is supposed in most
projects of use of TSS, and simultaneously it is the simplest for research. The
equations of motion in the considered mode contain three small values ε1, ε2

and ε3, and the equations of perturbed motion have a simpler form (2.68),
(2.79). The generating solution is represented by the formulas (2.31), (2.34).

We average the equations of perturbed motion along the generating so-
lution keeping only terms of first order of smallness with respect to the in-
troduced small values. Thus, in the studied mode of motion according to the
analysis of unperturbed motion the resonances of lowest orders 1:1 and 1:2
cannot take place. Therefore for any ratio of the average frequencies of the
longitudinal oscillations and the relative rotation of the system the equations
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64 Dynamics of Tethered Space Systems

of first approximation are correct:

ψ̇ = N1 cos θ sin2(ν − ψ),

θ̇ = N1 sin θ cos(ν − ψ) sin(ν − ψ),

ν̇ =
√

µ

p3
(1 + e cos ν)2,

L̇ = 0, ḃ = 0,

(3.3)

where

N1 = −3
2

µ

p3

r2
0

L
(1 + e cos ν)3.

Therefore, in the considered mode the influence of the Newtonian field of
forces does not change the amplitude of the longitudinal oscillations and the
value of the moment of momentum of the system in first approximation.

To obtain equation (3.3) one can substitute the generating solution (2.31),
(2.34) into the equations of the perturbed motion (2.68), (2.79), and taking
into account expressions (3.2) for perturbing forces, apply the averaging op-
erator along the generating solution.

Comparing equation (3.3) with similar equations of first approximation
for a symmetric rigid body [16, 18] it is easy to see that they coincide up to
notations. This means that for the considered mode of motion of the system
the evolution of the moment of momentum of the system and the dumb-bell
with length of the bar r0 coincides in first approximation.

We pass in the system of equations (3.3) from the independent variable t
to the new independent variable ν by making use of the dependence

dν =
√

µ

p3
(1 + e cos ν)2dt,

which we obtain from the third equation of (3.3):

dψ
dν

= N0(1 + e cos ν) cos θ sin2(ν − ψ),

dθ

dν
= N0(1 + e cos ν) sin θ cos(ν − ψ) sin(ν − ψ).

(3.4)

Here N0 = −3
2

√
µ

p3

r2
0

L
.

The detailed analysis of these equations is given in [16]. The equations
(3.4) can be analytically integrated only in the specific case of a circular orbit
of motion of the mass centre. The basic evolutionary effects in the general case
are determined by averaging of the equations (3.4) with respect to variable ν

dθ

dν
= 0,

dψ

dν
= −3

4

√
µ

p3

r2
0

L
cos θ. (3.5)
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Analysis of the Motion of TSS 65

Thus, the basic influence of the central Newtonian field of forces on the
motion of the system in the considered mode is determined by the fact that
“the vector of moment of momentum performs a precession with constant
angular velocity around the normal to the plane of orbit, keeping the angle
between the two vectors constant” [18].

The accuracy of equations (3.5) is much lower than the accuracy of equa-
tions (3.4), since equations (3.5) are the equations of first approximation with
respect to the small parameter

√
µ

p3

r2
0

L
=
√

ε2.

In Figs 3.1–3.3 characteristic plots of the deviations of the solutions of
the averaged equations of first (equation (3.3) and second equation (3.5))
averaging of the solutions of the non-averaged equations are shown. The cal-
culations were carried out for the following parameters: parameters of the
orbit of motion of the mass centre: e = 0.2, p = 7885 km; parameters of the
system: d = 1000 m, cm/d = 0.1 s−2; initial values: L/d2 = 0.18 s−1, r = r1 =
1080m, ṙ = 0, ψ = π/4, θ = π/6, ϕ = 0, ν = 0. In these calculations and
further on, the value of the gravitational parameter is assumed to be equal to
the gravitational parameter of the Earth µ = 3.986003 · 105 km3s−2.

For such determined parameters the amplitude of the longitudinal os-
cillations of the system in unperturbed motion is equal b ≈ 113.9m, and
r0 ≈ 1193.9 m.

In Fig. 3.1 and Fig. 3.2 deviations of the solution of the averaged equations
(3.3) (line “Av”) from the solution of the exact equations (line “Nonav”) for
the initial interval of time are represented. It is visible that for all variables
the deviations have periodic character. For angles of orientation of the mo-
ment of momentum (Fig. 3.1a) and (Fig. 3.1b) the deviations do not surpass
0.00008 rad, and for the specific moment of momentum (Fig. 3.2a) and for
the amplitude of longitudinal oscillations (Fig. 3.2b) the deviations are less
than 0.01% and 0.04%, respectively. Calculations performed for a long-time
interval show that values of deviations of the solution of the equation (3.3)
from the solution of the exact equations are kept in prescribed limits, a little
bit decreasing for ν ≈ nπ.

In Fig. 3.3 solutions of equations (3.4) and (3.5) are represented. It is visible
that deviation of the solution averaged with respect to ν of the equations
(3.5) (the lines “AV”) from the solution of the equations (3.4) have periodic
character with a period that approximately is equal to the orbital period of
the system. The maximum deviations for angles ψ (Fig. 3.3a) and θ (Fig. 3.3b)
do not surpass 0.07 rad and 0.0016 rad, respectively.

We point out that for the given mode of motion the application of the op-
erator of averaging with respect to the angular variable ϕ and ω1 to equations
(2.68), (2.74) and also on the angular variable ϕ0 and ω3 to equations (2.76)
has the same result, namely equations (3.3).
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FIGURE 3.1
Variation of motion parameters on an initial interval of time.
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FIGURE 3.2
Variation of motion parameters on an initial interval of time.
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FIGURE 3.3
Deviation of angles ψ and ϑ from their values corresponding to a uniform
precession.
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Analysis of the Motion of TSS 69

3.1.4 Motion with longitudinal oscillations of large ampli-
tude

We consider the mode of motion of the system when the amplitude of the
longitudinal oscillations is not small in comparison with the length of the
tether and a motion losing connection is possible [87, 90].

For the research of this mode the application of the operator of smoothing
along the generating solution is connected to excessively complex transforma-
tions and calculations. Thus, even in the case of a rather stiff tether when the
amplitude of its stretching is small in comparison with its length, the generat-
ing solution can be constructed analytically simply enough, by “pasting” the
solutions of free motion and harmonic oscillations for the active tether (2.41),
the fulfilment of the operation of averaging along this solution is extremely
inconvenient, and obviously it is not possible to carry out this operation ana-
lytically.

The most expedient technique of research of the considered mode of motion
is the application of the operator of averaging with respect to the angular
variable ω3 and ϕ0 to the equations (2.76), since it allows to apply the most
developed schemes of averaging, the algorithms of averaging of independent
rotating systems.

We consider non-resonance motion of the system with the assumption
that ω12 and 2π are rationally incommensurable. Then the equations of first
approximation obtained by averaging of equations (2.76) with respect to ϕ0

and ω3, look like

dθ

dϕ0 = N∗
1 sin θ cos(ν − ψ) sin(ν − ψ),

dψ

dϕ0 = N∗
1 cos θ sin2(ν − ψ),

dα

dϕ0 = −N∗
1 cos2 θ sin2(ν − ψ),

dL

dϕ0 = 0,
dbv

dϕ0 = 0, (3.6)

where

N∗
1 = −3

2
µ

p3

r∗4

L2
(1 + e cos ν)3 , r∗4 =

1
2π

2π∫

0

dω3

(av − bvΦ3(ω3))
4 ,

and it is assumed that at the initial moment of time ϕ = ϕ0, i.e., α0 = 0.
The change of ν does not depend on the relative motion of the system and is
determined by equation

dν

dt
=

√
µ

p3
(1 + e cos ν)2, (3.7)
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70 Dynamics of Tethered Space Systems

and the relation between t and ϕ0 (and therefore ν and ϕ0) is the same as in
unperturbed motion

dϕ0

dt
= Lv2. (3.8)

Equations (3.6)–(3.8) represent the complete system of equations of first
approximation with respect to small parameters ε1 and ε2. From equations
(3.6) follows that in first approximation the amplitude of the longitudinal
oscillations and the value of the moment of momentum are constant, and the
evolution of the orientation of the moment of momentum coincides with the
evolution of the orientation of the moment of momentum of a dumb-bell with
length of the bar r∗ but in “new time” ϕ0.

For construction of conformity between t and ϕ0 (ν and ϕ0) by virtue of
the periodicity of ν in ϕ0 there is no necessity to integrate equation (3.8) on
the whole interval of time. It is enough to know the conformity between t and
ϕ0 on one period of the longitudinal oscillations:

t =

ϕ0∫

ϕ0
0

dϕ0

Lv2
=

ω12

h
ϕ0

ω12

i
∫

ϕ0
0

dϕ0

Lv2
+

ϕ0−ω12

h
ϕ0

ω12

i
∫

ϕ0
0

dϕ0

Lv2
=

=
ω12

2π

[
ϕ0

ω12

]
1
L

2π∫

0

dω3

(av − bvΦ3(ω3))
2 +

ϕ0−ω12

h
ϕ0

ω12

i
∫

ϕ0
0

dϕ0

Lv2
= (3.9)

=
r2
∗
L

ω12

[
ϕ0

ω12

]
+

ϕ0−ω12

h
ϕ0

ω12

i
∫

ϕ0
0

dϕ0

Lv2
,

where [·] means the integer part of a number, ϕ0
0 is the value of ϕ in the instant

of time t = 0.
From (3.9) follows that “time” ϕ0 in the instant when it is equal to an

integer number of periods of longitudinal oscillations ω12 coincides with “time”
ϕ0

av = Lt/r2
∗. Therefore ν, determined by equation

dν

dϕ0
=

√
µ

p3
(1 + e cos ν)2

r2
∗
L

, (3.10)

differs from the true value by a periodic term with period ω12, the value of
which has the order

√
ε2. Therefore, the complete system of equations (3.6),

(3.10) keep the order of accuracy of ε2 in relation to the parameters of motion
of the system.

Similar reasoning results in the conclusion that the solution of the system
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Analysis of the Motion of TSS 71

of equations

dθ
dϕ0

av

= r2
∗
L

dθ
dt

= N∗
1 sin θ cos(ν − ψ) sin(ν − ψ),

dψ
dϕ0

av

= r2
∗
L

dψ
dt

= N∗
1 cos θ sin2(ν − ψ),

dα
dϕ0

av

= r2
∗
L

dα
dt

= −N∗
1 cos2 θ sin2(ν − ψ),

dν
dϕ0

av

= r2
∗
L

dν
dt

=
√

µ
p3 (e + cos ν)2 r2

∗
L

(3.11)

differs from the solution of system (3.6)–(3.8) for θ , ψ and α by periodic terms
with period ω12, the values of which have the order of ε2.

Performing in equations (3.6), (3.10) or in equations (3.11) differentiation
with respect to ν we obtain equations similar to (3.4)

dψ
dν

= N∗
0 (1 + e cos ν) cos θ sin2(ν − ψ),

dθ

dν
= N∗

0 (1 + e cos ν) sin θ cos(ν − ψ) sin(ν − ψ),

dα
dν

= −N∗
0 (1 + e cos ν) cos2 θ sin2(ν − ψ),

(3.12)

N∗
0 = −3

2

√
µ

p3

r∗4

r2∗

1
L

,

the solution of which differs from the solutions of the corresponding equations
of first approximation by a periodic term, the value of which has the order of
ε2.

Therefore, the evolution of the orientation of the moment of momentum
of the system in first approximation may be determined as the evolution of
the moment of momentum of a dumb-bell with the length of the bar equal to√

r∗4/r2∗.
The equations describing the basic evolutionary effects of the motion of

the system, which are the equations of its secular motion, we determine by
averaging of equation (3.12) with respect to ν:

dθ

dν
= 0,

dψ

dν
=

1
2
N∗

0 cos θ, α = (ψ − ψ0) cos θ. (3.13)

From equations (3.12), (3.13) it is possible to make the conclusion that
the value of the amplitude of the longitudinal oscillations for a motion both
without losing and with losing the connection does not change qualitatively the
character of the evolution of the parameters of the motion of the system and
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72 Dynamics of Tethered Space Systems

determines only the velocity of the precession of the moment of momentum
vector in secular motion and the amplitude of its deviations from uniform
precession.

Coinciding with equations (3.11), (3.12) the equations of the first approxi-
mation describing changes of orientation of the moment of momentum vector
of the relative motion of the system may be obtained by using also other meth-
ods of averaging. In fact, if we average the equations of perturbed motion in
the form (2.76) only with respect to the variable ϕ0 but not with respect to
the variable ω3 then the equations take the form

dθ

dϕ0
= Ñ1 sin θ cos(ν − ψ) sin(ν − ψ),

dψ

dϕ0
= Ñ1 cos θ sin2(ν − ψ),

dL

dϕ0
= 0,

dbv

dϕ0
=

d(1/v)
dϕ0 F1avϕ0,

dω3

dϕ0
=

2π

ω12
−

[
dbv

dϕ0

(
Φ3(ω3)− ∂av

∂bv

)](
bv

dΦ3

dω3

)−1

,

(3.14)

where
Ñ1 = −3

2
µ

p3

1
ν4L2

(1 + e cos ν)3 .

We pass in equations (3.14) to differentiation with respect to t. Thus we
take into account that the last two equations (the equations of longitudinal
oscillations) are equivalent by virtue of their deduction to equation

r̈ − L2

r3
= −T + F1avϕ0 (3.15)

and, therefore, with the help of the replacement of the variable it is possible
to pass to the representation r = a− bΦ2(ω2) and appropriate equations in a
form (2.75).

Averaging the equations with respect to ω2 we finally obtain

dψ

dt
= N2 cos θ sin2(ν − ψ),

dθ

dt
= N2 sin θ cos(ν − ψ) sin(ν − ψ),

dL

dt
= 0,

db

dt
= 0, (3.16)

where

N2 = −3
2

µ

p3

r̃2

L
(1 + e cos ν)3, r̃2 =

1
2π

2π∫

0

(a− bΦ2(ω2))
2
dω2.
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Analysis of the Motion of TSS 73

It is not difficult to check with the help of replacement of variable of
integration that r̃2 ≡ r∗4/r2

∗
Thus, the use of the equations of perturbed motion in the form of (2.68),

(2.75) and the application of the operator of averaging with respect to the
variables ϕ and ω2 to them results in the equations of the first approximation.
However, such an approach, in comparison with averaging of the equations of
the kind (2.76) with respect to the variables ϕ0 and ω3, is not acceptable for
investigations of resonant modes of motion and does not give ε2 approxima-
tions for an angle of pure rotation of the system.

Application of the operator of averaging, with respect to the angular vari-
ables ϕ and ω1, to the equations of the kind (2.68), (2.74) results in the
equations distinguished from (3.12) only in the length of the bar of the equiv-
alent dumb-bell: instead of r∗4/r2

∗ it is a2 +b2/2. Performed calculations show
that significant deviations of the solution of the averaged equations from the
non-averaged equations occur here.

In Fig. 3.4 and Fig. 3.5 the characteristics of the deviations of the solu-
tions of the averaged equations from non-averaged ones are represented. The
calculations were carried out for the following parameters: orbit parameters:
e = 0.2, p = 7885 km; system parameters: d = 1000m, cm/d = 5 s−2; initial
conditions of motion: L/d2 = 0.1 s−1; r = 1079.27m, ṙ = 0, ψ = π/4, θ =
π/6, ν = ϕ = 0.

For such parameters the change r in the unperturbed motion occurs be-
tween values r1 = 500 m and r2 = 1079.27m and the period of longitudinal
oscillations is equal to ω11 = 10.09 s.

In Fig. 3.4 changes of angles ψ (Fig. 3.4a) and θ (Fig. 3.4b) on the initial
interval of time are represented. From Fig. 3.4 it is visible that deviations
of the solution of the averaged equations (3.6), (3.10) (line “Av”) from the
solution of the exact equations (line “Nonav”) are almost periodic and do
not exceed 0.000035 rad. The calculations on a longer interval of time do not
reveal the change of the characteristics of the deviations. In Fig. 3.4 also the
deviation of the solution averaged with the help of the operator of averaging
with respect to the variables ϕ and ω1 of the equations (2.68), (2.74) (line
“Av*”) from the solution of the exact equations is visible.

In Fig. 3.5 solutions of the equations of the first approximation (3.12)
(line “Nonav”), the solution averaged with respect to ϕ and ω1 of the equa-
tions with length of the bar of the equivalent dumb-bell

√
a2 + b2/2 (line

“Nonav*”) and the solution of the equations of secular motion (3.13) (line
“Av”) are represented. It is visible that the solutions of the equations of first
approximation and the equations of secular motion have the character similar
to the appropriate solutions considered above in the example of motion of the
system (Fig. 3.4). It is visible on the initial interval of time that the deviation
of the solution of the averaged equations for the length of the bar

√
a2 + b2/2

from the solution of the equations of first approximation for the angle θ has
periodic character, reaching the value 0.00017 rad (Fig. 3.5a), and that for the
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FIGURE 3.4
Variations of angles ϑ and ψ on the time initial interval.
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FIGURE 3.5
Deviation of angles ϑ and ψ from their values at uniform precession.
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76 Dynamics of Tethered Space Systems

angle ψ this deviation monotonously grows approximately by 0.035 rad for one
period (Fig. 3.5b).

3.1.5 Slow rotation of the system

We assume now that the angular velocity of rotation of the system about the
mass centre is close to the value of angular velocity of the orbital motion, i.e.,
the ratio of the second to the first is not a small value:

√
µ

p3

r2

L
∼ 1.

This mode of motion corresponds to relative slow rotation of the system or to
its oscillations about the local vertical. Concerning the velocity of change of
the phase of longitudinal oscillations we assume that its value, as before, essen-
tially exceeds the angular velocity of the orbital motion, and now, therefore,
also the angular velocity of the relative motion:

L

r2

/
2π

ω11
= ε4 ¿ 1.

For the research of this motion of the system, use of the equations of
the perturbed motion represented by (2.68), (2.75) and application of the
operator of averaging with respect to the angular variable ω2 to them is most
expedient. The equations of first approximation with respect to parameter ε4,
constructed in that way, look like

ψ̇ =
N3

L

sin ϕ

sin θ
(~e1, ~eR)(~e3, ~eR),

θ̇ =
N3

L
cosϕ(~e1, ~eR)(~e3, ~eR),

L̇ = N3(~e1, ~eR)(~e2, ~eR),

ϕ̇ =
L

r2
av

− ψ̇ cos θ,

ḃ = 0, ν̇ =
√

µ

p3
(1 + e cos ν)3, (3.17)

where

N3 = 3
µ

p3
r̃2
av(1 + e cos ν)3, r̃2

av =
1
2π

2π∫

0

(a− bΦ2(ω2))
2
dω2,

1
r2
av

=
1
2π

2π∫

0

dω2

(a− bΦ2(ω2))
2 .
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Analysis of the Motion of TSS 77

Equations (3.17) are obtained by averaging of the equations (2.68), (2.75)
with respect to ω2 after the perturbing forces (3.2) were substituted.

The equations (3.17) are close to the equations of motion of the dumb-bell
in the Newtonian field of forces. The difference is only that the values r̃2

av and
r2
av are not equal. This difference is determined by the fact that the influence

of the Newtonian field of forces in first approximation is equivalent to the
influence on the dumb-bell with the length of the bar r̃av and the average
angular velocity is equal to the angular velocity of motion of the dumb-bell
with length of the bar rav.

Example. We consider a simple example that explains what we said. Let
the orbit of the mass centre be circular (e = 0), and the motion of the system
occurs in the plane of orbit θ = 0. Besides we assume that Φ2(ω2) ≡ cos(ω2).
This assumption, in particular, corresponds to the motion of two point masses
connected by a linear spring.

The equations of first approximation for the considered example we can
obtain from equation (3.17):

dL

dt
= −3

2

(
a2 +

b2

2

)
sin λ,

dλ

dt
=

L

a2

(
1−

(
b

a

)2
)3/2

−
√

µ

p3
,

db

dt
= 0,

(3.18)

where λ = ϕ − ν + ψ is the angle between ~er and ~eR. From the equations
(3.18) we obtain the equation of the change of the angle λ

λ̈ +
3
2

µ

p3
zk sin 2λ = 0, (3.19)

which has the first integral

hλ = λ′2 − 3zk cos2 λ, (3.20)

where

zk =

(
1 + 0.5

(
b

a

)2
)(

1−
(

b

a

)2
)−3/2

,

the prime designates differentiation with respect to ν. Equation (3.20) differs
from the equation of the corresponding motion of the dumb-bell [1] only by
the presence of the multiplier zk at cos2 λ. If (b/a)2 is negligible small, the
equations of first approximation of the system and the equations of motion of
the dumb-bell coincide.
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78 Dynamics of Tethered Space Systems

3.1.6 Energy dissipation due to the tether material

We assume that the damping properties of the tether caused by internal dis-
sipation of energy in its material are described through the equivalent of “vis-
cous friction” [25, 58, 117]. Then the perturbing accelerations of the dissipative
forces in relative motion of the system look like

~Fd = δχ

√
cm

d
ṙ~er, (3.21)

where χ is the dimensionless coefficient of damping, δ is defined in the same
way as in formula (2.23).

Concerning the value of the damping coefficient χ we assume similarly as
in [25, 117] that it is a small value χ ¿ 1.

As experimental research [11, 86] shows, the assumptions made above of
the damping properties of the tether are reasonable for many materials used in
the formation of flexible elastic connections (for cables, tethers, and springs).

We consider [5, 122, 87] the influence of dissipation of energy in the mate-
rial of the connection in the motion of the system where it is quickly rotating
in the central Newtonian field of forces: ε2 ¿ 1.

3.1.7 Essentially non-linear longitudinal oscillations

For the investigation of the motion it is necessary to use the equations of
perturbed motion in form (2.68), (2.75). As it was shown in subsection 3.1.2,
the application of the operator of averaging with respect to variable ω2 and ϕ
to these equations is correct and results in the construction of the equations
of the first approximation.

The equations of the first approximation constructed by such a method
look like

θ̇ = N2 sin θ cos(ν − ψ) sin(ν − ψ),

ψ̇ = N2 cos θ sin2(ν − ψ),

L̇ = 0,

ḃ = −
(

2π

ω11

)2
χb2

√
cm/d

∂V (r2)
∂r2

(
1 +

∂a

∂b

)J,

ȧ =
∂a

∂b
ḃ,

ν̇ =
√

µ

p3
(1 + e cos ν)2,

(3.22)D
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Analysis of the Motion of TSS 79

where

N2 = −3
2

µ

p3

r̃2

L
(1 + e cos ν)3, r̃2 =

1
2π

2π∫

0

(a− bΦ2(ω2))
2

dω2,

J =
1
2π

2π∫

0

δ

(
dΦ2(ω2)

dω2

)2

dω2.

From equations (3.22) it follows that in first approximation the dissipa-
tion of the energy in the material of the tether does not change the value of
the moment of momentum and the character of evolution of its orientation.
From (3.22) follows also that the external Newtonian field of forces practically
does not render an influence on the process of attenuation of the longitudi-
nal oscillations and the calculation of changes of parameters a and b in the
first approximation is carried out independently of the change of the other
variables of the system (3.22).

We note that the accuracy of equations (3.22) for the variables θ, ψ and L
is of the order of ε2 and for the variables a and b of the order of the value χ.

The integration of equations (3.22) is connected with certain peculiarities
caused by fact that the integrals determining r̃2 and J are not constant here
and are dependent on the slowly varying variables a and b. If the calculation
of the dependence of r̃2 on a and b does not cause basic difficulties, since the
parameters a and b can be taken out of the integral, for the calculation of
J for the mode of motion with loss of tension it is obviously not possible to
determine the dependence of J on a and b, since these parameters determine
the borders of integration:

J =
1
2π

2π∫

0

δ

(
dΦ2(ω2)

dω2

)2

dω2 =
1
2π

2π−γ2∫

γ2

(
dΦ2(ω2)

dω2

)2

dω2, (3.23)

where γ2 is found from the condition

a− bΦ2(γ2) = d. (3.24)

Therefore, direct use of the equations (3.22) for the calculation of the process
of attenuation of longitudinal oscillations is impossible in the motion with loss
of tension.

We calculate the derivative of J with respect to time. By virtue of (3.23),
(3.24) this is equal to

J̇ =
1
π

(
dΦ2(γ2)

dγ2

)2

γ̇2 =
ȧ− ḃΦ2(γ2)

πb

dΦ2(γ2)
dγ2

=

ȧ− ḃ a− d
b

πb
· dΦ2(γ2)

dγ2
. (3.25)
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80 Dynamics of Tethered Space Systems

Such as Φ2(·) is determined for initial values a and b− a0, b0,

dΦ2(γ2)
dγ2

=
ω11

2πb0

√
2V (a0 + b0)− 2V

(
a0 − b0

a− d

b

)
. (3.26)

The initial value of J is determined by integration (3.23) for a = a0, b = b0.
Thus, it is necessary to carry out the calculation in first approximation of

the changes of parameters of the longitudinal oscillations at motion with loss
of tension by integration of the following system of equations:

ḃ = −
(

2π

ω11

)2
b2χ√
cm/d

∂V (a + b)
∂(a + b)

(
1 +

∂a

∂b

)
J,

ȧ =
∂a

∂b
ḃ, (3.27)

J̇ = ḃ

∂a

∂b
+

d− a

b
2π2b2

ω11

b0

√
2V (a0 + b0)− 2V

(
a0 − b0

a− d

b

)
.

Calculations show that on the time interval of the order
(
χ
√

cm/d
)−1

the
solutions of equations (3.27) have high accuracy, and their absolute deviations
from the solutions of the complete equations have the order of χb0.

However, on a longer interval of time the accuracy of the solutions of the
equations (3.27) is deteriorated, thus monotonous increase of the deviations
of these solutions from the solutions of the exact equations takes place. This
increase of the deviations is connected with the non-linear character of oscil-
lations, namely, with change of the period of oscillations ω11 and the kind of
function Φ2(·) for the reduction of the amplitude of longitudinal oscillations.
Therefore for a more exact calculation of the changes of parameters of oscilla-
tions a and b on the equations (3.27) on a long interval of time it is required
to recalculate periodically the period ω11 of the oscillations and the function
dΦ2(γ2)/dγ2 for new values a, b.

We note that even in the case of recalculation of the period of oscilla-
tions ω11 and dΦ2(γ2)/dγ2 in each step of integration the integration of the
equations (3.27) is much easier than the integration of the exact equations
of motion. This is connected with fact that equations (3.27) do not contain
discretely varying parameters and the step size of integration in view of their
smoothness can be significantly larger than the step size of integration of the
exact equations.

3.1.8 Linear tether stretching

The equations of first approximation become significantly simpler in the for
practice important case when the stiffness of the tether is so large that the
value of stretching of the tether is small in comparison with its equilibrium
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Analysis of the Motion of TSS 81

length r − d/r0 ¿ 1 at r > d (d is nominal length of the connection). In this
case according to the formulas of unperturbed motion [57] in motion with
tense tether Φ2(ω2) is very close to cos(kt), Φ2(·) ≈ cos(·), dω2 = kd t, and
the period of longitudinal oscillations with large accuracy is determined by
the finite formulas.

Hence, according to the equations (2.79) and formulas (2.39)–(2.42) equa-
tions of the modification of energy of the longitudinal oscillations, averaged
with respect to ϕ over one period of oscillations, can be written as follows:

ḣ = −kb∗ sinω2(χ
√

cm/d b∗ sin ω2 + Fct) ∀ω2 ∈ [γ, 2π − γ]

and
ḣ = 0 ∀ω2 ∈ [0, γ] ∪ [2π − γ, 2π].

