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xi

Preface
Unmanned aerial vehicles (UAVs) represent the fastest growing and the 
most dynamic growth segment within the aerospace industry. The rapidly 
increasing fleet of UAVs, along with the widening sphere of their applica-
tions, puts new problems before their designers. Although now unmanned 
aerial vehicles are used mostly in military applications (intelligence, sur-
veillance, and reconnaissance missions; and combat operations—strike 
missions, suppression and/or destruction of the enemy and its facilities), 
their future potential civil applications are enormous (e.g., border patrol, 
forest fire monitoring and firefighting; nonmilitary security work such as 
surveillance of industrial sites, road/rail infrastructure, mineral explora-
tion, coastal surveillance, pipeline surveillance, spraying of fertilizers, 
insecticides, aerial photography, land mapping, environmental monitoring, 
transportation, and gathering scientific data). 

Being considered as aerial robots, designers of current UAVs pay close 
attention to such technologies as imaging, communications, electro-optical 
sensor systems, sensor fusion, i.e., the technologies that would provide an 
operator with reliable visual information that allows a pilot of an aircraft 
to make decisions concerning future flight paths. These topics are widely 
discussed in many publications. Publications related to the controllers that 
generate pilot’s actions don’t contain anything new from the standpoint of 
control theory.

However, scientific publications focused on trajectory generation and 
regulation, task allocation, and scheduling, i.e., the problems that help an 
operator choose an optimal trajectory from one location to another for var-
ious possible mission scenarios, contribute to designing the future genera-
tion of UAVs in which the operator’s involvement will be minimized. Since 
the flight of autonomously guided UAVs is, in many features, similar to the 
flight of cruise missiles, their guidance and control systems can be built 
similar to existing cruise missiles. However, UAVs are employed in high-
risk environments. The ability to sense and avoid obstacles, both natural 
and man-made, and to rebuild its flight path is an important feature that 
UAVs should possess, and the corresponding algorithms should be imbed-
ded in their guidance and control systems.

In many cases, UAVs are described either as a single air vehicle (with 
associated surveillance sensors) or a UAV system, which usually consists 
of three to six air vehicles, a ground control station, and support equip-
ment. One solution to alleviating the problem of controlling the flight of 
a swarm of UAVs is allowing the UAVs to be operated from the so-called 
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xii	 Preface

lead UAV, which, in turn, receives commands from the ground mission 
control unit. To make UAV operators work easier, the UAVs should be 
endowed with artificial intelligence (AI). It should be noted that missiles, 
which are unmanned aerial vehicles as well, possess certain AI features, 
since the guidance laws direct them to hit the target and some of them 
imitate the behavior of predators pursuing their victims.

Surprisingly, the current policy concerning the future generation of UAVs 
focuses mostly on the development of more sophisticated sensors, commu-
nication and control devices, greater payload capability, endurance, and 
unmanned lethal capabilities. These areas of research are lavishly funded in 
contrast to the area of guidance and control of autonomous UAVs. Moreover, 
future autonomous UAVs are envisaged as controlled by computer pro-
grams that imitate a pilot’s actions. Of course, future UAVs should possess 
some AI features that reflect a pilot’s reaction in specific situations. But it is 
improbable to expect, at least in the nearest future, the creation of extremely 
complex, reliable computational programs to be used with onboard com-
puters that together with related required sensors and other devices would 
meet payload or other requirements. Moreover, since the unmanned lethal 
capability problem requires the knowledge of parameters different from 
what would be used in the mentioned computational programs, it is logical 
to try to create UAV guidance laws that use the same parameters as mis-
siles, which, we want to underline again, are also unmanned aerial vehicles. 
Recently, military experts indicated the importance of commonality in 
unmanned systems control. However, it looks like there is no clear under-
standing that control commonality starts with guidance laws.

The guidance of UAVs differs from missile guidance, its goal is dif-
ferent and depends on a concrete area of their application. If to perform 
simple scripted navigation functions, such as waypoint following, UAVs 
can use missile guidance laws with modifications (e.g., to meet speed 
requirements), for more complicated problems (e.g., refueling an aircraft 
or guidance of several UAVs working together) the guidance problem 
becomes a rendezvous-type problem. The moving objects should be on a 
fixed distance and their velocities should coincide. To address a wide class 
of guidance problems for UAVs, a more general guidance problem should 
be formulated. The interconnection between the missile and UAV guid-
ance problems should not be ignored.

The author developed a class of guidance laws for missiles that imple-
ment parallel navigation, the strategy that can be considered as a law of 
nature; such that predators and later humans have used since antiquity. 
The approach that allowed him to obtain this class of guidance laws is 
described in detail in his book Modern Missile Guidance. This book gen-
eralizes these ideas. As a result, a wide class of guidance laws applicable 
to missiles and UAVs is considered.
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Preface	 xiii

Basic facts about unmanned aerial vehicle guidance are given in Chapter 1. 
Parallel navigation and the description of the proportional navigation guid-
ance law as a means to control lateral motion are presented in Chapter 2. 
Proportional navigation is considered here as a control problem. Chapter 3 
contains a detailed description of a class of guidance laws obtained based on 
the Lyapunov approach. It will be shown here that this class of guidance laws 
improves the effectiveness of the proportional navigation law for maneuver-
ing and nonmaneuvering targets. Moreover, the approach offered can also be 
considered as another justification of the widely used proportional navigation 
law. The analytical expressions of the guidance law are given for the gener-
alized planar and three-dimensional engagement models for missiles with 
and without axial controlled acceleration. The Lyapunov–Bellman approach 
is used to choose the guidance law parameters. The generalized guidance 
problem applicable for UAVs is considered.

The analysis of proportional navigation guided systems, which control 
lateral motion of unmanned aerial vehicles in the time domain based on 
the method of adjoints, is given in Chapter 4. Chapter 5 contains analysis 
of the proportional navigation guided systems in the frequency domain. 
The obtained analytical expressions for the miss distance can be used 
for guidance and control systems design. They enable the analysis of the 
influence of the guidance system parameters on its performance. The gen-
eralized guidance system model that also includes the target model is con-
sidered. The relationship between the frequency response and the miss 
step response is discussed. The procedure for determining the optimal 
frequency for which the amplitude of the miss distance has a maximum is 
presented.

The modification of the proportional navigation guidance law using the 
results of classical control theory is considered in Chapter 6. The approach 
is based on utilizing feedforward/feedback control signals to make the 
real vehicle acceleration close to the commanded acceleration generated 
by the guidance law. The effectiveness of these guidance laws against 
highly maneuvering targets is demonstrated. The analysis of the propor-
tional navigation (PN) guidance systems performance under various types 
of noises is considered in Chapter 7. Analytical expressions for analysis of 
the proportional navigation guided systems are obtained. 

Guidance of UAVs, whose practical application in various areas con-
tinues growing, is considered in Chapter 8. The guidance laws applied to 
a wide class of problems with UAVs are developed. The computational 
algorithms realizing these laws are tested in three applications: for the 
surveillance problem, the refueling problem, and the motion control of a 
swarm of UAVs. Chapter 9 deals with simulation models that can be used 
effectively for analysis of the guidance laws performance and for the com-
parative analysis of various guidance laws.
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xiv	 Preface

In Chapter 10 an attempt is made to discuss the problem of the inte-
grated design of guidance and control laws. This problem is considered 
because of an increasing interest in integrated design of flight vehicle sys-
tems. Chapter 11 demonstrates how to apply the guidance laws discussed 
earlier to boost-phase intercept systems. This class of systems should be 
equipped with the future generation of interceptors. Special attention is 
paid to airborne interceptors launched from UAVs. Their specific fea-
tures and various approaches to determine the best guidance laws are 
discussed.

The last chapter focuses especially on engineers who usually meet any 
new theoretical approaches with distrust. Lectures for scientists and engi-
neers in the guidance and control area persuaded the author that a detailed 
practical example should accompany any theoretical course.

The following sentences from Notebooks (1508–1518) of Leonardo da 
Vinci did not lose their meaning in our days: “Those who are enamoured 
of practice without science are like a pilot who goes into a ship without 
rudder or compass and never has any certainty where he is going. Practice 
should always be based upon a sound knowledge of theory.”

The offered guidance laws are in full compliance with the laws invented 
by  the well-known science fiction writer Isaac Asimov in his novel 
I, Robot:

	 1.	A robot may not injure a human being or, through inaction, allow 
a human being to come to harm.

	 2.	A robot must obey orders given to it by human beings except where 
such orders would conflict with the First Law.

	 3.	A robot must protect its own existence as long as such protection 
does not conflict with the First or Second Law.

For civil applications, the above statement is obvious. As to their mili-
tary applications, the words “a human being” in the First Law should be 
interpreted as those who use the guidance law to protect themselves. It’s 
unlikely that Isaac Asimov would object to such an interpretation.

The attractiveness of the guidance laws considered in the book is in their 
simplicity. They are as simple as the proportional navigation guidance law, 
which is widely used in practice mostly because of its simplicity.

It is known that the defense and aerospace industries are experienc-
ing significant difficulty attracting and retaining scientists and engineers 
and that about 13,000 of the Department of Defense scientists will be eli-
gible to retire in the next decade without sufficient numbers of graduating 
students to replace them. The material of this book can serve as a basis 
for several graduate courses in aerospace departments. It can be used by 
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Preface	 xv

researchers and engineers in their everyday practice. The author hopes that 
this book will supply aerospace scientists and engineers with new ideas 
that, when crystallized, will bring significant improvement to unmanned 
aerial systems performance. Readers can find additional useful informa-
tion and help on the Web site www.randtc.com.
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1

1 Basics of Guidance

1.1  INTRODUCTION

The natural process of improvement of all aspects of our life also includes 
advances in development of sophisticated systems, the means to defend 
ourselves from enemies, those who consider wars as a way to improve 
their living conditions, and the means to help people make their work 
easier. Webster’s dictionary defines robot as “an automatic device that per-
forms functions ordinary ascribed to human beings.” With this definition, 
unmanned aerial vehicles, also called drones, can be considered robots. 
Moreover, since human beings’ functions assume the presence of intellect, 
missiles can be attributed to stretch the category robotics as well. In lieu of 
the thrown stone, the cast spear, the flying bullet, the dropping bomb, and 
the launched rocket, the defensive or destructive functions are better per-
formed by missiles, because they possess a certain artificial intelligence 
that enables them to change their trajectory depending upon the behavior 
of the maneuvering target.

It is assumed that scientific terminology has precise meaning since sci-
entific terms are offered by experts in certain fields. However, with the 
development of scientific disciplines and current narrow specialization 
in science, frequently the terms, which were applied to a definite area, 
become applicable to a different area that, in turn, operates with its own 
terms. Such terminological overlapping creates difficulties for a clear and 
rigorous presentation. For example, unmanned aerial vehicles (UAVs) have 
been referred to in many ways: RPV (remotely piloted vehicle), drone, 
robot plane, and pilotless aircraft are a few such names. The UAVs are also 
called unmanned aircraft systems and then it is not clear why the abbrevia-
tion UAV is used; it would be better and more precise to use unmanned 
aircraft vehicles. In turn, in many publications the UAV acronym stands 
for unmanned aerial vehicle(s), unmanned air vehicle, uncrewed aerial 
vehicle, unmanned autonomous vehicle, unmanned airborne vehicle, and 
unmanned aircraft vehicle. Despite the mentioned terminological mess, 
missiles—unmanned aerial vehicles—were excluded from this class.

In the future, we’ll use the following terminology to describe a wide 
class of unmanned aerial vehicles.

An unmanned aerial vehicle is defined as a space-traversing vehicle 
that flies without a human crew on board and that can be remotely con-
trolled or can fly autonomously.



2	 Guidance of Unmanned Aerial Vehicles

The so-called UAV is defined by the Department of Defense as a pow-
ered aerial vehicle that does not carry a human operator, uses aerodynamic 
forces to provide vehicle lift, can fly autonomously or be piloted remotely, 
can be expendable or recoverable, and can carry a lethal or nonlethal pay-
load. The five general categories of the UAVs depending upon their con-
figurations are: fixed-wing, vertical takeoff and landing (VTOL), short 
takeoff and landing (STOL), rotary-wing or rotocraft, and helicopters.

A missile is defined as a space-traversing unmanned vehicle that con-
tains the means for controlling its flight path and carries a lethal device. 
A guided missile is considered to operate only above the surface of the 
Earth, so guided torpedoes do not meet the above definition. The missiles 
are classified by the physical areas of launching and the physical areas con-
taining the target. The four general categories of the guided missiles are: 
surface-to-surface, surface-to-air, air-to-surface, and air-to-air.

The cruise missile is defined as a dispensable, pilotless, self-guided 
aerial vehicle that flies like an airplane and carries a lethal device. 
Similar to conventional missiles, there exist the following versions of 
cruise missiles classified by the physical areas of launching: land-based 
or ground-launched cruise missiles, sea-based or sea-launched cruise 
missiles, and air launched cruise missiles. Cruise missiles are differenti-
ated from UAVs in that the weapon is integrated into the vehicle, and the 
vehicle is intended to be sacrificed in the mission. Being, in essence, fly-
ing bombs, cruise missiles are guided missiles that use a lifting wing and 
most often a jet propulsion system to allow sustained flight and carry a 
warhead many hundreds of miles with excellent accuracy. To distinguish 
UAVs from cruise missiles, a UAV is defined as a reusable unmanned 
guided vehicle. A cruise missile is a weapon that is not reused, even 
though it is also unmanned and in some cases remotely guided. Modern 
cruise missiles normally travel at supersonic or at high subsonic speeds, 
are self-navigating, and fly in a nonballistic, very low altitude trajectory 
in order to avoid radar detection.

The first attempt to use a pilotless plane was guided toward a target and 
then crashed into the target in a power dive—as an airborne counterpart 
of the naval torpedo—took place in the United States during World War I. 
In 1916–1917, a prototype called the Hewitt-Sperry Automatic Airplane 
made a number of short test flights proving that the idea was sound. But 
it was not used in combat by the United States during that war. Twenty 
pilotless aircraft, called Bugs, were produced and a successful test flight 
was made in October of 1918. After World War I ended, all projects were 
discontinued except for some experiments with Bugs. This project was 
dropped in 1925. The first pilotless aircraft led to the development of the 
radio-controlled, pilotless target aircraft in Britain and the United States 
in the 1930s. Although during this decade there was little missile research, 
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Basics of Guidance	 3

progress in aviation and developments in electronics produced results, 
which were later applied to missiles. In 1936, the Navy began another 
pilotless aircraft program intended to provide realistic targets for antiair-
craft gunnery practice but which directly influenced missile development. 
In 1937, the radio-controlled drone Curtiss N2C-2 was tested. During the 
war the Air Force acquired hundreds of Culver PQ-8 and improved Culver 
PQ-14 target drones, which were radio-controlled versions of the tidy little 
Culver Cadet two-seat civil sport plane and used for antiaircraft training.

The United States also used radio-controlled aircraft, including modi-
fied B-17 and B-24 bombers, in combat on a small scale during World 
War II as aerial torpedoes, though without noticeable success. In January 
1941, work begun on the conversion of a TG-2 (torpedo plane) and a BG-1 
(dive bomber) into missiles. Many missile research and development pro-
grams were initiated during World War II. The most advanced were the 
German surface-to-surface missiles, the V-1 (German FZG-76) and the 
V-2 (German A-4). The V stood for Vergeltungswaffe (vengeance weapon). 
The advent and rapid development of jet aircraft following World War II 
changed forever the character of air-to-air combat. It was believed that 
the high speed and maneuverability of jet aircraft signaled the end of the 
dogfight and a requirement to engage targets at beyond visual ranges. The 
solution to this problem was the air-air or surface-to-air missiles. Postwar 
research in the upper atmosphere gained a new tool with the advent of 
high-altitude rockets. The improvement of missile guidance and its accu-
racy became the most important problem of research and development. 
As to the postwar unmanned aerial vehicle programs in the United States, 
the various target drone series were developed; but it was not until the 
Vietnam War that UAVs such as the Firebee drones were used in a surveil-
lance role.

Over the last few years, it has been Israel that has contributed to the 
development of the UAV sector. There exists a wide variety of UAVs with 
different sizes, configurations, and characteristics. Some of them are con-
trolled from a remote location and others fly autonomously based on prepro-
grammed flight plans using more complex guidance and control systems. 
The United States currently possesses five major UAVs: the Air Force’s 
Predator and Global Hawk, the Navy and Marine Corps’s Pioneer, and the 
Army’s Hunter and Shadow. The Hunter and the Pioneer, which are used 
extensively by the U.S. military, are direct derivatives of Israeli systems. 
The Pioneer was used successfully in the Gulf War. Following the Gulf 
War, the importance of unmanned systems became obvious. The Predator, 
first an advanced technology demonstration project, demonstrated its worth 
in the skies over the Balkans. Some of the current versions of the Predator 
are loaded with Hellfire missiles for attack purposes. The Global Hawk is a 
jet-powered UAV that was used effectively in Afghanistan. The UAVs that 
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4	 Guidance of Unmanned Aerial Vehicles

are in use and under development are both long-range and high-endurance 
vehicles. Now numerous UAVs are targeted for multimission roles from 
persistent surveillance to search-and-destroy.

A guided unmanned aerial vehicle system is defined as a combination of 
an unmanned aerial vehicle and its launching, guidance, test, and handling 
equipment.

An unmanned aerial vehicle guidance system is defined as a group of 
components that measures the position of the guided vehicle with respect 
to the target(s) and changes its flight path in accordance with a guidance 
law to achieve the flight mission goal. Usually, the missile guidance system 
includes sensing, computing, and control components, and the flight goal 
is to destroy a target. The UAV guidance system also includes an operator 
of a mission control unit, and targets may be dummy and generated by the 
operator to control the vehicle’s flight.

A guidance law is defined as an algorithm that determines the required 
commanded unmanned aerial vehicle acceleration.

Guided missile systems have similar tactical duties as the conventional 
weapons (guns, rockets, and bombs). However, in conventional weapon sys-
tems information concerning the target is gathered by observation. After it 
is evaluated, the weapon is aimed and the projectile is fired. From the time 
the bullet or rocket is aimed or the bomb is dropped, the trajectory is strictly 
dependent upon gravity, wind, and the ballistics of the projectile. The time 
from launching of the projectile till the hit at the target is called the time of 
flight. In contrast to the bullet, rocket, or bomb, the missile in flight is con-
stantly reaimed based on the target information obtained by sensors. The 
target is tracked to gain intelligence as to its current position, as well as its 
future behavior. Advanced guidance systems operate with data estimating 
also the target acceleration and the predicted intercept point.

Guided UAV systems have similar tactical duties as the conventional 
aircraft. Being pilotless they are usually operated, partially or completely, 
from the ground mission control station. Its operator determines the future 
positions of the UAV and controls the flight path. Stationing the mission 
control element of the UAV system in another aircraft instead of on the 
ground—a new trend in UAV design—will reduce the reliance on satel-
lites for beyond line-of-sight communication and simplify the UAV guid-
ance and control system.

In order to guide and control an unmanned aerial vehicle several func-
tions must be achieved:

	 1.	The launch function monitors the launch events sequence and 
establishes the initial vehicle position and velocity after launch.

	 2.	The targeting function establishes the basic geometry between the 
vehicle and target(s) and operates in the coordinate system relative 
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Basics of Guidance	 5

to which the targeting and guidance must be performed. For UAVs 
and cruise missiles, the predetermined vehicle positions, the so-
called waypoints, serve as dummy intermediate targets that allow 
the vehicle to correct its flight path.

	 3.	The guidance function generates guidance commands directing 
a vehicle toward the target(s). In contrast to traditional missiles, 
for which a guidance law realized by a computational algorithm 
directs the missile to hit the target, the flight path of current UAVs 
and cruise missiles are remotely controlled or preprogrammed so 
that their guidance function simply generates the desired flight 
trajectory.

	 4.	The flight control function converts guidance commands into 
vehicle response; this function is performed by autopilots. The 
control actuator of a missile generally consists of thrusters that 
control the direction of the propulsion subsystem’s thrust vector 
and/or mechanical devices that move external surfaces of the mis-
sile in order to alter the aerodynamic forces acting on it. The con-
trol actuator of a UAV consists of mechanical devices that move 
control surfaces in the case of the fixed-wing UAV or change the 
pitch angle of the rotorcraft UAV’s blades. Cruise missiles usually 
use a jet propulsion system. Turbojets are used for subsonic tacti-
cal cruise missiles, turbofans for subsonic strategic cruise mis-
siles, and ramjets or mixed turbojet/rocket designs for supersonic 
tactical cruise missiles. UAVs use conventional aircraft propulsion 
(e.g., piston or turbojet engines); and for micro UAVs, with less 
than a 10 cm (6 inch) wingspan, flight experiments are under way 
with new forms of propulsion using microwave beamed power, 
rechargeable batteries, or solar cells.

Discussion of the principles of unmanned aerial vehicle guidance involves 
many fields and subfields of science, which is impossible to cover in one 
book. Our main attention will focus on the guidance function—the guid-
ance laws that serve as control actions guiding an unmanned aerial vehicle. 
All other functions mentioned can be considered as auxiliary ones because, 
on the one hand, they create conditions for the guidance function operation 
and, on the other hand, make an unmanned aerial vehicle motion possible 
in accordance with the guidance function commands.

Guidance is a dynamic process of directing an object toward a given 
point that may be stationary or moving. Usually, in the case of the station-
ary point, the guidance process is called navigation. Until the twentieth 
century, this term referred mainly to guiding ships across the seas. The 
word “navigate” comes from the Latin navis, meaning “ship,” and agree, 
meaning “to move or direct.” Today, however, the word also encompasses 
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6	 Guidance of Unmanned Aerial Vehicles

the guidance of travel on land, in the air, and in inner or outer space. It 
means finding the way from one place to another (i.e., guiding toward the 
stationary point). In the future, we will not distinguish the cases of station-
ary and moving points and consider the general case of a moving point, 
which will be called a target.

1.2  GUIDANCE PROCESS

The goal of guidance is to reach a target. When getting to a target, an 
object position coincides with a target position. Additional requirements 
to an object velocity and possibly acceleration specify various types of 
guidance. Rendezvous is a guidance when an object velocity equals a tar-
get velocity. Conditional rendezvous is a guidance to a certain position 
situated at a given distance from a target when an object velocity equals a 
target velocity.

Applied to missiles, as guided objects, the goal of guidance is to inter-
cept a target. It means that at a certain moment of time a missile position 
should coincide with a target position and a target velocity should be suf-
ficient to destroy a target. The goal of guidance, expressed mathematically 
precisely or by using a “humanitarian language,” should be supported by 
an adequate rule that is able to realize this goal.

One of the ancient guidance rules, successfully used by mariners wish-
ing to rendezvous with each other at sea or sea pirates trying to catch a 
boat, is called the parallel navigation (the “constant bearing” and “col-
lision course navigation” are also used to characterize this type of guid-
ance). This antique rule requiring an approach with a constant bearing 
angle (angle measured horizontally from North to whatever direction is 
pointed) assumed constant speeds of target and pursuer boats. From a pure 
geometrical consideration, it is easy to establish what velocity the pursuer 
should have to reach a target. The parallel navigation is one widely used by 
animal’s navigation strategies, which, in general, depend on the environ-
ment and the task they have to solve. For example, predators and organ-
isms pursuing mates commonly adjust their position to maintain constant 
angle with respect to the target.

The rule, obtained many years ago under the assumption of the constant 
velocities, is applied now to accelerating moving target and objects. The 
parallel navigation principle was first used in the Lark missiles in 1950 
[2,4]. The so-called proportional navigation (PN) was used to implement 
the parallel navigation. Since that time the PN is used in almost all of the 
world’s tactical guided missiles. 

In the general case, missile flight consists of three phases: the boost, 
midcourse, and homing stages. Guidance at each of the mentioned 
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Basics of Guidance	 7

stages has its own specifics. The boost stage is a part of the missile 
flight between initial firing and the time when the missile reached a 
velocity at which it can be controlled. During the midcourse stage, the 
missile is guided by an external weapon control system. The homing 
stage corresponds to the terminal guidance when the missile-contained 
system controls the missile flight. Currently, the parallel navigation is 
used mostly at the homing stage. However, it can be applied also at the 
midcourse stage.

Since the area of UAV applications is significantly wider than that of 
missiles, the goal of guidance is different. Moreover, during the UAV flight 
it may be formulated as a sequence of subgoals (to reach a certain space 
position) and the final goal can correspond to the above definitions of ren-
dezvous and conditional rendezvous.

In the future we will consider the guidance problem as a control 
problem and characterize the guidance laws from the position of con-
trol theory. Taking into account that a guidance law controls the flight 
of an object (i.e., presents a controlled input of the moving object), we 
should characterize the object from the position of control theory. We will 
formulate the goal of control and introduce the parameters that describe 
the object’s behavior and the parameters that describe the environment 
including external forces that influence the object’s behavior.

Despite the rigorousness and attractiveness of such an approach, it is 
difficult to present a universal dynamic model of various moving objects 
pursuing targets. That is why we will first ignore an object’s inertia and 
consider a model of objects ignoring their dynamics. This makes the model, 
to a certain degree, “universal.” However, the guidance law obtained for 
this model can not be considered as the best for various moving objects 
because it does not consider their dynamics. It will allow us to establish a 
kind of universal guidance laws that can be later improved based on infor-
mation concerning dynamic properties of a concrete moving object.

1.3  MISSILE GUIDANCE

Among external factors influencing an object’s behavior, the target infor-
mation is the most important one. It has been pointed out that the two 
basic categories of targets are moving and stationary targets. Missile tar-
gets are classified into two broad classes: air targets, usually aircraft or 
other missiles; and surface targets, which include ships and various objects 
on the ground. To be destroyed the targets must be detected, identified, 
and tracked by the missile or associated equipment. All guided missiles 
launched to engage moving targets use units that observe or sense the tar-
get. The point of observation may vary. It can be observed from the missile 
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8	 Guidance of Unmanned Aerial Vehicles

or a station outside the missile. Based on a target observation, its charac-
teristics of behavior can be determined. Stationary targets are usually situ-
ated at long range; the information about them is gathered and presented 
by intelligence so that the missile trajectory is determined in advance and 
can be only corrected during its flight. When a stationary target is at short 
range and guided missiles are used to deliver sufficient destructive power, 
the information about the target can be obtained by the units that observe 
and sense the target and by intelligence.

As mentioned above, the goal of missile guidance is to hit a target (i.e., 
to nullify the distance between a missile and the target). However, this 
obvious goal is usually accompanied by additional conditions. It can be, 
as an additional criterion, minimization of the time of flight or maximiza-
tion of a missile terminal velocity. Such criteria dictate the path (optimal 
trajectory) that the guidance system must direct the missile. In the case of 
a stationary target, the guidance law, obtained as a solution of an optimal 
problem, enables us to generate and analyze the optimal trajectory that 
will require only insignificant corrections during the missile flight. The 
solution of an optimal problem for a moving target requires the informa-
tion about its future behavior. In the general case such information is not 
available so that optimal guidance problems for moving targets have a lim-
ited application.

Early missile systems used a variety of guidance laws including beam 
riders and pursuit guidance. However, proportional navigation proved to 
be the most versatile and, with suitable modification or augmentation, still 
remains in use in most of contemporary guided missile systems. Many 
current missile guidance laws are generally based on one of several forms 
of proportional navigation.

The effectiveness of guidance laws depends on parameters of a missile’s 
flight control system that realizes the flight control function and character-
izes a missile’s dynamics. Aerodynamics is part of the missile’s airframe 
subsystem, the other major parts being propulsion and structure. The auto-
pilot receives guidance commands and processes them to the controls, 
such as deflections or rates of deflection of control surfaces or jet controls. 
The control subsystem transfers the autopilot commands to aerodynamic 
or jet control forces and in moments changes the position of the airframe 
to attain the commanded maneuver by rotating the body of a missile to a 
desired angle of attack. The autopilot response should be accomplished 
quickly with minimum overshoot. Minimal overshoot enables a missile to 
avoid exceeding structural limitations.

Three types of aerodynamic controls are used: canard (small surface 
forward on the body), wing (main lifting surface near the body), and tail 
(small surface far aft on the body) controls [1,3]. In contrast to the canard 
and wing controls, the tail steering controls initially give acceleration in 
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Basics of Guidance	 9

a direction opposite to the intended one. The airframe reacts to the con-
trol commands with speed depending on the airframe inertia and system 
damping. The influence of the flight control system on guidance accuracy 
will be examined in details.

1.4  GUIDANCE OF CRUISE MISSILES AND UAVs

Usually, targets of cruise missiles and UAVs are surface targets. Cruise mis-
siles should destroy these targets, whereas UAVs should provide information 
about them and destroy them only if the UAVs carry a lethal payload—
missiles. Various future UAV applications also assume aerial targets (e.g., 
aircraft refueling by UAVs).

As mentioned earlier, both cruise missiles and UAVs follow a predeter-
mined path from the launch point to the target(s) in accordance with the 
selected mission. Their trajectories are defined by a series of waypoints, 
with a particular latitude, longitude, and altitude, to which the vehicles are 
guided to fly. Guidance commands can be changed only at waypoints. The 
guidance system controls the vehicles flight along preprogrammed (for 
cruise missiles) and predetermined flight profiles between waypoints (geo-
graphical coordinates). The new generation of cruise missiles has a direct 
link with an operator, which is necessary used at a preprogrammed point 
approximately one minute before target impact, where the seeker turns on; 
the operator views the target scene (after receiving a video image), selects 
an aim point for the terminal phase, and the missile flies automatically to 
that point. Current UAVs communicate most of their flight with an opera-
tor and provide him with visual information. If the trend for designing new 
cruise missiles is to provide an operator with visual information about the 
target during the terminal phase to improve their accuracy, then new UAV 
designs are focused to make the operator’s work easier so that in this case 
some of his guidance functions should be transferred to UAVs.

Since most cruise missiles and UAVs cover significant distances, to min-
imize possible accumulated measurement errors (position, velocity, atti-
tude, and altitude) the combination of the global positioning system (GPS) 
and inertial navigation system (INS) is used. The long-term accuracy of 
the GPS combined with the short-term accuracy and autonomy of the INS 
results in a highly effective integrated system. From time to time the vehi-
cles recognize where they are and compare their actual position with where 
they should be according to their assigned path or trajectory, and the auto-
pilots make appropriate maneuvers to bring the vehicles back to the correct 
trajectory. Since neither cruise missiles nor UAVs operate against highly 
maneuvering targets, it is logical to assume that their guidance laws should 
be simpler than the guidance laws for conventional missiles. According to 
the guidance law, the autopilot commands are transferred by the control 
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10	 Guidance of Unmanned Aerial Vehicles

subsystems to aerodynamics or jet control forces and in moments change 
the position of the vehicle’s airframe. Well-designed UAVs should have bet-
ter dynamic characteristics than missiles because of their smaller size and 
weight, so that their airframe inertia should be significantly less than that 
of missiles. Being remotely piloted vehicles, the advanced UAVs, neverthe-
less, can fly autonomously. However, the more autonomous ability a UAV 
has, the more complex its guidance and control systems is and, as a result, 
the higher is its size and weight, the less—its endurance, a combat radius, 
and/or speed. The desire to reduce the operator’s load leads to an increase 
of a UAV’s payload that worsens its dynamic properties, so that it becomes 
more difficult to reach its best potential performance characteristics.

1.5  REPRESENTATION OF MOTION

We will consider the so-called two-point systems including an unmanned 
aerial vehicle M and a target T. In the inertial reference frame of coordinates 
the positions of M and T is given by the vectors rM = (RM1, RM2, RM3) and 
rT = (RT1, RT2, RT3), respectively, and the vector r = (R1, R2, R3):

	 r = rT – rM	 (1.1)

is called the range-vector. Its negative derivative that equals the difference 
between the vehicle VM = (VM1, VM2, VM3) and target VT = (VT1, VT2, VT3) 
velocities:

	 − = − − = − =  r r r v v v( )T M M T cl 	 (1.2)

is called the closing velocity vector vcl = (vcl1, vcl2, vcl3). In the future we will 
use also the range r and closing velocity vcl (scalars) terms when dealing 
with absolute values of r and vcl = − r.

It follows from equations (1.1) and (1.2) that

	 R R R v V V R R ss Ts Ms cls Ms Ts Ms Ts= − = − = − =, ( , , )  1 2 3 	 (1.3)

A two-point guidance is said to be planar if rM, vM and rT, vT remain in the 
same fixed plane. In general, the guidance process takes place in three-
dimensional (3-DOF) space. In some cases, it can be presented as a com-
bination of two orthogonal planar guidance processes. 

The solution of the intercept problem requires the utilization of sev-
eral frames of reference (coordinate axes) to specify relative positions and 
velocities, forces, accelerations, and so on.

An inertial fixed reference plane is a necessary part of every dynamic 
problem. The inertial coordinate system ignores both the gravitational 
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Basics of Guidance	 11

attraction of the sun, moon, other bodies, and the orbital motion of Earth 
that exists because of this attraction. In many problems of aerospace 
dynamics, the orbital motion of Earth can be neglected, and any refer-
ence plane fixed to Earth can be used as an inertial frame. However, for 
hypervelocity and space flights the angular velocity of Earth usually must 
be taken into account. Two Earth-fixed frames are used: (i) the Earth-
centered fixed inertial (ECI) coordinate system with its origin at the center 
of the Earth and axes directions fixed by a reference point on the equator 
and Earth’s axes; (ii) the Earth-surface fixed (ESF) coordinate system with 
origin at the arbitrary Earth surface (usually close to the vehicle) with axes 
directed North, East, and vertically (mostly downward, but sometimes it is 
convenient to choose the upward direction).

It is more convenient to consider the aerial vehicle and target motions 
relative to these inertial coordinate systems. However, missile and UAV 
dynamics are usually analyzed in the missile and UAV body-fixed frame, 
respectively, and the tracking process requires a different reference frame.

It is known that a moving object has six degrees of freedom: three trans-
lations and three rotations. The principal aerial vehicle motions of interest 
to the guidance problem are:

	 1.	Translation along the longitudinal axis (velocity)
	 2.	Rotation about the longitudinal axis (roll)
	 3.	Rotation about the lateral horizontal axis (pitch)
	 4.	Rotation about the vertical axis (yaw)

The origin of the body-fixed coordinate system is situated at the vehicle 
center of gravity. The orientation of the axes is usually taken to be coinci-
dent with principal axes of inertia. These motions are controlled by auto-
pilot in accordance with the guidance law. The so-called vehicle-carried 
vertical frame, also called the North-East-Down (NED) frame, usually has 
the origin situated at the vehicle center of gravity and axes directed North, 
East, and vertically downward. It is commonly used for tactical missiles. 
The NED system is not precisely an inertial coordinate system because the 
missile axes are slowly changing their orientation in space as the missile 
moves over Earth’s surface. However, except for the North Pole, the rota-
tional effects are negligible.

During the midcourse and terminal stages guidance commands are 
based on measurements obtained in various coordinate systems (in addition 
to the above-mentioned frames there exist other frames, e.g., atmosphere-
fixed and air-trajectory reference frames that are used for specific analysis 
[1]). There exist transformations from one coordinate system to another.

As indicated above, for analytical investigation the choice of the ref-
erence frame is usually a matter of convenience. In atmospheric flights 
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12	 Guidance of Unmanned Aerial Vehicles

Earth-fixed and vehicle-fixed coordinate systems are commonly used. The 
future consideration will be mostly based on analysis in the Earth-surface 
fixed coordinate system or the NED coordinate system. However, theoreti-
cal results should be compared with the simulation results also obtained 
by using the six-dimensional model that includes and operates with the 
various coordinate systems.

The position of moving objects is usually determined in polar (spheri-
cal) coordinate systems. The position of a target determined by a vehicle’s 
sensors is typically specified by direction cosines (cosines of the angles 
that the position vector makes with the coordinate axes, respectively) rela-
tive to the vehicle body axes that can be transformed to direction cosines 
(ΛN, ΛE, ΛD), with respect to the NED axes. The target angular position 
with respect to the NED coordinate system can also be specified by azi-
muth α and elevation β angles:

	 α β= − =− −sin , tan ( )1 1Λ Λ ΛD E N/ 	 (1.4)

The target coordinates (RN, RE, RD) in the NED Cartesian coordinate sys-
tem can be obtained based on range r and direction cosines (ΛN, ΛE, ΛD):

	

R r r

R r r

R r r

N N

E E

D D

= =

= =

= =

Λ

Λ

Λ

cos cos ,

sin cos ,

s

α β

α β

iinβ

	 (1.5)

here the sign of the elevation angle is defined to be positive in the down-
ward direction.

Polar coordinates (r, α, β) are related to the Cartesian coordinates 
(RN, RE, RD) by:

	 r R R R R R r RN E D E N D= + + = = −− −2 2 2 1 1, tan ( ), sin ( )α β/ / 	 (1.6)

In the future, the North, East, and vertical coordinates will be denoted by 
the low indices 1, 2, and 3, respectively. For ground-based defense systems, 
the unmanned aerial vehicle and target positions are determined relative 
to the Earth-surface fixed (ESF) Cartesian coordinate system. The verti-
cal coordinate is a target (unmanned aerial vehicle) altitude. In the case of 
space-based strategic systems, the ECI coordinate system is most conve-
nient. In general, tracking is performed in Cartesian position coordinates. 
However, for single sensor systems, such as airborne radar, the option to 
track in spherical coordinates may be considered.
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Basics of Guidance	 13

1.6  LINE-OF-SIGHT

In order to view an object, one must sight along a line at that object. The 
line-of-sight (LOS) that passes through the objective of the guidance is an 
important concept of guidance. Its orientation with respect to the reference 
coordinate system enables one to formulate precisely the guidance rules.

For the three-dimensional case and the Earth-based coordinate system, 
the line-of-sight can be represented as:

	 λ(t) = λ1(t)i + λ2(t) j + λ3(t) k	 (1.7)

where i, j, and k are unit vectors along to the North, East, and vertical 
coordinate axis, respectively,

	 λs
st

R

r
s( ) ( , , )= = 1 2 3 	 (1.8)

The Rs (s = 1, 2, 3) are the range-vector coordinates [see equation (1.1) 
and also equations (1.3)–(1.7)]. Here, for convenience, we assume that k 
is directed upward.

The LOS-vector can be presented as a sum of two vectors in the hori-
zontal x-y (North-East)-plane and the vertical x-y resultant-z plane (see 
Figure 1.1). The LOS’s position in the vertical plane λ2 is determined by 
the elevation angle β. Its position in the horizontal plane is presented 
by λ13 that is determined by the azimuth angle α, so that λs coordinates 
(s = 1, 2, 3) are determined by the expressions that can also be obtained 
directly from equations (1.6) and (1.9), i.e.,

	 λ α β λ α β λ β1 2 3= = =cos cos , sin cos , sin 	 (1.9)

z

x

α

β

λ13

λ2

y

FIGURE 1.1  Three-dimensional presentation of LOS.
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14	 Guidance of Unmanned Aerial Vehicles

The expressions for the LOS rate in the three-dimensional Cartesian coor-
dinate system:

	 λ. (t) = λ⋅ 1(t)i + λ⋅  2(t) j + λ⋅  3(t) k	 (1.10)

can be obtained from equations (1.3), (1.7), and (1.8):

	   
λs

s s Ts Ms s clt
R r R r

r

V V

r

R v

r
s( ) ( , ,= − = − + =

2 2
1 2 3)) 	 (1.11)

where, based on equations (1.3) and (1.8):

	 v r

R V V

r

R v

r
vcl

s Ts Ms

s

s cls

s
s= − = −

−
= == =

∑ ∑


( )
1

3

1

3

λ ccls

s=
∑

1

3

	 (1.12)

When operating with the vertical and horizontal planes, it is convenient 
to use the vertical Rv and horizontal (ground) Rh ranges and velocities Vh 
and Vv:

	

R R r

R R R r

R R R R

v

h

h

= =

= + =

= =

3

1
2

2
2

1 2

sin ,

cos ,

cos ,

β

β

α hh sinα

	 (1.13)

	 V v R V v R

R v

Rv cl v h clh h

s cls

s

h

= − = = − = = − =
∑

3
1

2

 , 	 (1.14)

and

	 v r
R v R v

rcl
h clh v clv= − = + 	 (1.15)

The LOS rate components λs  of (1.10) can be presented by the polar coor-
dinates α and β by using equation (1.9):

	

  

 

λ α α β β α β

λ α α

1

2

( ) sin cos cos sin ,

( ) cos

t

t

= − −

= ccos sin sin ,

( ) cos

β β α β

λ β β

−

=



 
3 t

	 (1.16)
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Basics of Guidance	 15

Using the relationship between the vectors r(t) and λ(t):

	 r(t) = r(t)λ(t)	 (1.17)

	

  

 

r i( ) ( ( ) ( ) ( ))

( ( ) ( )

t t r r t t

t r r t

= +

+ +

λ λ

λ λ

1 1

2 22

3 3

( ))

( ( ) ( ) ( ))

t

t r r t t

j

k+ + λ λ

	 (1.18)

and

	

    r( ) ( ( ) ( ) ( ) ( ) ( ) (t t r t r t t r t t= + +λ λ λ1 1 12 )))

( ( ) ( ) ( ) ( ) ( ) ( ))

i

+ + +   λ λ λ2 2 22t r t r t t r t t jj

k+ + +( ( ) ( ) ( ) ( ) ( ) ( ))   λ λ λ3 3 32t r t r t t r t t

	 (1.19)

we can present the equation of motion:

	 r a aT M( ) ( ) ( )t t t= − 	 (1.20)

where aM(t) = (aM1, aM2, aM3) and aT(t) = (aT1, aT2, aT3) are the vectors of the 
unmanned aerial vehicle and target accelerations created by forces acting 
on the unmanned aerial vehicle and target, respectively.