Averaging the equation of change of h with respect of ω2 and taking into
account that

ḣ = ḃ
∂V (r2)

∂r2
(1 +

∂a

∂b
),

we obtain that in this case the equations of the first approximation for longi-
tudinal oscillations look like:

ḃ = − k

ω11
b∗2

χ
√

cm/d

∂V (a + b)
∂(a + b)

(
1 +

∂a

∂b

) (π − γ1 +
1
2

sin 2γ1),

ȧ =
∂a

∂b
ḃ,

(3.28)

where

k =

√
cm

d
+ 3

L2

r4
0

, ω11 = 2τ0 +
2π − 2γ1

k
, τ0 =

√
d2 − r2

1

2V (r1)
,

b∗ =
r0 − d

cos γ1
, γ1 = arctan (

L
√

d2 − r2
1

k(r0 − d)r1d
), r1 = a− b.

In motion without loss of tension γ1 = 0, τ0 = 0, b∗ = b, a = r0 [5]. The
equation (3.28) is obtained from the previous equation by integration of the
right-hand side with respect to dω2 from 0 to 2π and divided by 2π, i.e., by
using the operator of averaging. The equations (3.28) describe modifications of
longitudinal oscillations. Modifications of orientation of rotation of the system,
obviously, will be described as a first approximation as well as in the equations
(3.22).

The calculation of the process of attenuation of longitudinal oscillations
on a long interval of time by equations (3.28) does not require recalculation
of the function Φ2(ω2), and the recalculation of the period of longitudinal
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82 Dynamics of Tethered Space Systems

oscillations is determined by the final formula and easily may be carried out
in each step of integration.

r̃2 =
1

ω11

{[
r2
1 +

1
3

(
d2 − r2

1

)]
2τ0 +

r2
0

k

(
2π + 2γ1 − 4

r0

d
γ1

)}
. (3.29)

The equation (3.29) is obtained by integration of r2 over the period of lon-
gitudinal oscillations. r is described by formulas (2.41), (2.42) in unperturbed
motion, i.e., (3.29) is an integral of r2 from formulas (2.41), (2.42) over one
period and divided by this period.

In Fig. 3.6 results of calculations of the process of attenuation of longi-
tudinal oscillations of the system for the following parameters are shown:
P = 7885 km, e = 0.2; cm/d = 5 s−2, χ = 0.01, d = 1000 m; r =
800m, L/d2 = 0.1 s−1, θ = π/6, ψ = π/4, ν = ϕ = 0.

It is visible that the solutions of the equations (3.27) (lines “Av;” 1 is the
variation of parameter a; 2, 3 are the variations of a+b and a−b respectively)
on an initial interval of time are good coordinated with the solutions of the
complete equations of motion (line “Nonav”). Their deviations on an interval
of hundred seconds do not exceed 1 m which for the amplitude of oscillations
makes about one percent. In Fig. 3.6 it is visible distinctly that with growing
time these deviations monotonously grow and already for t = 200 s the values
of deviations reach 3 m.
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FIGURE 3.6
Damping of longitudinal oscillations for the mode of loss of tension.

Deviations of the solution of the equations (3.28) (line “Av*” in Fig. 3.6)
from the solutions of the complete equations do not exceed 1% from the value
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Analysis of the Motion of TSS 83

of the amplitude of oscillations on all intervals of time for which calculations
were performed. The increase of these deviations is absent.

3.1.9 Averaging with respect to the phases of oscillations of
the unperturbed motion

Good accuracy is also given by the equations of first approximation, con-
structed with use of the equations of perturbed motion (2.68), (2.74), to which
the operators of averaging with respect to the averaged phases of oscillations
of unperturbed motion [87] are applied.

We introduce notations: ω̃11 is the time of motion when the system is
connected for one period of oscillations; 2τ0 is time of motion without connec-
tion for one period of oscillations. Therefore, the average frequency of motion
when the system is connected is equal to ωc

1 = (2π − 2γ)/ω̃11 and for losing

connection ωf
1 = γ/τ0 where γ = arccos

a− d

b
.

Then it is possible to present the operator of smoothing along the gener-
ating solution with large accuracy as

1
ω11

ω11∫

0

F (x̄, ω1(C, t)) dt ≈ ω̃11

ω11(2π − 2γ)

2π−γ∫

γ

F (x̄, ωc
1t) dωc

1t+

τ0

2ω11γ

γ∫

−γ

F
(
x̄, ωf

1 t
)

dωf
1 t, (3.30)

where x̄ is the vector of the slow variable and C is an arbitrary constant.
By carrying out averaging of the equations of perturbed motion with re-

spect to the variable ϕ and the variable ω1 according to the stated program
we obtain the equations of first approximation

ḃ = −χ

√
cm

d

ω̃11

ω11(2π − 2γ)

{cm

d
b [4(a− d)(π − γ − sin γ) +

b

(
π − γ − sin 2γ

2

)]
+ L2

[
1

(a + b)2
+

2b sin γ

d(a2 − b2)
−

4a

(a2 − b2)3/2
arctan

(a− b) cot γ/2
(a2 − b2)1/2

]}
×

[
∂V (a + b)

∂a

(
1 +

∂a

∂b

)]−1

,

ν̇ =
√

µ

p3
(1 + e cos ν)2,

θ̇ = N∗
2 cos(ν − ψ) sin(ν − ψ) sin θ,
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84 Dynamics of Tethered Space Systems

ψ̇ = N∗
2 cos θ sin2(ν − ψ),

L̇ = 0, ȧ =
∂a

∂b
ḃ, (3.31)

ω̃11 = 2

a+b∫

d

dr√
2V (a + b)− 2V (r)

, N∗
2 = −3

2
µ

p3

r̃∗
2

L
(1 + e cos ν)3,

r̃∗
2 = a2 + b2/2 +

1
ω11

(
τ0

γ
− ω̃11

2π − 2γ

)(
b2 sin 2γ

2
+ 4ab sin γ

)
.

In Figs 3.7, 3.8 results of computations of the motion of the system for
the following parameters are presented: P = 9000 km, e = 0.4; cm/d =
100 s−2, χ = 0.02, d = 1000 m; r = 1000 m, ṙ = 9 m s−1, L/d2 =
0.1 s−1, θ = 0.1745 rad, ψ = π/4, ν = ϕ = 0.
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FIGURE 3.7
Variations of ϑ and ψ angles.

In Fig. 3.7 graphs of the angles θ and ψ are presented. Deviations of the
solutions of equations (3.31) (broken curves in Fig. 3.7) from the solutions of
the exact equations (continuous curves in Fig. 3.7) for angles θ, ψ are smaller
than 0.000035 rad. In Fig. 3.9 the change of distance between bodies is shown.
Deviations of the solutions of the equations (3.31) (broken curves in Fig. 3.8;
1 denotes the change of parameter a; 2, 3 denote the change a + b and a − b
respectively) to the solutions of the exact equations (full curve) is less than
1% from the value of the amplitude of oscillations, i.e., smaller than 0.02m.

3.1.10 Phase of slow evolution

The amplitude of longitudinal oscillations of the system according to the equa-
tions of first approximation monotonously decreases to zero. Moreover, often
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FIGURE 3.8
Damping of longitudinal oscillations.

this process goes on quite quickly. Therefore the motion of the system during
attenuation of the longitudinal oscillations may be considered as the tran-
sitional mode to stationary motion, in which the amplitude of free elastic
oscillations is equal to zero. From the equations of first approximation follows
that in the transitive mode of motion the dissipation of energy in the material
of the connection does not change qualitatively the character of the evolution
of the vector of the moment of momentum.

In the stationary mode of motion (stage of slow evolution) in first approx-
imation with respect to the value of ε2 the motion of the system coincides
with the motion of a dumb-bell with length of the bar equal to r0, and the
value of the moment of momentum is constant (equation (3.3)). Moreover, it is
obvious that the simultaneous influence of dissipative forces of the tether and
the Newtonian field of forces on the rotating system results in a dissipation of
energy of its rotation. We estimate the reduction of the value and the possible
changes of orientation of the vector of the moment of momentum caused by
the dissipation of energy in the material of the tether.

We consider the influence of dissipation of energy in the material of the
tether on the evolution of the parameters of motion of the system in the
stationary mode of motion with an accuracy up to and including the second
order of smallness [92].

The algorithm of researches for such kind of problems is traditional and
consists of the following: the approximated solutions for the forced elastic
oscillations as functions of the variable describing the motion of the system
are constructed and then with the help of the method of averaging equations
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86 Dynamics of Tethered Space Systems

of the first approximation are constructed, based on which the analysis is
carried out. Thus, the second approximation with respect to small parameters
for the motion of all system is not constructed here and only in the second
approximation the influence of dissipation of energy in the material of the
tether on evolution of the motion of the system is investigated. The correctness
of such an algorithm of research requires that the second approximation with
respect to the small parameters of motion of the rigid system (the dumb-bell
system) should in a negligible small way differ from the motion described by
the equations of first approximation. In the other words, the correctness of
the algorithm requires that for the rigid system the first approximation should
describe all basic laws of motion. The reliance that this is so is given to us
by the Kolmogorov–Arnold–Moser theory. By its application to the motion
of a symmetric rigid body on a circular orbit [18] and certainly by numerous
calculations.

3.1.10.1 First approximation for longitudinal oscillations

Since the value of r0 is determined by equality of centrifugal and elastic forces
in unperturbed motion, and in the considered mode of motion the relation
of amplitude of elastic oscillations to the length of the tether is proportional
to the small value ε2, the changes of length of the tether are described with
accuracy up to and including the first order of smallness by the equation

z̈ + k2z + ξż =
µ

R3
r0

(
3(~e1, ~eR)2 − 1

)
+

2L0L1

r3
0

, (3.32)

where

z = r − r0, k =

√
cm

d
+ 3

L2

r4
0

, ξ = χ

√
cm

d
,

2L0L1

r3
0

is the value of change of the centrifugal accelerations for the rotation

of the tether in the gravitational field considered with an accuracy to the first
order of smallness from the equation of change of L:

L̇ = 3
µ

R3
r2
0(~e1, ~eR)(~e2, ~eR). (3.33)

Thus, in equation (3.32) oscillations of the length of the tether which are
caused both by the change of the forces acting along the line of the tether
and the moment of the gravitational forces, varying the velocity of rotations
of the system, are taken into account.

We allocate on the right-hand side of equations (3.32), (3.33) the fast
variable ϕ. For this purpose we use the following representations

(~e1, ~eR)(~e2, ~eR) = 0.5(α2 cos 2ϕ− α1 sin 2ϕ),

3(~e1, ~eR)2 − 1 = 1.5(α1 cos 2ϕ + α2 sin 2ϕ + α3 − 2/3),
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Analysis of the Motion of TSS 87

α1 = cos2(ν − ψ)− cos2 θ sin2(ν − ψ),

α2 = cos θ sin 2(ν − ψ),

α3 = cos2 θ sin2(ν − ψ) + cos2(ν − ψ).

The determination of the longitudinal oscillations of the tether in first
approximation corresponds to the following mechanical reasoning: since in
the considered motion ϕ is the single fast variable, for the construction of the
approached solution it is possible that one does not consider the change of
other variables for one period of change of ϕ, i.e., it is possible to consider

ψ, θ, L, ν in the equations (3.32), (3.33) as constant, and ϕ =
L

r2
0

(t− t0).

In fact, the solution of equation (3.33) in first approximation we find ac-
cording to the method of averaging (equation of the first approximation (3.3)).
Then

L2
1

r3
0

=
3
2

µ

R3
r0(α1 cos 2ϕ + α2 sin 2ϕ).

The first approximation for the forced longitudinal oscillations of system
described by equation (3.32) is constructed on the basis of the following state-
ment [92].

Statement. Let the elastic oscillations of system be described by equa-
tions

ẍ + k2x + 2ξẋ = ε1F (y) sin(ωt + t0),

ẏ = ε2Y (y, ωt),
(3.34)

where ε1, ε2 are small parameters in the sense that ε1/k2 ¿ 1 ε1/ω2 = ε2/ω =
ε ¿ 1; the value k2 − ω2 has the order k2 or ω2, i.e., the system is far from
the resonance 1:1; F, Y are quite smooth functions of their arguments. Then
the forced elastic oscillations of the system in the first approximation with
respect to the small parameter ε coincide with the oscillations described by
the function ε1F (y)x0 where x0 is the forced oscillation of the linear system

ẍ0 + k2x0 + 2ξẋ0 = sin(ωt + t0). (3.35)

Proof. We pass in (3.34) to the dimensionless “time” τ = ωt:

x′′ +
k2

ω2
x + 2

ξ

ω
x′ = εF (y) sin(τ + t0), y′ = εY (y, τ),

and we make the replacement of variables

x = εF (y)x0 + s,
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88 Dynamics of Tethered Space Systems

X ′ = εF (y)x′0 + s1.

Then

s′′ +
k2

ω2
s + 2

ξ

ω
s′ =

−ε2 dF

dy

[
2Y x′0 + x0

(
2

ξ

ω
Y + Y ′

)]
− ε3 d2F

dy2
Y 2x0.

Since we are interested in the forced oscillations, in view of formula (3.35)
for the solution of the linear system the statement is proved.

It is also possible to assert that the true forced elastic oscillations of the
system (3.34) differ from ε1F (y)x0 by a conditionally periodic term whose
amplitude has the order ε2.

Therefore, it is easy to obtain with accuracy up to the first order of small-
ness that

z = 3
µ

R3

r0

k2
2

(A cos 2α + B sin 2α + D), (3.36)

A = α1 − ξ1α2, B = α2 + ξ1α1, D =
1
2

k2
2

k2

(
α3 − 2

3

)
,

where

k2
2 = k2

1(1 + ξ2
1), k2

1 =
cm

d
− L2

r4
0

, ξ1 = 2
ξL

r2
0k

2
1

,

and it is supposed that k2
1, k2

2 have the order of smallness k2 or L2/r4
0, i.e.,

the system is not in a resonance 1:2.

3.1.10.2 Laws of motion

Substituting in (2.68), (3.2) the found expression r0 + z and performing av-
eraging of the equation with respect to the angular variable ϕ we obtain the
equations of first approximation describing the influence of elastic-dissipative
properties of the tether with accuracy up to and including the order ε2

ψ̇ = N1 cos θ sin2(ν − ψ)−Nd

[
cos θ sin2(ν − ψ) (α3+

2D) + 0.5ξ1 sin 2(ν − ψ)α3] ,
θ̇ = 0.5N1 sin θ sin 2(ν − ψ)−Nd sin θ [sin 2(ν − ψ)×

(0.5α3 + D)− ξ1α3 cos θ sin2(ν − ψ)
]
,

L̇ = −NdLξ1(α2
2 + α2

1),

ν̇ =
√

µ

p3
(1 + e cos ν)2, (3.37)

where

Nd =
9
2

( µ

R3

)2 r2
0

L

1
k2
2

.

From the equations (3.37) it follows that the specific velocity of decrease
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Analysis of the Motion of TSS 89

of L is negligible small. We are interested in the qualitative aspect of this
finding.

Let us consider the influences of dissipative forces on the motion of the
system. For this purpose we write out the equations of change of the moment
of momentum retaining only the members of equations (3.37), reflecting the
influence of energy dissipation in the material of the tether on its evolution:

ψ̇ = −0.5Ndξ1 sin 2(ν − ψ)α3,

θ̇ = 0.5Ndξ1 sin 2θ sin2(ν − ψ)α3,

L̇ = −NdLξ1(α2
2 + α2

1). (3.38)

Taking into account that α2
2 + α2

1 = α2
3,

∂α2
3

∂θ
= − sin 2θ sin2(ν − ψ)α3,

∂α2
3

∂ψ
= 2 sin2 θ sin 2(ν − ψ)α3,

it is possible to make the conclusion that the influence of the dissipative forces
in each instant of time tries to arrange the moment of momentum vector in
a position minimizing the velocity of its decrease. And the direction of the
influence of the dissipative forces is close to the direction of the “steepest
descent” for the value α2

3. Since

γ2 = (~e3, ~eR)2 = sin2 θ sin2(ν − ψ),

∂γ2

∂θ
= sin 2θ sin2(ν − ψ),

∂γ2

∂ψ
= − sin2 θ sin 2(ν − ψ),

by virtue of (3.38) the dissipative forces in each moment of time try to combine
the moment of momentum with the vector ~R, i.e., try to transfer the rotation
of the system in a plane that is perpendicular to the vector ~R. This orientation
of rotation of the system corresponds to the minimum of dissipation of energy
of its rotation.

We consider the specific power of the dissipative forces

N = −ξż2. (3.39)

Using the expression for z (3.36) we find with an accuracy up to ε2
2 the

specific power of dissipative forces averaged for the tether period of rotation
around of the mass centre

〈N〉ϕ = −9
( µ

R3

)2

Lξ1
α2

3

k2
2

. (3.40)
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90 Dynamics of Tethered Space Systems

Since the average specific power of the dissipative forces and the velocity
of decrease of the moment of momentum are proportional to α2

3, by virtue of
the previous analysis it is possible to make the conclusion that the influence
of the dissipative forces in each instant of time tries to reduce the absolute
work of these forces and in the end tries to transfer the system into a state
corresponding for the given mode of motion to a possible minimum of the
absolute value of their work.

We obtain the equations of the basic evolutionary effects by performing in
equations (3.37) differentiation with respect to ν and with their subsequent
averaging with respect to ν

dψ

dν
=

1
2
N0 cos θ − Id

{
cos θ

[(
1 +

k2
2

k2

)
β1 − 4

k2
2

k2

(
2
3

+ 2e2 −

e2 cos 2ψ
)]− 3ξ1e

2 sin 2ψ(1 + cos2 θ)
}

,

dθ

dν
= Id sin θ

[
3e2 sin 2ψβ2 + ξ1 cos θβ1

]
,

dL

dν
= −IdLξ1

[
(1 + 3e2)(3 cos4 θ + 3 + 2 cos2 θ)+

6e2 cos 2ψ(1− cos4 θ)
]
, (3.41)

where
β1 = (1 + 3e2)(3 cos2 θ + 1)− 6e2 cos2 θ cos 2ψ,

β2 =
(

1 +
k2
2

k2

)
(1 + cos2 θ)− 4

3
k2
2

k2
,

Id =
9
16

(
µ

p3

) 3
2 r2

0

L

1
k2
2

,

N0 is the same expression as in equations (3.4). The terms proportional e4 are
here omitted as they do not add any qualitative differences to the solution of
the equations.

From equations (3.41) it is visible that under the action of dissipation of
energy in the material of (3.40) the tether the moment of momentum of the
system tries to lie in the plane of orbit (θ → π/2). It is also an interesting fact
that for θ close to π/2 the action of the dissipative forces traces an elliptic
shape of the orbit and tries to arrange the plane of rotation of the tether
perpendicularly to the radius-vector of the pericentre of the orbit (ψ → ±π/2).
This effect also corresponds to the tendency of the system to lower the velocity
of decrease of the moment of momentum of the relative motion.
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Analysis of the Motion of TSS 91

Let us estimate the averaged specific power of the dissipative forces for one
period of the orbital motion. For this purpose we use the following scheme:

〈〈N〉ϕ〉ν =
1
Tν

Tν∫

0

〈N〉ϕdt ≈ 1
2π

2π∫

0

〈N〉ϕ R2

√
µp

dν, (3.42)

where Tν is the period of the orbital motion.
Then

〈〈N〉ϕ〉ν = −9
8

(
µ

p3

)3

ξ1
L

k2
2

[
(3 cos θ + 3 + 2 cos2 θ) (1+

3e2 +
3
8
e4

)
+ cos 2ψ(1− cos4θ)(6e2 + e4) +

1
16

e4 cos 4ψ(cos4 θ + sin2θ)
]

. (3.43)

The obtained formula (the terms proportional e4 are kept here) as well as
(3.40) is similar to the formula of velocity of decrease of the moment of mo-
mentum, i.e., the attempt of the system to reduce the output of energy nat-
urally coincides with the effort to reduce the absolute value of work of the
dissipative forces in the considered case. The further analysis of the laws of
motion of the system under the influence of dissipative forces is carried out in
the research of the influence of aerodynamic forces on the relative motion of
the system and in the research of translational-rotary motion.

The character of the changes of θ and L under the influence of dissipation
of energy in the material of the tether is shown in Fig. 3.9. The calculations
were carried out for the following values of parameters:
P = 6621 km, e = 0.2; cm/d = 0.25 s−2, χ = 0.05, d = 10000 m; L/d2 =
0.05 s−1, θ = 0.1745 rad, ψ = π/6, ν = ϕ = 0.

3.1.11 Influence of aerodynamic forces

It is natural to introduce aerodynamic influences on the system as forces acting
on each of the bodies of the system [4, 25, 43, 117]

~Fai = − ~̇Ri

∣∣∣ ~̇Ri

∣∣∣ kaimi, (3.44)

where kai = ρicxiSi/2mi, ρi is the density of the atmosphere, Si is the pro-
jected area, cxi is the aerodynamic factor of resistance (i = 1, 2).

We make the usual assumptions for this case [3, 5, 6, 16, 43]: the disturbing
influence of the aerodynamic forces is small, i.e., R ·max{ka1, ka2} = ε5 ¿ 1,
the value of the relative velocity of the motion of the system is much smaller
than the velocity of orbital motion |~̇r| ¿ | ~̇R|.
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FIGURE 3.9
Character of changing ϑ and L in a stationary mode of motion.D
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Analysis of the Motion of TSS 93

Then the influence on the relative motion of the system up to the terms
of order kai|~̇r|2 looks like

~Fa = (ka1 − ka2)| ~̇R| ~̇R− I
[
| ~̇R|~̇r + ( ~̇R, ~̇r) ~̇R/| ~̇R|

]
. (3.45)

Here

I = (ka2m1 + ka1m2)/M, | ~̇R| =
√

µ

p

√
1 + 2e cos ν + e2.

The second term in (3.45) determines the dissipative component of the aero-
dynamic accelerations.

Let us consider the influence of aerodynamic accelerations determined by

the (3.45) on the relative motion of a quickly rotating system
µ

p3

r4

L2
= ε2 ¿ 1.

We assume that the amplitude of longitudinal oscillations of the system is
small in comparison with the length of the tether:

(
b

r0

)2

= ε3 ¿ 1.

3.1.12 Equations of first approximation

The equations of first approximation under the influence of perturbing ac-
celerations of the Newtonian field of forces (3.1), dissipation of energy in the
material of the tether (3.21) and aerodynamic forces (3.45) we construct by the
way of averaging the equations in the form (2.68), (2.79) along the generating
solution (2.31), (2.34). Assuming that the change of density of the environ-
ment ρi does not depend on the relative motion of the system (ρ1 = ρ2) we
obtain

ψ̇ =
Iµ

2| ~̇R|p
βa1βa2 + N1 cos θ sin2(ν − ψ),

θ̇ =
Iµ

2| ~̇R|p
cos θ sin θβ2

a1 + N1 sin θ cos(ν − ψ) sin(ν − ψ),

L̇ = −L

[
| ~̇R|I +

Iµ

2| ~̇R|p
(
β2

a2 + cos2 θβ2
a1

)
]

,

ḃ = − b

2

[
χ

√
cm

d
+ | ~̇R|I +

Iµ

2| ~̇R|p
(
β2

a2 + cos2 θβ2
a1

)
+

1
2

LL̇

r4
0k

2

(
12

L2

r4
0k

2
− 3

)]
,

ṙ0 =
2LL̇

r3
0k

2
,
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94 Dynamics of Tethered Space Systems

ν̇ =
√

µ

p3
(1 + e cos ν)2, (3.46)

where βa1 = cos(ν − ψ) + e cos ψ, βa2 = sin(ν − ψ)− e sin ψ, and N1 is the
same expression as in equation (3.3).

As it was to be expected, the change of the moment of momentum in the
considered mode of motion does not depend in the first approximation on
the longitudinal oscillations of the system. The longitudinal oscillations of the
system damp out due to the dissipation of energy both in the material of the
tether and from the aerodynamic resistance.

Thus, the analysis of the evolution of the orientation of the system and the
influence of the perturbing effects on it may be carried out on the model of the
dumb-bell with slowly varying length of the bar equal to r0 and determined
by the equality of the centrifugal and elastic forces

cm

d
(r0 − d) =

L2

r3
0

. (3.47)

The perturbing aerodynamic accelerations in the first approximation in-
fluence the relative motion of the system only by the dissipative component.
Their conservative component results only in small almost periodic oscillations
of the system.

3.1.13 Influence of dissipative aerodynamic forces

We carry out the analysis of the influence of the dissipative component of the
aerodynamic forces on the motion of the system. For this purpose we write
out the equations of the change of the moment of momentum retaining only
those terms of the equations (3.46) reflecting the influence of the aerodynamic
resistance to its evolution:

ψ̇ =
Iµ

2| ~̇R|p
βa1βa2,

θ̇ =
Iµ

2| ~̇R|p
cos θ sin θβ2

a1,

L̇ = −L

[
| ~̇R|I +

Iµ

2| ~̇R|p
(
β2

a2 + cos2 θβ2
a1

)
]

. (3.48)

Since
∂β̃a

∂θ
= −2 cos θ sin θβ2

a1,

∂β̃a

∂ψ
= −2 sin2 θβa1βa2,

where
β̃a = β2

a2 + cos2 θβ2
a1,
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Analysis of the Motion of TSS 95

it is possible to make the conclusion that the influence of the dissipative
component of the aerodynamic forces in each instant of time tries to arrange
the moment of momentum in the state which minimizes the velocity of its
decrease. And the direction of these influences is close to the direction “of the
steepest descent” for the value β̃a.

Comparison of the obtained results with conclusions about the influence of
energy dissipation in the material of connection on the motion of the system
allows to introduce the hypothesis [92] that the influences of dissipative forces
of various physical nature are directed to transferring the motion of the system
into a state corresponding to the minimum loss of energy.

This supposition is similar to the known principle [14] about the tendency
of material systems to avoid friction. However, in [14] this principle is con-
sidered as the resultant tendency in the motion of systems: the velocities of
motions with stipulated dissipation of the energy, under action of dissipative
forces become equal to zero. For the considered system “to avoid friction” is
possible only by reaching the position of relative equilibrium corresponding
to the arrangement of the system along the local vertical. The effect of dissi-
pative forces in the considered case in each instant is directed to the change
of parameters of motion, pursuant to this principle, i.e., even if it sounds
paradoxically, in the direction of decreasing the dissipation of energy.

From equations (3.48) it follows that the influence of aerodynamic forces
tries to arrange the vector of the moment of momentum in tp plane of orbit
(θ → π/2). This effect of the influence of the aerodynamic forces occurs for
any form of the orbit of the mass centre. Taking into account that

(~e3, ~̇R) = −√µp sin θβa1,
∂ sin2 θβ2

a1

∂θ
= sin θ cos θβ2

a1,
∂β2

a1

∂ψ
= 2βa1βa2,

it is possible by virtue of (3.48) also to make the conclusion that in each
moment of time under the influence of the aerodynamic resistance the vector
of the moment of momentum tries to approach the direction that is collinear
to the vector of the velocity of the mass centre. This direction corresponds to
the minimum of the velocity for the reduction of the value of the moment of
momentum.

Velocities of changes of angles of orientation of the moment of momentum
and the velocity for the reduction of its specific value are proportional to the

value
√

µ

p3
ε5.

3.1.14 Basic laws of evolution of motion

For the determination of the main evolutionary effects of the motion of the
system under the influence of perturbations we carry out averaging of the
equations (3.46) with respect to variable ν. For this purpose, as before, we
first pass in the equations (3.46) to differentiation with respect to ν. The
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96 Dynamics of Tethered Space Systems

equations describing the main evolutionary effects of the change of the three-
dimensional orientation of the system look like:

dψ

dν
= −1

2
(I1 − I2) sin ψ cosψ +

1
2
N0 cos θ,

dθ

dν
=

1
2

cos θ sin θ
(
I1 cos2 ψ + I2 sin2 ψ

)
,

dL

dν
= −L

[
I3 +

1
2
I1

(
sin2 ψ + cos2 θ cos2 ψ

)

+
1
2
I2

(
cos2 ψ + cos2 θ sin2 ψ

)]
, (3.49)

where

I1 =
p

2π

2π∫

0

I(1 + e cos ν)−2(cos ν + e)2√
1 + 2e cos ν + e2

dν,

I2 =
p

2π

2π∫

0

I(1 + e cos ν)−2 sin2 ν√
1 + 2e cos ν + e2

dν,

I3 =
p

2π

2π∫

0

I
√

1 + 2e cos ν + e2

(1 + e cos ν)2
dν,

N0 is the same as in (3.4).
For the circular orbit I1 = I2 = 0.5I3 and the equations for θ and L are

easily integrated:

tan θ = tan θ0 exp
{

1
2
I1(ν − ν0)

}
,

L = L0 exp
{
−3

1
2
I1(ν − ν0)

}
cos θ0

cos θ
.

(3.50)

From expressions (3.50) as well as from equations (3.48) follows that on
the circular orbit the vector of moment of momentum under the action of the
dissipative component of the aerodynamic forces tries to lie in the plane of
the orbit. This conclusion is distinct from the conclusion [16, 23] formulated
for a symmetric rigid body, according to which the influence of the dissipative
component of the aerodynamic forces does not change direction of the vector
of moment of momentum on a circular orbit. The difference of conclusions
is caused by the discrepancy used in [16, 23] of the formulas approximating
the dissipative moment of aerodynamic forces and the moment of these forces
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Analysis of the Motion of TSS 97

acting on the dumb-bell. Simultaneously the above formulated conclusion cor-
responds to results of work [83] about the influence of the dissipative compo-
nent of aerodynamic forces on the motion of a spherical satellite around the
mass centre. The numerical solution of the exact equations of motion confirms
the correctness of the above made conclusion and the results of the work [22]
confirm the generality of the obtained results for the motion of rigid bodies
on the orbit.

In Fig. 3.10 the motion of the vector of moment of momentum on the unit
sphere is presented under the joint influence of perturbations of the Newtonian
field of forces and aerodynamic forces on a circular orbit of motion of the mass
centre. The trajectory seems to wind up on unit sphere from the pole to the
equator with increasing density.

Z

FIGURE 3.10
Trajectory of the moment of momentum vector on the unit sphere.

For the motion of the system on an elliptic orbit there is an additional
effect caused by the action of aerodynamic forces. Depending on the sign of
the difference I1−I2 the vector of the moment of momentum under the action
of aerodynamic forces tries to coincide either with the direction of the tangent
to the orbit in its pericentre (I1 > I2), or with the direction collinear to the
radius-vector of the orbit in its pericentre (I2 > I1). As it is visible from
calculations for models in which the density of the environment depends only
on the distance between the mass centre and the attractive centre I1 > I2.
However, for models taking into account other factors of change of density of
the environment it can also appear that I2 > I1.

Independently of the sign of the value I1−I2 on the basis of equations (3.49)
it is possible to formulate the general law of the influence of aerodynamic forces
on the relative motion of the system: under the action of aerodynamic forces
the system tries to get into the position in which the value of the vector of
moment of momentum of the relative motion decreases with minimum velocity,
i.e., tries to get the position of the minimum aerodynamic resistance to the
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98 Dynamics of Tethered Space Systems

relative motion. This action is caused by the dissipative component of the
aerodynamic forces.

We consider laws of evolution of the motion of the system on an elliptic
orbit under joint influence of a Newtonian field of forces and aerodynamic
forces. We assume that I1 − I2 > 0.

We consider first the evolution of the orientation of the system under
the assumption of constancy of L. This case is interesting for the projects of
cable systems in which the preservation of constant velocity of rotation or the
increase of the velocity of rotation of the system is supposed. It is easy to see
that this can be achieved by introduction of additional accelerations into the
system which are directed along the axis Oy. Thus the equations of evolution
of the angles ψ and θ do not change.

For constant L the value |N0 cos θ| monotonously decreases in time. There-
fore, for any initial conditions of motion a moment of time exists when the
aerodynamic influences on the precession of the vector of moment of mo-
mentum exceeds the influences of the Newtonian field of forces (I1 − I2 >
|N0 cos θ|). The further part of the trajectory has “aerodynamic” character,
i.e., the vector of the moment of momentum tries to reach the direction of the
tangent to the orbit in its pericentre.

p/2

0

- /2p

0 p/2

A
n
g
le

y
(r

a
d
)

Angle q (rad)

p

p

-p

FIGURE 3.11
Phase portrait of angles ϑ and ψ variations.

The phase portrait of change of angles ψ, θ for constant L for I1−I2 > |N0|
is shown in Fig. 3.11. The equation of lines 1, 2, 3, 4 looks like:

(I1 − I2) sin ψ cos ψ = N0 cos θ. (3.51)

In Fig. 3.12 for the considered case the character of possible trajectories of
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Analysis of the Motion of TSS 99

the vector on unit sphere is presented. The dashed lines 1, 2, 3, 4 correspond
to similar lines in the phase portrait, the continuous lines show possible tra-
jectories of the moment of momentum vector.

Z

Y

4

1

3

2

X

FIGURE 3.12
Possible trajectories of the moment of momentum vector on the unit sphere.

For the case of the increase of the value of the moment of momentum
vector the character of its evolution is similar.

If the evolution of the value of the moment of momentum vector occurs
according to equations (3.49), the value |N0 cos θ| grows strictly monotonously
with time, and therefore, the influence of the central field of forces grows with
time. Thus, if in an initial moment of time the condition |N0 cos θ| > I1−I2 is
fulfilled, the character of evolution of the moment of momentum vector differs
little from its evolution on a circular orbit.

For the fulfilment of the condition |N0 cos θ| < I1−I2 in an initial moment
of time, i.e., when the aerodynamic influences on the precession of the mo-
ment of momentum vector exceed the influences of the central field of forces
depending on the initial value ψ two variants of motion are possible. Either ψ
has an initial value such that

(I1 − I2) sin ψ cos ψ < N0 cos θ, (3.52)

the trajectory of evolution of the vector of the moment of momentum has
a point of change of the direction of the precession determined by equation
(3.50) where L already is not constant and changes according to equations
(3.49). In this case the initial segment of the trajectory has “aerodynamic”
character (Fig. 3.13). On this segment the trajectory comes nearer to one of
the lines determined by equation (3.51) (corresponding to lines 1 or 3 for the
case of constant L) and having touched it changes the sign of precession. Later
the slow transition into rotatory motion around the normal to the plane of
the orbit occurs.

Or if the initial value of ψ is such that the condition (3.52) is fulfilled, the
change of the direction of precession does not occur. However, in this case the
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100 Dynamics of Tethered Space Systems

initial segment of the trajectory differs significantly from the trajectory on
a circular orbit (Fig. 3.14) too. On the initial segment of the trajectory the
vector of the moment of momentum comes closer to one of the corresponding
lines determined by equation (3.51) from opposite sides but does not touch this
line. Then, as in the case of fulfilment of condition (3.52) the slow transition
into rotatory motion around the normal to the plane of the orbit occurs.

Z

Y

X

FIGURE 3.13
Trajectories of the moment of momentum vector on the unit sphere. Case of
changing of precession sign.

Y

Z

X

FIGURE 3.14
Trajectories of the moment of momentum vector on the unit sphere. Precession
does not change the sign.
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Analysis of the Motion of TSS 101

3.1.15 Influence of other perturbing factors

Relative motion of the system under the assumption that the trajectory of the
mass centre is an unperturbed Keplerian orbit was considered above. However,
such influences on the system as the influences caused by the deviation of the
gravitational field of the Earth from the central Newtonian field and influences
of environmental forces of resistance result in a change of the trajectory of
motion of the mass centre. At the same time it is often of practical interest
that it is possible to consider, with large accuracy, that the motion of the mass
centre of the system is independent of the system’s relative motion. Thus under
appropriate assumptions concerning the smallness of the values (r/R)2 and

|~̇r|/| ~̇R| it is possible to consider that the influence of the gravitational field of
forces and the environmental resistance on the orbital motion of the system
does not depend on its relative motion. In these cases the research of relative
motion is carried out also within the framework of the limited statement of the
problem, the difference of which consists only, that the known trajectory of
motion of the mass centre is a perturbed Keplerian orbit, i.e., a Keplerian orbit
with slowly varying parameters. It is obvious that the technique of research
of the relative motion of the system is the same in this case.

It is most expedient to take into account the evolution of the angular
orbital parameters i, Ω, ωπ with the help of the equations of perturbed motion
along the evolving orbit.

For such an approach expressions of influences on the system depending on
the radius-vector of the mass centre and its velocity (expressions of influences
of the central field of forces and aerodynamic forces) do not change. The
influence of evolutions of angular orbital parameters is described by additional
terms in the right-hand parts of the equations.

The evolution of the parameters of the orbit p and e is taken into ac-
count parametrically, i.e., in the corresponding formulas p and e are already
considered not to be constant but as slowly varying parameters.

Thus, the calculation of the evolution of the orbit of the system investigat-
ing its relative motion within the framework of the limited statement of the
problem does not result in basic difficulties and is carried out precisely in the
same way as the research of the relative motion of a rigid body [16, 18]. Thus,
the scheme of conclusions from the equations of the first approximation, the
expressions on the right-hand sides of these equations, corresponding to the
influences of the considered perturbations do not change, and consequently, do
not vary the conclusions about the influence of the considered perturbations
on the relative motion of the system. In particular, the motion of a system
under the influence of the Newtonian field of forces and the influence on the
evolution of the orbit in the first approximation coincides with the similar
motion of the dumb-bell the qualitative analysis of which can be found in
[18].

We point out that the influence of the evolution of the orbit on the change
of orientation of the rotational motion of the cable system of two bodies about
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102 Dynamics of Tethered Space Systems

the orbit for many Earth orbits is one of the basic perturbing factors. And
hence, although the earlier determined influences of other perturbing factors
do not vary, their effect on the motion of the system can be suppressed in the
evolution of the orbit of the mass centre.

We consider, for example, the rotational motion of the system with an
elastic-dissipative tether in view of the evolution of the orbit under the action
of a non-central field of gravitation of the Earth. From (3.41), (2.48) and (2.50)
it is easy to obtain that the equations of secular motion about the evolving
orbit have the following form:

dτ1

dν
=

1
2
N0 cos θ − Id cos θ

[(
1 +

k2
2

k2

) (
3 cos2 θ + 1

)− 8
3

k2
2

k2

]
−

εor cos i [cot θ sin i cos τ1 + cos i] ,

dθ

dν
=

1
2
Idξ1 sin 2θ

(
cos2 θ + 1

)
+ εor cos i sin i sin τ1,

dL

dν
= −IdLξ1

(
3 cos4 θ + 3 + 2 cos2 θ

)
. (3.53)

Here the terms proportional to e2, e4 are omitted and it is assumed that
in secular motion only the longitude of the ascending unit of the orbit Ω̇ =
εor cos i, and the argument of the pericentre ωπ, τ1 = ωπ + ψ, vary; εor is a
small parameter.

As εor usually significantly exceeds Id, from equations (3.53) follows that
the dissipative effects in the motion of the system are possible only for orbits
close to equatorial or polar ones. For other orbits the plane of orbit evolves
faster than the moment of momentum of relative motion approaches it.

A similar conclusion can be made for the effect of the dissipative compo-
nent of the aerodynamic forces also.

Researches of perturbed motions of the system carried out in this chapter
allow to make some generalisations about the influence of perturbing forces
of various physical nature on the relative motion of the system.

Let us assume that the perturbing influences have the force function
U(r, ϕ, ψ, θ, t). We assume also that the initial conditions of motion and the
parameters of the system are such that the angle of pure rotation of the sys-
tem ϕ and the phase of longitudinal oscillations ω are fast variables in relation
to other variables of the system, and U is periodic with respect to ϕ. Then
it follows from the equations of perturbed motion that at any value of the
amplitude of the longitudinal oscillations and independently whether the mo-
tion is with loss of tension or without it the motion of the system in absence
of resonance between ϕ and ω coincides in the first approximation with the
similar motion of the dumb-bell, the length of the bar of which is a function of
a and b. This conclusion is the consequence from the following statement: in
the absence of resonance, in first approximation, the value of the moment of
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Analysis of the Motion of TSS 103

momentum L, the amplitude of longitudinal oscillations b, and consequently
the averaged length a of system are values kept constant. This statement is
similar to the Laplace–Lagrange theorem in celestial mechanics.

For the influence of the dissipative forces on the relative motion of a system
such as in the case with dissipation of energy in the material of the tether and
for the influence of the dissipative component of the aerodynamic forces it is
necessary to expect that this influence tries to arrange the system in a state
which is minimizing the velocity of decrease of its moment of momentum,
i.e., in a state corresponding to the minimum of dissipation of energy of the
relative motion. Against the hypothesis [14] about the attempt of the material
systems to avoid friction we assume that this tendency of action of dissipative
forces has constant and global character, i.e., the influence of the dissipative
forces in each moment of time is directed to the change of all parameters of
motion such that to reduce the dissipation of the energy of motion.

In the case of smallness of the gyroscopic forces, i.e., for the motion of
the system under the influence of conservative and dissipative forces, it is
necessary to expect that the system tries to enter in a state corresponding to
the minimum decrease of energy of the relative motion.

3.2 Interaction of translational and rotational motions

3.2.1 Equations of motion

In this section the motion of the system in a Newtonian field of forces is con-
sidered [89]. No other external forces are present ~Fi ≡ 0. The investigations are
carried out up to and including the accuracy ε2

1, (ε1 = r/R). The perturbing
accelerations of the Newtonian field of forces on the relative (equation (2.1))
and the orbital (equation (2.2)) motion of the system within this accuracy
have, respectively, the form

~F =
µ

R2

r

R

{
−~e1 + 3(~e1, ~eR)~eR + 3

m1m2

M

r

R
[(~e1, ~eR)~e1+

1
2

(
1− 5(~e1, ~eR)2

)
~eR

]}
, (3.54)

~F ∗ =
µ

R2

( r

R

)2 m1m2

M

{
3(~e1, ~eR)~eR +

3
2

(
1− 5(~e1, ~eR)2

)
~eR

}
.

We write down the equations of perturbed motion of the system in the follow-
ing form. The first group of equations of perturbed motion about an evolving
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104 Dynamics of Tethered Space Systems

orbit of the mass centre is

ψ̇ =
rF3 sin ϕ

L sin θ
+ cot θ

(
di

dt
sin τ1 − Ω̇ sin i cos τ1

)
− Ω̇ cos i− ω̇π,

θ̇ =
rF3 cos ϕ

L
− Ω̇ sin i sin τ1 − di

dt
cos τ1,

L̇ = rF2, (3.55)

ϕ̇ =
L

r2
− τ̇1 cos θ + Ω̇ (sin θ sin i cos τ1 − cos θ cos i)− di

dt
sin θ sin τ1,

where τ1 = ωπ + ψ. Equation (3.55) is the equation (2.48), (2.50) taking into
account (2.80).

The equation of the change of r is

r̈ − L

r3
= −T + F1, (3.56)

and the equations of perturbed Keplerian motion are (2.69).
Equations (2.2), (3.56) in view of the various forms of the perturbed lon-

gitudinal oscillations (see section 2.4) and (2.87) form the complete system of
the equations of perturbed motion for the considered problem and the meth-
ods of averaging described in Chapter 3 are perfectly applicable to them.

3.2.2 First integrals

The constant moment of momentum of the system ~G is equal to the sum of
the moment of momentum of orbital and relative motions

M
√

µp~e∗3 +
m1m2

M
L~e3 = ~G, (3.57)

where ~e∗3 is the unit vector of the axis CZ.
We connect with ~G the non-rotating system of coordinates Cξηζ such that

the axis Cζ is directed as the vector ~G (Fig. 3.15). Then the projections of the
vectorial equality on the axes of the non-rotating coordinates system yields
three first area integrals [89]:

ωπ = π − ψ,

√
µp cos i +

m1m2

M2
L cos(θ − i) = G′,

m1m2

M2

L

sin i
=

√
µp

sin(θ − i)
=

G′

sin θ
,

(3.58)

where G′ = |~G|/M.
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Analysis of the Motion of TSS 105

The second and third equality (3.58) are relations of the triangle, formed by
the vectors of moment of momentum of motions (Fig. 3.15). The first equality
(3.58) follows from the construction of the systems of coordinates and means
that during the motion the axis of rotation of the tethered system about the
mass centre is located in the plane normal to the line of nodes of the orbit of
the mass centre that coincides with the third general law of Cassini [18].

m m
1 2

M
L

q

C

M mr e *
3

C

i

FIGURE 3.15
Triangle formed by moment of momentum vectors.

From equality (3.57), (3.58) it follows that the limited statement of the
problem, i.e., the assumption about the independence of the orbit of the mass
centre from the relative motion requires not only the fulfilment of the condition
for r/R but also smallness of the relation of the value of moment of momentum
of the relative motion to the value of moment of momentum of the orbital
motion. And this relation should be a value of higher order of smallness than
the considered perturbing influences.

In the considered case of gravitational influences the limited statement of
the problem requires to fulfill the following condition:

m1m2

M2

L√
µp

/ r

R
≈ m1m2

M2

r

R

ω

ω0
¿ 1

where ω, ω0 are values of the angular velocities of orbital and relative motion,
respectively.

From equality (3.57), (3.58) it also follows that for the choice of the ori-
entation of the axes of the non-rotating coordinate system, such that during
the motion the inclination of the orbit is small enough, namely, that the value
sin i has the order of smallness ε1, even the small perturbations can result in
essential changes of the elements of the orbit Ω and ωπ. This is connected
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106 Dynamics of Tethered Space Systems

to the degeneration of the kinematic equations for Eulerian angles for small
angles of nutation.

3.2.3 Basic laws of evolution of the system

From the equations of the perturbed motion of the system and from the anal-
ysis of the influence of longitudinal oscillations on the relative motion of the
system (section 1.1.3) it follows that there is no resonance in the motion of
the system and if the frequency of the longitudinal oscillations significantly
exceeds the average frequency of the orbital motion, the evolution of the pa-
rameters of motion of the system in first approximation coincides with their
evolution for the motion of a dumb-bell with a certain (obtained) length of
the bar. And in particular if the amplitude of the longitudinal oscillations is
small in comparison with the length of the tether, the motion of the system
in first approximation of the small parameters coincides with the motion of a
dumb-bell with a length of the bar that is equal to the equilibrium length of
the tether r0.

We consider the basic evolutionary effects of the translational-rotational
motion of the system, which is quickly rotating about the mass centre ε2 ¿ 1

(ε2 =
µ

p3

r4

L2
). For this purpose by virtue of what has been said above, it is

enough to investigate the motion of the dumb-bell with length of the bar equal
to r0.

The scheme of derivation of the equations of the main evolutional effects
of motion is the same, as studying the relative motion. At first, the equations
of perturbed motion (3.55), (2.69) are averaged with respect to ϕ, taking into
account expressions for a perturbing force (3.54), i.e., the averaging operator
with respect to an angular variable is applied. Then, transformation to a new
independent variable in the equations, which is an angle of pure rotation of
orbital motion (ν) and the subsequent averaging with respect to this variable,
is performed. The such constructed equations of the basic evolutionary effects
of motion of the dumb-bell taking into account (3.58) look like

dθ

du
=

di

du
=

dL

du
=

dp

du
=

de

du
= 0,

dΩ
du

= N0
sin θ cos θ

sin(θ − i)
,

−dψ

du
=

dωπ

du
= −dΩ

du
cos i− 3

8
m1m2

M2

r2
0

p2
(1− cos2 θ).

(3.59)

Hence the basic evolutionary effect of the quickly rotating system about
its mass centre consists in the rotation of the plane formed by the vectors of
moment of momentum of the relative and orbital motions around the total
moment of momentum vector of the system [89]. Thus one component of the
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Analysis of the Motion of TSS 107

angular velocity of this rotation depends neither on the masses of the bodies
nor on the linear size of the system and is proportional to the ratio of angular
velocities of orbital and relative motions.

3.2.4 Dissipation of energy due to the visco-elastic tether
material

In section 3.1.6 influence of internal dissipation of energy in the tether material
on the evolution of the parameters of relative motion within the framework
of the limited formulation of the problem was investigated. And although
this influence in this stage of slow evolution for most of real space systems
is negligibly small, the determination of the laws of influence of dissipative
forces represents general interest.

The question of evolution of extended viscous-elastic systems in the Newto-
nian field of forces is interesting for celestial mechanics and for the definition
of general laws of motion of such systems and is the subject of permanent
investigations and discussions (see, for example, [106]). The used elementary
viscous-elastic system of two material points has allowed to carry out a deeper
analysis of the relative motion and allows to consider general laws of transla-
tional and rotational motion. Different from the works [71, 72, 105, 115] the
researches are carried out within the framework of classical mechanics of point
masses that, in particular, allows to carry out the simple numerical check of
the obtained results, and also the general formulation of the problem, i.e., the
spatial motion of system for any orbit of the mass centre, is considered [92].

Forced longitudinal oscillations in the first approximation with respect to
the small parameters ε1, ε2 are determined by formula (3.36). Then taking
into account (3.58) the equations of perturbed motion of the system are the
equations of perturbed Keplerian motion (2.29) and the equation of change of
the angle ϕ

ϕ̇ =
L

r2
− Ω̇ cos(θ − i).

The procedure of construction of the equations of first approximation is
similar to the procedure of construction of equations (3.41). The gravitational
influences are taken into account up to and including the second order of
smallness with respect to (r/R)2. Then the equations describing the basic
evolutionary effects of the translational and rotational motion of the system
look like

di

du
= Id1 sin θ

{
3e2 cos θ sin 2ωπβ2 +

ξ1

[
(1 + 3e2)(3 + cos2 θ) + 6e2 cos 2ωπ

]}
,
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108 Dynamics of Tethered Space Systems

dΩ
du

=
1
2
N0

sin θ cos θ

sin(θ − i)
− Id

sin θ

sin(θ − i)

[
cos θ

(
k2
2

k2
+ 1

)
β1−

4
3

cos θ
k2
2

k2
(2 + 6e2 − 3e2 cos θ cos 2ωπ) +

ξ1e
2(1 + cos2 θ) sin 2ωπ

]
,

dp

du
= −2Id1p

{
3e2 sin2 θ sin 2ωπβ2 − 4ξ1 cos θ

[
(1 + 3e2)×

(1 + cos2 θ) + 1.5e2 sin θ cos 2ωπ

]}
,

de

du
= eId1

[
sin2 θ sin 2ωπβ2 + 2ξ1

(
11 + 11 cos2 θ +

7 sin2 θ cos 2ωπ

)]
,

dωπ

du
= −dΩ

du
cos i− 3

8
m1m2

M2

r2
0

p2
(1− 3 cos2 θ)− Id1 [. . . +

6ξ1 cos θ sin2 θ sin 2ωπ(3 + e2)
]
. (3.60)

Here

Id1 =
9
16

m1m2

M2

(
r0

p

)2
µ

p3

1
k2
2

,

β1, β2 Id is the same as in the equations (3.41).
Here the terms proportional e4 are omitted as they do not bring in any

qualitative differences to the motion of the system. In the equation of change
of ωπ a bulky expression is omitted also because in this case it does not carry
interesting information.

Equations (3.60), in spite of the fact that they with relations (3.58) com-
pletely describe the evolution of the slow variables of the system, are inconve-
nient for the analysis as their right-hand parts depend on parameters of the
relative motion L and θ, the representation of which through parameters of
the orbital motion is unnecessarily bulky. The question of the connection of
equations (3.60) in relation to equations (3.41) also remains open.

We construct the equations for L and θ by differentiating the relation of
the triangle formed by the moment of momentum with respect to u by virtue
of (3.60):

√
µp cos i +

m1m2

M2
L cos(θ − i) = G1,

√
µp sin i +

m1m2

M2
L sin(θ − i) = 0.

(3.61)
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Analysis of the Motion of TSS 109

We obtain the equations

d(θ − i)
du

= Id sin θ
[−3e2 sin 2ωπβ2 + ξ1 cos θβ1

]
,

dL

du
= −IdLξ1

[
(1 + 3e2)(3 cos4 θ + 3 + 2 cos2 θ)+

6e2 cos 2ωπ(1− cos4 θ)
]
. (3.62)

Thus, the equation of change of L coincides with the analogous equation in
(3.41) and the equation of change of θ−i coincides with the equation of change
of θ in (3.41).

From equations (3.60), (3.62) follows that the effect of dissipative forces
(the members of the equations containing the multiplier ξ1) are directed to
the following changes in the motion of the system: the moment of momentum
of relative motion of the system decreases, being redistributed in the moment
of momentum of orbital motion; the eccentricity of the orbit (e 6= 0) grows;
the inclination of the orbit decreases to zero. Here it is taken into account
that

Id1ξ1 sin θ =
9
8

µ

p3

G1

p2

ξ

k2
1k

2
2

sin i; (3.63)

the angle of nutation θ has the tendency to reach some value π/2αc, 0 < αc <

π/2, and only in the end, as
di

du
reaches zero, θ goes to π/2. I.e., the influence

of dissipative forces tries to transfer the inverse rotation of the system in direct
one, in which the attitude rotation has the same orientation as the orbital one.

We consider laws of evolution of the system determined by the equations
of first approximation.

For e = 0 equations (3.60), (3.62) become significantly simpler, and the
evolution of the parameters is completely determined by the influence of dis-
sipative forces. αc is determined from equation

Id1ξ1 sin θ =
9
8

µ

p3

G1

p2

ξ

k2
1k

2
2

sin i; (3.64)

Here (3.63) and that

Idξ1 sin θ =
9
8

µ

p3

G1

p2

ξ

k2
1k

2
2

sin(θ − i)

are taken into account.
In the general case (e 6= 0), depending on the relation of the small values

ε1 and ε2, various characterizations of the motion of the system are possible,
since the values N0, Id, Id1 which characterize the velocities of evolution
of the parameters of motion of the system have the order

√
ε2, ε

3/2
2 , ε2

1ε2

respectively.
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110 Dynamics of Tethered Space Systems

Let us consider the limiting cases. We assume (r/p)2 ¿ Id, i.e., ε2
1 ¿ ε

3/2
2

or which is the same L/
√

µp ¿ 1 (case of distant orbits). Then i ¿ 1, θ
tries to reach π/2, and for θ close to π/2 the pericentre of the orbit tries to
appear in the plane formed by the moments of momentum of the system, i.e.,
motion of the system corresponds to case of motion considered above about
the unperturbed trajectory of the mass centre.

In the other limiting case when ε1 À ε
1/2
2 , i.e., L/

√
µp À 1 the velocity

and the direction of change of the argument of the pericentre of the orbit are
different and are defined by the second term in the equation for ωπ. Here it
is interesting to note that as numerical integration of the equations (3.60),
(3.62) shows in the case when the moment of momentum of the relative mo-
tion exceeds in value the value of the moment of momentum of orbital motion
“ejection” of the system on a hyperbolic trajectory (e → 1) is possible. More-
over, for inverse rotation (i > π/2) such opportunity of “ejection” is realised
for a much wider area of initial parameters than for pure rotation of the sys-
tem.

In the general case, different from the motion on the unperturbed orbit, the
effect of stopping the precessional motion and tracking an elliptically shaped
orbit vanishes (the pericentre of the orbit leaves much faster than the moment
of momentum approaches to it). Depending on the values of moment of mo-
mentum and the ratio r0/p the character of motion of the system can have
significant differences from the motion of the system about an unperturbed
orbit. The research of possible motions of the system exceeds the framework
of the given researches.