The aerial vehicle acceleration is the result of the propulsion forces 
(thrust), the aerodynamic forces (lift, drag), and gravity forces. In the fol-
lowing chapters this equation will be examined in details.

1.7  LONGITUDINAL AND LATERAL MOTIONS

It is convenient to consider the unmanned aerial vehicle motion consisting 
of two components: radial (longitudinal) that is directed along the line-of-
sight and lateral that is orthogonal to the line-of-sight.

For the three-dimensional case and the Earth-based coordinate 
system, the target-to-unmanned aerial vehicle range vector r(t) and 
its derivatives are represented by equations (1.17)–(1.19), so that the 
dynamic equations of the three-dimensional engagement can be pre-
sented in the form (1.20):

	 r a a a a a a( )t t t t t tT M Tr Tt Mr Mt= − = + − −( ) ( ) ( ) ( ) ( ) (( )t 	 (1.21)
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16	 Guidance of Unmanned Aerial Vehicles

where the unmanned aerial vehicle aM(t) and target aT(t) accelerations con-
sist of two components: longitudinal and lateral, i.e.,

	 a a a a a aM Mr Mt T Tr Ttt t t t t t( ) ) ( ), ) ( ) )= + = +( ( ( 	 (1.22)

where aTr(t), aMr(t), aTt(t), and aMt(t) are the target and vehicle longitudinal 
(radial) and lateral (tangential) accelerations with the coordinates aTrs(t), 
aMrs(t), aTts(t), and aMts(t) (s = 1, 2, 3), respectively.

As shown later, some guidance laws generate only lateral acceleration 
(i.e., produce only the lateral motion). Moreover, even if according to a 
guidance law both longitudinal and lateral motions should be realized, 
not all existing propulsion systems are able to control the longitudinal 
motion.
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2 Control of Lateral 
Motion

2.1  INTRODUCTION

Decomposition of the unmanned aerial vehicles motion into two parts—
longitudinal (radial, axial) and lateral (orthogonal, tangential) motions—
enables us to examine these components of motion separately. Watching 
how predators pursue their victims, one can conclude that they almost never 
direct themselves at the target. Only in the case of a nonmaneuvering target 
moving along the line-of-sight, there is no lateral motion and we have pure 
longitudinal motion. The so-called pure pursuit guidance geometric rule 
requires the pursuer to be directed at the target. This type of guidance has 
another name: hound-hare pursuit. Its origin is in the note by Dubois-Aymè 
published in 1811, in which he formulated and solved the intercept problem 
based on analysis of the traces left by his dog when chasing him on the 
beach. However, a dog in this case cannot be considered as a predator and 
this fact can explain low accuracy of the first generation of guided weapons 
starting from World War II that used the pure pursuit rule. Moreover, when 
aircraft pilots applied this rule, they actually executed the so-called lead 
pursuit by pointing the fighter’s guns at a certain angle ahead of the target 
(lead means in the direction of the future target’s position), i.e., the weapon 
trajectory also contained a lateral component.

Multiple experiments with animal predators showed a substantial lateral 
component of their motion. Analysis of this component is very important 
because of acceleration and velocity limits of the existing propulsion sys-
tems and inability to control the longitudinal motion of certain types of 
unmanned aerial vehicles (e.g., missiles without throttleable engines can-
not control their axial motion).

2.2  PARALLEL NAVIGATION

According to the parallel navigation (the “constant bearing”) rule, the 
line-of-sight (LOS) direction relative to the inertial coordinate system is kept 
constant, i.e., during guidance the LOS remains parallel to the initial LOS. 
Using equations (1.10) and (1.11), this rule can be presented in the form:

	 λ. (t) = λ⋅ 1(t)i + λ⋅  2(t) j + λ⋅  3(t) k = 0	 (2.1)
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or

	  R r R r ss s− = =0 1 2 3( , , ) 	 (2.2)

The last equations show that for each moment of time guidance, realizing 
the parallel navigation, keeps constant the ratio of Rs and Rs (s = 1, 2, 3), 
i.e.,

	
   R

R

R

R

R

R

r

r
1

1

2

2

3

3

= = = 	 (2.3)

It means that the vectors r and r are collinear and the vectors r(t), vM(t), and 
vT(t) are instantaneously coplanar (the engagement need not be coplanar). 
The last statement follows immediately from zero value of the determinant 
of the 3 × 3 matrix formed by the above-indicated vectors.

The product of rr r= ′0 5 2. ( )  must be negative; otherwise the distance 
between the pursuer and target will increase rather than decrease. This is 
equivalent to r < 0 or vcl > 0.

The character of motion in accordance with the parallel navigation rule 
can be observed vividly on a fixed plane (see Figure 2.1) by assuming that 
the target is nonmaneuvering, (i.e., is, aT(t) = 0 and the ratio of speeds vM 
and vT is a constant).

Considering the scalar product of r( )t  and λ(t) in (1.2) and taking into 
account equations (1.10) and (1.18) we obtain:

	 r v vT M= −cos cosθ δ 	 (2.4)

and the condition r < 0 is equivalent to:

	 v vM Tcos cosδ θ> 	 (2.5)

1

LOS

T

r

M

θ

0 2

λ
δ

vM

vT

FIGURE 2.1  Geometry of planar engagement.

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

2:
37

 2
0 

M
ar

ch
 2

01
6 



Control of Lateral Motion	 19

The collinearity condition (2.3) is equivalent to:

	 v vT Msin sinθ δ− = 0 	 (2.6)

If the target is moving with a constant speed and the conditions (2.5) and 
(2.6) are satisfied, a pursuer with a constant speed will intercept the target 
by moving in a straight line.

Figure 2.1 shows an engagement triangle consisting of the pursuer and 
target positions, the vectors of their velocities, the LOS, and range vectors. 
The LOS angle λ is measured with respect to the horizontal reference line 
02. The angle δ is called the lead angle. The angle 180° – θ is called the 
aspect angle. The size of δ characterizes the internal power of a pursuer 
(e.g., for animal predators it means how skillful they are within their class, 
which depends on their age and health; for missiles and other unmanned 
aerial vehicles it depends on the power and performance of their pro-
pulsion and control systems and the vehicle’s aerodynamic properties). 
Smaller lead angles correspond to more powerful pursuers.

If the conditions (2.5) and (2.6) are satisfied, the pursuer with an appro-
priate constant velocity can intercept the nonaccelerating target. The 
dash-dotted lines show the position of the pursuer M and target T (the posi-
tion of the LOS line) according the parallel navigation rule. The triangle in 
Figure 2.1 is called the collision triangle.

2.3 � PROPORTIONAL NAVIGATION. 
PLANAR ENGAGEMENT

Proportional navigation (PN) guidance is the most widely used law in 
practice. Since it was offered initially for missile guidance, further consid-
eration of this law and related more general laws will be applied to mis-
siles, although these laws can be applied to UAVs directing their motion 
along the chosen waypoints (see Chapter 8). The basic philosophy behind 
PN is that missile acceleration should nullify the line-of-sight (LOS) rate 
between the target and interceptor. Proportional navigation, the guidance 
law that implements parallel navigation, is based on physical intuition. 
According to the parallel navigation, the LOS rate must be equal to zero. In 
reality, it differs from zero, so that the guidance command that is propor-
tional to the rate of the LOS change may decrease the absolute value of the 
LOS rate and tend it closer to zero value. The PN law states that the com-
manded acceleration is proportional to the LOS rate; the proportionality 
constant can be broken down into the product of the effective navigation 
ratio N times the relative missile-to-target closing velocity, i.e.,

	 a t Nv tc cl( ) ( )= λ 	 (2.7)
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20	 Guidance of Unmanned Aerial Vehicles

where ac(t) is a commanded acceleration acting perpendicular to the instan-
taneous LOS.

In many tactical endoatmospheric missiles, PN guidance determines 
the lift that should be created by moving a missile’s control surfaces. 
Exoatmospheric missiles create the acceleration required by the PN law 
by using thrust vector control, lateral divert engines, or squibs. In tactical 
radar homing missiles, the LOS rate is measured by the radar seeker. In 
tactical IR missiles equipped with the imaging IR (infrared) seekers, the 
LOS rate information is obtained by utilizing pattern image scanning tech-
niques. The measurements of the target IR intensity enables the IR seekers 
to provide estimates of range and range rate based on intensity of image 
data. The future generation of the IR seekers will be able to provide these 
estimates with high accuracy. Now, however, only radar missiles provide 
reliable estimates of range and range rate (closing velocity).

In UAVs, the LOS rate can be determined based on the waypoint’s 
coordinates and the measured UAV’s position and velocity. The corre-
sponding expressions will be considered later. Similar to missiles, the PN 
guidance determines the lift that should be created by moving a UAV’s 
control surfaces in the case of fixed-wing UAVs or by changing the pitch 
angle of rotating blades of helicopters.

The PN guidance problem should be formulated as a three-dimensional 
control problem. However, by assuming that the lateral and longitudi-
nal maneuver planes are decoupled by means of roll control, it is pos-
sible to reduce the three-dimensional guidance problem to the equivalent 
two-dimensional planar problems. That is why we first discuss the planar 
problem.

Denoting the vertical projection of the range-vector r by y, we can pres-
ent the LOS angle λ as:

	 sin λ = y r/ 	 (2.8)

For small λ, equation (2.8) can be presented approximately as:

	 λ = y r/ 	 (2.9)

where y(t) characterizes the displacement between the missile and target at 
a moment t and is called the miss distance, or simply, miss. This expression 
is widely used in the so-called linearized engagement models.

Analogous to equation (1.11), the approximate value of the LOS rate 
equals

	  
λ = +yr yv

r
cl

2
	 (2.10)
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Control of Lateral Motion	 21

Assuming the closing velocity to be constant (the missile and target do not 
maneuver in the future), equations (2.9) and (2.10) can be written as:

	 λ( )
( )

t
y t

v tcl go

= 	 (2.11)

and

	   
λ( )

( ) ( ) ( ) ( )
t

y t r y t v

r

y t t y t

v t
cl go

cl go

= + =
+

2 2
== ZEM

v tcl go
2

	 (2.12)

where t t tgo F= −  is the time to go until the end of the flight assuming 
that it will correspond to intercept (tF is the time at the end of the flight), 
and

	 ZEM y t t y tgo= +( ) ( ) 	 (2.13)

is called the zero-effort miss (i.e., the miss, the future relative separation 
between missile and target that would result if the missile does not acceler-
ate and the target does not maneuver after the moment t ).

Assuming that by using the acceleration ac(t) the intercept will take 
place, ZEM can be considered as the predicted intercept coordinate, and 
the PN guidance law (2.7) can be rewritten in the following form:

	 a t N
y t t y t

t
N

ZEM

tc
go

go go

( )
( ) ( )

=
+

=


2 2
	 (2.14)

By interpreting ZEM as a predicted intercept point that can be calcu-
lated based on some knowledge (or assumptions) of the future motion 
of the target, the PN guidance (2.14) can be considered as a predictive 
guidance.

The analytical analysis (see [6] and Chapter 4) shows that for the case 
of ideal dynamics (i.e., no lags between the LOS rate and the commanded 
acceleration) the LOS rate is a decreasing function of time converging to 
zero at the pursuit end. When actual dynamics are considered, the PN 
guidance tends to diverge at the vicinity of interception (i.e., the LOS rate 
diverges). Despite assertion of some scientists that this divergence may 
severely affect the miss distance, we will ignore this fact since the simpli-
fied models are used only at the initial stage of design.
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22	 Guidance of Unmanned Aerial Vehicles

2.4 � PROPORTIONAL NAVIGATION. 
THREE-DIMENSIONAL ENGAGEMENT

As indicated earlier, the three-dimensional motion can be presented as a 
combination of the orthogonal planar motions (see Figure 1.1).

Using the azimuth α and elevation β angles instead of λ in equation 
(2.7) we obtain the following accelerations ach(t) and acv(t) in the horizontal 
and vertical plains, respectively:

	 a t Nv t a t Nv tch cl cv cl( ) ( ), ( ) ( )= = α β 	 (2.15)

The total commanded acceleration ac(t) = (ac1(t), ac2(t), ac3(t)) equals [see 
equations (1.13) and (2.15)]:

	 a t a t a tc ch cv1( ) ( )sin ( )cos sin= − −α α β 	 (2.16)

	 a t a t a tc ch cv2 ( ) ( ) cos ( )sin sin= −α α β 	 (2.17)

and

	 a t a tc cv3( ) ( ) cos= β 	 (2.18)

The components of equations (2.16)–(2.18) are written taking into account 
that ach(t) and acv(t) are perpendicular to the LOS projections in the horizon-
tal and vertical planes, respectively (see also Figure 1.1 and Figure 2.1).

The PN acceleration commands that follow directly from equation (1.10) 
has the following form:

	 ac (t) = Nvcl λ
. (t)	 (2.19)

Taking into account equations (1.16) and (2.15), they can be rewritten as:

	 a t a t a tc ch cv1( ) ( )sin cos ( )cos sin= − −α β α β 	 (2.20)

	 a t a t a tc ch cv2 ( ) ( ) cos cos ( )sin sin= −α β α β 	 (2.21)

and

	 a t a tc cv3( ) ( ) cos= β 	 (2.22)

A slight difference between equations (2.16)–(2.18) and (2.20)–(2.22) is 
stipulated by the restriction on the PN guidance components (2.16)–(2.18). 
In the case of PN guidance (2.15), we operate with two guidance compo-
nents ach(t) and acv(t) acting in two orthogonal planes. The acs(t) (s = 1, 2, 3) 
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Control of Lateral Motion	 23

components follow from ach(t) and acv(t). The PN guidance (2.19) and the 
expressions (2.20)–(2.22) are free from these restrictions. For small eleva-
tion angles, the above expressions give very close results.

The horizontal and vertical acceleration commands are linked with the 
NED coordinate system and realized in practice by the roll and pitch auto-
pilots, respectively. The α and β angles are determined by onboard sensors 
and the acceleration commands are generated by the missile. This process 
corresponds to the terminal guidance phase. During the midcourse phase 
the missile relies on off-board sensors. The guidance components are 
determined by ground (space)-based defense systems in the Earth-fixed 
coordinate systems.

The PN guidance law in the Earth-fixed coordinate systems is:

	 a t Nv t scs cl s( ) ( ) ( , , )= =λ 1 2 3 	 (2.23)

where λs t( ) and vcl are determined by equations (1.11) and (1.12), 
respectively.

Analogous to equation (2.14) we can write:

	 a t N
R t t R t

t
N

ZEM

t
scs

s go s

go

s

go

( )
( ) ( )

( ,=
+

= =


2 2
1 2,, )3 	 (2.24)

where the zero-effort miss vector ZEM = (ZEM1, ZEM2, ZEM3)

	 ZEM R t t R t ss s go s= + = ( ) ( ) ( , , )1 2 3 	 (2.25)

is perpendicular to the line-of-sight. This property can be established 
directly from equations (1.8), (1.11), (2.12), (2.14), (2.25), and the equality

	 λ λs ss =∑ = 01
3 	

It means that the proportional navigation guidance law generates the lat-
eral acceleration commands that produce the lateral motion.

2.5  AUGMENTED PROPORTIONAL NAVIGATION

The basic guidance parameter of the PN law is the LOS rate. Knowledge of 
range and time-to-go are not required, so that proportional navigation can 
be implemented using only angle sensors on board the missile, which is 
its great advantage. Although the PN guidance law was not derived rigor-
ously with target acceleration as a major consideration, it is applied against 
maneuvering targets. It is intuitively clear that additional information con-
cerning the target acceleration can be a source of improving the efficiency 
of the PN guidance.
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24	 Guidance of Unmanned Aerial Vehicles

The zero-effort miss in equation (2.13) was introduced under assump-
tion that the missile would not accelerate during tgo. In the case of a con-
stant target maneuver with the acceleration aT, the zero-effort miss must be 
augmented by adding a quadratic term 0.5 a tT go

2 , i.e.,

	 ZEM y t t y t a tgo T go= + +( ) ( ) .0 5 2 	 (2.26)

By substituting equation (2.26) in equation (2.14) and returning back to 
the basic variables λ( )t  and vcl of the PN law [see equations (2.10)–(2.12)], 
for planar engagements the augmented proportional navigation (APN) 
law aaug(t) can be presented as:

	 a t a t Na Nv t Naaug c T cl T( ) ( ) . ( ) .= + = +0 5 0 5λ 	 (2.27)

For the three-dimensional case, the coordinates of the missile com-
manded acceleration aaug(t) = (aaug1, aaug2, aaug3) and the target acceleration 
aT(t) = (aT1, aT2, aT3) are related by the following equation:

	 aaugs cs Tst a t Na s( ) ( ) . ( , , )= + =0 5 1 2 3 	 (2.28)

Although the augmented proportional navigation law was derived 
assuming step-target maneuvers, it was recommended—without rigor-
ous justification—and is used in practice for all types of maneuvering 
targets.

2.6 � PROPORTIONAL NAVIGATION AS 
A CONTROL PROBLEM

The basic philosophy behind PN guidance that implements parallel navi-
gation is that missile acceleration should nullify the line-of-sight (LOS) 
rate. However, the realization of this philosophy was done based on physi-
cal intuition: when the LOS rate differs from zero, an acceleration com-
mand proportional to the deviation from zero is created to eliminate this 
deviation.

Below we will consider the PN as a control problem that realizes the 
parallel navigation rule λ( )t = 0. First, the linearized planar model of 
engagement is considered [see Figure 2.1 and equations (2.10) and (2.11)]. 
By differentiating equation (2.11) rewritten in the form:

	    
λ λ

( )
( ) ( ) ( ) ( )

( )
( )
( )

(
t

y t r t y t r t

r t

y t

r t
= − = −

2

tt r t

r t

) ( )
( )


	 (2.29)
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     
λ λ

( )
( ) ( ) ( ) ( )

( )
( ( ) (

t
y t r t y t r t

r t

t r= − −
2

tt t r t r t t r t

r t

y t

) ( ) ( )) ( ) ( ) ( )
( )

( )

+ −

= −

λ λ 



2

2

    λ λ( ) ( ) ( ) ( )
( )

( )
( )

( ( )t r t t r t

r t

r t

r t

y t− − − λλ

λ λ

( ) ( ))
( )

( ) ( ) ( ) ( ) (

t r t

r t

y t t r t t r t



   
= − − )) ( ) ( )

( )

( ) ( ) ( ) ( )

−

= − −

 

   

λ

λ λ

t r t

r t

y t t r t t2 rr t

r t

( )
( )

	(2.30)

and introducing the time varying coefficients:

	 a t
r t

r t1( )
( )
( )

=


	 (2.31)

	 a t
r t

r t2
2

( )
( )

( )
=


	 (2.32)

and

	 b t
r t

( )
( )

= 1
	 (2.33)

the expression (2.30) can be presented in the form:

	   λ λ λ( ) ( ) ( ) ( ) ( ) ( ) ( )t a t t a t t b t y t= − − +1 2 	 (2.34)

Taking into account that

	 y t a t a tM T( ) ( ) ( )= − + 	 (2.35)

equation (2.34) can be transformed in

	  λ λ λ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )t a t t a t t b t a t b tM= − − − +1 2 aa tT ( ) 	 (2.36)

Let x1 = λ(t) and x t2 = λ( ). The missile-target engagement is described by 
the following system of the first-order differential equations:

	 x x1 2=

	 x a t x a t x b t u b t f2 1 1 2 2= − − − +( ) ( ) ( ) ( ) 	 (2.37)

where the control u = aM(t) and disturbance f = aT(t).
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26	 Guidance of Unmanned Aerial Vehicles

First, let us consider the case of a nonaccelerating target (i.e., f = 0), 
the assumption that accompanies the main relations used in PN guidance. 
The asymptotic stability with respect to x2 (i.e., limx2 → 0), corresponds 
to the parallel navigation rule, so that the control law that satisfies this con-
dition is the guidance law that implements parallel navigation.

The guidance problem can be formulated as the problem of choosing 
control u to guarantee the asymptotic stability of the system (2.37) with 
respect to x2. (Because in reality we deal with a finite problem, for simplic-
ity and a more rigorous utilization of the term “asymptotic stability” we 
assume disturbance to be a vanishing function, i.e., contains a factor e–εt, ε 
is an infinitely small positive number.)

It is important to mention that the guidance law is determined based on 
the partial stability of the system dynamics under consideration, only with 
respect to the LOS derivative [2]. The approach to examine the asymptotic 
stability is based on the Lyapunov method (see Appendix A). For equation 
(2.37), it is natural to choose the Lyapunov function Q as a square of the 
LOS derivative, i.e.,

	 Q cx= 1
2 2

2 	 (2.38)

where c is a positive coefficient.
Its derivative along any trajectory of equation (2.37) equals

	 Q cx a t x a t x b t u= − − −2 1 1 2 2( ( ) ( ) ( ) ) 	 (2.39)

The negative definiteness of the derivative (2.39), i.e., the asymptotic stabil-
ity of the system (2.35) with respect to x2, can be presented in the form:

	 Q cx a t x a t x b t u c x= − − − ≤ −2 1 1 2 2 1 2
2( ( ) ( ) ( ) ) 	 (2.40)

where c1 is a positive coefficient.
Under the near collision course assumption (collision course assumes 

nonaccelerating motion), r t( ) = 0, i.e., a1(t) = 0, and the inequality (2.40) 
can be written as:

	 ( ( ) ) ( ) ( )− + − − ≤a t c c x a t x x b t x u2 1 2
2

1 1 2 2 0/ 	 (2.41)

It follows from the inequalities (2.40) and (2.41) that for a1(t) = 0 and c1 << c 
the control

	 u kx k t= =2
λ( ) 	 (2.42)
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stabilizes the system (2.37) if k satisfies

	 kb t a t( ) ( )+ >2 0

or

	 k
a t

b t
> − 2 ( )

( )
	 (2.43)

Introducing the closing velocity v r tcl = − ( ) and the effective navigation 
ratio N, the expression (2.43) can be written as k > 2vcl and the control 
law can be presented as:

	 u Nv t Ncl= >λ( ), 2 	 (2.44)

which is the well-known property established for the PN guidance law (2.7).
For the three-dimensional case and the Earth-based coordinate system, 

the line-of-sight and its derivative are presented by equations (1.10) and 
(1.11), so that analogous to equation (2.36):

	  
λ λ λs s s Tst a t t a t t b t a t( ) ( ) ( ) ( ) ( ) ( )( (= − − +1 2 )) ) ( , , )− =u ss 1 2 3 	 (2.45)

where λs  (s = 1, 2, 3) are the LOS second derivative coordinates, aTs(t) 
(s = 1, 2, 3) are the coordinates of the target acceleration vector, and us(t) 
are the coordinates of the missile acceleration vector that are considered 
as controls.

The Lyapunov function is chosen as the sum of squares of the LOS 
derivative components that corresponds to the nature of proportional 
navigation:

	 Q ds s

s

=
=

∑1
2

2

1

3

λ 	 (2.46)

where ds are positive coefficients.
Its derivative can be presented in the following form:

	 2
1

3

  Q ds s s

s

=
=

∑ λ λ 	 (2.47)

or

	 2 1 2
2

1
   Q d a t a t b t a ts s s s s Ts= − − +( ( ) ( ) ( ) ( (λ λ λ λ )) ))−

=
∑ us

s 1

3

	 (2.48)
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28	 Guidance of Unmanned Aerial Vehicles

Analogous to the planar engagement, under the near collision course 
assumption, the controls us(t) that guarantee lim λ → 0, t → ∞, can be 
presented as:

	 u Nv N ss cl s= > =λ , ( , , )2 1 2 3 	 (2.49)

which coincides with equation (2.23).

2.7 � AUGMENTED PROPORTIONAL NAVIGATION 
AS A CONTROL PROBLEM

For maneuvering targets and the planar engagement, the derivative of the 
Lyapunov function (2.38) along any trajectory of equation (2.37) equals

	 Q cx a t x a t x b t u b t f= − − − +2 1 1 2 2( ( ) ( ) ( ) ( ) ) 	 (2.50)

The negative definiteness of the form (2.39) (i.e., the asymptotic stability of 
the system (2.37), with respect to x2) can be presented in the form:

	 Q cx a t x a t x b t u b t f c x= − − − + ≤ −2 1 1 2 2 1 2
2( ( ) ( ) ( ) ( ) ) 	 (2.51)

From the condition of negative definiteness of the derivative of the 
Lyapunov function (2.51), we can derive the guidance law:

	 u Nv a t Ncl T= + >λ ( ), 2 	 (2.52)

where the acceleration term is 0.5 N times less than in the augmented PN 
law obtained for step maneuvers [see equation (2.27)].

Analogously, from equation (2.48) we can obtain the guidance law for 
the three-dimensional case:

	 u Nv a t N ss cl s Ts= + > =λ ( ), ( , , )2 1 2 3 	 (2.53)

where the acceleration term is 0.5 N times less than in the augmented PN 
law obtained for step maneuvers [see equation (2.28)].

The comparison of equations (2.52) and (2.53) with equations (2.27) and 
(2.28) shows that the APN gain N/2 in the target acceleration terms is larger 
than obtained above based on the Lyapunov approach.

The law (2.53) is given as a possible law to compare with the existing 
augmented law. Later more general expressions will be given.

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

2:
37

 2
0 

M
ar

ch
 2

01
6 



Control of Lateral Motion	 29

2.8  WHEN IS THE PN LAW OPTIMAL?

The proportional navigation law (2.7) is a result of a simple logical infer-
ence. If the LOS rate differs from zero (i.e., a nonzero error exists), an 
action proportional to this error should be taken to eliminate it. The more 
rigorous formulation of the problem of nullifying the LOS rate was given 
earlier in this chapter, where proportional navigation was presented as 
a control problem. The commanded acceleration was considered as a 
control and the line-of-sight and its derivative were chosen as the state 
variables.

In a different way, the proportional navigation guidance law was con-
sidered as a control action in [1]. The 1960s were marked with the sig-
nificant results in the optimal control theory. It was shown that linear 
controls are optimal in the case of systems characterized by linear dif-
ferential equations and a quadratic functional as their performance index 
[3–5]. For the equation of motion (1.20) and (2.35) (for simplicity we 
consider here the planar case), such performance index should be found, 
for which the PN guidance law (2.7) is the optimal control. The problems 
of this kind are called the inverse optimal problems.

Using the near collision course assumptions, i.e., assuming that the mis-
sile approaches the target at a constant closing velocity vcl near a collision 
course, and ignoring missile dynamics, we can write

	 y a y r r r vM cl= − = << =, , ( )λ τ τ 	 (2.54)

The performance index, or cost functional, is defined as:

	 I Cy t a t dtF M

tF

= +



∫1

2
2 2

0
( ) ( ) 	 (2.55)

where C is a constant coefficient, often called the weighting factor, and the 
initial time of flight is zero. The first term of (2.55) presents the miss dis-
tance and the second one characterizes the energy spent during the flight. 
A high C emphasizes the importance of achieving a small miss distance, 
where as a small C implies the importance of having sufficient energy at 
the end of the flight.

The optimal problem consists of finding aM(t), which minimizes the 
functional (2.55). The solution of the formulated optimal problem was 
obtained in [1] (see also Appendix A) as:

	 a t
C

y t y tM ( ) ( ( ) ( ) )=
+

+3
3 3

τ
τ

τ
/

 	 (2.56)
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30	 Guidance of Unmanned Aerial Vehicles

Zero miss corresponds to C → ∞, so that the optimal guidance law 
becomes:

	 a t y t y tM ( ) ( ( ) ( ) )= +3
2τ

τ 	 (2.57)

Taking into account equation (2.12) that can be rewritten as:

	  
λ τ

τ
( )

( ) ( )
t

y t y t

vcl

= +
2

instead of equation (2.57) we have:

	 a t v tM cl( ) ( )= 3 λ 	 (2.58)

It means that under the above given assumptions the proportional navi-
gation law minimizes the functional (2.55), and the optimal value of the 
navigation ratio N = 3 guarantees zero miss distance. By ignoring missile 
dynamics and considering a nonmaneuvering target, we excessively sim-
plified the guidance problem so that the above result has a “pure” theo-
retical rather than practical importance. Difficulties connected with the 
solution of more realistic guidance problems were mentioned before.

REFERENCES
	 1.	Bryson, A. E. Linear Feedback Solution for Minimal Effort Intercept 

Rendezvous, and Soft Landing, AIAA Journal 3, no. 8 (1965): 1542–48.
	 2.	Rumyantsev, V.V. On Asymptotic Stability and Instability of Motion with 

Respect to a Part of the Variables, Journal of Applied Mathematics and 
Mechanics 35, no. 1 (1971): 19–30.

	 3.	Yanushevsky, R. Theory of Optimal Linear Multivariable Control Systems. 
Moscow, Russia: Nauka, 1973.

	 4.	Yanushevsky, R., and Boord, W. New Approach to Guidance Law Design, 
Journal of Guidance, Control, and Dynamics 28, no. 1 (2005): 162–66.

	 5.	Zadeh, L., and Desoer, C. Linear System Theory. New York, NY: McGraw 
Hill, 1963.

	 6.	Zarchan, P. Tactical and Strategic Missile Guidance, Progress in Astronautics 
and Aeronautics. Vol. 176. Washington, DC: American Institute of 
Astronautics and Aeronautics, Inc., 1997.D

ow
nl

oa
de

d 
by

 [
V

is
ve

sv
ar

ay
a 

T
ec

hn
ol

og
ic

al
 U

ni
ve

rs
ity

 (
V

T
U

 C
on

so
rt

iu
m

)]
 a

t 2
2:

37
 2

0 
M

ar
ch

 2
01

6 



31

3 Control of Longitudinal 
and Lateral Motions

3.1  INTRODUCTION

Proportional navigation (PN) has attracted a considerable amount of inter-
est in the literature related to missile guidance and continues to be a bench-
mark for new missile guidance laws. The detailed analytical study of this 
empirical guidance law for nonmaneuvering and maneuvering targets was 
undertaken in [7,9,16]. Capture regions and conditions for the existence of 
capture regions were also examined in [3,4].

As mentioned earlier, the basic philosophy behind PN guidance is that 
missile acceleration should nullify the line-of-sight (LOS) rate. Analysis 
of PN guidance for the homing stage was usually undertaken for nonma-
neuvering targets assuming a constant closing velocity. The so-called aug-
mented PN law and other modifications of the proportional navigation law 
were obtained based mostly on the relationships established for nonma-
neuvering targets. It was discussed in Chapter 2 (see also [9,17]).

Results from the theory of linear multivariable control systems applied 
to homing guidance (where linear approximation can be justified) enable 
one to evaluate the performance of the guidance system as well as to gener-
ate modified proportional navigation laws [9,17]. Guidance laws utilizing 
the idea of proportional navigation and based on the results of control the-
ory related to sliding modes and systems with variable structure (see, e.g.,  
[7]) cannot be considered as practical for missile guidance applications. 
The practical realization of systems with sliding mode is limited because 
of chatter, and related simplified control laws need rigorous justification 
and testing. A systematic framework for an almost sliding mode control 
that eliminates chatter was given in [13]. However, this approach was not 
used in [7] and other applications of sliding mode controls in the guidance 
systems. Also, in the presence of a maneuvering target the sliding mode 
area depends on the target acceleration, and for small LOS derivatives the 
sliding mode can disappear. A variable structure (different from the ones 
considered, e.g., in [7]) that requires measurement of target acceleration is 
needed.

The empirical PN law was obtained also as a solution of an opti-
mization problem (see, e.g., [1,6,15,16]), which justifies this law as an 
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optimal one corresponding to a certain quadratic performance index. 
The game approach to guidance laws based on the theory of differen-
tial games with a quadratic performance index was considered in [2]. 
The guidance laws developed counteract target maneuvers better than 
the ordinary PN law.

However, any optimal guidance law assumes that the trajectory of a 
maneuvering target, as well as time-to-go and/or the intercept point, is 
known. In practice, such information is unknown and can only be evalu-
ated approximately.  The accuracy of prediction significantly influences 
the accuracy of the intercept.

Taking into account that the PN law is a widely accepted guidance law 
and has been tested in practice, it is of interest to consider the possibility 
of its improvement.

The Lyapunov approach, offered in Chapter 2, can also be considered as 
another justification of the PN law. Moreover, this approach enables us to 
offer other laws that will improve the effectiveness of the proportional nav-
igation law for maneuvering and nonmaneuvering targets. A new class of 
the PN guidance laws is obtained as the solution of a stability problem using 
the Lyapunov method. Analogous to the section of Chapter 2 where the PN 
guidance was formulated as a control problem, here the Lyapunov function 
is chosen as a square of the LOS derivative for the planar model and as 
the sum of the LOS derivative components for the three-dimensional case. 
The applicability of the laws is determined by the negative definiteness 
of the derivative of the Lyapunov function. The module of the Lyapunov 
function derivative is used as the performance index for comparing the PN 
guidance laws and creating the new ones.

It is important to mention that the guidance laws are determined based 
on the partial stability of the system dynamics under consideration, only 
with respect to the LOS derivative [8,10,11].

3.2  GUIDANCE CORRECTION CONTROLS

As discussed in Chapter 2, proportional navigation is the guidance law that 
implements parallel navigation, which is defined by the rule λ( )t = 0 with 
an additional requirement r t( ) ,< 0  where λ(t) is the LOS angle with respect 
to a reference axis and r(t) represents the target-to-missile range.

Traditionally, the PN guidance relates to missiles. Although we will 
show how to apply missile guidance laws to a wide class of unmanned 
aerial vehicles, here we use the missile-target terminology.

To describe the missile-target engagement dynamics, first we consider 
planar engagements and use a Cartesian frame of coordinates (FOC; see 
Figure 2.1) with the origin O of an inertial reference coordinate system: y(t) 
is the relative separation between the missile and target perpendicular to 
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Control of Longitudinal and Lateral Motions	 33

the horizontal reference axis; aM and aT are the missile and target accelera-
tion, respectively. Using a small-angle approximation, the expressions for 
the second derivative of the LOS angle can be presented in the following 
form [see equations (2.9), (2.29)–(2.37)]:

	  λ λ λ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )t a t t a t t b t a t b tM= − − − +1 2 aa tT ( ) 	 (3.1)

Let x1 = λ(t) and x t2 = λ( ). The missile-target engagement is described by 
the following system of the first-order differential equations:

	 x x1 2=

	 x a t x a t x b t u b t f2 1 1 2 2= − − − +( ) ( ) ( ) ( ) 	 (3.2)

where the control u = aM(t) and disturbance f = aT(t),

	 a t
r t

r t1( )
( )
( )

=


	 (3.3)

	 a t
r t

r t2
2

( )
( )

( )
=


	 (3.4)

and

	 b t
r t

( )
( )

= 1
	 (3.5)

[see equations (2.31)–(2.33)].
Analogous to the approach in Chapter 2, the guidance problem can be 

formulated as the problem of choosing control u to guarantee the asymp-
totic stability of the system (3.2) with respect to x2.

For the Lyapunov function:

	 Q cx= 1
2 2

2 	 (3.6)

where c is a positive coefficient, its derivative along any trajectory of equa-
tion (3.2) equals:

	 Q cx a t x a t x b t u b t f= − − − +2 1 1 2 2( ( ) ( ) ( ) ( ) ) 	 (3.7)
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34	 Guidance of Unmanned Aerial Vehicles

The PN guidance law (2.44) is called admissible if it guarantees intercept 
for a finite time tF.

We consider the PN class of guidance laws that have the form (2.44) or 
contain (2.44) as a component. Despite the fact that even the PN laws of 
the form (2.44) with various N were compared by experiments, we will 
introduce a criterion of comparison that has a certain physical justification. 
Because proportional navigation is the guidance law that implements par-
allel navigation ( ( ) ),λ t = 0  we will compare the laws belonging to the PN 
class by their closeness to parallel navigation.

Of course, the most reliable performance index should evaluate the 
guidance law during the entire engagement time. However, this time is 
unknown and, in its turn, depends on the guidance law implemented. To 
avoid this “catch-22” situation, we assume that the guidance law with 
λ( )t  tending to zero faster (closer to parallel navigation) at each t is 
preferable.

The module of the Lyapunov function derivative Q t( )  [see equation 
(3.7)] will be the performance index for comparing the PN laws and cre-
ating the new ones. Proceeding in this way, we change the finite interval 
engagement problem to a specific infinite interval partial stability problem. 
The Lyapunov approach will be used to compare and design controls—
guidance laws.

3.3  LYAPUNOV APPROACH TO CONTROL LAW DESIGN

The Lyapunov approach to control law design can be explained in the 
following way (more rigorous formulations and theorems can be found, 
e.g., in [8,14]): If there exist positive definite functions Q(x,t) and R(x,t) 
so that the derivative Q with respect to t along any trajectory of the 
system of equations that describes the control system under consider-
ation (x and u are its state vector and control, respectively) satisfy the 
inequality:

	  Q Q t R t= ≤ −( , , ) ( , )x u x 	 (3.8)

then the system is stabilized by control u that can be determined from this 
inequality.

To apply this sufficient condition in practice, the above-indicated posi-
tive definite forms must be found. Unfortunately, there are no universal 
recommendations how to find these forms. The relation between Q(x,t) and 
R(x,t) was established for the so-called linear quadratic optimal control 
problems (Riccati type equations) [6,13]. Based on this, the design proce-
dure was expanded on a certain class of nonlinear system [13].

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

2:
38

 2
0 

M
ar

ch
 2

01
6 



Control of Longitudinal and Lateral Motions	 35

However, for special types of equations, it is not difficult to find Q(x,t) 
and R(x,t) satisfying the inequality (3.8). Below the control law design pro-
cedure based on the Lyapunov approach is demonstrated for the guidance 
problem [see equations (3.2) and (3.7); for simplicity, we consider in equa-
tion (3.2) f = 0].

By choosing Q(x,t) in the form (3.6) and R(x,t) = c x1 2
2 , where c1 is a 

positive coefficient, the inequality (3.8) can be written as [see also equa-
tion (3.7)]:

	 Q cx a t x a t x b t u c x= − − − ≤ −2 1 1 2 2 1 2
2( ( ) ( ) ( ) )  	 (3.9)

or

	 ( ( ) ) ( ) ( )− + − − ≤a t c c x a t x x b t x u2 1 2
2

1 1 2 2 0/ 	 (3.10)

It follows from (3.10) that for a1(t) = 0 and c1 < < c, the control u = kx2 [see 
equations (2.42) and (2.44)] stabilizes the system (3.2) if k satisfies equa-
tion (2.43).

For R(x,t) = c x c x1 2
2

2 2
4+ , where c2 is a positive coefficient, instead of 

equation (3.9) we have:

	 Q cx a t x a t x b t u c x c x= − − − ≤ − −2 1 1 2 2 1 2
2

2 2
4( ( ) ( ) ( ) ) 	 (3.11)

or

	 ( ( ) ) ( ) ( )− + − + − ≤a t c c x a t x x
c
c x b t x u2 1 2

2
1 1 2

2
2
4

2 0/ 	 (3.12)

It is easy to conclude that for a1(t) = 0, c1 < < c and the control u kx N x= +2 1 2
3 , 

where k satisfies equation (2.43) and N1 > 0, the left part of inequality (3.12) 
is negative definite, so that this control stabilizes the system (3.2) with 
respect to x2.