In most cases the main effect of evolutionary motion of the system, such as
for the motion of a quickly rotating dumb-bell (3.59), consists in rotation of
the plane formed by the moment of momentum of orbital and relative motions
around the total moment of momentum. Moreover, when θ is not close to π/2
(| cos θ| > ε2

1, | cos θ| > ε
3/2
2 ) ωπ is the fast variable in equations (3.60),

(3.62). Therefore the research of evolution of the parameters of motion can
here be carried out by averaging of equations (3.60), (3.62) with respect to
ωπ. It is easy to see that the equations obtained as result of this averaging
operation differ from the initial ones only by the fact that all members of the
equations depending on ωπ become equal to zero.

The analysis of equations (3.60), (3.62) averaged with respect to ωπ, just as
the investigation by numerical integration of equations (3.60), (3.62) for θ close
to π/2 shows that the evolution of the motion of the system is determined by
the influence of dissipative forces, i.e., the change of the parameters of motion
of the system occurs according to the direction of influence of dissipative forces
and the earlier determined effects of their influence are realised in the motion
of the system.

We consider the opportunity of interpretation of the motion of the system
under the action of dissipative forces [90]. It is easy to see that the expression
of average power of dissipative forces (3.43) does not change. But then the
influences of dissipative forces directed on the increase of the eccentricity
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Analysis of the Motion of TSS 111

and the transfer of the system to direct rotation are directed on increase of
capacity of dissipative forces, i.e., the change of parameters of orbital motion
under influence of dissipative forces cannot be explained within the framework
of proposed hypothesis about aspiration of systems to avoid friction as of the
current tendency. The attempt of dissipative forces to increase the eccentricity
of the orbit and to transfer the rotation of the system into a direct one is
opposite to the tendency to reduce the energy of the relative motion that
took place in the case of the constant orbit.

At the same time these influences of dissipative forces correspond to their
tendency to reduce losses of energy or to increase energy for orbital motion.
Really, the increase of eccentricity corresponds to this tendency. Analysing the
changes in the motion of the system in comparison with motion of the system
about an unperturbed orbit it is possible to make the conclusion that the in-
troduced differences in the change of the angle θ also are in general agreement
with this tendency: its acceleration decreases for θ > π/2, its deceleration
increases for θ < π/2. The tendency to direct rotation can be interpreted
as tendency to decrease (to increase) velocity of decrease (increase) of the
moment of momentum of orbital motion.

Thus, the general picture of the influence of dissipative forces on the motion
of the system is formed by their tendency to reduce the output of the energy
(to increase its reception) for each motion, the orbital and the relative.

In the considered case, since the evolution of the motion of the system is
defined by the influence of dissipative forces the general picture of evolution
of the motion develops by the tendency of each of the motions “to avoid
friction,” i.e., by the tendency of each of the motions — orbital and relative
— to decrease the output of energy (to increase its reception) for the motion.

Certainly, the considered motion of the system is only a specific example.
Here two weakly connected motions (orbital and relative) take place, the dis-
sipation of energy is described by internal tether force and occurs, resulting
from the relative motion. But the distinctly shown tendency in the direction of
the influence of dissipative forces on the decrease (increase) of energy of each
of the motions is interesting because the arising contradictions between the
forms of motions give the chance to develop not only trivial forms motions.

3.3 Regular and chaotic motions of TSS with inextensi-
ble tether

Now we consider relative motion of two point masses (m,m0) in orbit, con-
nected by a massless flexible inextensible string with impact reaching connec-
tion. Such a problem was put and studied in 1969 [17, 26] as a simple model
of dynamics of an orbital tether system (for example, dynamics of the space
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112 Dynamics of Tethered Space Systems

probe and a satellite connected by a cable). This model can be treated as
certain dynamic billiard [19].

Om
0

m

R

a

w
x

h

O

FIGURE 3.16
An orbital tether.

We consider a plain problem. Let the mass centre O of a system (m,m0)
move along a Keplerian circular orbit (Fig. 3.16). We connect orbital co-
ordinate basis Oξη with the mass centre where the axis Oξ is directed on
tangent to circular orbit in a direction of motion, an axis Oη — in a direction
of radius-vector of the mass centre O. Let l be length of a string, ω0 be an
angular velocity of orbital motion of the mass centre. We enter dimensionless
time τ = ω0t and dimensionless coordinates %(ξ, η) and velocities v((̇ξ), (̇η))
of the point m by formulas

~% = ~r
m + m0

lm0
;~v =

~V

ω0l
, (3.65)

where % and V are dimensional coordinates and velocities. Equations of motion
then look like

ξ̈ + 2η̇ = 0, η̈ − 2ξ̇ − 3η = 0, %2 = ξ2 + η2 ≤ 1. (3.66)

Here points mean derivatives with respect to dimensionless time, (−2η̇, 2ξ̇)
are components of Coriolis forces , (0 , 3η) are components of the sum of forces
of a gyroscopic and gravitational gradient. It is necessary to add to (3.66) a
condition of absolute-elastic (on statement) reaching connection % = 1. This
condition connects value of velocity v+ and v− before and after impact:

~v+ = ~v− − 2(~er~v−)~er. (3.67)

Equations (3.66) in view of a condition of absolutely elastic reaching connec-
tion have an integral of energy

ξ̇2 + η̇2 − 3η2 = h. (3.68)

The considered problem is piece-wise integrable that facilitates research. As an
example in Fig. 3.17 the family of single-link periodic trajectories (calculated
on analytical formulas [27, 28]) is shown. Along a family values of energy h
and period T (T = 2π corresponds to period of orbital motion) are indicated.
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Analysis of the Motion of TSS 113

h=-2.50, T=0.49

h=-2.00, T=0.73

h=-1.50, T=0.95

h=-1.00, T=1.20

h=-0.50, T=1.46

h=  0.50, T=2.56

h=  0.60, T=2.90

h=  0.70, T=4.30

h=  0.71, T=4.60

0
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FIGURE 3.17
A set of single-link trajectories.

Mirrored family exists also reflected concerning an axis of abscissas. It is shown
in [24] that all these trajectories are stable in all area h ≤ 0.71 of the existence.

Phase space of a problem (3.66) is four-dimensional. However, at the mo-
ment of impacts one coordinate (% = 1) is known and at the fixed value of a
constant of energy h the phase space is reduced to a two-dimensional one. It
allows to use a method of point map for construction of phase portraits of a
problem.

Let us enter an angle α measured from a direction of motion of the mass
centre of the system counter-clockwise (i.e., against a direction of motion
of the mass centre (Fig. 3.16)). We choose a phase plane (α, α̇) as a two-
dimensional phase space at the moment of impacts. Phase portraits in this
plane and their changes of aircraft attitude at change of energy h are shown
in following figures (where some periodic trajectories are represented also in
the configuration space (ξ, η)).

Motion values of a constant of energy has oscillatory character and has a
high degree of a regularity in an interval −3 ≤ h ≤ −2. The major periodic
motion (single-link) is represented in Fig. 3.17. In a phase portrait it corre-
sponds to a stable point (“centre”). With h increase the regularity is more
and more lost. Chaotic layers arise and are increased with increase h in area
−2 ≤ h ≤ 0; archipelagoes of islands of multi-link trajectories arise and dis-
appear in the chaotic sea, but stable single-link periodic motion exists always.
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114 Dynamics of Tethered Space Systems

An example is in Figs 3.18, 3.19 (h = −0.75). Oscillatory motions are still
in the field of 0 ≤ h ≤ 1, but it is possible to see a transition to rotations
also. An example is in Figs 3.20, 3.21 (h = 0.6). At h > 1 chaotic and regular
rotations (Figs 3.22, 3.23 h = 2.5) dominate only. It is interesting that direct
rotations (α̇ < 0) in main are regular, but inverse ones (α̇ > 0) are chaotic
in main. The analysis shows that this effect is result of an action of Coriolis
forces.

A phase portrait consists of regular trajectories actually all at large values
h and its structure is determined by two (stable and unstable) two-link peri-
odic motions (Figs 3.24, 3.25, h = 25). At h → ∞ all picture aims at a set
horizontal straight lines that (as well as in a billiard case in a uniform field)
answers to classical kinematic circular Birkgoff billiard.

In [17] the countable family of impact-free periodic motions consisting of
arcs of linked and free motions (losing connection and reaching connection
happen in a impact-free way) was revealed. Initial data (α, α̇) and period T
of such motion’s satisfy a system of transcendental equations [27, 28, 55]:

tan
T

2
= cot α0

α̇0

2α̇0 − 3
;
T

2
=

1
3

cot α0
1− 2α̇0

2− α̇0
;

α̇2
0 − 2α̇ + 3 sin2 α0 = 0 (3.69)

with an energy constant
h = α̇2

0 − 3 sin2 α0. (3.70)

Two solutions of a system (3.69) give (approximately)

α
(1)
0 = 0.566, α̇0 = 1.3706, T = 2.9028, h = 1.058, α

(2)
0 = π + α

(1)
0 ,

the remaining parameters are the same, as in the first solution.
Initial data of the remaining solutions are well calculated under approxi-

mate formulas

T = 2πn− α0;α0 ≈ 1
6πn

;h ≈ − 1
12π2n2

;n = 1, 2, 3, . . . (3.71)

(For the second subfamily we have α0 = π + 1/6πn. The formulas (3.69)
and (3.71) give the same result to within five digits after a point.

h1 = −0.00844; h2 = −0.00211;h3 = −0.00094; h4 = −0.00053.

The structure of circumscribed trajectories is shown in [17, 27, 28].
In [17] motion of a bodies’ tether was considered at absolutely inelastic

impact and it was shown that impact-free periodic trajectories (3.69) are ac-
cessible in process of impact evolution of motion. However, the probability
of these events was estimated as zero. In [55] it is shown on the basis of re-
sults of [54] that this probability is distinct from zero, though it is very small
(∼ 10−7). In the same research [17] it is shown that if initial energy (3.70) of
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FIGURE 3.18
The phase portrait; h = −0.75.
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FIGURE 3.19
The three-link trajectory; h = −0.75.
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FIGURE 3.20
The phase portrait; h = 0.6.
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FIGURE 3.21
The six-link trajectory; h = 0.6.
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See Fig. 3.23

FIGURE 3.22
The phase portrait; h = 2.5.
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FIGURE 3.23
The fourth-link trajectory; h = 2.5.
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FIGURE 3.24
The phase portrait; h = 25.
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FIGURE 3.25
The two-link trajectories; stable on the left and unstable on the right; h = 25.
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Analysis of the Motion of TSS 119

connected motion lies in an interval −0.5 < h < 4 a system during inevitable
losing connection and impact (absolute-inelastic impact) reaching connection
may evolve so that for infinite quantity of impacts it goes

on a limit cycle of periodic oscillations with amplitude 1.1346 rad and value
h = −0.5. But it is possible also that the system will leave on one of periodic
oscillations with any value h from an interval −1.85 < h < −0.5 for a finite
number of impacts. The appropriate oscillation frequencies lie in an interval
from 0.8377 rad up to 0.7715 rad. In [29, 30] the effect of aerodynamic forces
of pressure on dynamics of an orbital tether of bodies is considered. Instead
of equations (3.66) and an integral (3.68) equations and an integral will take
place

ξ̈ + 2η̇ + a = 0, η̈ − 2ξ̇ − 3η = 0, ξ2 + η2 ≤ 1. (3.72)

ξ̇2 + η̇2 + 2aξ = h. (3.73)

The new constant parameter “a” describes an effect of aerodynamic pres-
sure . In Figs 3.26, 3.27 the example of a phase portrait of this problem with
absolutely elastic impact is shown at reaching connection (above). Centre of a
regularity answers to a stable, folded, horizontally located single-link periodic
trajectory. Centres of the archipelago of five islands answer to the stable five-
link periodic trajectory shown below. Values of parameters: a = 2.0, h = −1.0.

It is visible that the aerodynamics gives absolutely new quality of trajec-
tories: periodic trajectories as though “blown off” by an aerodynamic pres-
sure. We note that if in a purely gravitational case (without the aerodynam-
ics, a = 0) there is only one family (two subfamilies) of single-link folded
periodic trajectories with “spout” in a point (ξ = 0, η = 1) or in a point
(ξ = 0, η = −1) [27, 28], in view of the aerodynamics (a 6= 0) two such fami-
lies appear. The first of these families is an oblique loop with “spout” which
coordinates xi0, η0, ξ

2
0 + η2

0 = 1 are located on the “left” semicircle, so the
parameter ξ0 may have any value on an interval −1 ≤ ξ0 ≤ 0; the second
family is “horizontal” loops with “spout” in a point (ξ = −1, η = 0). In [30]
analytical formulas for these periodic solutions are derived and the area of
their existence is investigated.

At presence of the aerodynamics families of impact-free motions exist too
(however, the found families are not prolongation on parameter “a” of families
(3.69), (3.71)). At small α0, α̇ these parameters and the period T of motion
on a family of periodic impact-free motions are connected by ratio

α̇0 ≈ −a

2
;
2α0

a
≈ nπ + arctg

2α0

a
; T ≈ 4

α0

α
, n = 1, 2, 3, . . . (3.74)

In Fig. 3.28 some of such impact-free trajectories are shown.
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FIGURE 3.26
The phase portrait; effect of the aerodynamics.
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FIGURE 3.27
The five-link trajectory; effect of the aerodynamics.
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Analysis of the Motion of TSS 121

a) a=0.03, n=1
b) a=0.01, n=2

c) a=0.005, n=3

FIGURE 3.28
Effect of the aerodynamics: trajectories without impacts.
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122 Dynamics of Tethered Space Systems

3.4 Chaotic motion of TSS with extensible tether

3.4.1 Statement of the problem

Let us consider the motion of two material points, connected by a massless
linear spring. Such a model can be considered as a simple part of a computa-
tional model for studying the dynamics of a cable [25, 79], and allows to take
into account oscillations of the masses of the internal degrees of freedom. We
consider the motion of the system in the plane of the circular orbit of its mass
centre. Then it is possible to write the equations of motion (2.68), (2.75) as
follows

L̇ = −1.5ω2
0r2 sin 2ψ, ψ̇ =

L

r2
− ω0,

ḃ = b
ω2

0

k
Fb(L, r), ω̇ = k +

ω2
0

k
Fω(L, r),

(3.75)

where r = a + b cos ω is the distance between mass points, ω0 is the angular
velocity of the orbital motion of the mass centre, L is the value of the specific
moment of momentum of the motion about the mass centre of the system, ψ
is the angle between the local vertical and the line connecting the mass points
and Fb, Fω are given functions.

The analysis of non-resonant modes of motion of the system in sections
3.2.2, 3.2.3 shows that in the case when (ω0/k)2 = ε ¿ 1, as first approxi-
mation in ε the oscillation frequency is constant: ḃ = 0. This fact allows to
simplify the task and to assume that r = a + b cos ω, where ω̇ = k, a, b, k are
constants.

Hence, we consider as model problem the motion on a circular orbit of
a pendulum with periodically varying length of the bar — the motion of an
orbital pendulum [94]:

L̇ = −1.5ω2
0r2 sin 2ψ, ψ̇ =

L

r2
− ω0,

ω̇ = k, r = a + b cos ω.

(3.76)

Replacing the variable L = L
a2 , we obtain

L̇ = −3
2
ω2

0r2
a sin 2ψ, ψ̇ =

L
r2
a

− ω0, (3.77)

where ra = 1 + z cosω, z = b/a. It is visible, that contrary to the case of
the mathematical pendulum the change of angular orientation of the orbital
pendulum does not depend on length of the bar.
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Analysis of the Motion of TSS 123

3.4.2 Qualitative analysis of the attitude motion of an orbital
pendulum with oscillating length

The motion of an orbital pendulum can be divided into two modes of motion
— fast (ψ̇ À ω0) and slow (ψ̇ ∼ ω0) attitude motions. For k À ω0 in both
modes of motion there are ranges of values z, z ¿ 1, in which the effect of
longitudinal oscillations on the attitude motion is negligibly small. I.e., ac-
cording to KAM theory the trajectories of the system are divided by invariant
tori and are all the time close to unperturbed trajectories — to trajectories
of motion of a dumb-bell satellite with a bar of constant length. The task
consists in the definition of the values z and ω0/k, for which the conditions of
Kolmogorow’s theorems are fulfilled. The approximate estimation of the effect
of the longitudinal oscillations on the attitude motion of an orbital pendulum
can be obtained from the equation

d2ϕ

dω2
+ 3

ω2
0

k2
sin ϕ− 2

(
dϕ

dω
+ 2

ω0

k

)
z sinω

1 + z cosω
= 0,

where ϕ = 2ψ. From this equation follows that in the mode of slow attitude
motion of the pendulum the longitudinal oscillations become negligibly small
when z ¿ ω0/k ¿ 1. Further cases are considered when the longitudinal
oscillations render essential effects on the motion of the system, i.e., either
z ∼ 1, or ω0/k ∼ 1.

Let us assume that k À ω0, and we consider the mode of slow attitude
motion of the pendulum. In this case it is possible to consider L and ψ as slow
variables. The equations of the first approximation obtained by averaging
(3.77) over ω, look like:

L̇1 = −3
2
ω2

0s sin 2ψ1, s = 1 +
z2

2
;

ψ̇1 =
L1

pa
− ω0, pa = (1− z2)3/2.

(3.78)

The equations (3.78) can be integrated in elliptical functions. The energy
integral has the form

h = ψ̇2
1 + 3ω2

0β sin2 ψ1, β =
s

pa
. (3.79)

For oscillating motions of the pendulum, h < 3ω2
0β

sin ψ1 = k1sn(ω0

√
3β(t− t0) + F (ϕ0, k

2
1)k

2
1), (3.80)

where k1 = max | sin ψ1|,

F (ϕ0, k
2
1) =

∫ ϕ

ϕ0

dϕ

(1− k2
1 sin2 ϕ)1/2

, sin ϕ0 = sin ψ0/k1,
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124 Dynamics of Tethered Space Systems

t0, ψ0 is the initial time and the initial value of ψ.
The averaged oscillation period of the pendulum is

T =
4

ω0

√
3β

π/2∫

0

dϕ√
1− k2

1 sin2 ϕ
=

4
ω0

√
3β

K(k1). (3.81)

Therefore, with increasing amplitude of the longitudinal oscillations the period
of angular oscillations decreases, i.e., their frequency grows.
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FIGURE 3.29
Phase portrait of an averaged pendulum.

The equations of first approximation (3.78) describe well the oscillations of
a pendulum at rather large frequencies of longitudinal oscillations. In Fig. 3.29,
Fig. 3.30 the phase portraits of the oscillations of the pendulum are shown:
Fig. 3.29 — system (3.78), Fig. 3.30 — section of the phase space of the
system (3.77) by the plane ra = 1 + z; k = 0.1 s−1, z = 0.8. Here and later
on ω0 = 0.001 s−1. The phase space of the system (3.77) can be considered
as four-dimensional space of the variables L, ψ, ra, ṙa. On the abscissa
axis the angle ψ is given in radians, on the ordinate axis in Fig. 3.29 —
Lar = (L1 − paω0) · 1000 and in Fig. 3.30 — Lr = (L − paω0) · 1000 is
shown. Differences in the phase portraits are seen only in areas, which are close
to a separatrix separating rotatory and oscillating motions in the averaged
system (3.78). A more detailed research of these trajectories shows that a slow
exchange of energy (amplitude) of pendulous oscillations with transitions in
rotatory and oscillating motions is seen.

The band of chaotic trajectories near a separatrix is clearly seen for z = 0.8
at values k smaller 0.06 s−1. Hence, in Fig. 3.31 a band of cross section points
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FIGURE 3.30
Phase portrait of orbital pendulum oscillations in section ra = z + 1.

of the phase flow trajectory with the plane ra = 1+z is clearly visible. The way
these points are distributed allows to characterize this trajectory as chaotic.
With decreasing frequency of the longitudinal oscillations keeping their am-
plitude fixed the bandwidth of chaotic motions grows. For other values of the
amplitude of the longitudinal oscillations the chaotic motion appears at other
frequencies of the longitudinal oscillations. The approximate computation of
these values can be made on the basis of the equality of the relations of the
frequency of pendulous oscillations of the averaged equations (3.78) to the
frequency of longitudinal oscillations. In Fig. 3.32 the phase portrait of the
Poincaré section is shown for z = 0.2 and the obtained value k ≈ 0.0191 s−1

are calculated from z = 0.8, k = 0.06 s−1.
Thus, at certain parameters of the system (amplitude and frequency of

longitudinal oscillations) in the motion of the system there are trajectories,
which in their evolution can be characterized as chaotic. In Fig. 3.33 the
angular variation ψ in time in the chaotic regime is presented.

On the basis of the conducted analysis it is possible to assume that a
source of stochastic motions is the separatrix dividing oscillatory and rota-
tory motions of the pendulum. Based on this supposition it is possible to give
satisfactory explanations both for irregularities of trajectories and their ran-
dom character, as in the unperturbed motion the separatrix corresponds to
the unstable final equilibrium positions just as “the edge of a coin” divides
two qualitatively different modes of motions. The approximate analysis of the
dynamics of systems near the separatrix and its decomposition is a complex
problem even in simpler cases [67]. At large amplitudes of the longitudinal
oscillations an essential adaptation of the schemes of analysis is required. At
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FIGURE 3.31
Phase portrait at ra = 1 + z, z = 0.8, k = 0.05 s−1.

0.06

0.02

-0.02

-0.06

-0.10

1.536 1.553 1.571 1.588 1.606

Angle (rad)y

N
o
rm

al
iz

ed
 m

o
m

en
t 

o
f 

m
o
m

en
tu

m
(s

)
L

r

-1

0.10

FIGURE 3.32
Phase portrait at ra = 1 + z, z = 0.2, k = 0.0191 s−1.
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FIGURE 3.33
Variation of an angle ψ in time at z = 0.8, k = 0.02 s−1.

the same time the results of such an analysis give only approximate estimation
of the bandwidth of non-regular trajectories, but do not give explanations of
the phenomenon of their stochasticity. The attempt of such an explanation on
the basis of the change of the topology of the separatrix results in complex
mathematical problems. On the other hand [92], the numerical analysis of the
system

L̇ =





−3
2
r2
a sin 2ψ , ∀ |ψ| ≤ 1.5359 rad,

−3
2
r2
a sign ψ sin 1.5359 , ∀ |ψ| > 1.5359 rad,

ψ̇ =
L
r2
a

− ω0, ra = 1 + z cosω, ω̇ = k,

(3.82)

which is close to the original, but in which due to the absence of distur-
bances there are no qualitatively different motions, and, accordingly, there
is no separatrix, shows that the stochastic trajectories remain, (Fig. 3.34
(z = 0.8, k = 0.06 s−1)).

In an attempt of constructing the approximate solution of system (3.77)
near the main resonances by an allocation procedure the supposition has ap-
peared that a reason for the origin of chaotic trajectories are “induced res-
onances.” The term “induced resonance” means the following. We assume it
to be possible to present ψ by the way ψ = ψs + ψk, where ψs and ψk are
accordingly slow and fast oscillating components. Then at ψs close to null
ψk is “resonant” with r2

a, and the swapping of energy in pendulous motions
apparently has non-regular character. Here it is essential that the amplitude
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FIGURE 3.34
Phase portrait of the system (3.82) ra = 1 + z, z = 0.8, k = 0.05 s−1.

of the high frequency oscillations in some instants considerably surpasses the
absolute value of the amplitude of the slow oscillations. Some examples of or-
dinary differential equations of the first order verifying this supposition were
constructed. In Figs 3.35–3.40 for a number of examples the time histories
and sections of Poincaré of the solution of appropriate equations are shown
for zero initial conditions t0 = 0, x0 = 0. The Poincaré sections were plotted as
follows: points in the phase plane were obtained after time intervals ∆t = 2π.

If for the equation

ẋ = cos(t) cos(20 sin 0.037t + 15 cos(t)) (3.83)

(Fig. 3.35, 3.36) with constant amplitudes and for the equation

ẋ = cos(t) cos(20 sin 0.037t + (0.1x + 15) cos(t)), (3.84)

(Fig. 3.37, 3.38) it is possible to find out periodic character of a trajectory,
for the equation

ẋ = cos(t) cos(20 sin 0.037t + (1 + 0.1t) cos(t)), (3.85)

(Fig. 3.39, 3.40) with increasing amplitude of the fast oscillations the trajec-
tory is very similar to a chaotic one. The Poincaré sections of the solution of
equations (3.83) and (3.84) contain only a finite number of points. The whole
band of phase points is characteristic for the equation (3.85).

The detailed research of the considered supposition is limited due to the
difficult problem of the investigation of the properties of integrals of the type∫

cos t cos(c1 sin w1t + c2 cosw2t)dt.
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FIGURE 3.35
Trajectory of the system (3.83).
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FIGURE 3.36
Poincaré section for a solution of the system (3.83).
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FIGURE 3.37
Trajectories of the system (3.84).
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FIGURE 3.38
Poincaré section for a solution of the system (3.84).

On the other hand, it is possible to assume that the induced resonances
are a main reason of the chaotic motions of the system (3.77). Then it is
necessary to expect the development of the dependency of the irregularity of
trajectories on the absolute value L. However, this is not the case. Moreover,
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FIGURE 3.39
Trajectories of the system (3.85).
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FIGURE 3.40
Poincaré section for a solution of the system (3.85).

it is necessary to expect, that in the system

L̇ = −3
2
ω2

0r2
a sin 2ψ, ψ̇ =

L
r2
a

(3.86)

the bands of chaotic trajectories should change, since in the first approxima-
tion the oscillating motion ψ (its slow motion) does not change, but L and,
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therefore, the amplitude of the fast oscillations ψ decreases for ψ̇ < 0 and
increases for ψ̇ > 0. However, comparison of the phase portraits of the sys-
tems (3.77) and (3.86) both for oscillatory, and for rotatory motions of the
pendulum does not give a reliable basis for the confirmation of the supposition.

The rather rough construction of the equations of the second approxima-
tion by the method of averaging gives a system of comparison of the form:

L̇∗ = −3
2
ω2

0s sin 2ψ∗ +
ω3

0

k

L∗
pa

I2(ψ∗0 , t0) cos 2ψ∗,

ψ̇∗ =
L∗
pa

− ω0 − ω3
0

k
βI1(ψ∗0 , t0) sin 2ψ∗.

(3.87)

The system (3.87) correctly reflects the asymmetry of the phase space de-
pending on the initial conditions. In Figs 3.41, 3.42 the phase portraits of the
system (3.77) are represented by the section by the planes ra = 1, ṙa > 0
and ra = 1, ṙa < 0 respectively. This asymmetry of the phase space is easy
to understand from mechanical reasons. It becomes obvious, by writing an
equation for the variable h = ψ̇2 + 3ω2

0 sin2 ψ, reflecting the change of the
energy of the pendulous oscillations

ḣ = −4
ṙa

ra

(
ψ̇ + ω0

)
ψ̇. (3.88)
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FIGURE 3.41
Phase portrait in section by the plane ra = 1, dra/dt > 0.

The analysis of methods of research of chaotic trajectories allows to assume
that any attempts of construction of approximate solutions for chaotic modes
of motion are limited by unsolvable mathematical problems. More preferably
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FIGURE 3.42
Phase portrait in section by the plane ra = 1, dra/dt < 0.

looks the analysis of the transition to stochastic motions based on estimations
of time discrete sequences of system states. The method of Poincaré section
of the phase space relates also to those. In such approaches to the analysis,
the problem of construction of the general solution of a differential equation
is substituted by the research of a sequence of definite integrals of the type∫ ti+1

ti
ẋdt, where ti = t0+i∗(nTω), Tω = 2π/k is the period of the longitudinal

oscillations of the system, x is a variable describing the motion of the system
and i = 1, 2..., n are positive integer numbers. In Poincaré’s method n = 1.
Smoother sequences can be obtained for n ≥ 1, by selecting its values for
different initial conditions.

3.4.3 Analysis of a specific trajectory

Let us fix parameters of the system: k = 0.02 s−1, z = 0.8 and consider a
specific regular trajectory in Fig. 3.43 [95]. Its initial conditions are equal to
ψ0 = π/15 rad,L0 = ω0pa. In Fig. 3.43 the variable ψ is shown against the
dimensionless “time” tr, with the equal number of periods of the longitudinal
oscillations: tr = t/Tω. We consider h∗ = L2/r2

a + 3ω2
0r2

a sin2 ψ as a value
describing the energy of pendulous motions. Here the first item is equal to
the doubled reduced kinetic energy of the relative motion, perpendicular to
the bar, and the second one is the doubled reduced potential energy of the
effect of the gravitational field on the relative motion of the system. The
graph of change of h∗ for the considered trajectory is represented in Figs 3.44,
3.45. Generally speaking, the dependence of h∗ on time definitively is not
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134 Dynamics of Tethered Space Systems

simpler than the dependence of ψ on time. The analysis of the variation of h∗

(Fig. 3.45) shows its essential dependence on the length of the bar.
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FIGURE 3.43
Regular trajectory ψ0 = π/15 rad, L0 = ω0pa.

3.4.3.1 Estimation of the variation of energy for pendulous motions

The analysis of regular features of motion based on a numerical solution of
the equations of motion, supposes the construction of estimates, distinctly re-
flecting changes in motion. The calculations display that the graph of change
of h∗ does not directly allow to judge about the evolution of the variations of
energy of pendulous oscillations. The fact is that regular features of the varia-
tion of energy of motion on longer time intervals, such as on intervals when it
is increasing or decreasing, its maximum and minimum values are discovered
by local changes on each cycle of the longitudinal and pendulous oscillations,
which considerably exceeds systematic changes of the energy, interesting us.
In the considered case it obviously is possible and expedient to conduct the
analysis of regular features of motion on the basis of the construction of a
sequence of integral estimations which are discrete in time.

Following Poincaré’s method we consider the sequence of values h∗, com-
puted on each period of the longitudinal oscillations for fixed values ra and
ṙa. In Fig. 3.46 the sequences of values h∗ for each period of the longitudinal
oscillations for different fixed values of the length of the bar and for the same
initial conditions are represented. As it is visible in the figure, the smoothest
sequence of values h∗ is obtained for a bar of fixed length, equal 1 + z. This
fact is easy to understand from equation (3.88), and also, if one considers
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Variations of h∗.
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FIGURE 3.45
Variations of h∗.

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

0:
54

 0
6 

Ju
ne

 2
01

6 



136 Dynamics of Tethered Space Systems

trajectories of motion of the pendulum in the plane Oxy (Fig. 3.47) where
x = ra sin ψ, y = ra cos ψ. In Fig. 3.47 it is visible that for the length of the
bar, smaller than a certain value, the character of the pendulous motion be-
comes essentially more complicated and there is also the capability of inverse
motions.
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a a
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FIGURE 3.46
Sequence of values h∗ in Tω for different values of a bar length.

By reducing the time scale (Fig. 3.48), we see that in all domains of h1+z

changes of the same type of regular features take place. Before we begin the
analysis of these regular features, we consider other ways of construction of
sequences of estimations of the change of energy of pendulous oscillations.

As a measure of the change of energy of pendulous oscillations it is possible
to consider the mean value h∗ on each period of longitudinal oscillations

hav =
1
Tω

∫ nTω

(n−1)Tω

h∗dt. (3.89)

In Fig. 3.49 the sequence of values hav obtained from (3.89) for each period of
the longitudinal oscillations on the time interval equal 1000 Tω is shown. An
area of large values of hav is shown in Fig. 3.50. Within some differences the
character of variations in the sequence hav corresponds to the variation in the
sequence h1+z. Analysing the possibility to use this estimated sequence, it is
possible to assume that for transition of a regular trajectory into a chaotic
one the deciding role should be played by the peak values of the energy of
pendulous oscillations. From this point of view, the use of the sequence hav

does not correspond to the purpose of the research.
The construction of estimating sequences of the change of energy of pen-

dulous oscillations is obviously possible from conditions of fixing the values
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FIGURE 3.47
Trajectories of pendulum motion in a plane.
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FIGURE 3.51
Sequence h∗ at fixed ψ = π/15 rad.

ψ or L too. In Fig. 3.51 the values h∗ are computed in the instants when
0.2091 rad< ψ < 0.2098 rad. In Fig. 3.52 values h∗ are shown, computed at
instants for which 0.2091 rad< ψ < 0.2098 rad and ψ̇ < 0. From the figures, it
is visible that the general regular feature of the change of sequences of values
h∗ has not changed. At the same time, the construction of such estimations of
the change of energy of pendulous oscillations is connected to certain comput-
ing difficulties, and as it is visible from Figs 3.51, 3.52 the sequences contain
“additional” values.

Considering the concept of energy of pendulous oscillations as the qualita-
tive characteristic feature, it is possible to offer a construction of its estimat-
ing sequence on the basis of measurements of maximum values of the angle
of deviation of the pendulum from the local vertical. In Fig. 3.53 the angular
variation ψ for its maximum values is shown. If we draw appropriate envelope
lines, it is possible to see the same general regularity in the change of the
values of the estimates.

It is easy to see that the quantity of possible estimating sequences of the en-
ergy of pendulous oscillations is not limited by the listed methods. If there are
general regularities of changes these sequences also have distinctions. Based
on general reasoning, we consider the sequence h1+z as the main estimating
sequence, because it is the most simple to construct and the most appropriate
according to Poincaré’s method. Also we consider the sequence of maximum
values of the angle ψ as most appropriate with respect to experimental re-
search.

The offered estimating sequences do not directly supply a visual picture of
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Sequence h∗ at fixed values ψ = π/15 rad and dy/dt < 0.
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Analysis of the Motion of TSS 141

the evolution of changes of the energy of pendulous oscillations. The envelope
of the maximum values of these sequences, however, gives such a picture.

3.4.3.2 Analysis of the character of the trajectory

In all constructed estimating sequences the general regularity of their changes
is seen. This regularity is connected to the almost-periodic character of the
trajectory. It corresponds to the commensurability of quantities of pendulous
and longitudinal oscillations in the ratio 8:35. From a more careful study of
the graphs the recurrence of changes ψ and h1+z in time, equal 13Tω is seen
which corresponds to the commensurability of pendulous and longitudinal
oscillations with the ratio 3:13.

Thus, in one specific trajectory the different commensurability of pendu-
lous and longitudinal oscillations are exhibited. In this respect the following
questions arise: if in one trajectory various commensurability are exhibited,
to which commensurability is the trajectory correctly related? Is it possible to
relate the trajectory to a unique resonant ratio of frequencies? Above we have
defined the exhibited commensurability for a trajectory on the basis of some
recurrences of changes of ψ and h∗ during certain time intervals, as multiples
of Tω. This we have confirmed by constructing smooth sequences of the values
of ψ and h∗ during time intervals, which were multiples of the characteristic
period. Now let us consider an almost-periodic trajectory with the character-
istic period Tt. Then, the change of value of ψ for Tt is small, and the sequence
of values ψi, computed at instants iTt (i = 1, 2, 3...) is smooth. By virtue of
the almost-periodic character of the trajectory the longitudinal oscillations
slowly transform into pendulous oscillations with the characteristic period of
the trajectory. Therefore the energy transmitted into pendulous oscillations
should smoothly change from period to period. Thus, the smoothness of the
change of the values of ψ and the energy of pendulous oscillations in n periods
of the longitudinal oscillations is one of the criteria of assessment whether the
trajectory is almost periodic to nTω. Obviously this criterion does not answer
the formulated questions.

The smooth variation of the sequences of values of ψ and h∗, are stipu-
lated on the one hand, by the displacement of pendulous oscillations about
the longitudinal ones in a characteristic period of the trajectory, and on the
other hand, by the change of energy of the pendulous oscillations. Taking into
account the non-linear character of the pendulous oscillations by increasing
(decreasing) their energy (amplitude) as their period grows (decreases), it is
possible to expect that for each trajectory there is such number n that the
range of changes of values of the energy of pendulous oscillations computed
through time intervals nTω is less than the full range of values computed dur-
ing time intervals Tω. Thus, the limited nature of the domain of values of the
pendulous oscillations energy computed in time intervals nTω, in comparison
with the full range of its values computed in Tω, gives the second criterion
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142 Dynamics of Tethered Space Systems

nTω of almost periodicity of a trajectory. Among the numbers satisfying both
criteria, it is necessary to select the smallest.

The analysis of the considered trajectory (ψ0 = π/15 rad, L0 = ω0pa)
shows that it is almost-periodic with period equal 477 · Tω.

Thus, on the basis of the analysis of a specific regular trajectory it is shown
that it can be related to a certain resonance of pendulous and longitudinal
oscillations, and be considered as an almost-periodic trajectory. As a measure
of changes of energy of pendulous oscillations it is possible to accept the
sequence of maximum values of the sequence h1+z, or the envelope sequence
of maximum values of the angle of deviation of the pendulum from the local
vertical. These measures of changes of energy of pendulous oscillations agree
with the almost-periodic character of the trajectory.

3.4.4 Analysis of sets of trajectories

Let us consider a set of trajectories. In the domain of initial values (t = 0) we
form the straight line ra0 = 1+z, ṙa0 = 0, L0 = ω0pa. Let us consider the set
of trajectories (set 1), coming from this straight line, i.e., the set generated by
changes of initial values of the angle ψ0, the deviations of the pendulum from
the local vertical. In Fig. 3.54 the phase portrait of this set is obtained by a
section of the trajectories in phase space by the plane ra = 1 + z (further, if
it is not stipulated especially, all phase portraits are created similarly, and for
brevity we name them simply as “phase portraits”). In Fig. 3.54 the phase
portrait is constructed for the variation of ψ0 from 0 rad up to 1.2217 rad
with a step-size 0.01745 rad. For each trajectory 1000 points were plotted in
the phase portrait. In the figure the trajectories are shown only for values of
ψ from −1.2217 rad up to 1.2217 rad disregarding the appearance of chaotic
trajectories in the considered area. As it is visible in the figure this set of
trajectories does not cover the whole space of trajectories. Therefore, besides
this set, we consider similar sets of trajectories, changing the fixed initial value
L0 (sets induced by parallel straight lines). In Fig. 3.55, similar to Fig. 3.54, the
phase portrait for a set of trajectories with the initial value L0 = ω0(pa−0.15)
is presented.

Let us now consider more detailed the phase portraits close to the above
considered trajectory, which is determined by the initial conditions L0 =
ω0pa, ψ0 = π/15 rad, ra0 = 1 + z. In Fig. 3.56 the phase portrait of set 1
is shown for the variation of ψ0 from 0.2070 rad with stepsize 0.00035 rad. In
the figure it is visible that the trajectory with ψ0 = π/15 rad really does not
belong to the resonance 8:35, and relates to a resonance of higher order. The
order of resonance is determined by the characteristic period of trajectories,
inherent to it, Tt = n · Tω: the larger the number n, the larger the order of
resonance. From the figure it is also visible that the whole phase space in the
considered domain is divided into resonances of high order. The resonance
8:35, as resonance of lower order in the domain is specially selected. Let us
consider this case in more detail.
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FIGURE 3.54
Phase portrait of the set 1.
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FIGURE 3.55
Phase portrait of a set L0 = ω0(pa − 0.15).
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FIGURE 3.56
Phase portrait of the set 1 in domain of trajectory ψ = π/15 rad.
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Phase portrait of a set in domain of resonance 8:35.

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

0:
54

 0
6 

Ju
ne

 2
01

6 



Analysis of the Motion of TSS 145

In Fig. 3.57 the phase portrait of family 1 is shown where ψ0 changes from
0.2072 rad up to 0.2075 rad with step size 0.00001745 rad. In the figure it is
visible that this resonance has the character of an almost simple commensura-
bility of disconnected motions. Let us explain this. First, we do not observe the
closed loop, which is characteristic for a non-linear resonance. Secondly, we ob-
serve a monotone increase of the density of points of the trajectory in the phase
portrait if the trajectories are approaching the resonance. This is because by
approaching a certain commensurability of low order of among themselves in-
dependent oscillations, the order of their commensurability grows. Approach-
ing the resonance a certain figure formed by points of adjacent trajectories is
seen. Smooth lines envelop resonances. This is connected to the increase of the
period of pendulous oscillations on the considered families of trajectories with
the increase of the initial value ψ0 and with the smooth variation of the com-
mensurability of pendulous and longitudinal oscillations. In fact, in Fig. 3.58
the phase portrait of the family L0 = ω0(pa − 0.0019) is presented where ψ0

changes from null up to 0.2618 rad with step size 0.0001745. 150 points are
depicted on each trajectory. Here components of the above considered figures
are clearly visible.
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FIGURE 3.58
Phase portrait of a set L0 = ω0(pa − 0.019). 150 points on trajectory.

For confirmation of what was said above we consider the phase portrait
of the averaged system of the equations (3.78) (Fig. 3.59). This portrait is
constructed in the same way as the phase portrait shown in Fig. 3.54, i.e., the
points of trajectories are created through a constant time interval, equal to
the phase of longitudinal oscillations of the origin system. In Fig. 3.59 figures
similar to the above mentioned are shown. In Fig. 3.60 the phase portrait of
the averaged system of equations constructed similarly to the phase portrait
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FIGURE 3.59
Phase portrait of an averaged system.

of the origin system, shown in Fig. 3.58, is presented. In Fig. 3.61 the phase
portrait of the averaged system constructed in the same way as the phase
portrait in Fig. 3.60 is shown, but at z = 0.82, approximately calculated
from the condition that the period of pendulous oscillations of the averaged
system T (3.78) relates to phase of longitudinal oscillations Tω for the angle
0.1047 rad as 3:13. The presented figures confirm that for a small initial angle
of pendulous oscillations the resonances have the character of an almost simple
commensurability of motions disconnected among themselves.

At the same time, the considered resonance 8:35 is the resonance of a non-
linear system. The more in-depth study of the trajectories of set 1 near to this
resonance has allowed to reveal the characteristic closed loop (Fig. 3.62).

Let us consider the change of energy of pendulous oscillations near reso-
nance. In Fig. 3.63 the sequences of maximum values of the sequence h1+z

of set 1 for ψ0 = 0.2068 rad+i · 0.00008727 rad are exhibited. Taking into ac-
count certain commensurability of trajectories each point of the sequence was
plotted by selection of the maximum of the values h1+z during time 35 · Tω.
In Fig. 3.63 it is visible that on an initial interval of motion for trajectories
lying below the resonance an increase of the energy of pendulous oscillations
is typical, and for trajectories lying above, a decrease. In Fig. 3.64 the estima-
tions of the change of energy of pendulous oscillations based on the evaluation
of maximum values of the angle of deviation of the pendulum from the local
vertical are presented. Here we observe the same regularity of the change of
energy of pendulous oscillations as by passing through a resonance. The same
regularity is also exhibited for other resonances of rather low order.

Thus, the analysis of trajectories for small angles of deviation of the pen-
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FIGURE 3.60
Phase portrait of an averaged system.
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FIGURE 3.61
Phase portrait of an averaged system, z = 0.82.
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Loop of non-linear resonance 8:35.
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dulum from the local vertical ψ < 0.3490 − 0.4363 rad allows to make the
following conclusions [95]:

– the whole trajectory space is divided into separate groups of resonances;
– the non-linear character of resonances in the given area is weakly ex-

pressed, i.e., the resonant groups of trajectories are very narrow;
– in the whole area a smooth variation of the order of commensurability

of pendulous and longitudinal oscillations has taken place;
– passing through a separate resonance of a set of trajectories induced by

a separate line in the space of initial conditions, the changes of the sign of
increment of the energy of pendulous oscillations has taken place. In an initial
time interval, for trajectories having initially smaller values of energy, this
increment is positive, and for trajectories with larger value than the value of
the central resonant trajectory, it is negative.

The first conclusion poses a problem about boundaries of groups of res-
onances: are there trajectories separating resonances, and, accordingly, not
belonging to one of the resonances? Here a numerical investigation of the con-
sidered system can not give an answer. It is only possible to assume that in the
considered domain this problem is solved by the increase of the order of com-
mensurability between longitudinal and pendulous oscillations up to infinity
of the characteristic period of the trajectory.

The third conclusion states additionally that in this case a smooth vari-
ation of the character of the trajectories also takes place. In particular, in
trajectories of resonances of high order the commensurability of resonances
near to lower order are exhibited.

The fourth conclusion concerns, by virtue of the adopted measure of the
change of energy of pendulous oscillations, resonances of rather low order only.
At the same time, it is obvious that by defining the necessarily weak concept
of the envelope of maximum values, we obtain also similar conclusions for
resonances of high order. This conclusion links the non-linear resonance to
the image of a funnel. Let us imagine the plane of the families of trajectories
induced by a certain straight line in the space of initial conditions, where on
the axis OY time, and on the axis OX the value of the energy of pendulous
oscillations, are depicted. Then the trajectories of motion in resonances of low
order can be presented as motion of a ball in appropriate funnels (Fig. 3.65),
which are located along the straight line of time symmetric one by one.

The motion pattern is similar in something to motion on an infinite Hal-
ton’s board, where the funnels are posed instead of nails, and for the researched
regular trajectories the funnels are not overlapped, i.e., the motion of a ball
happens all time in an image of the same funnel.

3.4.5 Non-linear resonances

The non-linear resonances determine the structure of the phase space of the
system near the area of a stochastic layer. Resonant ratios of oscillation pe-
riods, by virtue of the increase of the period of pendulous oscillations, mono-
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Analysis of the Motion of TSS 151

tonically decrease along a straight line, generating set 1. The resonance 3:13
at ψ0 ≈ 0.1047 rad is the first observable resonance of rather low order, the
resonance 1:6 at ψ0 ≈ π/3 is the last one.

The analysis of resonances for different parameters of the system allows to
make the conclusion that their width (length of the segment of the straight line
generating the set of trajectories passing through the centre of the resonance,
belonging to this resonance, or the maximum increment of the angle ψ in the
resonance) depends both on the order of resonance, and on the position of
the resonance along the straight line generating the set 1. The order of the
resonance determines the size of the reallocated energy between longitudinal
and pendulous oscillations: decreasing the order of the resonance the increment
of energy of pendulous oscillations grows. The arrangement of the resonance
about the initial straight line of the set 1 determines the response of the system
for incrementing the energy of the pendulous oscillations. It is possible to
prove that approaching to ψ0 = π/2 the width of the resonance for the same
increment of energy of the pendulous oscillations is sharply increased.

For the considered parameters of the system the resonance 1:5 is the res-
onance of lowest order. In Fig. 3.66 for the set induced by the straight line
L0 = ω0(pa − 0.162), passing almost through the centre of the resonance, the
phase portrait of the resonant trajectories is shown. The trajectories were plot-
ted for ψ0 = 0.6527+ i ·0.0001745 rad. In the figure it is visible that the phase
space of the resonant trajectories is similar to the phase space of the system
for small angles ψ. The whole phase space is divided into separate groups of
secondary resonances — resonances between the change of the phase shift of
the main resonance and the phase of longitudinal oscillations. The width of
secondary resonances, similarly to the width of primary resonances, depends
on the order of commensurability and their distance from the centre of the
primary resonance. The width of secondary resonances depends also on the
primary resonance — on its resonant ratio of oscillation periods and the ar-
rangement along the straight line generating the set 1. The analysis shows
that by decreasing the resonant ratio of phases of the primary resonance and
by displacement of the centre of the resonance to a separatrix of unperturbed
motion, the width of the secondary resonances increases. In Fig. 3.67 the phase
portrait of the system on the boundary of the resonance 3:16 is shown. In the
figure a stochastic layer is located at the boundary of the resonance, and also
secondary resonances, located closely to this layer, are clearly visible.

The investigations of the change of energy of pendulous oscillations of res-
onant trajectories allow to link the resonance of rather low order to the image
of the spatial funnel, on the surface of which the grooves corresponding to
secondary resonances are marked. An image of motions in non-linear reso-
nances presented in Fig. 3.65 changes also accordingly. Let us imagine the
plane OXZ generated from straight lines, where on the axis OX the energy
of pendulous oscillations, and on the axis OZ the angle ψ is drawn. Then
the change of parameters of motion in resonances of low order in time can be
presented as motion of a ball in appropriate spatial funnels and their grooves
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FIGURE 3.66
Phase portrait of a non-linear resonance 1:5.
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Phase portrait on boundary of a resonance 3:16.
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located along the straight time axis OY is symmetric one by one. Actually the
motion pattern in non-linear resonances is more complex, since for secondary
resonances there can be again secondary resonances and so on.

3.4.6 Image of chaotic motions

The increase of the density of the arrangement of resonances of low order and
width of secondary resonances for approaching a stochastic layer allows to
make the conclusion or supposition, that the reason of the origin of chaotic
motion is the overlap of resonances [95]. A chaotic trajectory, contrary to a
regular one, does not belong to any specific commensurability of pendulous
and longitudinal oscillations. It passes through a group of resonances, “jump-
ing” in its motion on adjacent commensurability of this group.

The image constructed above of the non-linear resonance allows also to
construct a visual image of a chaotic trajectory. For an appropriate initial
position of a ball all overlapping funnels are accessible to its motion in over-
lapping funnels (the overlapping parts of the funnels need to be removed). For
an initial position of the ball at the bottom of the funnel it can not get into
adjacent funnels. The conformity of the constructed image to real motions
of the system is confirmed by “islands” of resonances in the stochastic layer
of oscillatory and rotatory motions of the pendulum in Figs 3.54, 3.55, and
by the investigation of the stochastic layer only for oscillating motions of the
pendulum near the boundary of the resonance 3:16 (Fig. 3.67).

3.4.7 Effect of energy dissipation

The effect of dissipative forces on chaotic modes of motions is further consid-
ered. As a model problem of the dynamics of space tether systems the model
of a mathematical pendulum with periodically varying length of the bar on
a circular orbit (orbital pendulum) is considered [96]. The dissipative forces
are modelled as external forces of viscous friction. The derived equations of
motion have the form

L̇ = −3
2
ω2

0r2
a sin 2ψ − ξr2

a(ψ̇ + ω0), ψ̇ =
L
r2
a

− ω0, (3.90)

where ra = 1 + z cos ω, z = b/a, b, a are the mean length of the bar and
the amplitude of its oscillations respectively, ω0 is the angular velocity of the
orbital motion of the pendulum (similarly as before ω0 is adopted to be equal
to 0.001 s−1), ψ is the angle between the local vertical and the bar, ω̇ = k, ξ
is the factor of external viscous friction (ξ ¿ 1) and ξ, a, b, k are constants.

3.4.8 Results of numerical calculations

Examples of typical behaviour of trajectories of a system (3.90) in chaotic
modes of motion are investigated below.
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154 Dynamics of Tethered Space Systems

In Figs 3.68–3.71, for parameters of the system z = 0.8, k = 0.02 s−1, ξ =
10−6 s−1, the images of the phase trajectory with the same initial values
ψ0 = 0.8727 rad, are exhibited; L0 = ω0pa at the instant t = 0. As before,
the phase space of the system (3.90) is considered as space of four variables
L, ψ, ra, ṙa. The images of the phase trajectories (their phase portraits) are
created through a Poincaré map — by section of the phase space by the plane
ra = 1 + z, ṙa = 0. Lr = (L− paω0)1000, pa = (1− z2)3/2. Calculations were
conducted with the Runge–Kutta method of the 4th order with a constant
stepsize of integration. Differences in the calculations of trajectories shown
in Figs 3.68–3.71, result only from the selection of the integration stepsize.
In Fig. 3.68 the change of the trajectory is exhibited for an integration step-
size equal hg = π/(521 · k), in Fig. 3.69 hg = π/(621 · k), in Fig. 3.70 —
hg = π/(651 · k), in Fig. 3.71 hg = π/(731 · k). In each case the trajectory
eventually arrives in some area of the phase space and remains there. For the
trajectory shown in the Fig. 3.68, such an area is the area of the resonance 1:2
(one rotation of the pendulum for two periods of longitudinal oscillations) for
a rotation opposite to the orbital one. For the trajectory shown in Fig. 3.69 it
is the area of oscillation of the pendulum near an equilibrium position of the
pendulum with constant length of the bar ψ = π (further on, for brevity, we
call these areas simply as areas of oscillations near an equilibrium position,
though here a steady mode of oscillations takes place with commensurability
1:1 — one oscillation of the pendulum for one phase of longitudinal oscilla-
tions). For the trajectory shown in Fig. 3.70 it is the area of the secondary
resonance of the 1:2 resonance of direct rotations. In Fig. 3.71 it is the area
of the 1:1 resonance of direct rotations.
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FIGURE 3.68
Image of a trajectory for hg = π/(521 k).
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FIGURE 3.69
Image of a trajectory for hg = π/(621 k).
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FIGURE 3.70
Image of a trajectory for hg = π/(651 k).
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FIGURE 3.71
Image of a trajectory for hg = π/(751 k).

A similar picture of change of trajectories takes place for a constant in-
tegration step for minor changes of the initial data also. In Fig. 3.72 for the
parameters of the system z = 0.2, k = 0.002 s−1, ξ = 10−5 s−1 the phase por-
traits of trajectories with the initial data L0 = 0.006 pa and ψ0 = 0.0001745 · i
are exhibited where i varies from 0 up to 16. The integration stepsize for the
calculation was equal hg = π/(521 · k). Here the attracting areas for the tra-
jectories are the areas of 1:1 resonance of inverse rotations; 3:2 resonance of
direct rotations and the area of oscillations near the final equilibrium positions
ψ = 0, ψ = π. Changes of the integration stepsize and changes of the initial
data do not change noticeably the picture shown in Fig. 3.72.

In Fig. 3.73 for parameters of the system z = 0.8, k = 0.01 s−1, ξ =
0.0005 s−1 the image of the phase trajectory is exhibited with the initial data
L0 = 0.04, ψ0 = 0. Here the set of attracting trajectories has a complex
structure and the motion in this area, contrary to the motion in earlier con-
sidered attracting areas, has non-regular character. This area is robust against
changes of the initial conditions, integration step size and small variations of
parameters of the system.

3.4.9 Analysis of chaotic motions and their images

The offered image of chaotic motions linking non-linear resonances to the
image of a spatial funnel, and its secondary resonances with tucks of the
surface of this funnel, allows also to explain the effect of dissipative forces on
the behaviour of trajectories [96].

If dissipative forces are absent, the chaotic trajectory of motion passes
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FIGURE 3.72
Phase portrait of a trajectory at z = 0.2, k = 0.002 s−1, ξ = 0.00001 s−1.
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FIGURE 3.73
Phase portrait of a trajectory at z = 0.8, k = 0.001 s−1, ξ = 0.0005 s−1.
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158 Dynamics of Tethered Space Systems

through cascades of primary, secondary, etc. resonances (“cascade of spring-
boards”) increasing and decreasing the energy of the attitude motion of the
pendulum. The whole area of chaotic motions as an area of overlapping of
non-linear resonances can also be presented as some large funnel. Generally
speaking, the whole area of chaotic motions is accessible to a chaotic trajec-
tory, and by virtue of the Poincaré’s theorem about recurrence, the trajectory
permanently returns close to each of its points. The elimination of this area
is made only by areas of trajectories with initial data appropriate to rather
fine tuning on a resonance of low-level order of longitudinal and angular mo-
tions of the pendulum (located at the bottom of the resonant funnel) and a
trajectory of pendulum oscillations about an equilibrium state. The motion
pattern is similar to the motion of a ball in a roulette. If friction is absent the
ball permanently moves around in the wheel of the roulette, dropping in the
compartments, but not remaining in them. Only for certain initial parameters
of motion of the ball it can not leave a compartment.