By including the additional term in R(x,t) we imposed “harder” require-
ments on the rate of decreasing Q. Despite Q  being used as a system esti-
mate in some applications of the Lyaponov method (see, e.g., [13]), it cannot 
be applied as a reliable criterion of quality of control systems. It serves 
only as an instantaneous criterion. The quality estimate of control system 
includes (directly or indirectly) time of control. For example, an oscillatory 
long transient even with a small amplitude in many cases is unacceptable. 
However, when choosing the guidance laws implementing parallel naviga-
tion, the only requirement is to be closer, as soon as possible, to zero LOS 
rate. The Q  criterion reflects this requirement.
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36	 Guidance of Unmanned Aerial Vehicles

Let us assume that there exists a capture range domain over which the 
control (guidance law) u(t) guarantees engagement (x2(t) → 0). Then based 
on the above mentioned, it is easy to conclude that the guidance law:

	 u Nv t N t N Ncl= + > > λ λ( ) ( ), ,1
3

12 0  	 (3.13)

is better than the PN law (2.44).
The PN law reacts almost identically on various changes of LOS rate 

(assuming that the closing velocity does not vary drastically), i.e., small 
and fast changes of LOS result in proportional changes of acceleration. 
According to equations (3.11) and (3.13), by increasing N in the PN law, we 
can decrease the LOS rate faster. But this will increase the level of noise 
when the LOS rate becomes small and, hence, the accuracy of guidance 
is decreased. Moreover, big gains can make the whole guidance system 
unrobust. From a purely physical consideration, we can assume that the 
system with a variable gain that is bigger when the LOS rate is big and 
smaller when the LOS rate is small will act better than the traditional PN 
system. The second component of equation (3.13) (the “cubic” term) with a 
properly chosen N1 serves this purpose.

It was shown that the PN law (2.44) can be improved by using a complex 
exponential type function of time N(t) instead of a constant N [2,16]. This 
function is obtained as the result of the solution of an optimal guidance 
problem and depends on the predicted time-to-go. Its calculation presents 
certain difficulties for utilization of such laws in practice [5].

The guidance law (3.13) can be written in the form (2.44):

	 u t N
N

v
t v t N t v

cl
cl cl( ) ( ) ( ) ( ) (= +



 =1 2  λ λ λ tt)  	 (3.14)

with a time varying coefficient N(t) that formally is an exponential type 
function (asymptotic with respect to x2 solution of equation (3.2), under 
the assumption mentioned above, is an exponential type function). The 
form (3.14) looks similar to the guidance laws considered in [2]. In 
contrast to the law with variable N(t), obtained as an optimal guid-
ance in [2], the guidance law (3.13) does not require special complex 
computations.

If in equation (3.7) f ≠ 0, instead of equation (3.11) we have:

	 Q cx a t x a t x b t u b t f c x= − − − + ≤ −2 1 1 2 2 1 2
2( ( ) ( ) ( ) ( ) ) −− c x2 2

4  	 (3.15)

An additional component aT(t) = f in control “compensates” in equation 
(3.15) the b(t) f term, so that the control u kx N x a tT= + +2 1 2

3 ( ) stabilizes 
the system (3.2) with respect to x2 [see also equation (2.52)].
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Control of Longitudinal and Lateral Motions	 37

The Lyapunov approach is demonstrated here in details for the system 
(3.2), when a1(t) = 0. In an analogous way, it is easy to establish the negative 
definiteness of the function (3.7) for a1(t) ≠ 0 and a2(t) ≤ 0 if the control u is:

	 u t Nv t N t N r t t N acl T( ) ( ) ( ) ( ) ( ) (.= + − +  λ λ λ1
3

2 3 tt N N) ,> >0 01 	
(3.16)

	 N sign r t t t2 1
1

0
0

≤
≥

≥
≤if ( ( ) ( ) ( )) λ λ

	 N sign a t tT3 1
1

0
0

≥
≤

≥
≤if ( ( ) ( ))λ

The term N3aT(t) differs from the corresponding term in the augmented 
proportional navigation (APN) law because the parameter N3 is time-
varying. The term N r t t2( ) ( ),λ  the shaping term, acts along the line-
of-sight, changes the shape of the missile trajectory, and also influences 
the terminal velocity of a missile.

3.4 � BELLMAN–LYAPUNOV APPROACH. 
OPTIMAL GUIDANCE PARAMETERS

As shown in Chapter 2, under the assumption (2.54) the proportional navi-
gation law minimizes the functional (2.55), and the optimal value of the 
effective navigation ratio N = 3 guarantees zero miss distance assuming 
unbounded control resources. This assumption significantly undermines 
the reason of choosing N = 3 for practical applications.

Below the choice of the effective navigation ratio N = 3 will be justified 
based on the consideration of a different optimal problem. The offered 
approach enables us to choose more argumentative parameters for a wide 
class of guidance laws implementing parallel navigation.

3.4.1  Optimal Guidance for Nonmaneuvering Targets

For the planar model of engagement, the missile-target engagement is 
described by the system of the differential equations (2.37). Assuming a 
constant closing velocity, i.e., a1(t) = 0, and aT(t) = 0, we consider the prob-
lem of determining the guidance law that minimizes the functional:

	 I cx u t dt
tF

= +∫ ( ( ))2
2 2

0
	 (3.17)

where c is a constant coefficient, subject to equation (2.37), which can be 
rewritten as:

	 x a t x b t u2 2 2= − −( ) ( ) 	 (3.18)
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38	 Guidance of Unmanned Aerial Vehicles

The Bellman functional equation for this optimal problem is (see Appendix 
A.2):

	 min
( ) ( )u

clcx u
x

v

r t
x

r t
u

t2
2 2

2
2

2 1+ + ∂
∂

−



 + ∂

∂
ϕ ϕ{{ } = 0 	 (3.19)

or

	 u
r t x

= ∂
∂

1
2 2( )

ϕ
	 (3.20)

where φ(x2, t) is the minimal value of the functional (3.17).
Seeking the minimum of the functional (3.17) in the form:

	 ϕ( , ) ( , ) ( )x t w x t x Nv r t xcl2 2 2
2

2
2= = 	 (3.21)

where

	 r t r v tcl( ) ( )= −0 	 (3.22)

we have

	
∂
∂

= =ϕ
x

w x t x Nv r t xcl
2

2 2 22 2( , ) ( ) 	 (3.23)

	
∂
∂

= ∂
∂

= −ϕ
t

w

t
x Nv xcl2

2 2
2
2 	 (3.24)

and

	 u
w x t

r t
x Nv xcl= =( , )

( )
2

2 2 	 (3.25)

and the Bellman equation (3.19) can be presented in the well-known 
form:

	
∂
∂

+ − + = =w

t
w

v

r t
w

r t
c w x tcl

F

4 1
0 02

2 2( ) ( )
, ( , ) 	 (3.26)

which can be reduced, based on equations (3.21) and (3.24), to the alge-
braic Riccati equation:

	 4 02 2 2 2Nv N v Nv ccl cl cl− − + = 	 (3.27)
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Control of Longitudinal and Lateral Motions	 39

The optimal navigation ratio:

	 N c vcl= + + >3 2 9 4 32/ / / 	 (3.28)

(N c vcl= − + <3 2 9 4 02/ / /  corresponds to the unstable system (3.26)).
Formally, in the equation (3.26) r(t) is a time-varying parameter, and 

the terminal condition w(x2, tF) = 0 (which follows from φ(x2, tF) = 0) can 
be interpreted as the existence of such tF ∈ (0,∞) that r(tF) = 0 (i.e., tF cor-
responds to the time of intercept). If tF → ∞ then x2 → 0, i.e., the system 
(3.18) under control (3.25) is asymptotically stable and the guidance law 
(3.25) implements parallel navigation. The asymptotical stability require-
ment is important to exclude the trivial solution u = 0 for the case c = 0 
corresponding to the minimum of energy spent while executing the guid-
ance law.

It follows from equation (3.28) that the optimal solution for c = 0 
corresponds to N = 3 (i.e., the PN law with the effective navigation 
ratio N = 3 is the most energy efficient); it implements parallel navi
gation lim

tF
x

→∞
→( )2 0  with minimal energy resources. For a finite tF, the 

minimal energy guidance with N = 3 is possible under the assumption 
of the existence of intercept, i.e., r(tF ) = 0.

The values of N > 3 decrease the LOS rate faster than in the case N = 3 
(i.e., the guidance is closer to parallel navigation). However, the increase of 
the effective navigation ratio is bounded because of existing control limits 
and the increase of noise in the guidance and control system.

According to [1], the PN guidance with N = 3 can guarantee zero 
miss distance for any tF assuming boundless control resources; the 
value N = 3 is obtained as the most energy efficient for the modifica-
tion of the PN guidance law using the predicted time-to-go (predicted 
intercept point). The above-given justification of values of the effective 
navigation ratio takes into account the restriction on controls actions, 
constrains on the lateral acceleration. Based on the results of this sec-
tion, it is reasonable to recommend for the radar-seeker system the value 
of N about 3, whereas higher N values can be taken in optical-seeker 
systems.

Now we consider the guidance law in the form [see equation (3.16)]:

	 a t u t Nv t N v tM cl cl( ) ( ) ( ) ( )= = + λ λ1
3 	 (3.29)

and link the choice of the coefficients N and N1 with the solution of a cer-
tain optimal problem.
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40	 Guidance of Unmanned Aerial Vehicles

Considering the inverse optimal problem, we can determine the func-
tional whose minimal value subject to equation (3.18) corresponds to the 
control law u(t) described by equation (3.29). The functional has the form:

	 I c x x u t dt
tF

= +∫ ( ( ) ( ))2 2
2 2

0
	 (3.30)

where

	 c x c c x c x( )2 0 1 2
2

2 2
4= + + 	 (3.31)

and for N = 3 the coefficients in equation (3.31) equal:

	 c c N v c N vcl cl0 1 1
2

2 1
2 20 2 5= = =, . and 	 (3.32)

To prove the above statement, we will seek the solution of the Bellman 
functional equation (3.19), where c is changed to c(x2). The solution of the 
Bellman equation is sought in the form:

	 ϕ( , ) ( , ) ( , )x t w x t x w x t x2 2 2
2

1 2 2
4= + 	 (3.33)

Substituting φ(x2, t) in equation (3.19) with c changed to c(x2) and taking 
into account that:

	
∂
∂

= +ϕ
x

w x t x w x t x
2

2 2 1 2 2
32 4( , ) ( , ) 	 (3.34)

	
∂
∂

= ∂
∂

+ ∂
∂

ϕ
t

w

t
x

w

t
x2

2 1
2
4 	 (3.35)

and

	 u
w x t

r t
x

w x t

r t
x= +( , )

( )
( , )
( )

2
2

1 2
2
32

	 (3.36)

the Bellman equation (3.19) can be presented as:

	

∂
∂

+ − +





+ ∂
∂

+

w

t
w

v

r t

w

r t
c x

w

t
w

v

cl4

8

2

2 0 2
2

1
1

( ) ( )

ccl

r t

ww

r t
c x

w

r t
c

( ) ( ) ( )
− +



 − −


4 41

2 1 2
4 1

2

2 2 =x2
6 0

	 (3.37)

	 w x t w x tF F( , ) , ( , )2 1 20 0= =
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Control of Longitudinal and Lateral Motions	 41

Seeking the solution of equation (3.37) in the form:

	 w x t Nv r t w x t N v r tcl cl( , ) ( ), ( , ) ( )2 1 2 1
1
2

= = 	 (3.38)

and equating to zero the components of second, fourth, and sixth power 
terms in equation (3.37), we obtain:

	 4 02 2 2 2
0Nv N v Nv ccl cl cl− − + =

	 4 0 5 2 01
2

1
2 2

1
2

1N v N v NN v ccl cl cl− − + =. 	 (3.39)

	 − + =N v ccl1
2 2

2 0 	

For N = 3, it immediately follows from equation (3.39) that the coefficients 
c0, c1, and c2 of the functional (3.30) should satisfy equation (3.32).

Comparing the functionals (3.17) and (3.30) we can conclude that the 
cubic term in equation (3.29) decreases the LOS derivative x2 but this 
requires additional control resources. However, as we mentioned earlier, 
its efficiency decreases with the decrease of x2.

3.4.2  Optimal Augmented Guidance Laws

Determine the guidance law that minimizes the functional (3.17) subject 
to:

	 x a t x b t u b t f2 2 2= − − +( ) ( ) ( ) 	 (3.40)

Instead of equation (3.19) we have:

	 min
( ) ( ) ( )u

clcx u
x

v

r t
x

r t
u

r t
f2

2 2

2
2

2 1 1+ + ∂
∂

− +


ϕ 
 + ∂

∂ }{ =ϕ
t

0 	 (3.41)

where φ(x2, t) is the minimal value of the functional (3.17).
Seeking the minimum of the functional (3.17) in the form:

	 ϕ( , ) ( , ) ( ) ( ) ( )x t w x t x L t x L t Nv r t xcl2 2 2
2

2 0 2
2= + + = ++ +L t x L t( ) ( )2 0 	

(3.42)
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42	 Guidance of Unmanned Aerial Vehicles

we have the guidance law:

	 u
r t x

Nv x
L t

r tcl= ∂
∂

= +1
2 22

2( )
( )
( )

ϕ
	 (3.43)

and by grouping the terms containing x2
2 and x2 the Bellman equation (3.41) 

can be presented as:

	
∂
∂

+ − + = =w

t
w

v

r t
w

r t
c w x tcl

F

4 1
0 02

2 2( ) ( )
, ( , ) 	 (3.44)

and

	 L t
N

r t
v L t Nv f t L tcl cl F( )

( )
( ) ( ) , ( )− − + = =2

2 0 0 	 (3.45)

where w(x2,t) coincides with the solution of equation (3.26), the function 
L(t) should satisfy (3.45), and L0(t) should be equal to the free terms of 
equation (3.41) (this expression is not given since L0(t) is not present in the 
guidance law).

The solution of equation (3.45) is

	 L t
r v t

Nv r v t
cl

N cl cl
N

t

tF

( )
( ( ) )

( ( ) )=
−

−
−

−∫1
0

2 0
2

2 ff t dt( ) 	 (3.46)

so that using equation (3.43) we obtain the guidance law:

	 a t Nv t
r v t

Nv r vM cl
cl

N cl c( ) ( )
( ( ) )

( ( )= +
−

−
−

λ 1
0

0
1 ll

N

t

t

Tt a t dt
F

) ( )−∫ 2 	 (3.47)

For a step maneuver aT(t) = aT we obtain the expression:

	 a t Nv t
N

N
aM cl T( ) ( )

( )
= +

−
λ

1
	 (3.48)

which is different from the APN guidance law given in many papers.
In the general case, it follows from equation (3.47) that the optimal mis-

sile acceleration increases near tF. For N = 3 and aT(t) = aT sin ωTt (assum-
ing r(tF) is very small and aT(tF) = 0) we can obtain:
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	 a t Nv t
Nv

r t
a t

Nv

rM cl
cl

T
T

cl

T

( ) ( )
( )

( )= + + λ
ω ω2

2

2 22 ( )
( )

t
a tT 	 (3.49)

As mentioned earlier, the augmented proportional navigation guidance 
law was offered without rigorous justification. The above expressions fill 
this gap.

3.5  MODIFIED LINEAR PLANAR MODEL OF ENGAGEMENT

The majority of guidance laws have one objective: to reduce to zero the 
miss distance between the missile and target. However, this is not always 
sufficient. The direction from which the missile approaches the target is 
also important. In certain scenarios, the mission requirements call for the 
payload to impact the target from a specific direction. Final impact angle 
requirements are very important for hitting ground targets. There exist 
specific angles to hit a target most effectively.

When we guide a missile with a seeker, the impact point (point of the 
missile warhead detonation and/or hitting a target) is heavily dependent 
upon the target information provided by the seeker. In the case of IR seek-
ers, the most probable impact point lies near the heat source of the target, 
if the conventional guidance law is used. However, the heat source of many 
targets is located near the tail of fuselage, and therefore the kill probability 
could be significantly low if the missile simply follows the heat source. 
The concern about low kill probability due to the impact point can be par-
tially resolved by choosing the impact angle properly.

The above-considered linear planar model of engagement can be 
enhanced by specifying a missile-target impact achieved at a fixed LOS 
angle λ0. 

By introducing the state variables:

	 z x x z1 0 1 0 2 1= − = − =λ λ λ ,  	 (3.50)

and acting analogously to the described above, instead of equation (3.2) 
we obtain:

	 z x1 2=

	 x a t z a t x b t u b t aT2 1 1 0 2 2= − + − − +( )( ) ( ) ( ) ( )λ 	 (3.51)

In contrast to equation (3.6), the Lyapunov function Q is chosen as:

	 2 2
2

0 1
2Q cx c z= + 	 (3.52)
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44	 Guidance of Unmanned Aerial Vehicles

and the guidance law is obtained from the stability conditions of the 
whole system (3.51) rather than the partial stability with respect to the x2 
coordinate.

From the condition of negative definiteness of the derivative of the 
Lyapunov function (3.52):

	 Q cx a t z a t x b t u b t aT= − + − − −2 1 1 0 2 2( ( )( ) ( ) ( ( ) ( ) )λ )) + c z x0 1 2 	 (3.53)

we can derive the following guidance law:

	
u t Nv t N t N r t

c
c

r tcl( ) ( ) ( ) ( ) ( )= + − −


  λ λ1
3

2
0

 −

− +

( ( ) )

( ) ( )

λ λ

λ

t

r t N a tT

0

0 3
	 (3.54)

where

	 N sign r t
c

c
r t t t2

0
01

1
≤
≥ −



 −if  ( ) ( ) ( )( ( )λ λ λ ))



 ≥

≤

0

0

Comparing the guidance laws and equations (3.16) and (3.54), we can see 
that the specified missile-target impact LOS angle λ0 influences only the 
shaping term:

	 N r t
c

c
r t t r t2

0
0 0 ( ) ( ) ( ( ) ) ( )−



 − −λ λ λ

3.6  GENERAL PLANAR CASE

Instead of using a small linear approximation (2.9), we will consider a gen-
eral nonlinear case. The expressions for the LOS angle [see equation (2.8)] 
and its derivatives can be presented in the following form:

	 sin( ( ))
( )
( )

λ t
y t

r t
= 	 (3.55)

	

 λ λ λ λ

λ

( )cos( ( )) ( )sin( ( ))

( )sin(

t t t t

a t

−

= −

2

1 (( )) ( )cos( ( )) ( ) ( )t a t t t b y t− +2 1λ λ  	 (3.56)
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Control of Longitudinal and Lateral Motions	 45

or

	 x x1 2=  

	 x x x a t x a t x
b t

x
u2 2

2
1 1 1 2 2

1

= − − − +tan ( ) tan ( )
( )

cos
bb t

x
f

( )
cos 1

 	 (3.57)

where u(t) is a commanded missile acceleration, x1 = λ(t), x t2 = λ( ), and the 
coefficients a1(t), a2(t), and b(t) are determined by equations (3.3)–(3.5).

It is of importance to mention that when considering a linear approxi-
mation of the trigonometric functions in equation (3.57) we will not obtain 
the linear system (3.2). There will be the additional nonlinear term x x2

2
1 

(for small x1, x x x x2
2

1 2
2

1tan ).≈  The linearization for small LOS angles at 
this stage is more rigorous than linearization (2.9) and sequential differ-
entiation, as it was done in many publications. The main reason for using 
equations (3.1) and (3.2) is the difficulty in dealing with nonlinear differ-
ential equations.