The effect of dissipative forces is always directed to decrease the energy of
attitude motions of the pendulum (ξω0r

2
a may be considered as a conservative

effect). The chaotic trajectory, as well as in the case of absence of dissipative
forces, passes through cascades of resonances and increases and decreases the
energy of the attitude motion. However, under the action of dissipative forces
it becomes possible that the trajectory hits the area of non-linear resonance
(in the not overlapping part of the resonant funnel) or the field of oscillations
near the final equilibrium positions.

For certain parameters of the systems this capability should be eventually
also realised. Getting into a resonance, the trajectory remains there “for ever,”
if the resonance can supply pumping of energy of the attitude motion, equal to
its dispersion by dissipative forces over the period of the motion. The stability
of the motion in this case is stipulated by a local minimum of the power of the
resonant trajectory. The motion pattern (Figs 3.68–3.72) is really similar to a
roulette, where the ball appears in one of the compartments in a random way.
Only the image of the compartment does not correspond to the observable
motion. The image of funnel (funnel, similar to whirlpool) only is appropriate
here, since the trajectory can be either tightened in this funnel, or thrown out
from it with an essential increment of the energy.

For an increase of the effect of the dissipative forces (increase of the fac-
tor of viscous friction ξ) the quantity of resonances, which are capable of
supplying appropriate swapping of energy and stability of resonant trajec-
tories (Fig. 3.72), decreases. Thus only the resonances of low order, such as
3:2, 1:1, 1:2 remain. In Fig. 3.74 for parameters of the system z = 0.8, k =
0.02 s−1, ξ = 0.0001 s−1 the phase portraits of trajectories with initial data
L0 = 41paω0 are exhibited.ψ0 = π/3 + i · 0.01745 rad, where i varies from
0.01745 rad up to π/6 with a stepsize 0.01745 rad. Here the resonance 1:4 was
added to the listed resonances.

The further increase of dissipative forces results in areas of oscillations
near final equilibrium positions ψ = 0, ψ = π that are unique attracting sets.
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FIGURE 3.74
Phase portrait of a trajectory at z = 0.8, k = 0.02 s−1, ξ = 0.0001 s−1.
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FIGURE 3.75
Phase portrait of a trajectory at z = 0.8, k = 0.02 s−1, ξ = 0.0004 s−1.
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160 Dynamics of Tethered Space Systems

Hence, any trajectory of motion of the system for parameters z = 0.8, k =
0.02 s−1 and at ξ > 0.001 s−1 rather quickly reaches the area of oscillations
near equilibrium positions. In Fig. 3.75 for parameters of the system z =
0.8, k = 0.02 s−1 ξ = 0.0004 s−1 the phase portraits of trajectories with the
initial data L0 = 0.0079− paω0 are shown ψ0 = −π + i · 0.01745 rad, where i
varies from 0.01745 rad up to 2π with a step size 0.01745 rad. Here still some
trajectories reach and remain in resonant funnels of resonances 1:1 and 1:2.
Fig. 3.76 is constructed similarly to Fig. 3.75. Only here ξ = 0.0009 s−1. In this
case steady resonant trajectories are not present. In Figs 3.75, 3.76 changes
of the character of trajectories are clearly visible for different values of the
moment of momentum (angular velocity) of the motion of the pendulum. For
large angular velocity in trajectories their continuous dependence on the initial
data (small change of the initial data results in a small change of the trajectory,
see the curves in top of figures). In approaching the attracting sets the effect of
their intermixing is seen. It is possible to explain it by the fact that for rather
large angular velocity the possible swapping of energy by internal forces during
the period of longitudinal oscillations results in essentially less dispersion of
energy by the dissipative forces. The linear dependence of dissipative effects
on the angular velocity results in a decrease of dispersion of the energy for a
decrease of angular velocity.
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FIGURE 3.76
Phase portrait of a trajectory at z = 0.8, k = 0.02 s−1, ξ = 0.0009 s−1.

Remaining of the resonances also speaks about a comparability of possible
pumping of the energy with their dispersion. The capability of “jumping” of
a trajectory through separatrices of motions from one resonance to another
remains also in this case. Here it is possible to offer the following image of
motions. The effect of dissipative forces can be presented as a flow directed
from outer boundaries of the chaotic funnel to the centre of this funnel — to
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Analysis of the Motion of TSS 161

the final equilibrium positions, and whose pressure depends linearly on the
energy of rotatory motions of the pendulum — on the altitude above the
centre of the funnel. For fixed parameters this flow completely determines the
character of the motion of the imagined ball: the flow carries it.

For an attenuation of the force of the flow in approaching the centre of
the chaotic funnel the flow performs a whirling motion above the resonant
funnels (Figs 3.75, 3.76) but still completely determines the character of the
motion. For the further attenuation of the flow it is not capable any more
to carry the imaginary ball from the steep resonant funnel (Fig. 3.75) and is
not capable “to cover” separatrices of motions near final equilibrium positions
(Figs 3.75, 3.76).
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FIGURE 3.77
Variation of a strange attractor at increase of damping.

For certain parameters of the system, such as z = 0.8, k = 0.01 s−1 and
z = 0.9, k = 0.02 s−1, the oscillatory modes of motions near final equilibrium
positions in the absence of the dissipative forces are impossible (at any initial
data the trajectory passes into a rotatory mode of motion). In this case for
rather large parameter values ξ, such that there are no more stable motions in
resonant funnels, so-called “strange attractors” can be the uniquely attracting
set (Fig. 3.73). In the motion on a strange attractor the trajectory passes
through cascades of separators of motions, sometimes reaching the maximum
values of the energy, but under the action of the dissipative forces again returns
in areas, close to a final equilibrium position. In Fig. 3.73 “tongues” are clearly
visible where the trajectory reaches its maximum values of energy. In Fig. 3.77
the change of the strange attractor is exhibited for an increase of dissipative
effects: ξ = 0.001 s−1 (z = 0.8, k = 0.01 s−1). For ξ = 0.002 s−1 and the same
parameters of the system the attracting set is the resonance oscillation near
the equilibrium state.
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162 Dynamics of Tethered Space Systems

For parameters of the system z = 0.9, k = 0.02 s−1 it was not possible to
find out the existence of the strange attractor for different values ξ. Here, in-
creasing ξ steady resonant motions always exist near an equilibrium state. The
conducted analysis allows to assume that the existence of strange attractors
is connected to the absence of steady-state trajectories in the motion of the
system and to the limitation of area of motions. In this sense the construction
of mathematical criteria for the existence of strange attractors is possible.
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4

Use of Resonance for Motion Control

4.1 Introductory remarks: Formulation of the problem

The control of the motion of a system of rigid bodies in a central force field by
internal forces keeps the total moment of momentum of the system constant.
Therefore the strategy of control of such systems can consist only in the redis-
tribution of the moment of momentum between relative motion of the system
and motion of its mass centre and (or) in the change of the kinetic energy
of the system at the expense of the work of internal forces. An example of
control of the motion of the system for which only its kinetic energy changes
is the known scheme of the gravyplane [20].

The idea of the gravyplane has been developed in [34, 53, 73, 74]. In all
these works the principle of control of the orbital motion “remains the same,
in a change of the orbit of the gravyplane at the expense of the variation of the
force of gravitation acting on it” [20]. By variation of the forces of gravitation
in all these works is meant a change of the gravitational forces which is in
resonance with the orbital motion. This will be carried out by means of acting
on the mass geometry of the space vehicle.

In this chapter within the framework of the model problem of connected
point masses the capabilities of a number of control schemes for the motion of
the systems based on the reallocation of the moment of momentum between
orbital and relative motions will be studied [89]. Thus the control of the orbital
motion of the rigid system (dumb-bell) is realised by the way of maintenance
of the prescribed orientation of the system in the orbital system of coordinates,
and by control of the orbital motion of the system with flexible connection
(tether), by means of change of length of the connection in modes which both
are in “internal” and “external” resonance, i.e., in modes of resonance with
rotation of the tether about the centre of mass and in modes of resonance
with the orbital motion.

The opportunity of control of the motion of a mechanical system with the
help of internal forces in a Newtonian force field is caused by its heterogene-
ity, and the control efficiency essentially depends on the linear extension of
the system. Space cable systems the projects of application of which assume
creation of space systems with an extension of up to hundreds of kilometers
can allow effectively the use of internal forces for the control of the system’s
motion.
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164 Dynamics of Tethered Space Systems

We assume that the distance of the tether between the bodies changes
in some given mode by the application of internal forces along the line be-
tween the connected bodies. Then the translational and rotational motion of
the system is described by equations (3.55), (2.87) where the perturbing ac-
celerations up to ε2

1 are determined by the formulas (3.54). We connect the
non-rotating system of coordinates with the constant moment of momentum
of motion of the system (section 1.2.2). Then in motion of the system three
first area integrals (3.58) exist.

We consider that the distance between the bodies r is a known function of
the angular variables of the system (3.55), (2.87) (angles of orientation of the
motion of the system) and that r changes periodically near some value a with
amplitude b and can be represented as r = a− b cos ω where the frequency of
the longitudinal oscillations ω is a function of the angles of orientation of the
system.

Equation (3.56) allows to determine the necessary control action directed
along the line connecting the bodies (line of the tether) in fulfilment of this
functional dependence. The possibility of the realisation of such a control for
unilateral connections is determined by the condition

T = −r̈ +
L2

r3
+ Fr ≥ 0.

4.2 Control of motion of the system around its mass
centre

Let us consider possibilities of control of the relative motion of the system [91].
As the influence of the Newtonian force field on the relative motion contains
terms proportional to the first degree of the value r/R, for the investigation in
the first approximation we can neglect the terms containing r/R in the second
and higher degree. Then the trajectory of the motion of the mass centre is the
unperturbed Keplerian orbit and the perturbing accelerations of the relative
motion are described by the force function (3.1).

We estimate the possibilities of change of the value of the moment of
momentum of the relative motion for the motion of the system in the plane
of the circular orbit [89]. The equations (3.55) have the form

L̇ = −3
2

µ

R3
r2 sin 2λ, λ̇ =

L

r2
− ν̇, ν̇ =

√
µ

R3
, (4.1)

where r = a± b cosω, and λ is the same expression as in equations (3.18).
Carrying out the formal averaging with respect to the angular variable

λ and ω, it is easy to see that in the first approximation the change of L is
possible only for the resonant tuning of longitudinal oscillations of the kind 1:1
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Use of Resonance for Motion Control 165

and 1:2. Thus, the mean period of change of velocity L of the system rotation
around the mass centre at resonance 1:1 (ω = λ + ω0 where ω0 is the initial
phase of longitudinal oscillations) is proportional to the value 0.5µ/R3b2, and
at resonance 1:2 (ω = 2λ+ω0) it is proportional to the value µ/R3ab. Since the
greatest possible value b does not exceed a, and the increase of the amplitude
of longitudinal oscillations requires essentially an increase of the magnitude of
the control force, the use of the “swings” of resonance 1:2 is, obviously, more
preferable.

For the construction of estimations of the possible increase of the moment
of momentum of the relative motion of the rotating tether we consider a law
of change of the length of the tether of the following kind

r = A− b sign(sin 2λ). (4.2)

It is obvious that for such a law of change of the length of the tether the
increase of L is maximum.

Using the solution of the equations (4.1) for regions of constant length
of the tether [20], we obtain that the change of angular velocity of the rela-
tive motion for one period of the longitudinal oscillations is described by the
formulas

λ
′2
1 = λ

′2
0 + 3, λ′2 = β2(λ′1 + 1)− 1,

λ
′2
3 = λ

′2
2 − 3, λ′4 =

1
β2

(λ′3 + 1)− 1.
(4.3)

Here the prime designates derivative with respect to ν, β = (a+b)/(a−b), λ′0
and λ′4 are, respectively, initial and final angular velocities, the initial value
of λ0 is assumed to be equal π/2.

Change of ν for the same time is

∆ν =K

(
3

λ
′2
0 + 3

)/√
λ
′2
0 + 3+ K

(
3

λ
′2
2 + 3

)/√
λ
′2
2 + 3, (4.4)

where K is the complete elliptic integral of the first kind.
In Fig. 4.1 the dependence on the period of the mean angular acceleration

of the relative rotation of the tethered system on the value of its initial angu-
lar velocity for various values of the amplitude of longitudinal oscillations is
shown. The transition from initially librational motion of the tethered system
about the local vertical into rotatory motion is realised by the way of swing-
ing the tethered system. For this purpose the change of distance between the
bodies can be determined as

R = a− b sign(λ′ sin 2λ). (4.5)

In Fig. 4.2 for an initially circular orbit of motion of the mass centre of
radius R = 6671 km and λ′0 = 0 the change of the parameters of motion is
presented for the given laws of control for b = 0.1a, a = 200 km. The contin-
uous lines show results of the numerical solution of the complete equations of
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FIGURE 4.1
Mean value ∆λ′

∆ν calculated over one period of longitudinal oscillation.

motion, the dotted line the solution of the equations (4.1) averaged with re-
spect to λ, the circles denote results of computations based on formulas (4.3).
For the prescribed values the motion of the tether after one swing passes into
rotatory motion. As it is visible from the figure the computations of rotatory
motion on the basis of the formulas (4.3) agree better with the results of nu-
merical integration than with the solution of the averaged equations. At the
same time the expected deviations of the results grow with time in view of
the decrease of the radius of the orbit of the mass centre.

From what has been said above it follows that by the appropriate resonant
tuning of the change of the tether length it is possible to considerably increase
the angular velocity of the relative motion and consequently the relative linear
velocities of the bodies too. The projects of the use of Space cable systems for
launching a payload on higher orbits are based on cutting the tether (setting
the bodies free) in the right moment of time.

The use of the project “swing” for the initial boost of the bodies will allow
considerably to expand the capabilities and will increase the radius of the
orbit of manoeuvre of the payload.

Since the restrictions on the achievable velocity of the motion of bodies
about the mass centre are defined only by restrictions on the control T of the
acceleration, the case is possible that the absolute velocity of one of the bodies
becomes large enough for the transition to a hyperbolic trajectory. Since for
a hyperbolic trajectory of motion the condition

V 2
i >

2µ

Ri
≈ 2µ

R
, i = 1, 2 (4.6)

must be satisfied, where Vi is the velocity of the motion of the ith body about
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FIGURE 4.2
Variations of L and R at r = a(1− 0.1sign(λ′ sin 2λ)).

the Newtonian attractive centre, for λ = 0 the relative velocity of one of the
bodies should exceed the value (

√
2− 1)

√
µ/R. If under these conditions the

tether is cut off, one of the bodies will pass to a hyperbolic trajectory.

In table 4.1 for a circular orbit of radius R = 6671 km and for initial con-
ditions λ0 = π/2, λ′ = 10−5 for the law of control (4.2), b = 0.1a estimations
are presented to reach a sufficiently large velocity that for one of the bodies
of a system with equal masses a transition to a hyperbolic orbit is possible.

In the fifth column of the table 4.1 the value of the centrifugal acceleration
corresponding to the angular velocity is presented. For the rotation of the
tethered system with bodies of different mass, the parameters for transition of

TABLE 4.1
Estimations for reaching the velocity that is
sufficient for the transition to a hyperbolic
trajectory of one of the bodies after cutting the
tether

a, km λ′ ν, turn Time, day T , m s−2

1 5526.0 2762.0 173.3 41015.0
10 552.0 276.0 17.3 4106.0
50 110.0 54.0 3.4 827.1

100 55.0 27.0 1.7 421.1
200 27.0 13.0 0.8 210.5
500 10.1 4.3 0.3 82.7
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168 Dynamics of Tethered Space Systems

the lighter body to a hyperbolic trajectory are improved almost in 2m2/(m1+
m2) times where m2 is the mass of the heavier body.

The parameters of transition can also be improved for the motion on an
elliptic orbit [59].

The motion of the second body after cutting off the connection depends
on the distance to the mass centre. In particular, it is easy to select such mass
parameters of the system that the second body remains practically on the
same orbit but rotates in the opposite direction.

In fact, let V 2
1 = 2µ/R, V 2

0 = µ/R where V0 is the velocity of motion of
the mass centre, then the velocity of the second body is equal to

V2 = −V0 − (
√

2− 1)
√

µ

R

r2

r1

where ri is the distance from the mass centre to the ith body. Taking into
account that r2 = r1m1/m2 we obtain that for the mass ratio m2/m1 =
(
√

2 − 1)/2 the velocity of the second body is equal to V2 = V0. I.e., the
second body obtains a velocity equal in value to the orbital velocity of the
mass centre but directed into the opposite direction.

The possibility of control of the orientation of the moment of momentum of
the relative motion we consider under the assumption that the angular velocity
of rotation of the tethered system about its mass centre significantly exceeds
the angular velocity of the orbital motion. We show that up to oscillating
terms with the help of control of the length of the tether it is possible to
obtain practically any value of the angles θ and ψ.

The equations (3.59) in the considered case look like

dθ

dν
= 0,

dL

dν
= 0,

dψ

dν
= −3

4

√
µ

p3

r2

L
cos θ. (4.7)

Therefore, for θ 6= π/2 for obtaining the prescribed value of ψ control is
not required.

The change of the angle of nutation θ requires resonant tuning of the
change of length of the tether. We consider two simple laws of change of
length of the tether based on tuning of the “internal” resonance of system
r = a± b sin 2ϕ and the “external” resonance r = a± b sin 2(ν − ψ).

For the control of r = a ± b sin 2ϕ the equations averaged over ϕ and ν
constructed in agreement with the above stated scheme of averaging look like

dθ

dν
= ∓3

4

√
µ

p3

r∗21

L
sin 2θ,

dψ

dν
= −3

4

√
µ

p3

r∗22

L
cos θ,

dL

dν
= ∓3

2

√
µ

p3
r∗21 sin2 θ,

(4.8)
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where

r∗21 =
a3b + 0.75ab3

a2 + 0.5b2
, r∗22 =

a4 + 3a2b2 + 3/8b4

a2 + 0.5b2
.

Therefore, the prescribed control law allows to change the angle θ into the
required direction (θ 6= 0, π/2).

In Figs 4.3, 4.4 results of calculations of the change of parameters of mo-
tion of the system for the law of control r = a − b sin 2ϕ are presented for
a = 200 km, b = 0.1a. The continuous lines show results of the numerical
solution of the complete equations of motion. The high-frequency oscillations
are presented only for the parameters p and L. For other parameters, because
of their smallness and also because they are not essential, the high-frequency
oscillations are smoothed. The dashed lines (Fig. 4.3) represent the solutions
of equations (4.8). The results of the computations show good agreement of
the solutions of the averaged and complete equations for the angle of nutation
and the value of the moment of momentum. The essential deviations in the re-
sults of calculations of the angle of precession are explained by the significant
change of velocity of the argument of the pericentre (Fig. 4.4).

For the law of control r = a± b sin 2(ν − ψ) the equations similar to (4.8)
look like

dθ

dν
= ∓3

4

√
µ

p3

ab

L
sin θ,

dψ

dν
= −3

4

√
µ

p3

a2 + 0.25b2

L
cos θ,

dL

dν
= 0. (4.9)

In Figs 4.5 and 4.6 (as in Figs 4.3 and 4.4) results of calculations of the change
of parameters of the system for the law of control r = a − b sin 2(ν − ψ) are
presented for a = 200 km, b = 0.1a.

In this way the controllability of the orientation of the rotational relative
motion of the system is shown. Moreover, the laws resulting in purposeful
changes of the nutation angle can be based on tuning both the “internal” and
“external” resonances.

Since the laws of control, considered above, were not constructed as opti-
mal, apparently, the combination of control of “internal” and “external” reso-
nances of the system will allow to increase the control efficiency and improve
transient processes [127, 129].

4.3 Control of orbital motion

The possibility of control of the parameters of orbital motion of the system
follows from fact that for an orientation of the system different from equilib-
rium the force of attraction has transversal and normal components (Fig. 4.7).
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Variations of relative motion parameters at r = a(1− 0.1 sin 2ϕ).
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Variations of relative motion parameters at r = a(1− 0.1 sin(ν − ϕ)).

0.100

0.105

e

p

w
p

7100

6980

7020

7060

-0.2443

-0.1745

-0.1047

-0.0349

0 2p 4p 6p 8p 10p 12p

True anomaly (rad)n

F
o
c
a
l 

p
a
ra

m
e
te

r 
p
 (

k
m

)

7140

0.095

0.090

0.0349

E
c
c
e
n
tr

y
c
it

y
 e

A
rg

u
m

e
n
t 

o
f

p
e
ri

g
e
e

(r
a
d
)

w
p

FIGURE 4.6
Variations of orbital motion parameters at r = a(1− 0.1 sin(ν − ϕ)).
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172 Dynamics of Tethered Space Systems

Based on this obvious fact the various schemes of control of the orbital ele-
ments at the expense of internal forces can be constructed. These schemes can
be based both on resonant tuning of frequencies of the change of length of the
connection for systems with connections of variable lengths and on the use of
an internal control moment for systems with rigid bars of constant length.

F
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1

F

F
1

R
1

C

F
2

orbit

Earth

FIGURE 4.7
Geometrical parameters of a tether on an orbit.

The possibility of the change of orientation of the plane of the orbit follows
from the possibility of change of the value and the orientation of the moment
of momentum of relative motion. Since the ratio of velocity of the change of
L to the angular orbital velocity is proportionally to

√
µ/p3r2/L, by virtue of

(3.58) the essential change of the inclination of the orbit i is possible during
(p/r)2 /2π turns on the orbit. Velocities of control of the value of the angle
Ω are similar as the moment of momentum of the motion of the mass centre
moves on the surface of the cone with the half-opening angle equal to i:

sin i =
m1m2

M2

L sin θ

G′ .

The change of argument of the pericentre (angle between line of nodes and
the line of earth centre to the perigee of orbit) and the eccentricity of the orbit
is possible without change of the value and the orientation of the vector of
moment of momentum of the orbital motion [20].

We consider possibilities of the change of the focal parameter for the mo-
tion of the system in the plane of orbit [89]. It is possible to write in this case
equations (3.55), (2.87) in the form

L̇ = −3
2

µ

R3
r2 sin 2λ,
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λ̇ =
L

r2
− u̇,

ṗ = 3
m1m2

M2

√
p

µ

µ

R3
sin 2λ,

u̇ =
√

µp

R2
,

ė =
3
2

m1m2

M2

√
pµ

R2

( r

R

)2 [
sin ν(1− 3 cos2 λ) + (cos ν+

e + cos ν

1 + cos ν

)
sin 2λ

]
,

ω̇π =
3
2

1
e

m1m2

M2

√
pµ

R2

( r

R

)2 [
cos ν(3 cos2 λ− 1)+

(
1 +

1
1 + cos ν

)
sin ν sin 2λ

]
. (4.10)

From equations (4.10) it is visible that the largest velocity of increase of the
parameter p is reached at m1 = m2 and λ = π/4. Hence the dumb-bell with
equal masses maintained in the state λ = π/4 at the expense of the control
moment created by internal forces (for example, by a fly-wheel placed in the
mass centre) is the most effective model for the increase of the focal parameter.

To average the equation (4.10) over u for λ = π/4, m1 = m2, as before, it
is necessary to pass in the equations to the new independent variable u. Then
we obtain

dL

du
= −3

2

√
µ

p3
r2,

dp

du
=

3
4

r2

p
,

de

du
=

15
16

(
r

p

)2

e,

dωπ

du
=

3
16

(
r

p

)2

.

(4.11)

The solution of equations (4.11) looks like

p =
[
p2
0 +

3
2
r2(u− u0)

]1/2

, ωπ = ωπ0 +
1
4

ln
(

p

p0

)
,

e = e0

(
p

p0

)5/4

, L = L0 − 4(
√

µp−√µp0),

(4.12)
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174 Dynamics of Tethered Space Systems

where the value L characterizes the change of the moment of momentum of
the fly-wheel.

The numerical solution of the complete equations of motion shows good
agreement with the solution of the averaged equations (4.12). In Fig. 4.8,
for the initial conditions p = 6671 km, e0 = 0.1, u0 = 0, ωπ = 0 and for
a = 200 km the change of the parameters of the orbital motion is shown. The
solid lines show results of the numerical solution of the complete equations of
motion, the dashed lines show results of the solutions (4.12).

Of course, the realisation of such a project is at the moment not feasible
because it is not possible to create a rigid design in the extent in dozens of
kilometers. The bending moment in the middle of a dumbbell α = π/4 is equal
to 3/2µr2m1m2/(MR3). For a five-kilometer dumb-bell with end masses of
100 kg this gives ≈ 1900N m. The main technical obstacle to realise such
a project consists in the impossibility to store inside the space vehicle the
moment of momentum comparable with the value of the moment of momen-
tum of the orbital motion of the vehicle. If it could be achieved, due to the
moments of gravitational forces with a certain speed it would be possible to
redistribute the moment of momentum between orbital and relative motion.
The total moment of momentum of a system would not change at this. Real-
isation of such project would look fantastical externally: from a space vehicle
the counterbalance is put forward and the vehicle begins to increase the ve-
locity without any visible reasons. The picture is similar on the unreality to
a fantastic witch flying in a mortar with a broom turned back.
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FIGURE 4.8
Variations of dumb-bell orbit parameters at λ = π/4.

The estimations from this model for the change of the parameters of the
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TABLE 4.2
Change of the orbit elements
of the dumb-bell, λ = π/4.

r, km p− p0, km e/e0

0.1 0.00 1.000
1.0 0.07 1.001

10.0 7.06 1.011
100.0 672.50 1.101
200.0 2395.50 1.359

orbit for 100 turns around the attractive centre depending on length of the
bar for p0 = 6671 km are presented below.

From table 4.2 it is visible that the essential change of the parameters
of the orbit can be reached for lengths of the bar of the rigid dumb-bell
satellite starting from dozens of kilometers, a fact which essentially limits the
possibilities of the practical realisation of this model of control.
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FIGURE 4.9
Variations of orbital parameters at r = a(1 + 0.1 sin 2λ).

The use of cables allows to considerably increase the extent of the system
but complicates the transfer of the control moment. The idea of control of
the parameters of the orbit of the TSS consists in the following: the distance
between bodies is changed due to the action of internal forces. By this length
change the angular velocity of rotation of the system is changed such that the
system stays longer in the required orientation than in a state which results in
an opposite effect for control. Hence, to increase p the change of length of the
rotating system can be done according to the law r = a+b sin 2λ. The solution
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176 Dynamics of Tethered Space Systems

of equations (4.10) averaged with respect to λ and u in this case differs from
the solutions (4.12) that in the formulas for L, p, e r∗21 is inserted instead of
r2, and for ωπ r∗22 where r∗21 and r∗22 are the same expressions as in equations
(4.8).

In Fig. 4.9 for the law of control r = a(1 + 0.1 sin 2λ), a = 200 km for the
initial conditions λ0 = π/2, λ̇0 = −0.0001 s−1, p0 = 6671 km, e0 = 0, u0 =
0, ωπ0 = 0 the change of the focal parameter and eccentricity of the orbit
obtained by numerical solution of the exact equations of motion (solid lines)
and the solution of the averaged equations (dashed lines) is shown.
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5

Deployment of Tethered Space Systems

One of the main modes of stabilisation of motion of a small TSS of length up
to 1 km and total mass up to 100 kg is the stabilisation by rotation. In this
connection a small TSS rotating about the mass centre is the most accessi-
ble version of a system for conducting the full-scale experiment. Small TSS
stabilised by rotation can be also of independent interest. For example, if a
rotating TSS may change its string length, the tension and angular velocity of
the system can be used for studying the physics of the space plasma and the
physics of the high atmosphere and magnetosphere. Rotating TSS can serve
as the integrated sensor for studying of the effects of physical fields of the
Earth. Rotating TSS with two tip bodies having various ballistic coefficients
may be used for altitude measuring of atmospheric density. Here we consider
the process of deployment from a spacecraft board of a small TSS stabilised
by rotation. The physical parameters of the TSS have the following values:
the distance l between bodies is of the order of 100m, total mass m is about
20 kg. Angular velocity ωc of the system is in a range 0.1− 1 s−1. At an initial
instant the plane of rotation of the system coincides with the orbital plane of
the mass centre of TSS. It is supposed that TSS is fixed before deployment
on the main spacecraft, which moves on a near-circular orbit practically coin-
ciding with the demanded orbit of the mass centre of the TSS. Separation of
bodies of TSS during its deployment is realised by means of spring thrusters,
whose axes are located in the orbital plane at the separation instant.