The derivative of the Lyapunov function (3.6) along any trajectory of 
equation (3.57) is:

	 Q cx x x a t x x a t x b t u= − − −2 2
2

1 1 1 1 2 2( tan ( ) tan ( ) ( ( ) −− b t f x( ) ) cos )/ 1  

or

	 Q c x x a t x x x a t x b t= − − −( tan ( ) tan ( ) ( ( )2
3

1 1 1 2 1 2 2
2 xx u b t x f x2 2 1− ( ) ) cos )/ 	

(3.58)

The negative definiteness of the derivative (3.58) can be guaranteed by the 
control-guidance law:

	
u t Nv t t N t t

N

cl( ) cos( ( )) ( ) cos( ( )) ( )= +

−

λ λ λ λ 
1

3

22 0
2

3sin( ( )) ( ) ( ) ( )sin( ( ))λ λ λt r t N r t t t N a − + TT t( )
 	 (3.59)

	 N > 2,  N1 > 0,

	 N sign t t0 1
1

0
0

≤
≥

≥
≤if ( ( ) ( ))λ λ  

	 N sign r t t t2 1
1

0
0

≤
≥

≥
≤if ( ( ) ( ) ( )) λ λ  

and

	 N sign a t tT3 1
1

0
0

≥
≤

≥
≤if ( ( ) ( ))λ  
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46	 Guidance of Unmanned Aerial Vehicles

The guidance law (3.59) can be presented as the sum of the main PN law 
and additional correcting controls:

	 u Nv t t ucl k

k

= +
=

∑cos( ( )) ( )λ λ
0

3

 	 (3.60)

where

	 u N r t t t0 0
2= − ( ) ( )sin( ( ))λ λ 	 (3.61)

	 u N t t1 1
3= cos( ( )) ( )λ λ 	 (3.62)

	 u N r t t2 2= − ( )sin( ( ))λ 	 (3.63)

and

	 u N a tT3 3= ( ) 	 (3.64)

For small LOS angles and short homing ranges (the case that was dis-
cussed mostly in the guidance literature), the term x x2

3
1tan  in equation 

(3.58) is smaller than a dominant x2
2 component. That is why the analysis 

of the linear system (3.2) is justified if such conditions are satisfied. For a 
larger spectrum of LOS angles the u0 component is needed.

The effectiveness of the u1 correction was discussed earlier for the lin-
earized model. The u2 correction is needed for maneuvering targets and 
when the second derivative of range is not small enough. The augmented 
proportional navigation term (3.64) differs from the well-known one [see 
also equation (2.53)] that was obtained for step maneuvers but was rec-
ommended to be used for all types of maneuvers. The sign a t tT( ( ) ( ))λ  
factor reflects the dependence of the correction on the target behavior. 
Each of the controls uk (k = 0, 1, 2, 3) increases the effectiveness of the 
PN navigation law with respect to the criterion chosen. The number of 
the controls applied in practice should depend on the problem under con-
sideration (target distances, LOS angles, maneuvering or nonmaneuver-
ing targets, etc., as well as the system’s ability to realize the correction 
control in practice).

Taking into account that we consider a class of the modified propor-
tional navigation laws, the control-corrections (3.61)–(3.64) are consid-
ered as the means of improving the PN law (2.49), extending its area of 
applicability. The coefficients N0 –N3 (constant or time-varying) can be 
determined based on simulation results of the whole missile system tak-
ing into account the autopilot limits on a missile acceleration, airframe 
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Control of Longitudinal and Lateral Motions	 47

dynamics, and some other factors, i.e., the same way as the most appro-
priate values of N = 3 – 4 were established.

The considered nonlinear planar model of engagement can be enhanced 
by specifying a missile-target impact achieved at a fixed LOS angle λ0, as in 
the case of the linearized planar model, by introducing the state variables:

	 z t x z t t1 0 2 1= − = =sin( ( )) sin , ( ) cos( ( ))λ λ λ λ   	 (3.65)

and considering the Lyapunov function (3.52).
Analogous to equations (2.29) and (2.30) we can obtain:

	 
 

z
y t

r t

t r t

r t1 = −( )
( )

sin( ( )) ( )
( )

λ
	 (3.66)

	


    

x
y t

r t

z r t

r t

y t r t

r t2
1

2
= − −( )

( )
( )

( )
( ) ( )

( )
−−

+ −





r t t

r t

r t t

r t

( )sin( ( ))
( )

( )sin( ( ))
( )

λ

λ2

2

 

  

r t t t

r t

y t

r t

z r

( ) ( ) cos( ( ))
( )

( )
( )

(

λ λ

= − 2 1 tt

r t

z r t

r t

r t

r t

)
( )

( )
( )

sin
( )
( )

− −1
0

 
λ

	 (3.67)

so that instead of equation (3.51) we have:

	 z x1 2=

	 x a t z a t x a t b t u b t a2 1 1 2 2 1 0= − − − − +( ) ( ) ( )sin ( ) ( )λ TT 	 (3.68)

Acting analogous to (3.53), we can derive the following guidance law:

	 u t Nv t t ucl k

k

( ) cos( ( )) ( )= +
=

∑λ λ
1

3

	 (3.69)

where uk (k = 1, 3) coincide with equations (3.62) and (3.64), respectively, 
and

	 u N r t
c

c
r t t2 2

0
0= −



 − ( ) (sin( ( )) sin )( ) λ λ − rr t( )sin λ0 	 (3.70)

The modified Lyapunov function, which contains trigonometric func-
tions of the LOS, enables us to reduce the guidance problem with an 
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48	 Guidance of Unmanned Aerial Vehicles

impact angle constraint for the nonlinear planar model to the analogous 
one for the linearized model and the Lyapunov function (3.52). As in the 
case of the linearized planar model, the modified Lyapunov function 
“eliminates” the quadratic term u0 [see equation (3.61)] in the guidance 
law of the enhanced nonlinear model of engagement.

The guidance laws with the impact angle constraints (3.54) and 
(3.69) differ insignificantly from the corresponding laws obtained with-
out the impact angle constraints. Their realization does not present any 
difficulties.

3.7  THREE-DIMENSIONAL ENGAGEMENT MODEL

For the three-dimensional case and the Earth-based coordinate system we 
rewrite equation (2.45):

	  λ λ λs s s Tst a t t a t t b t a t( ) ( ) ( ) ( ) ( ) ( )( ( )= − − +1 2 −− us )  	 (3.71)

where aTs(t) are the coordinates of the target acceleration vector and 
us(t) (s = 1, 2, 3) are the coordinates of the missile acceleration vector, 
which are considered as controls.

As in equation (2.46), the Lyapunov function is chosen as the sum of 
squares of the LOS derivative components that corresponds to the nature 
of parallel navigation, i.e.,

	 Q ds s

s

=
=

∑1
2

2

1

3

λ  	 (3.72)

where ds are positive coefficients.
Its derivative can be presented in the following form:

	 2 1 2
2   Q d a t a t b t a ts s s s s Ts= − − +( ( ) ( ) ( ) ( ( )λ λ λ λ −−

=
∑ us

s

))
1

3

 	 (3.73)

so that the three-dimensional guidance problem is similar to the linearized 
planar guidance problem.

Analogous to equation (3.16), the controls us(t) that guarantee lim λ → 0, 
t → ∞ can be presented as:

	 u Nv us cl s sk

k

= +
=

∑λ
1

3

	 (3.74)
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Control of Longitudinal and Lateral Motions	 49

where

	 u t N t Ns s1 1
3

1 0( ) ( ),= >λ  	 (3.75)

	 u t N t r t N sign r ts s s s2 2 2 1
1( ) ( ) ( ) ( ( )= − ≤

≥λ   if λλ λs st t( ) ( ))≥
≤

0
0  	 (3.76)

and

	 u t N a t N sign a t ts s Ts s Ts s3 3 3 1
1( ) ( ) ( ( ) ( ))= ≥

≤ if λ ≥≥
≤ =

0
0 1 2 3( , , )s 	

(3.77)

The expressions (3.74)–(3.77) can be obtained similar to the linear planar 
case [see equation (3.16)]. However, for the three-dimensional engage-
ment model, in the case ds = 1, the term ∑ =s s sa t1

3
1− ( )λ λ  in equation 

(3.73) equals zero. This means that controls u t N t r ts s s2 2( ) ( ) ( )= − λ   are 
not needed to guarantee lim λ → 0, t → ∞. Nevertheless, the above-
mentioned controls are also important parts of the guidance law.

The commanded acceleration can be considered as consisting of two 
components—radial (along the line-of-sight, also called longitudinal) 
and tangential (perpendicular to the line-of-sight, also called lateral), [see 
equations (1.21) and (1.22)]. As it follows from equation (3.76), the compo-
nents us2(t) belong to the radial acceleration (i.e., they influence the closing 
velocity).

Usually, during a missile flight, only two LOS rate components are 
dominant, so that the case of equal ds is not typical and then us2(t) (s = 1, 2, 3) 
also influence the tangential acceleration. However, the radial component 
is dominant.

As indicated above, controls u t N t r ts s s2 2( ) ( ) ( )= − λ   (s = 1–3) do not 
influence the tangential component of a missile acceleration in the case 
of equal ds; they change the radial acceleration component, which is 
important to guarantee an appropriate acceleration (force) at the moment 
of intercept.

It is important to mention that for many types of existing missiles (e.g., 
without throttleable engines) radial acceleration cannot be used as a con-
trol action. Such missiles are not able to use thrust control as a part of a 
guidance law. Controls us2 can influence a missile trajectory only by decel-
erating its motion.

As seen from equations (3.40)–(3.43), the multidimensional PN law fol-
lows immediately as one of the possible solutions and as a component of a 
more complicated law with nonlinear terms. The described guidance laws 
can be used for the midcourse and terminal guidance. During the mid-
course stage the components of the LOS are obtained from equation (1.8). 

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

2:
38

 2
0 

M
ar

ch
 2

01
6 



50	 Guidance of Unmanned Aerial Vehicles

For the terminal stage these components are usually calculated based on 
measurements of azimuth and elevation angles. The vectors λ(t) and λ( )t  
can be presented as [see equations (1.9) and (1.16)]:

	 λ

α β

α β

α

λ( )

cos cos

cos sin

sin

, ( )t t=



















 ==

−

−



















+

−sin cos

sin sin

cos

cosα β

α β

α

α

αα β

α β β

sin

cos cos

0



















 	 (3.78)

where α and β are elevation and azimuth angles.
By comparing the guidance law (3.74) using equation (3.78) with the 

guidance law for the nonlinear planar model (3.27), we can conclude that 
the guidance law (3.60) can be used to analyze the coordinate u3 in the 
three-dimensional case, i.e., the three-dimensional, Lyapunov-based guid-
ance law embeds the Lyapunov-based guidance laws obtained for the pla-
nar case.

The established similarity between the equations determining the guid-
ance law for the three-dimensional and linearized planar engagement 
models enables us to present the guidance law for the three-dimensional 
enhanced model of engagement with the specified missile-target impact 
achieved at a fixed LOS angle λ0 = (λ01, λ02, λ03) in the form (3.40) with 
the modified term us2(t) [see equation (3.76)].

Acting analogously to the above described, instead of equation (3.51) 
we obtain:

	 z xs s1 2=

	 x a t z a t x b t u b t as s s s s T2 1 1 0 2 2= − + − − +( )( ) ( ) ( ) ( )λ ss 	 (3.79)

	 (s = 1, 2, 3)

In contrast to equation (3.52), the Lyapunov function Q is chosen as:

	 2
1

3

2
2

0 1
2Q d x c zs

s

s s s= +
=

∑ ( ) 	 (3.80)

Repeating the earlier considered procedure we obtain the guidance law in 
the form (3.74) with:

	 u t N r t
c

d
r t ts s

s

s
s s2 2

0
0( ) ( ) ( ) ( ( )= − −



 − λ λ )) ( )− r t sλ0 	 (3.81)
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Control of Longitudinal and Lateral Motions	 51

where

	 N sign r t
c
d

r t t ts
s

s
s s2

0

1
1

≤
≥ −if ( ( ) ( )) ( )( ( ) λ λ −−



 ≥

≤ =λ0 0
0 1 2 3s s) ( , , )

Many interceptors use a lethality enhancement device to improve their hit-
to-kill capabilities. For example, endoatmospheric guided missiles typi-
cally employ a fusing system and fragmentation warhead to accomplish 
this. The performance of these lethality enhancement systems can be sen-
sitive to endgame conditions. Suitably controlling the terminal interceptor 
body rates and interceptor-threat approach angles can help to maximize 
the performance and effectiveness of the lethality enhancement device.

3.8  GENERALIZED GUIDANCE LAWS

As indicated earlier, the guidance laws considered in this chapter were 
obtained under assumption that both guidance components, radial and tan-
gential, can be realized in practice. However, this is possible only for certain 
types of missiles. For missiles without throttleable engines, only a tangen-
tial component of the developed guidance laws can be implemented.

Unlike missiles without throttleable engines, missiles with axial control 
can employ thrust control as a part of guidance. Because of their superior 
guidance ability, for the purpose of the detailed analysis of this type of mis-
siles, as well as other types of unmanned aerial vehicles, we consider the 
guidance laws based on the analysis of the longitudinal and lateral motions.

According to equations (1.21) and (1.22), the dynamic equations of the 
three-dimensional engagement can be presented in the form:

	 r a a a a a a( )t t t t t tT M Tr Tt Mr Mt= − = + − −( ) ( ) ( ) ( ) ( ) (( )t 	 (3.82)

Combining equations (1.19), (1.20), and (3.82), we obtain the following sys-
tem of equations describing the three-dimensional engagement:

	    λ λ λs s s Tst r t r t t r t t a t( ) ( ) ( ) ( ) ( ) ( ) ( )+ + =2 −− =a t sMs ( ) ( , , )1 2 3 	 (3.83)

where aTs(t) and aMs(t) are the coordinates of aT(t) and aM(t), respectively.
The last term of the left part of equation (3.83) corresponds to the vector 

directed along the LOS. The components qλs of h t r t r t ts s s= +  λ λ( ) ( ) ( ) ( )2  
(s = 1, 2, 3) that correspond to the vector directed along the LOS are deter-
mined from the orthogonality of radial and tangential vectors, i.e.,

	 ( )h q qs s s

s

− =
=

∑ λ λ 0
1

3
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52	 Guidance of Unmanned Aerial Vehicles

Using the equalities obtained from the sequential differentiation of

	 λs

s

2

1

3

1=
=

∑
the following expression for the factor q can be obtained:

	 q r t t t r t ts s

s

s

s

= = −
= =

∑ ∑( ) ( ) ( ) ( ) ( ) λ λ λ
1

3

2

1

3

	 (3.84)

The expressions for the missile longitudinal and lateral motions follow 
from equations (3.83) and (3.50). We analyze these motions in the Cartesian 
frame of coordinates of an inertial reference coordinate system, in con-
trast to the well-known presentation of the three-dimensional kinematics 
of guidance (see, e.g.,  [9]) describing the longitudinal and lateral motions 
using a rotating frame of coordinates with axes along the unit vectors 1r 
directed along r, 1w directed along r r× , and 1t = 1r × 1w.

For the longitudinal motion we have:

	  r t t r t t a t as s

s

s Trs Mrs( ) ( ) ( ) ( ) ( )λ λ λ− = −
=

∑ 2

1

3

(( ) ( , , )t s = 1 2 3 	 (3.85)

By presenting the radial vectors aTr(t) and aMr(t) in the form:

	 a t a t t a t a t t sTrs Tr s Mrs Mr s( ) ( ) ( ), ( ) ( ) ( ) (= = =λ λ 1,, , )2 3 	 (3.86)

where aTr(t) and aMr(t) are the target and missile radial accelerations, 
respectively, equation (3.85) can be reduced to:

	  r t r t t a t a ts

s

Tr Mr( ) ( ) ( ) ( ) ( )− = −
=

∑λ2

1

3

	 (3.87)

For the lateral motion we have:

     λ λ λ λs s s

s

st r t r t t r t t( ) ( ) ( ) ( ) ( ) ( )+ +
=

∑2 2

1

3

(( ) ( ) ( ) ( , , )t a t a t sTts Mts= − = 1 2 3 	
(3.88)

The system of equations (3.87) and (3.88) is equivalent to the system (3.83). 
The analysis of their specifics enables us to simplify the analysis of the 
original system (3.83).
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Control of Longitudinal and Lateral Motions	 53

As mentioned earlier, missiles without axial control are able to control 
only the lateral motion using information about missile thrust, drag, and 
target acceleration and considering them as external factors with respect 
to control actions. The basic widespread philosophy behind controlling 
the lateral motion is that the lateral missile acceleration should nullify the 
LOS rate, (i.e., the lateral acceleration as control is aimed at implement-
ing parallel navigation). In the ideal case λs t( ) = 0  (s = 1, 2, 3) the system 
(3.87) and (3.88) is reduced to:

	 r t a t a tTr Mr( ) ( ) ( )= − 	 (3.89)

It can be easily observed from equations (3.87) and (3.88) that the dynam-
ics of longitudinal and lateral motions can be decoupled by using a pseudo-
acceleration aMr1(t) in the radial direction:

	 a t a t r t tMr Mr s

s

1
2

1

3

( ) ( ) ( ) ( )= −
=

∑ λ 	 (3.90)

so that instead of (3.87) we can analyze (3.88), where aMr(t) is changed 
to aMr1(t).

The terms lateral acceleration and lateral motion were used above 
to characterize the motion in a plane orthogonal to the LOS. The TPN 
(true proportional navigation) law a t Nr t tMts s( ) ( ) ( ),= −  λ  N > 2 character-
izes the motion belonging to this plane. However, the class of guidance 
laws implementing parallel navigation does not necessarily satisfy (3.88) 
because the acceleration vector required by the guidance law does not 
lie in this plane. For example, in the PPN (pure PN) law the commanded 
acceleration is applied normally to the missile velocity vector; in the 
GPN (generalized PN) the commanded acceleration forms a constant 
angle with the normal to the LOS [9]. We use the term lateral accelera-
tion to characterize the motion satisfying equation (3.88) and the term 
longitudinal (radial) acceleration to characterize the motion satisfying 
equation (3.89).

In accordance with the Lyapunov-based control design approach, used 
earlier, the guidance problem can be formulated as the problem of choos-
ing controls aMr(t) and aMts(t) (s = 1, 2, 3) to guarantee r t( ) < 0 and the 
asymptotic stability of the system (3.88) with respect to λs t( ) (s = 1, 2, 3). 
Because in reality we deal with a finite problem, for simplicity and a more 
rigorous utilization of the term “asymptotic stability” we assume, as ear-
lier, disturbance (target acceleration) to be a vanishing function (i.e., con-
tains a factor e–εt), where ε is an infinitely small positive number; moreover, 
if tF is the time of intercept then lim ( )

t tF
r t

→
→ 0 and aT(t) = 0 for t > tF.
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54	 Guidance of Unmanned Aerial Vehicles

From equation (3.89), the conditions r t( ) < 0 and lim ( )
t tF

r t
→

→ 0 can be 
achieved by choosing aMr1(t) > aTr(t) for t ≤ tF and aMr1(t) = 0 for t > tF, i.e.,

	 a t k t a t k tMr Tr1 1 1 1( ) ( ) ( ), ( )= ≥ 	 (3.91)

This follows from the condition of negative definiteness of the derivative 
of the Lyapunov function r2(t) along any trajectory of equation (3.89), i.e., 
r t( ) r t( ) < 0 where

	  r t r t a t a t dtTr Mrt
t( ) ( ) ( ( ) ( )) ;= + −∫ <0 10

0

t0 is the initial moment of guidance.
The system described by equation (3.89) has been examined thoroughly 

in the literature; various optimal problems have been considered and solved 
(see, e.g., [1,6]). Without considering concrete optimal problems here (their 
practical application is limited because of the lack of information about 
future values of a target acceleration), we indicate only that a pseudoaccel-
eration aMr1(t) in the radial direction should exceed the radial target accel-
eration, so that the larger their difference the faster the decrease in range.

The asymptotic stability of equation (3.88) with respect to λs t( )  (s = 1, 2, 3) 
is guaranteed by the guidance law [see equations (3.74)–(3.77)]:

	 a t Nv t u tMts cl s sk

k

( ) ( ) ( )= +
=

∑λ
1

3

	 (3.92)

where v r tcl = − ( ),

	 u t N t Nsl s s s( ) ( ),= >1
3

1 0λ 	 (3.93)

	 u t N r t t t N sis s s

s

s2 2
2

1

3

2 1
1( ) ( ) ( ) ( ),= − ≤

≥
=

∑ λ λ if ggn t ts s( ( ) ( ))λ λ ≥
≤

0
0 	

(3.94)

and

	u t N a t N sign a ts s Tts s Tts s3 3 3 1
1( ) ( ), ( ( ) (= ≥

≤ if λ tt s)) ( , , )≥
≤ =

0
0 1 2 3 	

(3.95)

The above expressions (3.93)–(3.95) immediately follow from the proce-
dure based on the Lyapunov approach described in the previous sections of 
this chapter, if the Lyapunov function has the form (3.72).
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Control of Longitudinal and Lateral Motions	 55

Based on (3.88)–(3.95), the guidance law can be presented in the fol-
lowing form:

	

a t Nv t N t

N r t

Ms cl s s

s s

( ) ( ) ( )

( ) ( )

= +

+ −

 



λ λ

λ

1
3

2
21 (( ) ( ) ( ) ( ) ( )t t k t a t N a t

s

s Trs s Tts

=
∑ + +

1

3

1 3λ
	 (3.96)

	 (s = 1, 2, 3)

where N1, N2s, and N3s (s = 1, 2, 3) are the same as in equations 
(3.93)–(3.95).