The method of deployment of TSS, which is based on the use of gravita-
tional and inertia forces is realised as follows. The first body separates along
the axis OY in the direction opposite to the motion of the spacecraft with
some initial relative velocity. In absence of any resistance to the extraction of
the string, this body would transfer to an elliptical orbit with apogee in the
separation point. If forces of resistance to extraction of the string are present,
the picture changes a little. Nevertheless the body starts to go down and to
come up to the spacecraft. In any instant it appears on the axis OX. At this
instant, the second body separates along the axis OY also with the given rel-
ative velocity. As a result of deployment the system is rotating in the orbital
plane.

In the deployment of a TSS with the directions of separation oriented
under an angle, the bodies, in analogy with the previous method, are separated
sequentially into the orbital plane. After separation of the first body with the
given velocity, the second body separates also with the given velocity under
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the given angle to the direction of motion of the first body. During this process
the trajectory of the first body does not deviate noticeably from a straight line
in the orbital frame. The initial velocity of deployment must be chosen such
that the kinetic energy of the first body has a sufficient value for extraction
of the total length of the string. For the considered system the duration of
this process is about some dozens of seconds in the presence of resistance to
extraction. Different values of the forces of resistance have only an influence
on the deployment time but not a qualitative one. In order to decrease the
deployment velocity to zero in the final period of deployment a braking device
is necessary.

Another realisation of the deployment is possible using an additional
(third) body initially attached to the first body. If the additional body sepa-
rates from the first one, the first body gets an incremental velocity directed
under some angle to the X-axis. The second body separates from the main
spacecraft with given velocity after the total deployment of the string. In such
a way the system gets the prescribed angular velocity.

The simultaneous separation of three connected bodies by parallel
thrusters with the subsequent division of the middle body into two parts by a
spring is closely related to the previous method. There are two simultaneously
rotating tethered systems here. An essential deficiency of both versions is the
difficulty to guarantee that the velocities of the separated (or parted) bodies
will be located in the orbital plane.

Rotation of the vector of initial velocity of the first body without separation
of an additional mass is possible too. The first and second bodies of the system
are fixed on two thrusters accordingly. The technological platform with the
rotary lever established on it is fixed on the third thruster. After the first
thruster operates and the first body gets a necessary velocity, it starts to
move on around. After rotation of the lever on some angle, which should be
chosen as much as possible close to right angle, the connection between the
lever and the first body, which separates from the lever with the given velocity,
is broken. Then the string is unwinding to total length. After this, the second
body separates. This process may also be realised, for example using instead
of the lever a flexible string. Essentially, the scheme will be the same.

5.1 Deployment with prescribed final motion

Here the approach to develop control algorithms based on the assignment
of certain limitations for the trajectory of deployment in the phase space is
described. It also allows to design the algorithms adapted to specific require-
ments of the final motion.
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5.1.1 Prescribed constraints on phase variables

Constraints on velocities of separation, on angular direction of separation, and
also on the possibility of obtaining the final rotation velocity of the tether in
the scheme of TSS deployment described above are natural, because engineer-
ing realisation of all methods of deployment is related to the use of mechanical
thrusters.

Equations of motion of a tether system with a straight-line cable are well-
known [20]. In dimensionless variables x, y (x is coordinate along a local ver-
tical) in a plane of circular orbit these equations look like

ẍ− 2ẏ − 3x = −f
x

l
, ÿ + 2ẋ = −f

y

l
, l =

√
x2 + y2, (5.1)

f is the dimensionless force of tension of the cable

f =
P

mω2
0l

. (5.2)

Selection of the law of change of f provides the possibility of control of mo-
tions of the system (5.1), including the process of deployment. The variety of
types of motion, which are turning out by various selections of the function f
raises the question on the description of all sets of such motions and possible
limitations on them. Such limitations can be obtained, eliminating f from
equations (5.1). Having performed such eliminating, we find the condition

xÿ − yẍ + 2xẋ + 2yẏ + 3xy = 0. (5.3)

on motions of the system (5.1) for any control law for the tension force (to-
gether with length) of the cable. It is easy to prove the proposition:
Any motion x(t), y(t), satisfying relation (5.3) is for x2 + y2 6= 0 the solution
of the system (5.1) for suitable selection of the function f .

In fact, let on some segment of motion t0 ≤ t ≤ t1 the coordinate x 6= 0.
Then for known x(t), y(t) from the first equation (5.1) we find f . Thus by
virtue of (5.3) the second equation (5.1) is applied also. The proof in the case
y 6= 0 is similarly carried out.

Certainly, so that the motion found actually could be realised, it is neces-
sary that the appropriate tension of the cable was positive.

The specified property enables to find a set of various motions of the system
among which some useful for deployment may also appear. One of possible
ways of construction of such motions consists in the following. We impose at
the system phase variable some limitation of the kind

F (x, y, ẋ, ẏ) = 0. (5.4)

Differentiation of this relation with respect to time gives

∂F

∂ẋ
ẍ +

∂F

∂ẏ
ÿ +

∂F

∂x
ẋ +

∂F

∂y
ẏ = 0. (5.5)
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Equations (5.3) and (5.5) under condition of

∂F

∂ẋ
x +

∂F

∂ẏ
y 6= 0 (5.6)

uniquely allow to express ẍ, ÿ through state variables and, thus, determine a
system of ordinary differential equations of the second order for x, y. This sys-
tem should satisfy relation (5.4). Then its solutions give the family of motions
of the tether system lying on variety (5.4).

5.1.2 Prescribed trajectory

Special interest represents the case if the constraint (5.4) looks like

F (x, y) = 0, (5.7)

that corresponds to the task of a trajectory in the plane (x, y). The condition
(5.6), and the additional linear relation between ẍ in this case is not satisfied
and ÿ turns out by double differentiation on time of (5.7). For unique solv-
ability of the obtained system of equations with respect to ẍ and ÿ fulfilment
of the condition

∂F

∂x
x +

∂F

∂y
y 6= 0. (5.8)

is necessary. This condition is fulfilled identically only on straight lines

ax + by = 0, (5.9)

but it is known that if a2 +b2 6= 0, such straight-line trajectories may turn out
at exponential deployment in cases when the tension force is proportional to
the length also [25, 56]. Thus, control of a tethered satellite with the help of a
cable allows to construct any trajectories in the plane of orbit, except straight
lines x = 0 and y = 0 and separate points on other trajectories. Certainly,
only those of them to which corresponds a positive tension of the cable are
actually realised.

5.1.3 Monotonous tether feed out

Let us consider one example, which is of interest at the final stage of the pro-
cess of deployment. Not all known algorithms give quite satisfactory results
right at the end of deployment. In some of them there is offered to terminate
deployment by a jerk (sharp braking), in other algorithms after stop of de-
ployment there are significant pendulous oscillations of the system, and even
in the most successful (for example, [99]) for full extinction of pendulous os-
cillations at the end of deployment it is necessary to use retrieving motion of
cable. In this connection arises the question: what control should be at the
final stage of deployment such that the subsatellite reaches a terminal point
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Deployment of Tethered Space Systems 181

with zero velocity and that the approach to this point occurs monotonously,
without change of sign of the velocity?

Let the terminal point have dimensionless coordinates (1, 0). Let us con-
sider a possible motion on the straight line

y = k(x− 1), (5.10)

which passes through this point. Having substituted this relation in (5.3), we
find an equation for x:

kẍ + 2(1 + k2)xẋ− 2k2ẋ + 3kx(x− 1) = 0. (5.11)

Leaving out the question the general integration of this equation, we try
to find an interesting partial solution. We determine a function G as follows

G = kẋ + (k2 + 1)x2 + ax (5.12)

and select constant k, a, s such that from (5.11) it follows

Ġ = sG (5.13)

From this condition we find:

a = −
√

13− 1
2

≈ −1.30278, k = ±
√√

13− 3
2

≈ ±0.55025,

s =
3k

a
≈ ∓1.26710. (5.14)

G = G0e
st. (5.15)

Substituting this value of G in (5.12), we find for x a nonautonomous
equation of the first order. The simplest case which we also use turns out at
G0 = 0. The equation (5.12) in view of equality (5.14) becomes

kẋ + (k2 + 1)x(x− 1) = 0 (5.16)

and is easily integrated. The solution looks like

x =
eϕ

2 cosh ϕ
, y = − ke−ϕ

2 cosh ϕ
, ϕ =

k2 + 1
2k

(t + t0), (5.17)

where t0 is an undefined constant. From formulas (5.17) follows that the posi-
tive value k corresponds to deployment: at t → +∞ x → 1. It is easy to check
that for motion (5.17) under conditions k > 0 and 0 < x < 1 the tension of
the cable is positive and f → 3 for x → 1. The obtained result shows the
possibility of monotonous approach of the final state in the deployment of a
tether of the system.
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182 Dynamics of Tethered Space Systems

5.2 Deployment of a rotating TSS

One operational mode of motion of a TSS is such that the mass centre of
the system moves on the given orbit, the string connecting the body is under
tension and the system rotates in the orbital coordinate system in the orbital
plane. Thus it is supposed: 1) the system is fixed before deployment on the
main vehicle, which moves on orbit practically coinciding with the required
orbit of the mass centre of the system; 2) separation of bodies of the system
during its deployment is performed with the help of spring pushers, the axes
of the springs are located in the plane of orbit at the beginning of separation
of the bodies.

To concretise the problem, we assume that the parameters of the rotat-
ing tether system have the following values: distance l between bodies about
100m, mass m of each of the bodies is within the limits of 1− 10 kg, angular
velocity ωc of the rotation of the system is equal 0, 1− 1 s−1. The orbit of the
main vehicle is supposed to be circular.

5.2.1 Deployment due to gravitational and inertial forces

Deployment of the tethered system happens by the realisation of motion of the
first body directionally, close to a trajectory of the free motion, i.e., only under
the effect of gravitational forces. The scheme of deployment of the system is
presented in Fig. 5.1. We connect to the spacecraft a frame of reference Oxyz
with the origin in the mass centre of the spacecraft. The axis Ox is directed
along the position vector of the orbit of the spacecraft, the axis Oy is directed
along the tangent to the motion of the spacecraft in the orbital plane, and the
axis Oz supplements the frame of reference to right-handed one.

The first body separates along the y-axis in the direction opposite to the
spacecraft motion with the relative velocity ~V init

depl and moves along the shaped
line. After deploying this body along the y-axis, the second body separates
along the x-axis with the relative velocity ~Vrot. As result of deployment the
system is rotating in the orbital plane. We consider that separated bodies are
the mass points coinciding in separation instant with the mass centre of the
spacecraft. According to [20], the current coordinates x, y of the separated
body for a circular orbit of the spacecraft in case of a plane motion satisfy the
equations:

x′′ − 2y′ − 3x = 0, y′′ + 2x′ = 0. (5.18)

Primes in (5.18) mean derivatives on the dimensionless time, τ = ωo t, ωo

is an absolute value of angular velocity of motion of the mass centre of the
spacecraft on orbit. Having integrated these equations, we obtain [20]

x = 2c1 + c2 sin τ + c3 cos τ, y = c4 − 3c1τ + 2c2 cos τ − 2c3 sin τ, (5.19)
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X
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l

O

2

V
init

depl
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depl

depl
fin

1

1

Vrot

FIGURE 5.1
Deployment of a system with the use of central force.

where arbitrary constants c1, c2, c3, c4 may be expressed in terms of initial (at
τ = 0) values of coordinates and their first derivatives (x0, y0, x

′
0, y

′
0).

Having determined the integration constants for x0 = 0, y0 = 0, x′0 =
0, y′0 6= 0 we obtain

x = y′0 · 2 (cos τ − 1) , y = y′0 · (3τ − 4 sin τ) , (5.20)

where y′0 is the value of the relative velocity of separation of the body in the
dimensionless time τ , related with V0 by the ratio

y′0 = ω−1
o · V0. (5.21)

V0 is the relative velocity of separation of the body in time t.
From the condition y (τ∗) = 0 the dimensionless time of deploying the

first body in free motion on the X-axis (deployment time) is determined:
τ∗ = 1.276. This constant conforms to transformation of zero initial conditions
of variable y to initial conditions for the dimensionless time.

From (5.19), (5.20) for x (τ∗) = l we obtain the expression of velocity of
separation of the first body V init

depl

V init
depl = 0, 704ωorbl.

For orbits of an altitude of about 500 km, at ωorb ≈ 1, 2 · 10−3s−1 and
l ≈ 100 m we have

V init
depl ≈ 0, 08 m/s (5.22)

Dimensionless time of deployment is always equal 1,276. Absolute time
tdepl is equal:

tdepl = ω−1
orb · τ∗ ≈ 17, 7min.
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184 Dynamics of Tethered Space Systems

The angular velocity of the relative rotation of the system is determined
by the formula

ωc =
Vrot + ẏ (τ∗)

l
, (5.23)

where Vrot is the velocity of separation of the second body; ẏ (τ∗) is the
transversal component of the velocity of the first body relative SV (Fig. 5.1)
in absolute time to separation moment of the second body.

When we find ẏ (τ∗) ωorb with the help of the second equality (5.19), we
obtain for ωorb = 1, 2 · 10−3s−1:

ωc ≈ Vrot

l
+ 1, 5 · 10−3. (5.24)

The last ratio shows that for the required values ωc with value about
0.1 s−1 the second item has no practical meaning. Hence, at first sight, the
attractive capability to increase the angular velocity of rotation of the tether
system due to the use of gravitational forces in the given situation does not
give a practical advantage. At the same time, determined by equation (5.22)
velocity V init

depl as show results of experiments with nominal spring pushers, is
realised with big errors of the given masses of bodies that results in oscillations
of the distance between bodies at the moment of deploying of the first body
on straight vertical.

We note that the case is considered where the first body has negligible
small effects from the string. We estimate the order of force of resistance
against unwinding of the string, appreciably influencing the trajectory of the
first body. The force Fres, completely extinguishes the kinetic energy of the
relative motion of the body of mass m at length l with the initial velocity
V init

depl. This may be found from equating kinetic energy and the work of the

force, given by m
(
V init

depl

)2
/2 = Fres · l.

For l ≈ 100m and ωorb ≈ 1, 2 · 10−3s−1, we obtain

Fres

m
≈ 0, 36 · 10−4 m

s2
.

Numerical integration of equations of motion of the first body taking into
account Fres shows that for Fres/m = 4 · 10−5ms−2 the distance of the first
body from the second one decreases ∼ 15% in comparison with Fres = 0 at the
instance of deployment along the local vertical, and for Fres/m = 8·10−5 m s−2

— on ∼ 30%.
Thus, the carried out analysis shows that deployment of the tethered sys-

tem in the considered way by the organisation of motion of the first body on
a trajectory, close to the trajectory of free motion, assumes the decrease of
the force of resistance of unwinding of the string of below 0.001 of gram for
a kilogram of mass of the first body. This requirement should be executed
to provide parameters of motion of a tether system close to computational
values. Otherwise, wide scatter of ωc takes place at unstable l that follows
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Deployment of Tethered Space Systems 185

from (5.24). Technical difficulties of guaranteeing so small values of the resis-
tance to unwinding of a string are obvious. Hence this essentially reduces the
practical expediency of application of the considered way for deployment of
rotating systems with the given parameters.

5.2.2 Deployment along an inclined direction to the local
vertical

The scheme is shown in Fig. 5.2. Bodies, as in the previous way, are separated
consistently in the plane of orbit. After separation of the first body with
velocity Vdepl, the second body is separating with the velocity directed under
an angle ξ to the velocity Vrot. It is supposed, as in the first way, that the
bodies are connected by a string of required length, which in its initial position
is packed and begins to unwind from the moment of separation of the first
body.

V
fin

depl

V
rot

l

1

1

2
Y

X

w
c

a

x

V
init

depl
V

c m

FIGURE 5.2
Deployment of a system with inclined axes of devices of separation against
the local vertical.

For the analysis we estimate first of all time tp, which is the duration of
pushing apart of the two bodies. From formula (5.19) it is visible that the
trajectory of the first body can be considered as straight-line for cos τ ≈
1, sin τ ≈ τ . These approximations are applied with accuracy of one tenth of
a percent, if they do not exceed 0.01. For ωorb = 10−3s−1 the value tp should
be chosen, in connection with what was said, about several tens of seconds.

Let us write the formula for the angular velocity of rotation of the tether
system ωc. The moment of momentum of the system at rotation with respect
to its own centre of mass after separation of the second body is determined
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186 Dynamics of Tethered Space Systems

by the expression
~G =

m1 ·m2

M
~r ×

(
~Vdepl + ~Vrot

)
, (5.25)

where m1, m2 are the masses of the first and second body accordingly; M =
m1 +m2; ~r is the radius-vector, which has been drawn from the centre of mass
of the second body to the centre of mass of the first one.

Neglecting external forces (gradient of gravitational forces, aerodynamics
etc.), it is possible to set for an initial stage of motion after deployment

~G = const. (5.26)

In operational mode of motion of the bodies of the tether system may be
considered as point masses that allows to write for the absolute value of the
moment of momentum ∣∣∣~G

∣∣∣ =
m1 ·m2

M
l2 · ωc, (5.27)

where l is length of the system.
On the basis (5.23), (5.27) and taking into account that l =

∣∣∣~Vdepl

∣∣∣ · tp we
may write

ωc =

∣∣∣~Vdepl

∣∣∣ ·
∣∣∣~Vrot

∣∣∣ · tp
l2

sinξ. (5.28)

The obtained formula shows that non-simultaneous separations of bodies
are essentially necessary in the considered way since at tp = 0 we obtain
ωc = 0. In this case the line connecting the mass centres of the bodies moves
in parallel, not changing the angular position (straight-line trajectories of each
of the bodies are considered).

At the separation instant of the second body the first one moves away from
the main vehicle with the distance

l0 =
∣∣∣~Vdepl

∣∣∣ · tp.

Then ~V init
depl = l0/tp.

Substituting this in (5.28), we obtain

ωc =

∣∣∣~Vrot

∣∣∣ · l0
l2

sin ξ. (5.29)

This relation may be used for selection of parameters of the TSS system
for deployment. Therefore, for achievement of maximum angular velocity and
the fullest use of energy of the devices of separation it is necessary to separate
the second body in a direction perpendicular to the direction of separation of
the first body (ξ = π/2 rad ) and to provide the greatest possible distance l0
of the first body at the moment of separation of the second one.
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Deployment of Tethered Space Systems 187

The vector of initial velocity of the mass centre of the system ~Vcm may be
found from the formula

~Vcm =
m1 · ~V fin

depl + m2 · ~Vrot

M
, (5.30)

where ~V fin
depl is the velocity vector of the first body at the moment of separation

of the second one (Fig. 5.3).

V
c m

V
c m

V
rot

Y

XV
fin

depl

a

m
2

m
1

c m

b

g

FIGURE 5.3
Definition of the velocity of the mass centre of the system.

Considering V fin
depl = 0 which may be achieved with the braking device, we

obtain for the value and the inclination of the velocity vector ~Vcm of the mass
centre of the system from equation (5.30):

∣∣∣~Vcm

∣∣∣ =
ε

ε + 1

∣∣∣~Vrot

∣∣∣ ,

β = γ + 1,

where ε = m2/m1; β is the angle between ~Vcm and the x axis. By selection
β is possible to provide a trajectory of the mass centre of the system close to
the required one.

Let us add quantitative estimations. From (5.29) at ξ = π/2 rad and l0 = l
we obtain:

ωc =

∣∣∣~Vrot

∣∣∣
l

.

At Vrot = 12m s−1 (the maximum velocity provided with the nominal
pusher) we have

l = 100 m, ωc = 0, 12 s−1,
l = 20 m, ωc = 0, 6 s−1.
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188 Dynamics of Tethered Space Systems

Let us turn to the estimation of the effect of resistance force to unwinding.
The value of velocity V init

depl should be chosen such that the kinetic energy of the
first body is sufficiently large for full deployment of the string in the presence
of resistance against extraction. To find the precise value of this velocity (a
minimum value must be exceeded) is not so critical, since damping of the
residual velocity is supposed to occur at the end of string deployment. In
detail the question is considered in [20].

Let us consider result of power estimations. For a resistance to unwinding
of 10 g for a kilogram of mass of the first body at l = 100 m the minimal
initial velocity of the first body must be equal 4.5m s−1 that is reached by the
nominal pusher.

Given estimations confirm feasibility of this consideration as the basis for
the technical realisation of deployment of a system of TSS.

5.2.3 Deployment with changing of velocity of bodies after
separation

The analysis of the way of deployment carried out above with rotation of
the axes of the devices of separation shows that the rotation of the axes
is the essential factor. Two effects are basic here: the full unwinding of the
string until the moment of separation of the second body and separation of
the second body in the direction, perpendicular to the deployed system (the
task is realisation of a preset value ωc). Thus the initial orientation of the
velocity of the first body and the further changes of spacecraft attitude are
not so important. We consider the case when the axes of both pushers are
parallel, and the direction of velocity of the first body in addition changes
after shooting. We consider two versions.

Let us address Fig. 5.4. The first body with mass m1, is separated along
the y axis with velocity ~V orig

1 . A bit later after the first body with velocity
~Vm the auxiliary mass m is separated (for example, by the spring pusher). As
a result the first body obtains the increment of velocity ~V add

1 which, added
to ~V orig

1 , provides to this body the velocity ~V init
1 under an angle α to the x

axis. After deployment of the total string the second body is separated from
the main vehicle with the velocity ~Vrot, therefore the system gets the angular
velocity

ωc =

∣∣∣~Vrot

∣∣∣
l

· cosα.

Numerical estimations show that the tether system with certain parame-
ters determined by the input data (ID) may be created by the simultaneous
separation of three connected bodies by parallel pushers with the subsequent
separation of the middle body with the help of a spring. Two rotating systems
are created here simultaneously.

The essential problem of both versions is the difficulty of maintenance of

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

3:
19

 0
6 

Ju
ne

 2
01

6 



Deployment of Tethered Space Systems 189

X

Y

m
1

m
2

V
init.

V
init.

V
orig.

V
m

m

1

a b

1

1

FIGURE 5.4
Deployment of a tether with additional mass separation.

the arrangement of velocities of the separated (or divided) masses in the plane
of orbit.

The version of turn of a vector of initial velocity of the first body without
shooting of an additional mass (Fig. 5.5) is interesting. On pushers 1T and 2T
the first and second bodies of a system accordingly are fixed. On the pusher
3T the technological platform is fixed with the rotary lever established on it.

2

1

2Т

3Т

1Т

V
init

1

V
init

1

m
1

m
2

R

P

Y
k

FIGURE 5.5
Separation of the first body with use of a rotating lever.

After actuation of the pusher 1T and giving to the first body the velocity
~V orig
1 , it begins to move on a circle of radius r with centre in point O. After

turn of the lever angle ψk, which should be chosen so close to π/2 as far as
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190 Dynamics of Tethered Space Systems

design reasons allow, the connection between the lever and the first body,
which is separated from the lever with velocity ~V init

1 , is broken off. Then the
unwinding of the string, then the second body is separated.

Another version assumes the use of the flexible connection instead of the
lever, for example, a string. Essentially the scheme is the same, but some new
design features appear.

This version is free from the above mentioned problem connected to the
difficulties of maintaining the turn of velocity ~V1 in the orbit plane since the
axis of turn of the lever is rigidly fixed relative to the SV.

Let us focus on the version of change of angular velocity of the system
after its full deployment by the change of distance between the bodies. The
maximum velocity of the body provided with the nominal pusher is equal
12m s−1, whence according to (5.30), for l = 100 m we have ωc = 0, 12 s−1.
This is the maximum value, which may be obtained in these conditions without
additional actions.

From (5.26) and (5.27) it is possible to obtain a relation for the freely
moving system after full separation from the main vehicle

ω1

ω2
=

(
l2
l1

)2

, (5.31)

where ωi, li are angular velocities and lengths of the system accordingly.
Let l1 be the initial length of the deployed system and l2 its nominal length.

The system deployed up to length l1 has angular velocity

ω1 =
Vmax

l1
. (5.32)

Thus the maximum achievable angular velocity without additional retrac-
tion of bodies of the system is equal

ωmax
pas =

Vmax

l2
. (5.33)

Reducing the length of the tether after deployment to length l2, we obtain
angular velocity

ωmax
act = ω1

(
l1
l2

)
= ωmax

pas

(
l1
l2

)
.

Thus, by deploying a system up to length l1, and then by reducing distance
between bodies up to l2, it is possible to increase the maximum angular ve-
locity l1/l2 times in comparison with the deployment to the necessary length
at once. This is convenient, since the retrieval of bodies does not change the
direction of ωc.

The carried out analysis of the different ways of deployment of the system
offers for design a version with turning of the axes of pushers by π/2 and
consecutive separation of the bodies.
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Deployment of Tethered Space Systems 191

5.3 Deployment of three elastically tethered bodies in
the centrifugal force field

5.3.1 Physical model

One of possible implementations of small space tethered systems (about sev-
eral dozens of meters) represents a system of three bodies connected by an
elastic tether. The masses of the end bodies of such a system practically de-
termine the total mass of the system (see Fig. 5.6), the central body is used
as an auxiliary one during deployment. The tether and the braking devices
are located in this body yielding the required mode of deployment.

FIGURE 5.6
Physical model of the tethered three bodies.

The simplest and cheapest implementation, concerning the mathematical
description of deployment of such a system in orbit is deployment under the
action of the centrifugal forces resulting from their initial rotation in the plane,
passing through the mass centres of the end bodies. For this purpose two
pushers (for example, springs) should be mounted on the space vehicle, which
by command from the Earth or from onboard the space vehicle push the
departing system into a rotational motion in the given plane.

The initial angular velocity should be sufficiently large to ensure on one
hand deployment of the system under the action of the centrifugal forces,
and on the other hand to reach the prescribed angular velocity of the tether,
prescribed by the operation conditions, after its full deployment.

The mathematical description of the process of pushing away of the system
as a rigid body from the space vehicle is simple enough such that we do not
enter into it. Next the connections, which are used to make the three body
system as one rigid body before deployment, are removed. This is the instant
of separation of the bodies due to the pushers which become effective now.
The system is now a free system of three bodies connected by two tethers,
performing a relative motion under the action of centrifugal and gravitational
forces.

To construct the mathematical model of the system, we consider the bod-
ies as rigid. We assume that the deploying strings at the points of exit from
the middle body can be braked with the help of Coulomb and viscous fric-

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

3:
19

 0
6 

Ju
ne

 2
01

6 



192 Dynamics of Tethered Space Systems

tion forces. Since the gravitational forces and the centrifugal forces of orbital
motion are much smaller than the centrifugal forces of attitude motion, we
can neglect the moments of both of them due to the small sizes of the system
because these moments cannot noticeably change the moment of momentum
obtained by the system at repulsion.

Because the size of the tether under consideration is essentially less than
the orbit size, the problem may be considered in the “limited” statement when
the equations of motion of the mass centre of the tether are independent of
the attitude motion. Further, we concentrate the attention on the study of
the attitude motion of the system.

The mass centre of the system moves in space relative to the pushing
device that yields the initial values of its state variables. The motion of the
deployed system occurs inside some area of space, in which there should not
be any restriction to its motion. The approach to construction of boundaries
of such an area is similar to the one described in [126].