The first term of equation (3.96) corresponds to the traditional PN 
law. The second component of equation (3.96), with a properly chosen 
N1, as discussed earlier, reacts to significant values of the LOS rate and 
should not influence the missile acceleration when the LOS rate is small. 
The coefficient k1(t) is chosen to guarantee a fast decrease of r(t). It can 
be constant or time-varying depending on available information about 
a target. The term N3saTts(t) is different from the corresponding term in 
the augmented proportional navigation law because the parameter N3s 
is time-varying and of a bang-bang type. The sign a t tTts s( ( ) ( ))λ  factor 
reflects the dependence of the correction on the target behavior. The 
case N3s = 1 corresponds to the cancellation of the effect of the target 
maneuver on the Lyapunov function derivative Q  (3.73) by forward-
compensating the component of aTr(t) normal to the LOS. The coef-
ficients N1, N2, N3, and k1 (constant or time-varying) can be determined 
based on simulation results of the whole missile system taking into 
account the autopilot limits on a missile acceleration, airframe dynam-
ics, and some other factors, i.e., the same way as the most appropriate 
values N = 3–4 were established.

The guidance law (3.96) assumes that a missile is able to control all 
three-dimensional space. For missiles enabled to control only their lat-
eral acceleration, instead of equations (3.88) and (3.89) the initial equation 
(3.83) should be examined. This equation is analogous to equation (3.71), 
and the guidance law corresponding to this case is presented by equations 
(3.74)–(3.77). Comparison of equations (3.96) and (3.74) shows that in the 
case of missiles with uncontrollable thrust the u3s(t) terms depend upon 
the total target acceleration rather than its tangential component and that 
instead of the radial components:

	 k t a t N r t t tTrs s s

s

s1 2
2

1

3

1( ) ( ) ( ) ( ) ( ) ( )+ −
=

∑ λ λ
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56	 Guidance of Unmanned Aerial Vehicles

the guidance law contains the radial component u2s(t) (s = 1, 2, 3). As 
mentioned earlier, u2s(t) in equation (3.74) influence the derivative Q 
(3.73) only in the case of unequal coefficients ds (s = 1, 2, 3). Moreover, 
only negative u2s(t) (s = 1, 2, 3), i.e., deceleration can be realized in 
practice.

In our simplified model of engagement we assumed that the missile 
and target are point masses and considered the radial acceleration acting 
along the LOS. In reality, the radial acceleration acts along a missile’s 
body and the tangential acceleration acts in the orthogonal direction, so 
that the real tangential acceleration obtained by projecting the accelera-
tion (3.74) on the axis perpendicular to a missile’s body axis may reflect 
the influence of the u2s(t) components (s = 1, 2, 3).

The obtained guidance laws assume that current information about a 
target acceleration is available. Usually, we operate only with the esti-
mated target acceleration, so that a result worse than in the ideal estima-
tion case can be expected. Many missiles are unable to measure a target 
acceleration and use it in a guidance law. In this case, the components 
u3s(t) (s = 1, 2, 3) are not present in the guidance law, and its perfor-
mance is worse compared to the case when a target acceleration can be 
measured.

3.9  MODIFIED GENERALIZED GUIDANCE LAWS

The ability to control the longitudinal motion enable us, potentially, to 
speed up the intercept process [see the term with k1(t) in equation (3.96)]. 
As to the lateral motion, it is possible to impose additional requirements to 
engagement by specifying missile-target impact achieved at a fixed LOS 
angle λ0 = (λ01, λ02, λ03).

Presenting equation (3.88) as the system of first-order differential 
equation and comparing it with the equivalent presentation of the sys-
tem (3.83) [see also equations (2.36), (2.37), and (2.71)], we can see that 
instead of the term a1(t) there will be the term λss t2

1
3

=∑ ( ). By introducing 
the variables z1s = λs – λ0s (s = 1, 2, 3), the Lyapunov function (3.80) and 
repeating the discussed earlier procedure, we can derive the following 
lateral component of the guidance law:

	 a t Nv t u tMts cl s sk

k

( ) ( ) ( )= +
=

∑λ
1

3

 	 (3.97)

where the components usk(t) (k = 1, 3) are the same as in equation 3.92 [see 
equations (3.93) and (3.95)] and the term us2(t) equals:
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	 u t N r t
c

d
r ts s s

s

s

s
s2 2

2

1

3

0( ) ( ) ( ) (= − −





=
∑ λ λ (( ) ) ( )t r ts s

s

s− −
=

∑λ λ λ0
2

1

3

0
 	 (3.98)

	

N sign r t
c
d

r t ts s

s

s

s
s2

2

1

3

0

1
1

≤
≥ −

=
∑if ( ( ) ( )) ( λ λ ))( ( ) )

( , , )

λ λs st

s

−





 ≥
≤

=

0 0
0

1 2 3

Since the longitudinal acceleration component remains unchanged, instead 
of the guidance law (3.96) we can write:

	

a t Nv t N t N r t tMs cl s s s s

s

( ) ( ) ( ) ( ) ( )= + −  λ λ λ1
3

2
2

==

=

∑ −






−

+

1

3

0
0

2

c

d
r t t

r t

s

s
s s

s

s

( ) ( ( ) )

( )

λ λ

λ
11

3

0 1 3∑ − + +( )( ( ) ) ( ) ( ) ( )t t k t a t N a ts s Trs s Ttsλ λ

or

a t Nv t N t N r tMs cl s s s s( ) ( ) ( ) ( ) ( )= + + −  λ λ λ1
3

2
21

ss

s s

s
s

s
s s

t t

N
c

d
r t t

=
∑ −

+ −

1

3

0

2
0

0

( )( ( ) )

( )( ( )

λ λ

λ λ )) ( ) ( ) ( ) ( , , )+ + =k t a t N a t sTrs s Tts1 3 1 2 3

	

(3.99)

where N1, N2s, and N3s (s = 1, 2, 3) are the same as in equations (3.93), 
(3.95), and (3.98).

3.10  EXAMPLES

First, we consider a realistic example of a tail-controlled aerodynamic mis-
sile operating at high altitude to illustrate the effectiveness of the described 
guidance laws and compare it to PN guidance results.

The flight control dynamics are assumed to be presented by a third-
order transfer function:

	 W s

s

s
s

s

z

M M

( )
( )

=
−

+ + +





1

1
2

1

2

2

2

2

ω

τ
ω

ζ
ω

	 (3.100)
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58	 Guidance of Unmanned Aerial Vehicles

with damping ζ and natural frequency ω similar to [18] (ζ = 0.7 and 
ωM = 20 rad/s), the flight control system time constant τ = 0.5 s and the 
right-half plane zero ωz = 5 rad/s.

As it was mentioned in [18], at high altitudes where the airframe zero 
frequency ωz can be low, optimal guidance, similar to [2] for the single-
lag model, has no advantage when compared to proportional navigation 
and can produce even worse results. Miss distance, when using optimal 
guidance, increases as the airframe zero frequency decreases. A new 
optimal guidance law that accounts for the presence of airframe zero was 
developed and tested in [18]. It works better than a proportional navigation 
law but cannot be presented as a closed-form solution and is developed 
numerically and stored as a tabulated function of time depending on sev-
eral factors.

The performance of the guidance laws (3.16) is compared to propor-
tional navigation. We assume that the effective navigation ratio N = 4 and 
the closing velocity vcl = 1219.2 m/s and consider the homing stage when 
LOS angle is relatively small, so that the expression (3.16) can be used. As 
in [18], two error sources are considered: a 3-g constant target maneuver 
and 1 mr of range-independent angle measurement noise. The acceleration 
limit is 10-g.

A simplified model of the missile engagement is presented in Figure 
3.1. Here RTM is the range r between a missile and a target and R̂TM  is its 
estimate. The measurement of the LOS angle λk

*  is corrupted by noise. A 
pseudomeasurement of relative position yk

* is created by a multiplication of 
λk

* by ˆ .RTM  The Kalman filter then provides optimal estimates of relative 
position, relative velocity, and a target acceleration [17,18]. Three guidance 
laws are considered: proportional navigation; nonlinear guidance, discussed 
in the previous sections, without measurements of target acceleration; and 
nonlinear guidance utilizing measurements of target acceleration.

Sampler

Acceleration
limit

Target
maneuver 

Kalman
filter

Guidance
law

NoiseMiss

1
S2

1
RTM

RTM


Hold=W (s)
1 − s2

zω2

2ζ+s2

M
(τs + 1) s + 1

ω2 ωM

()

FIGURE 3.1  Missile guidance model.
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Control of Longitudinal and Lateral Motions	 59

The nonlinear guidance law has the form:

	 u t v t N t N a tcl T( ) ( ) ( ) ( )= + +4 1
3

3
 λ λ  	 (3.101)

For the linearized engagement model in Figure 3.1, we assume a constant 
closing velocity, so that the term with the second derivative r t( ) in equation 
(3.16) equals zero. 

We use the discrete form of the nonlinear guidance law and the esti-
mates of λ  in the form (symbol “^” denotes estimates):

	  ˆ ˆ ˆ
λk

k k go

cl go

y y t

v t
=

+
2

	 (3.102)

The results of a Monte Carlo simulation for a step target maneuver and 
zero initial conditions are presented in Figure 3.2. The mean absolute 
value of the resultant miss distances is given based on 50 simulation tri-
als. The nonlinear term with gain N1 = 40,000vcl (data with symbol “×”) 
significantly improves the performance of a missile when compared to 
the PN guidance law (data with symbol “---”). A further improvement is 
reached by measuring target acceleration: by using a constant gain N3 = 1 
(solid curve) or a time dependent gain N3 = 0.75; 1.25 [data with symbol 
“⚬⚬⚬”; see also equation (3.16)]. Each component of the guidance law 

PN
New law (Linear & nonlinear terms)
New law (3 terms, N3 = 1)
New law (3 terms, N3 = 0.75/1.25)

M
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FIGURE 3.2  Comparative analysis of guidance laws performance.
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60	 Guidance of Unmanned Aerial Vehicles

(3.16) increases Q t( ) .  This fact enables us to choose the gains Ni (i = 1 – 
3) sequentially.

In the above example, N1 was chosen based on value of the LOS angle 
rate estimates for the case of the PN guidance law (i.e., when only the 
first component of equation (3.101) was used), which was about 0.006 
rad/s at the beginning of the homing stage and significantly less (3 times 
and more) at the end of the homing stage. For the given N1 value, we 
indirectly increased N in the PN law at the beginning of the homing 
stage (according to equation (3.14), about 30%). However, the “cubic 
term” has a negligible influence at the end of the homing stage [see 
equation (3.14)].

Now we consider an example of a tail-controlled aerodynamic mis-
sile guided by the guidance laws discussed earlier and compare their 
effectiveness against a weaving maneuvering target with the acceleration 
aT(t) = 5g sin(1.75 t). The flight control dynamics are assumed to be pre-
sented by equation (3.100) with damping ζ = 0.65 and natural frequency 
ω = 5 rad/s, the flight control system time constant τ = 0.1 s and the right-
half plane zero ωz = 30 rad/s.

The following guidance laws are analyzed (the effective navigation ratio 
N = 3, the closing velocity vcl = 7000 m/s):

	 1.	The PN law:  u t v tcl( ) ( )= 3 λ
	 2.	The APN law:  u t v t a tcl T( ) ( ) . ( )= +3 1 5λ
	 3.	u t v t N tcl( ) ( ) ( )= +3 1

3 λ λ
	 4.	u t v t t N t t Ncl( ) cos( ( )) ( ) cos( ( )) ( )= + +3 1

3λ λ λ λ 
33

0 75

1 75

a t

N v N

T

cl

( )

.

.
1 3= 30,000 , = if






signn( ( ) ( ))a t tT

λ ≥
≤




0
0

Simulation results are shown in Figure 3.3. Miss distances for the PN and 
APN guidance are shown by dashed and dash-dot lines, respectively. The 
effectiveness of the “cubic” term for the linearized planar model, together 
with the PN law, is shown by the dotted line. This term, as well as other 
additional terms, in the guidance law for the nonlinear planar model (solid 
line) decreases the miss distance significantly.

In conclusion, the guidance laws are tested on an example of the 
engagement model with the parameters close to those considered in [7]: 
the effective navigation ratio N = 3; target initial conditions RT1 = 4500 m, 
RT2 = 2500  m, RT3 = 0; VT1 = –350 m/s, VT2 = 30 m/s; VT3 = 0; missile 
initial conditions RM1 = RM2 = RT3 = 0, VM1 = –165 m/s, VM2 = 475 m/s, 
VT3 = 0; target acceleration aT1 = 0, aT2 = 3g sin(1.31t), aT3 = 0; missile 
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Control of Longitudinal and Lateral Motions	 61

acceleration limit 5-g. In contrast to [7], the missile dynamics are taken 
into consideration: the missile flight control system right half-plane air-
frame zero frequency ωz = 30 rad/s, damping ζ = 0.7, natural frequency 
ωM = 20 rad/s, and time constant τ = 0.5 s. A target weaving frequency 
is chosen according to [12].

Figure 3.4 corresponds to the guidance law (3.96) and the case when 
the missile dynamics are ignored. It shows the trajectories of the target 
(cross solid line) and missile for the PN law and the laws considered in 
this chapter. The time of intercept for the APN and PN laws equals 8 s. 
The APN does not improve the PN guidance in this case. However, the 
additional terms in equation (3.96) enable us to improve the PN perfor-
mance. The symbol “ATN” indicates the components N3s aTts(t) of equa-
tion (3.96) (N31 = N32 = {0.5; 3.5}, N33 = 0). The “cubic” term corresponds 
to us1(t) components with gains N11 = 20,000vcl, N12 = 2000vcl, and N13 = 0. 
The guidance law with all terms of equation (3.96) (k1(t) = 7) gives the best 
results. The time of intercept equals 7.35 s. As expected, inability to measure 
the target acceleration and absence of axial control decreases the missile 
performance. The time of intercept equals 7.8 s for the guidance law (3.74), 
where us2(t) = 0, N31 = N32 = {1;3.5}, N33 = 0.

Figure 3.5 repeats the numerical simulations of Figure 3.4 taking into 
account the missile dynamics. In Figure 3.5 the miss distance and the time 
of intercept correspond to the moment of time when the closing velocity 
became positive. In the case of “PN + ATN” N31 = {0;1.5}, N32 = 1, N33 = 0. 

20

15

10

5

–5

–10

–15
0 1

M
iss

 (m
)

2 3 4 5 6 7 8 9 10
Flight time (s)

0

FIGURE 3.3  Miss distance comparison.
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In the case of “PN + ATN + cubic term” N11 = 28,000vcl, N12 = 40,000vcl, 
N13 = 0. As in the case when the missile dynamics were ignored, the guid-
ance law with all terms of equation (3.96) gives the best results. The param-
eters of the guidance law are: k1(t) = 2.8; N11 = 400,000vcl, N12 = 19,400vcl, 
N13 = 0; N31 = {0;1.5}, N32 = 1, N33 = 0. The time of intercept and miss 
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FIGURE 3.4  Comparison of the new guidance laws with PN and APN guidance 
(engagement model without missile dynamics).

3000

3000 4000

2500

2500

Target
PN, 16.5 m, 8.1 s
APN, 3.42 m, 8 s
PN + ATN, 2.76 m, 7.8 s
PN + ATN + cubic term, 0.38 m, 7.6 s
All terms, 0.1 m, 7.1 s

X (m)

Y 
(m

)

3500 4500

2000

2000

1500

1500

1000

1000

500

500
0

0

FIGURE 3.5  Comparison of the new guidance laws with PN and APN guidance 
(engagement model includes missile dynamics).D
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distance are significantly better than obtained under the PN and APN 
guidance laws.

In this chapter, the examples show the effectiveness of the considered 
guidance laws against maneuvering targets, their superiority to PN and 
APN guidance. In addition to showing better performance, these laws 
can be easily implemented in practice because they use the same param-
eters as the PN and APN laws.
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4 Analysis of Proportional 
Navigation Guided 
Systems in the 
Time Domain

4.1  INTRODUCTION

It is well known that an investigation of processes and phenomena is 
linked, first of all, with the construction of mathematical models describ-
ing these processes and phenomena using mathematical language. The 
model is characterized by some parameters. These parameters include 
input variables or control actions as they are called, or simply controls, 
output variables or output coordinates, or controlled variables, and also 
intermediate variables, the so-called state variables. In most cases pro-
cesses are not considered in isolation but in direct connection with other 
processes and phenomena. The influence of external conditions—the 
environment—is characterized by the so-called disturbing influences or, 
simply, disturbances.

As a matter of fact, the mathematical model is nothing but the analytical 
expression of an interconnection of the specified parameters. The param-
eters chosen are determined by the problem under consideration.

In Chapter 2, the control theory approach was used to obtain the pro-
portional navigation (PN) guidance law. The line-of-sight (LOS) rate was 
considered as the system output; the PN law, the commanded missile 
acceleration, was considered as control or input; and the target accelera-
tion was considered as disturbance. The Lyapunov approach, the pivot of 
control theory, was used in the previous chapter to obtain a wide class of 
guidance laws implementing parallel navigation. Since the PN term is the 
main component of the considered guidance laws and, separately, the PN 
law produces the lateral motion of unmanned aerial vehicles, we will pay 
special attention to this guidance law. Below we will build and analyze the 
models of PN guided missile systems. Similar models can be built for the 
PN guided UAV systems. The miss distance, the parameter that character-
izes the missile guidance system performance, is the system output. The 
missile and target accelerations are control and disturbance, respectively. 
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For simplicity, we will analyze the planar model with one control action. 
The planar model itself is widely used on the preliminary design stage. 
As seen from Chapter 3, the results obtained for this model can be easily 
generalized for the three-dimensional engagement model.

In control theory, analytical tools were developed for describing the 
characteristics of control systems based on the concept of the system error. 
The goal of control is to reduce the error to the smallest feasible amount. 
The ability to adjust the transient and steady-state response of a control 
system to meet certain performance requirements is the main goal of its 
design. To analyze systems their performance criterion should be defined. 
Then, based on the desired performance, the parameters of the system 
or/and its structure should be adjusted to provide the desired response. 
Because the actual input signals are usually unknown, a standard test input 
signal is normally chosen. The time-domain analysis is usually based on 
the so-called step input.

The miss distance in the guidance system analysis and design is, at a 
certain degree, analogous to the error in conventional control systems. The 
goal of guidance is to reduce the miss distance to the smallest feasible 
amount. Target maneuver plays a major role in determining missile sys-
tem performance. The miss distance, due to a step-target maneuver, is the 
miss step response similar to the well-known time-domain characteristic 
in control theory. Below we obtain analytical expressions of miss distance 
for simple models of PN guidance systems. Unfortunately, in the time 
domain the closed-form solutions cannot be obtained for high-order mod-
els realistically reflecting autopilot and airframe dynamics. Nevertheless, 
the models under consideration enable us to establish some properties of 
linear models of PN guided missile systems.

4.2  INERTIALESS PN GUIDANCE SYSTEM

Although PN guidance presents a nonlinear control problem, to apply a 
known technique of analysis and design, the system equations are linear-
ized yielding a linear time-varying system. The linearization is valid when 
it is assumed that the missile and target approach the so-called collision 
course. The results of simulation of linear and nonlinear models show that 
the linearized model faithfully represents the guidance system dynamics, 
i.e., the linearization is valid close to the interception where the closing 
velocity can be considered constant so that the range can be approximated 
by a linear function of time [1,2,5].