The strings are extracted from the storage containers located in the middle
body under the action of centrifugal forces. Simultaneously some friction forces
act on the strings due to the braking devices.

The friction forces should be adjusted such that when the end bodies reach
their design positions with respect to the central body there should not occur
an elastic impact, large enough to break the cable. However, some elastic
oscillations along the cable can arise which will be damped under the action
of forces of structural damping.

5.3.2 Mechanical model

The considered assumptions about the character of the process of the tether
deployment allow to construct the adequate mechanical model shown in
Fig. 5.7.
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FIGURE 5.7
Mechanical model of the tethered three bodies.

Here OXY Z is the absolute frame of reference, S1 is the central body with
the frame of reference C1ξηζ fixed in it, S2, S3 are the end bodies, u2, u3 are

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

3:
19

 0
6 

Ju
ne

 2
01

6 



Deployment of Tethered Space Systems 193

the centres of the generalized hinges. Each of these hinges generally provides
four relative degrees of freedom for the proper end body: three angular and
one linear, which corresponds to moving out the elastic rods, simulating the
strings. Such free system of bodies in case of the inextensible string can be
described within the limits of the classical multibody theory [126].

Under consideration of elastic deformations of the string we take advantage
of some simplifying assumptions. First of all, we consider that the string is ab-
solutely flexible. This permits to consider the points of exit of the strings from
the central body as spherical hinges, resulting in simply supported boundary
conditions. The axial stretching deformation of the string is described by the
linear Hook’s law. We neglect the mass of the strings in comparison with the
masses of the bodies of the system. We assume that the friction forces in the
points of exit of the strings from the central body are adjustable either as a
function of time, or as a function of nominal length of the string, which has
been pulled out from the container. We assume also that pulling out the string
from the container happens monotonically, without stops, while all string is
pulled out. This assumption, quite justified from the practical point of view,
allows essentially to simplify taking into account the elastic deformations of
the string at deployment, as in this case its tension is determined only by the
friction force in the braking device, and its stiffness on stretching is determined
by the length of the pulled out part of the string.

In the tether deployment one can select three stages of motion:

1. A stage of pulling out of the strings from the containers. The force of
tension of each string is determined by force of resistance to pulling
out of the string at this stage.

2. A stage of motion of the deployed tether with the stretched strings.
In this case the force of tension of each string is determined by its
relative elongation.

3. A stage of motion of the deployed tether with unstrained strings
(or a string). In this case the corresponding forces applied to the
bodies of the system are equal to zero.

5.3.3 Mathematical model

For the description of the dynamics of such a system it is possible to use
many approaches. From the point of view of simplicity of the mathematical
description and of writing the computing program for the numerical simulation
of deployment, the use of Newton’s second law and the theorem of change of
moment of momentum is most convenient. The system shown in Fig. 5.8 can
be presented as three free bodies with the applied external forces determined
by the internal tension forces of the strings. The state of this system can be
uniquely determined by the following variables: X1, Y1, Z1 are the coordinates
of the mass centre of the central body in an absolute frame of reference;
ϕ1, ϕ2, ϕ3 are the Bryant’s angles of orientation of the central body in the
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194 Dynamics of Tethered Space Systems

absolute frame of reference; X2, Y2, Z2, X3, Y3, Z3 are the absolute coordinates
of the point masses S2 and S3 accordingly. Hence, the system has twelve
degrees of freedom.

FIGURE 5.8
System of three free bodies.

To define the direction of the forces applied to the bodies, one can use aux-
iliary variables Xu

2 , Y u
2 , Zu

2 , Xu
3 , Y u

3 , Zu
3 . These are the absolute coordinates of

the points u2 and u3 of exits of the strings from the container. They can be ex-
pressed in terms of the basic variables X1, Y1, Z1,ϕ1, ϕ2, ϕ3. Direction cosines
of the unit vectors ~lk0 (k = 2, 3) in direction of forces (see Fig. 5.8) may be
found as

~lk0 (t) =
{

Xk −Xu
k

lk (t)
,
Yk − Y u

k

lk (t)
,
Zk − Zu

k

lk (t)

}
.

Here lk (t) is the current length of the corresponding string. If the distance
is less than the deployed length of the string, then the string is not stretched
and the corresponding forces are equal to zero.

The equations of motion of the tether at all stages of its deployment can
be written as follows:

m1
~̈R1 = −~F2 − ~F3, m2̈~R2 = ~F2, m3̈~R3 = ~F3, (5.34)

ΘC1 ~̇ω + ~ω ×ΘC1 · ~ω = ~mC1 . (5.35)

Here mk and ~Rk are masses of the bodies Sk and their position vectors
in the absolute frame of reference respectively, ~F2, ~F3 are the tension forces
of the strings directed from the end bodies towards the central body, ΘC1 is
the tensor of inertia of the central body with respect to its mass centre, C1, ~ω
is the vector of angular velocity of the central body, ~mC1 is the vector of the
moment acting on the central body due to the tension forces of the strings.

If one supplements the system (5.34), (5.35) with the kinematic equations
and initial conditions, the initial value problem may be formulated.

The elastic forces created in the strings due to the motion of the end bodies
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Deployment of Tethered Space Systems 195

can be determined as follows. Until the instant of termination of deployment
t = Tk, the string tension is completely determined by the braking force at
the point of exit of the string from the container:

~Fk = ~F br
k . (5.36)

The tension force at t > Tk when the string is stretched (lk(t) > L) can be
determined as follows:

~Fk = −~l0k
lk(t)− L

L
EF ∀lk(t) > L. (5.37)

In the absence of stretching, ~Fk ≡ 0.
To formulate the initial conditions of the problem we consider that the

initial rotation happens as the result of pushing the tethered bodies from the
space vehicle with the help of two parallel forces resulting in different impulses.
In particular, the impulse of one of the forces can be equal to zero. Besides, we
assume that the instant of eliminating the initial connections coincides with
the instant of termination of the action of the pushing forces. Thus the initial
angular velocity has the value ~ω = ~ω0, and relative velocity of the mass centre
has the value ~v = ~v0. The mass centre of the tether is located in the point
C0, which we fix in the frame of reference connected to the space vehicle. We
connect the coordinate frame C0x0y0z0 with this point such that the axis C0x0

is directed in the direction of motion of the mass centre of the tether, the axis
C0z0 is collinear to the vector ~ω0 and this frame of reference is non-rotating
in the absolute frame of reference. This assumption is justified because the
duration of deployment is substantially smaller than the orbital period.

The frame of reference C0x0y0z0 is inertial (absolute) also because it moves
with respect to the inertial frame of reference with constant velocity. Without
loss of generality in posing the problem, we can consider the initial state of
the system in the frame of reference C0x0y0z0 as it is shown in Fig. 5.9.

FIGURE 5.9
Initial state of the system before deployment.

For studying only the attitude motion, one can introduce the nonrotating
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196 Dynamics of Tethered Space Systems

frame of reference Cxyz, connected with the mass centre of the tether. Its
axes are parallel with the proper axes of the frame of reference C0x0y0z0. Let
~rk = {xk, yk, zk} (k = 1, 2, 3) are position vectors of the points C1, C2, C3 in
this frame of reference. Then the Cauchy problem can be written as follows.

The equations of motion:

m1̈~r1 = −~F2 − ~F3, m2̈~r2 = ~F2, m3̈~r3 = ~F3, (5.38)

ΘC ~̇ω + ~ω ×ΘC · ~ω = ~mC . (5.39)

The kinematic equation [126]:




ϕ̇1

ϕ̇2

ϕ̇3


 =




cosϕ3

cosϕ2
− sin ϕ3

cos ϕ2
0

sin ϕ3 cosϕ3 0
− cosϕ3 tanϕ2 sinϕ3 tanϕ2 1







ω1

ω2

ω3


 . (5.40)

The non-zero initial conditions (see Fig. 5.9):

y2 = a + b, y3 = −a− b, ϕ3 = π/2, ω3 = ωo,

ẏ2 =
| ~v20 | − | ~v30 |

2
, ẏ3 = −ẏ2. (5.41)

If the connections of the rotating system are eliminated and if the brak-
ing forces at the exits of the strings from the central body are not acting
immediately after separation, the bodies begin to move by inertia as three
independent bodies having no effect on each other. Because of the different
initial velocities of the bodies the total length of all strings is pulled out. This
results in a series of elastic impact and the desired rotation of the deployed
system is not reached. However, if the braking forces act on the deploying
strings from the central body, the deployed tether starts to rotate. These
forces may be realised using Coulomb forces and forces of viscous friction. Let
us consider some implementation of them with reference to the system under
consideration on the plane of the variables li, l̇i. The domain of definition
of the magnitude of the braking force in this plane satisfies the conditions
0 ≤ l ≤ L, l̇ > 0, where L is the design length of the string in the opera-
tional mode of the systems. Some braking forces Ffr which we believe are of
practical importance in applications are as follows:

1. Braking force constant in all definitional domain using pure
Coulomb friction

F br
k = f0 (k = 1, 2), (5.42)

where f0 is a given value.

2. Braking forces linearly depending on the length of the string during
the initial stage of deployment, which is bounded by some interme-
diate length l̃ of the deployed string and is constant on the final
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Deployment of Tethered Space Systems 197

domain of deployment. Only Coulomb friction is used. cl is a given
coefficient.

F br
k =

{
f0 + cl (l̃ − l) ∀0 ≤ l ≤ l̃,

f0 ∀l̃ ≤ l ≤ L, (k = 1, 2).
(5.43)

3. Braking forces using viscous friction and linearly depending on the
velocity l̇ of extraction of the string from the container

F br
k = cv l̇, (k = 1, 2), (5.44)

where cv is a given coefficient.

4. Braking forces using viscous friction and linear in l̇. They do not
depend on l at the beginning, but then they are increasing with
increasing l

F br
k =

{
cv l̇ ∀0 ≤ l ≤ l̃,

cv l̇ + cvl l̇ l ∀l̃ ≤ l ≤ L, (k = 1, 2),
(5.45)

where cvl is a given coefficient.

5. Braking forces using Coulomb and viscous friction and linear in l̇
and constant in l

F br
k = cv l̇ + f0, (k = 1, 2). (5.46)

6. Braking forces using Coulomb and viscous friction and linear in l̇
constant on l in the beginning, then increasing with increasing l

F br
k =

{
cv l̇ + f0 ∀0 ≤ l ≤ l̃,

cv l̇ + cvl l̇ l + f0 ∀l̃ ≤ l ≤ L, (k = 1, 2).
(5.47)

Before we begin the description of the results of the numerical simulation
of the system deployment, we note that the value of the necessary initial
angular velocity of rotation may be determined on the basis of the theorem of
moment of momentum in absence of external forces, since the braking forces
are internal forces.

5.3.4 Numerical modelling of deployment

On the basis of the constructed mathematical model (5.38)–(5.41) extensive
numerical simulation of the system’s dynamics of deployment was conducted
varying the values of main parameters of the system and the realisation of the
braking forces (5.42)–(5.47). We use the following values of the main physical
parameters of the system: the masses of bodies: m1 = 10 kg, m2 = 10 kg,
m3 = 10 kg; the moments of inertia of bodies with respect to the main axes of
inertia: Θ11 = 1 kg m2, Θ22 = 1 kg m2, Θ33 = 0, L1 = 10 m, L2 = 10 m, tension
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198 Dynamics of Tethered Space Systems

stiffness of the cable EF = 0.6106N. Numerical simulations were carried out
using the fourth-order Runge–Kutta method with an adaptive time step.

The case of pure Coulomb friction, constant in time, gives a mode of de-
ployment possessing characteristic properties. During extraction of the cables
from the container there occur significant angular oscillations of the central
body similar to rotational oscillations of a rigid body under the action of a
restoring moment (curve 1 in Fig. 5.10). Such a moment is created by the brak-
ing forces, the directions of which coincide with the directions of the stretched
tethers.

While the cable is extracted from the container, this tension force is equal
to force of friction.

0 100 200

2

4

6

1

2

V
e
lo

c
it

y
 v

 (
 m

 s
)

-1

2

1

3

F
re

q
u
e
n
c
y

(s
)

w
-1

Time t (s)

300

FIGURE 5.10
Angular oscillations of the central body and velocity of string extracting.

At the indicated oscillations, the velocity of pooling out of the tethers also
has oscillatory character (curve 2 in Fig. 5.10). When the process of extrac-
tion of the tether is completed, the character of the restoring forces essentially
changes. They become the forces of elastic tension of the cables arising only
if the cables are under tension. The duration of such a condition is extremely
small, then the bodies lose the connection again and the tension of the tethers
vanishes. Since the momentum of the arising restoring moments in the de-
ployed system is substantially smaller than at the stage of deployment (at the
expense of the short-term stretching of the string), the period of the angu-
lar oscillations is noticeably greater here. The value of amplitude of angular
oscillations is determined by the system condition at the instant of the first
stretching the tether by inertial forces after completion of extraction of the
cable and can vary within a wide range of limits. Since the initial moment of
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Deployment of Tethered Space Systems 199

momentum of the system was normal to the plane Cxy and external forces
are absent, the system moves in this plane all the time. This motion is shown
in Fig. 5.11.
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FIGURE 5.11
System behaviour in the plane Oxy of the absolute frame of reference.

The trajectories of the centres of the end bodies contain intervals of time
when the strings are stretched. Outside of these intervals, the bodies are moved
on inertia and the strings are not stretched.

The formation of the forces on the second version during simulation of
deployment of the tether has shown that at the variable braking forces it is
possible to achieve more acceptable deployment than in the previous case,
but the system behaviour after deployment is still very sensitive to the values
of the coefficients in the expressions for the forces. So, at the value cv equal
0.137N m−1, the tether is deployed quite acceptably on character of further
motion, but its length is 4 cm less than nominal length (Fig. 5.12). At cv equal
to 0.135 Nm−1 (case 1) the tether is deployed on full length, but the velocities
of bodies have already nonzero projections on directions of the strings at the
instant of termination of the deployment. It results in excitation of angular
oscillations of the central body. Decrease of the value cv up to 0.130 (case
2) results already in other mode of motion (Fig. 5.13), in which the internal
resonance in the system between the angular frequency of rotation of the
tether and the oscillation frequency of the central body is seen.

Without considering in detail the simulation of the dynamics of deploy-
ment at the remaining versions of the friction forces, we note that the results,
acceptable in our opinion, are given by the use of only viscous friction, and
the relation of the braking force to the length of the deployed string and its
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FIGURE 5.12
System behaviour in the plane Oxy of the inertial coordinate frame in the
case 1 of constant Coulomb friction.
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FIGURE 5.13
The system behaviour in the plane Oxy of the inertial coordinate frame in
the case 2 of constant Coulomb friction.

feed out velocity may be selected as follows:

F br
k =





c1v l̇(l1 − l)/l1 + c2v l̇ ∀0 ≤ l ≤ l1,

c2v l̇ ∀l1 ≤ l ≤ l2,

c3v l̇(l − l2)/(L− l2) + c2v l̇ ∀l2 ≤ l ≤ L, (k = 1, 2)
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Deployment of Tethered Space Systems 201

c1v, c2v, c3v are given coefficients. Such a structure of braking forces has ad-
vantages in comparison with other considered schemes. On the initial period of
deployment the forces can be created, which ensure so low velocities of pulling-
out of the strings that the bodies of the tether do not exceed the bounds of
permissible area. It is especially important when the rotating system is close
to the space vehicle. During the second period of deployment when the system
moved off the space vehicle at a safe distance, the rather small forces of re-
sistance ensure fast deployment. Finishing period of deployment has the task
to decrease to the possible minimum the velocity of pulling-out of the string
at the instant t = Tk and to avoid the elastic impacts with the subsequent
reflections of the end bodies and disturbance of the configuration of the tether.

The acceptable process of deployment of the tether at such a way of for-
mation of resistance forces is shown in Fig. 5.14. In this case the strings are
stretching very soft and some noticeable changes of length of the deployed
tether do not happen.

The amplitudes of the elastic oscillations arising at such termination of
deployment are shown in Fig. 5.15. As it is visible in the figure, the oscillation
amplitude at the total deployed length of the tether does not exceed 1 mm.
These oscillations are connected to minor angular oscillations of the central
body and, naturally, are accompanied by small changes of the forces of tension
of the strings.
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FIGURE 5.14
Process of deployment of the tether in the case of the proposed law of viscous
friction.

Thus, consideration of the problem of passive deployment of a tether sys-
tem of three bodies with the help of the centrifugal forces arising as result
of the initial rotation during the pushing away of the tether from the space
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FIGURE 5.15
Amplitudes of elastic oscillations of the end bodies.

vehicle shows that it is possible to achieve deployment of the tether and the
angular velocity of the prescribed rotation. It may be done by proper selection
of the law of the braking forces in the devices at the exit of the strings.

5.4 Experiment of unreeling the cable

5.4.1 Description of the experiment

The process of unreeling the cable from a reel, which is at rest, is considered
by generating the initial velocity of the first body of the small TSS attached
to the initial end of the cable. The required length of the unwinding cable,
in accordance with the prospective final shape of the TSS, is about 100m. In
Space conditions the process of deployment proceeds practically in conditions
of weightlessness and of vacuum.

The purposes of experimental researches of the process of unreeling of the
cable are the following: definition of suitability of the design of storing the ca-
ble for the creation of small TSS; definition of sufficiently large kinetic energy
of motion of the first body for unreeling the cable of given length; calculation
of the force of resistance to overcome in unreeling the cable; estimation of the
duration of the process of deployment and velocity of the first body at the
termination of process of unreeling of the cable.

The process of unreeling of the cable depends on the initial kinematic
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Deployment of Tethered Space Systems 203

parameters of motion of the first body, the dynamics of its motion and the
dynamics of the cable and certainly on the way the cable is reeled. Features
of the way of reeling the cable are expressed dynamically by the force of
resistance in unreeling the cable and, probably, by additional disturbances of
the dynamics of the cable. The suitability of the way of reeling of a cable for the
design of TSS is determined by following: the forces of resistance to unreeling
the cable allow to organize the deployment of the system for the prescribed
length and there is no danger of entangling (forming spatially complicated
configurations) of the cable.

If we do not take into account the dynamics of the already unreeled part
of the cable, i.e., to consider the part of the cable located between the bodies
as massless, the equation of motion of the mass centre of the first body along
a straight line looks like

m1ẍ = −Tc, (5.48)

where m1 is the mass of the first body, x is the coordinate of its centre of
mass along a straight line of motion, Tc is the value of the force of resistance
against unreeling of the cable.

Let us consider now the fly-wheel (Fig. 5.16) unreeling the same cable as
the body. The equations of its motion look like

m

mg

I j

FIGURE 5.16
Scheme of experiment on determination of moment of inertia of fly-wheel.

Jϕ̈ = −rkTc, (5.49)

where J is the moment of inertia, ϕ is angle around of rotation axis, rk is the
radius of the reel of the fly-wheel where the cable is stored.

It is easy to see that for initial conditions rϕ̇0 = ẋ0 and for J/r2
k = m1 the

models (5.48) and (5.49) are dynamically equivalent. Hence the velocities of
unreeling of a cable in both cases is identical for all time.
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204 Dynamics of Tethered Space Systems

The creation of the device to realise the model (5.49) is much easier to do
than the realisation of model (5.48). It is because the aerodynamic resistance
to rotation of a symmetrical rigid body about the axis of symmetry for fixed
mass centre practically is equal to zero. And also because to get small friction
in bearings is much easier to model than to model weightlessness of the moving
body with length of 100 m.

The use of the fly-wheel for experimental research of the process of unreel-
ing of the cable allows to achieve the purposes of the research. Really, the fly-
wheel allows to make full unreeling of the cable with the velocity close to the
prescribed one and with the prescribed inertial forces (because J/r2

k = m1).
It allows to solve the problem about suitability of the way of reeling of the
cable and to determine the sufficiently large kinetic energy of motion of the
first body for the full unreeling of the cable. Calculation of friction in bear-
ings allows to calculate the force of resistance against unreeling of the cable
for various velocities of unreeling and, hence, to obtain time estimations of
the process of deployment and the velocity of motion of the first body at
termination of unreeling of the cable.

The scheme of realisation of measurements in the experiment may be the
following. On the fly-wheel on which the cable is reeled up, marks are placed
on the edge of the fly-wheel of the angular distance of π rad. On the fixed part
there is a non-contact sensor, such as a travelling switch, which changes its
state at the moment of passage of the mark near it. Thus, in the experiment the
process of the test is shown as a sequence of events in time, corresponding to
the rotation of the fly-wheel by an angle of π rad. Practically the measurement
equipment does not have an influence on the experimental process.

To perform the experiment it is necessary only to fix the time of change of
the state of the switch. However, it is not necessary to fix the number of the
events, because of the pre-determined sequences of their changes.

One of the features of the studied process of unreeling of the cable is the
necessity of registration of time of the events with an accuracy not below 0.001
seconds, if the frequency of the events is about 10 to 50 hertz during a period
of 50 to 100 seconds.

So, the monitoring system must be developed including the non-contact
sensor, the controller and the computer. Impulses of sensors are registered by
the controller supplied with both autonomous and external memory and the
driver for the interaction with the computers.

To perform the experiments of unreeling of the cable we must evaluate the
moments of inertia of the fly-wheel, the forces of friction in bearings and the
forces of resistance against unreeling of the cable.

According to the program of research of the process of unwinding [113],
the motion of the cable due to one separating body of the TSS is simulated in
the ground experimental research by the rotation of a fly-wheel. Therefore the
definition of the forces of resistance against unwinding of the cable requires
the determination of the moment of inertia of the fly-wheel and the forces
of friction in the bearings. All techniques cited below were developed for the
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Deployment of Tethered Space Systems 205

specific equipment and on the basis of specific experimental data. On the basis
of the qualitative analysis of the experimental data the general assumptions
about the character of the forces acting on the process were performed and
then by the way of minimization of quadrates of deviations of the calculated
values from the experimental data the parameters of these force actions were
determined.

5.4.2 Moment of inertia of a fly-wheel

The moment of inertia of a fly-wheel was determined on the basis of the
experiment, the model of which is presented in Fig. 5.16.

The equations of motion look like

Jϕ̈ = rT −M,
mẍ = mg − T.

(5.50)

Here T is the tension force in the cable, M is the moment of the forces of
friction in the bearings.

Provided the cable is sufficiently stiff, it is possible to assume that ẋ = rϕ̇.
Hence (

J + mr2
)
ϕ̈ = rmg −M. (5.51)

As results of the experiments show, at comparatively small velocities of rota-
tion, the moment of friction forces in the bearings can be neglected. Then the
variation of the angle ϕ is given by the formula

ϕ =
rmg

J + mr2

t2

2
+ ϕ̇0t + ϕ0, (5.52)

and by virtue of arrangement of the experiment it is possible to suppose that
the initial angular velocity is equal to zero (ϕ̇0 = 0). Since the conditions of
realisation of the experiment do not allow to determine precisely the time of
beginning of the motion (or the initial value of the angle ϕ0), the difference
between the increment of the angle by formula (5.52) and its real increment
was considered as a function to be minimized. The real increment has the
form

F =
N∑

i=1

[(ϕ (ti+1)− ϕ (ti))− (ϕi+1 − ϕi)]
2
,

where ϕ(ti) is the value of the angle of rotation calculated by the formula
(5.52) in the experimentally determined instants of time, ϕi is the real value
of the angle of rotation at the time instants, N is the number of performed
experiments.

As a result of minimizing the function F with respect to the moment of
inertia J we obtain

∂F

∂J
= 0,
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206 Dynamics of Tethered Space Systems

N∑

i=1

[
rmg

J + mr2

1
2

(
t2i+1 − t2i

)− 2π

] (
t2i+1 − t2i

)
.

Hence,

J∗ =
rmg

∑N
j=1

(
t2i+1 − t2i

)2

4π
∑N

i=1

(
t2i+1 − t2i

) −mr2, (5.53)

where it is assumed that ϕi+1 − ϕi = 2π.
In Fig. 5.17 the graphs of variation of angle ϕ are presented. The triangles

show values of the angle ϕ obtained from the experiment, the lines are the
graphs constructed from formulas (5.52), (5.53).
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FIGURE 5.17
Experimental and computational values of angle φ at determination of hand-
wheel moment of inertia.

5.4.3 Moment of friction forces in the bearings

The definition of the moment of the forces of resistance against rotation of a
fly-wheel was carried out on the basis of the experimental data of free (iner-
tial) rotation of the fly-wheel. As unknown parameters the coefficients of the
constant moment of friction and the moment of friction proportional to the
velocity of rotation were considered.

Hence the resulting equation of rotation of the fly-wheel has the form

ϕ̈ = −M0 − cϕ̇ (5.54)

and its solution at ϕ0 = 0 can be written as

ϕ =
(M0/c + ϕ̇0)

c

(
1− e−ct

)− M0

c
t. (5.55)
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Deployment of Tethered Space Systems 207

Since friction is small, the definition of the initial angular velocity can be
carried out with high accuracy:

ϕ̇0 = 2π/T,

where T is time of one complete rotation of the fly-wheel.
The values of the unknown parameters c and M0 were determined by way

of minimization of a sum of quadrates of deviations of the solution (5.50) from
the experimental values:

F1 =
∑

i=1

N(ϕ (ti)− ϕi)
2 →

{
MIN

c,M0

}
. (5.56)

The minimization of the function was carried out numerically. As a result
the following values were obtained: M0 = 0.006 s−2, c = 0.026 s−1. Results of
verifying calculations are presented in Fig. 5.18. The triangle points represent
data of experiments, and the solid lines correspond to the formula (5.55).
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FIGURE 5.18
Results of test computations.

5.4.4 Resistance force against unreeling of cable

As it was remarked above, the evaluation of the forces of resistance against un-
winding of the cable from a reel should allow to determine the energy needed
for the complete unwinding of the cable, the time of unwinding and the final
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208 Dynamics of Tethered Space Systems

velocity of the body at the end of this process. The definition of these param-
eters is necessary for the improvement of the requirements for the device of
pushing off and for the device to brake to zero the velocity of the body.

The definition of the physical nature of the forces of resistance against
unwinding and the influence of other parameters on the value of this resistance
requires a special investigation. Since the mass of the cable can have the value
of the order of 1% of the mass of the body, it is necessary to consider the
motion of the body in the process of unwinding as motion of a body with
variable mass. In addition, it is necessary to determine the dependence of the
forces of friction on the velocity of the body (whether it is linear or non-linear
and determine the character of the non-linearity), on the mass of the cable,
on the size of the reel and on the methods of winding, etc [41].

The presented investigation is limited by the assumption that the force of
resistance against unwinding consists of a force which consists of a constant
part and a part proportional to the velocity of unwinding. In this case the
motion of the fly-wheel is described by the equation of the form (5.51), in
which the constants determine the total value of the moment created by the
force of resistance against unwinding of the cable and the force of friction of
the fly-wheel. It is necessary to check the validity of this assumption by the
way of comparison of results of calculations and experiments.

By conducting the a priori definition of the parameters M0 and c for the
fly-wheel without unwinding of the cable from the reel, and then by repeating
the same procedure during unwinding of the cable, it is possible to obtain
values of the parameters ∆M0 and ∆c describing only the moment of the
force of resistance against unwinding. By virtue of the assumption about a
linear dependence of the force of resistance on the velocity of unwinding we
obtain the values ∆M0 and ∆c as the difference of values M0 and c in two
experiments.

Then the motion of the fly-wheel under the action only of the moment
from the force of resistance against unwinding looks like

ϕ̈ = −∆M0 −∆cϕ̇. (5.57)

The motion of the body with mass m = J/r2 under action of the force of
resistance against unwinding is described by the equation

mẍ = −J

r
∆M0 − J

r2
∆cẋ. (5.58)

The expression on the right-hand side represents the force of resistance against
unwinding of the cable, which can be used for the calculation of the motion
of the body after it is pushed off.
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