In Chapter 2 we considered equation (2.35) to obtain the expression for 
the PN guidance law. We will use this equation to analyze the performance 
of the idealized linearized inertialess model of the PN missile guidance 
system (2.35). Substituting equation (2.7) into (2.35) we have:
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	  y t Nv t a tcl T( ) ( ) ( )= − +λ 	 (4.1)

After integration of both parts of equation (4.1) and taking into account 
equations (2.9) and (2.11), it becomes:

	 y t Nv t a t dt
N

t t
y t V tcl T

F
T( ) ( ) ( ) ( ) ( )= − + = −

−
+∫λ 	 (4.2)

The solution of equation (4.2) is presented in the following form:

	 y t
M t

V t M t dt CT( )
( )

( ) ( )= +( )∫1
	 (4.3)

where C is a constant of integration and

	 M t
N

t t
dt t t

F
F

N( ) exp ( )=
−





 = −∫ − 	 (4.4)

It can be simplified as:

	 y t C t t
t t

N
V t

t t

N
t tF

N F
T

F
N

F( ) ( ) ( )
( )

( )= − + −
−

− −
−

−
1 1

−− +∫ N
Ta t dt1 ( ) 	 (4.5)

In the case of a step target maneuver, i.e., aT(t) = aT the last expression has 
the form:

	 y t C t t
t t t

N

t t

N NF
N F F( ) ( )

( ) ( )
( )( )

= − + −
−

− −
− −


1 1 2

2



 aT 	 (4.6)

where the constant C is determined based on the initial conditions 
for y(t).

The analysis of equation (4.6) enables us to conclude that the miss 
distance y(tF) is zero, i.e., proportional navigation with the effective navi-
gation ratio N > 2 is an effective way to hit a target. To be more rigorous, 
we should mention that the expression (4.6) indicates that only values 
N = 1 and N = 2 are dangerous. But by choosing N > 2 we guarantee 
zero miss.

The model of the missile guidance system considered above is too 
simple to make immediate optimistic estimates of the PN law perfor-
mance. Even a slightly more complicated linear model of the missile 
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guidance system (e.g., by presenting autopilot inertia by the first-order 
dynamic unit) makes the problem of the miss distance analysis very 
complicated.

The miss distance model for a missile with a first-order acceleration lag 
τ1, against a target undergoing a step acceleration maneuver, is described 
by the following equations:

	









y y

y a a

a a a

a t

y t y

T M

M c M

T

1 2

2

1

=

= −

= −

=

=

( )

( )

( )

/τ

δ

11

1

2

2a t N
y

t t

y

t tc
F F

( )
( )

=
−

+
−







	 (4.7)

In this case the commanded acceleration ac(t) does not coincide with the 
real missile acceleration aM(t) and is presented in the form (2.14). A step 
maneuver aT(t) at t = 0 is described by a differential equation with the 
delta-function δ(t) in its right part.

It is impossible to obtain a visible analytical solution y(t) of the above 
linear equation with time-varying coefficients and the singularity at t = tF. 
The general approach to analysis of this type of equation is the use of 
simulation tools. Since our main interest lies in analyzing the miss dis-
tance y(tF), it means that we should simulate the system (4.7) for various 
tF. To avoid multiple simulation trials and obtain y(tF) in one computer 
run, the method of adjoints is used [4,5]. Moreover, a specific structure of 
equation (4.7) enables us, based on the method of adjoints, to obtain the 
analytical solution of equation (4.7) with respect to y(tF).

4.3  METHOD OF ADJOINTS

The method of adjoints, which is a useful tool to simulate the impulse 
response P(σ, t) of time-varying linear systems for the fixed observa-
tion time σ = tF with respect to the impulse application time t, has been 
widely used in missile guidance system design and analysis, especially 
for linearized engagement models. An approach to obtaining the adjoint 
system is based on a structural representation of the guidance system 
model.
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The method of adjoint will be explained on the example of a linear 
time-varying system described by the system of the differential equation 
presented in the vector-matrix form:

	 y A y f= − + ≤ ≤( ,t t t tF F) 0 	 (4.8)

where y and f are n-dimensional vectors, A is a matrix with coefficients 
depending on tF – t.

By introducing the system adjoint to the system (4.8) as

	 x A xT= − −(t tF ) 	 (4.9)

it is easy to check that the adjoint vector x satisfies the condition:

	
d

dt

T(x y
x fT) = 	 (4.10)

or

	 x y x y x fTT
F F

T
t

t t d
F

( ) ( ) ( ) ( ) ( ) ( )− = ∫0 0
0

σ σ σ 	 (4.11)

where the upper symbol “T” denotes transposition.
To present the miss distance y(tF) due a constant target maneuver, we 

should put xT(tF) = (1, 0,…,0) and f(t) = δ(t), so that:

	 y( ) ( ) ( )tF
T= x y0 0 	 (4.12)

It is easy to verify that the transition matrix of the adjoint system (4.9) 
Φa(t, t0) = ΦT(t, t0), where Φ(t, t0) is the transition matrix of equation (4.8).

For the class of guidance problems under investigation, we should pres-
ent disturbances (target acceleration and other external factors) as the result 
of the solution of a system of differential equations. As seen from equa-
tion (4.7), for the case of a step acceleration maneuver (see the condition
f ( ) ( )t t= δ ) it reduces to a simple operation of differentiation.

The initial conditions x(0) of the adjoint system (4.9) can be obtained by 
integrating equation (4.9) backward in time, or by considering the modified 
adjoint system with respect to time τ = tF – t, i.e., the miss distance y(tF) can 
be obtained in one run by simulating the system:

	 z A z y z yT= =( ,τ) ( ) ( ) (0)t tF
T

F 	 (4.13)

where zT(0) = (1, 0,…,0).
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For equation (4.7) the modified adjoint system has the following form:

	









z
N

z

z z
N

z

z z z

z z

1
1

2 3

2 1
1

3

3 2
1

3

4 2

1

=

= +

= − −

=

τ τ

τ τ

τ

	 (4.14)

with the initial condition zT(0) = (1, 0,…,0).
The matrix of coefficients of equation (4.13) is transposed with respect to 

the matrix A(tF – t) of the initial system (4.8). Hence, the adjoint modified 
system can be modeled by changing inputs by outputs and vice versa in all 
elements of the initial system (4.8) and by changing time t in the arguments 
of all time-varying coefficients by tF – t. Changing inputs by outputs is 
equivalent to the following structural changes: nodes of the original system 
become summation units of the modified adjoint system, summation units 
of the original system become nodes of the modified adjoint system, and the 
direction of all signal flow is reversed. In addition, as mentioned above, the 
structural changes of the original system may be needed to convert its actual 
input to the equivalent impulsive input.

By differentiating the second equation of the system (4.14), it can be 
transformed to:

	  z
N

z2
1

3=
τ τ

	 (4.15)

Using the Laplace transform and substituting z3 from the third equation of 
(4.14), equation (4.15) can be presented as:

	
d

ds
s Z s

Ns

s s
Z s( ( ))

( )
( )2

2

2

1
21

=
+τ

or

	
d

ds
X s NH s X s( ) ( ) ( )= 	 (4.16)

where s is the symbol of the Laplace transform:

	 X s s Z s( ) ( )= 2
2 	 (4.17)
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and

	 H s
s s

W s

s
( )

( )
( )=

+
=1

11τ
	 (4.18)

The solution of equation (4.16) can be presented as:

	 X s s Z s C NH s ds C
s

s

N

( ) ( ) exp ( )= = ( ) =
+





∫2

2
11/τ

	 (4.19)

where C is a constant determined by the initial conditions.
From the last equation of the system (4.14) we obtain:

	 Z s s C
s

s
s X s

N

4
3

1

1

1
( ) ( )=

+




 =− −

/τ
	 (4.20)

The constant C = 1 is determined from the condition z z1 20 0 1( ) ( )= = , which 
follows from the first two equations of (4.14), so that lim ( ) lim ( )

s s
s Z s X s

→∞ →∞
= =2

2 1 
and equation (4.20) becomes:

	 Z s s
s

s

N

4
3

11
( ) =

+






−

/τ
	 (4.21)

Taking into account equations (4.13) and (4.21), for the effective navi-
gation ratio N = 4 the miss distance due to the unit step target accelera-
tion can be presented as:

	 y t t t tF F F F( ) exp( )( . )= − −2
1 10 5 6/ /τ τ 	 (4.22)

The block diagram of the original missile guidance system (4.7) is given in 
Figure 4.1 (D denotes the operator of differentiation).

The adjoint system (4.14) structure is presented in Figure 4.2. The 
above-given block diagrams of the original (4.7) and adjoint (4.14) systems 
for the unit step-target acceleration aT = 1 can be simplified. Their simpli-
fied form, based on equations (2.10)–(2.14), is presented in Figure 4.3 and 
Figure 4.4, respectively.

The modified systems are more convenient for the analysis. The modi-
fied original system operates directly with the line-of-sight λ = y/(vclτ) and 
its derivative. The modified adjoint system corresponds to the transforma-
tion (4.16)–(4.18); the closing velocity vcl is shown in Figure 4.4 to corre-
spond fully to Figure 4.3.
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The result of simulation of the adjoint system shown in Figure 4.5 for 
τ1 = 0.5s and aT = 1g (the acceleration of gravity g = 9.81 m/s2) presents the 
miss step response of the missile guidance system.

As seen in Figure 4.5, in contrast to the idealized linearized inertialess 
model (4.1), the miss distance of the inertial missile guidance system (4.7) 
is not zero. The acceleration time lag τ1 significantly influences the miss 
step characteristic. It is obvious [see, e.g., equation (4.22)] that the miss 
distance is smaller for a smaller τ1.

The analysis of the analytical expressions (4.6) and (4.22) for the miss 
distance due to a step target maneuver allows us to conclude that, despite 

aT
ac aM1

D
1

D2

D

N
τ2

N
τ

1
τ1D + 1δ(t)

y(t)

FIGURE 4.1  Block diagram of original guidance system.
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FIGURE 4.2  Block diagram of adjoint system.
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FIGURE 4.3  Modified block diagram of original guidance system.
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the commanded acceleration of the linearized PN guidance system model 
[see equation (4.7)] tends to infinity when t tends to tF , it does not influ-
ence significantly the miss distance y(tF); it does not influence at all in the 
case of the idealized inertialess model.

The miss step response is one of the most used estimates of missile sys-
tem performance. It is an important time-domain characteristic of missile 
guidance systems that allows designers to choose appropriate parameters 
of the missile guidance system to minimize the miss step. The method 
of adjoints was developed to simplify the simulation procedure. However, 
the necessity to simulate the system response for each impulse application 
time by using the model of the original system or using the adjoint system 
to simplify this procedure was stipulated by the inability to obtain an ana-
lytical expression for the miss step that can be used for analysis and design 
of missile guidance systems.

δ(τ)

y(τ)
aT

z4 z21
D

1
D2

–1
D2

D
Nvcl

τ1 D + 1
1

vclτ

FIGURE 4.4  Modified block diagram of adjoint system.
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FIGURE 4.5  Miss distance for step target maneuver.
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The zero- and single-lag guidance systems are convenient analytical 
models; but they did not quite match reality. The binomial representation 
1/(1 + sT/n)n, where T is the effective guidance system time constant and 
n the system order, used for more accurate high-order guidance system 
models in [5], still does not accurately reflect flight control system dynam-
ics. The binomial units are usually used to approximate delay units [3] and, 
therefore, they cannot be considered a reliable tool for guidance system 
design.

Because of an inability to obtain analytical expressions for the miss step 
for the high-order planar models, the simulation process using the method 
of adjoints still remains a very useful tool of the time-domain analysis. 
The analytical difficulties do not allow researchers to build and analyze 
more complicated models that also include the dynamics of a maneuvering 
target. The frequency approach to analysis and design of missile guidance 
systems, described in the next chapter, enables up to overcome the above-
mentioned difficulties.
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5 Analysis of Proportional 
Navigation Guided 
Systems in the 
Frequency Domain

5.1  INTRODUCTION

The difficulty in analysis of differential equations with time-varying coef-
ficients describing linearized models of guidance systems does not allow 
researchers to obtain analytical expressions for miss distance that can be 
effectively used in practice. As mentioned in [10], “the disadvantage of the 
single time constant representation of a missile guidance system is that 
the miss distance can be seriously underestimated.” The same remark can 
also be applied to the binomial representation [6,10].

The method of adjoints used in the previous chapter can be presented 
in the integral form as the impulse response of the adjoint system (i.e., its 
reaction to a unit impulse function). In the case of a single time constant 
guidance system, the transfer function between the target acceleration 
and the guidance system miss distance can be obtained from equation 
(4.21). In control theory, the method of transfer functions, as input-output 
characteristics of linear systems, is a foundation of frequency methods 
(i.e., analysis of systems in the frequency domain). Analogous to the unit 
step signal in the time domain, the unit sinusoidal input signal is the 
standard test signal in the frequency domain. The response of the system 
to a changing frequency is considered. The frequency response is defined 
as the steady-state response of the system to a sinusoidal input signal. 
The frequency approach is very popular among engineers because the 
design of a system in the frequency domain provides the designer with 
control of the bandwidth of a system. It is very physical and enables 
researchers and designers to build realistic models and make justifiable 
simplifications.

The below analysis of the linearized proportional navigation (PN) guid-
ance system models is based on the frequency response of the linearized 
guidance system that corresponds to the miss distance due to a weaving 
target (i.e., due to a sinusoidal acceleration). As shown later, the miss due 
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to a step target maneuver (i.e., the miss step response) can also be obtained 
from the frequency characteristics of the system under consideration.

The block diagram of an interceptor’s main subsystems is given in 
Figure 5.1. The seeker provides a guidance system with target informa-
tion, which together with information from onboard sensors is necessary 
to generate a guidance law. The guidance system generates acceleration 
commands for the autopilot channels to control the motion of the missile. 
The warhead subsystem receives a burst-hit command from the guidance 
system. Performance of the guided missile systems is assessed by their 
terminal effect. The generation and intelligent control of this “terminal 
effect” is one of the key requirements to missile systems.

The above-mentioned subsystems are interconnected. The performance 
of a separate subsystem dictates requirements to the interconnected ones. 
For example, the missile airframe parameters determine the airframe poles 
ωz that significantly influence missile dynamics and, as a result, influence 
autopilot system τ1 characteristic requirements. Higher accuracy guidance 
and autopilot systems can employ smaller warheads. The seeker dynamic 
parameters τ2 and τ3 influence the guidance system accuracy. The tradi-
tional approach to designing missile guidance and autopilot systems usually 
neglects interaction between these systems and treats individual missile sub-
systems separately. The subsystems are designed separately and then inte-
grated before verifying their performance. The quantification of the impact 
of missile parameters on the miss distance is the first important step toward 
integrated design of missile guidance and autopilot systems. The main 
factors that influence the miss distance in homing missiles are the seeker 
errors, aero frame characteristics, autopilot lag τ1, and target maneuvers. An 
appropriate choice of the estimation system parameters (in Figure 5.1 it is 
combined with a seeker and presented by τ2 and τ3) can reduce requirements 
to a seeker’s accuracy and a guidance law effective navigation ratio N.

The performance of guided UAVs flying according to the predetermined 
flight pass, which is represented by a sequence of waypoints—dummy 

Preliminary design
parameters

τ1, τ2, τ3, ωz, N

Autopilot
τ1

Seeker
τ2, τ3

Guidance
system

N

Missile
airframe

ωz

Warhead

FIGURE 5.1  Block diagram of an interceptor’s main subsystems.
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targets, can be judged by the accuracy (miss distance) of reaching these 
waypoints.

The above-mentioned shows the importance of establishing an analyti-
cal relationship between the miss distance and main parameters of the 
guidance system.

Below, the analytical expressions for the miss distance (frequency 
response) and related expressions for missile system performance are 
obtained for the proportional navigation law and the guidance control sys-
tem that reflects the most important characteristics of the flight control 
system that combines airframe and autopilot dynamics (damping, natural 
frequency, time constant, and airframe zero frequency). These analytical 
expressions can also be used to evaluate UAV system performance. They 
need to employ significantly simpler computational programs than by 
using the method of adjoints to analyze the influence of the basic guidance 
system parameters on the miss distance for step and weave maneuvers.

5.2  ADJOINT METHOD. GENERALIZED MODEL

As shown earlier, the method of adjoints is a useful tool to simulate the 
impulse response of the system (i.e., its response of an impulse function). 
The analysis in the time domain was bounded by the consideration of a step 
target acceleration signal. Because the frequency-domain analysis uses a 
different test signal, it is convenient to consider a more general model of 
the adjoint system commonly used in modern control theory.

In contrast to equations (4.8), (4.9), and (4.13), here we present the equa-
tions of the system in a more general form than in equation (4.8). We will 
consider the so-called canonical form used in modern control theory:

	 x A B u C x( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )t t t t t t t t= + =x y 	 (5.1)

where the state equation similar to equation (4.8) is accompanied by the 
output equation; x(t) is the state vector, u(t) and y(t) are the input (control) 
and output, respectively; A(t), B(t), and C(t) are matrices of appropriate 
dimensions.

The adjoint system of equations has the form:

	 z A z C v B zT T T( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )t t t t t t t t= − + =w 	 (5.2)

where z(t), v(t), and w(t) are the state vector, input and output, respectively.
Similar to the earlier indicated relationship between the transition 

matrices of the original and adjoint systems, the impulse response matrices 
P(t, σ) of equation (5.1) and Pa(t, σ) of equation (5.2) are connected by:

	 P PT
a t t( , ) ( , )σ σ= 	 (5.3)

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

2:
40

 2
0 

M
ar

ch
 2

01
6 



78	 Guidance of Unmanned Aerial Vehicles

The structure of the original and the adjoint system is shown in Figure 5.2 
(note the reversal of flow direction of signals). For the single input-output 
systems and for σ = tF we have P(tF, t) = Pa(t, tF), i.e., P(tF, t) corresponds 
to the reaction of the adjoint system to the delta function δ(t – tF), i.e., to 
the δ-function applied at time tF. In contrast to the physically realizable 
initial system (5.1) with P(tF,  t) = 0 for tF < t (it is also called causal or 
nonanticipative, as the system output does not anticipate future values 
of the input) the adjoint system (5.2) with Pa(t, tF) = 0 for t > tF is physi-
cally unrealizable (it is also called pure anticipative [9]). To operate with 
the physically realizable adjoint system we will consider the dynamics of 
(5.2) with respect to time τ = tF – t. The modified adjoint system has the 
impulse response Pma(tF – τ, 0), 0 ≤ τ ≤ tF, and is described by the follow-
ing equation:

	 z A z C v BT T T( ) ( ( ) ( ) ( )τ τ τ τ τ τ τ= − + = −t t w tF F F) ( ) (− ))z( )τ 	 (5.4)

The structure of the modified adjoint system is shown in Figure 5.3. As it 
follows from the comparison of Figures 5.1 and 5.3, to build the modified 
adjoint system we should:

	 i.	Replace t by tF – τ in all arguments of all time-varying 
coefficients

	 ii.	Reverse all signal flow, redefining nodes as summing junctions 
and vice versa

u
B(t)

A(t)

C(t)

BT (t)

AT (t)

CT (t)

xx
∫

∫

y

v

–

z zw

FIGURE 5.2  Original and adjoint systems.
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Instead of equation (5.3) we can write:

	 P Pma
T

F Ft t( , ) ( , )− τ τ0 = 	 (5.5)

i.e., the impulse response P(tF, t) can be obtained by applying the delta 
function δ(τ) in the modified adjoint system.

The state, input, and output matrices of equation (4.7) presented in the 
form (5.1) are:

	 A B= −
−





















=





0 1 0

0 0 1

1

0

1

0
1

2
1 1

N N

τ τ τ τ τ















= [ ]C 1 0 0 	 (5.6)

As it follows from equation (5.3), the output of the adjoint system is 
w(τ) = z2 = P(tF, τ), where P(tF, t) is the impulse response to aT(t) at time tF. 
Specifics of the linearized models of missile guidance systems that contain a 
time-varying coefficient depending on tF – t [see, e.g., equation (4.8)] enable 
us to use the method of adjoints not only as a simulation tool but also to use 
it to obtain analytical expressions for the impulse response. As seen from 
equations (5.1) and (5.3), for a class of linear time-varying systems with the 
state matrix A(t) = A(tF – t) the state matrix of the modified adjoint system 
A(tF – τ) = A(τ), i.e., it depends on adjoint time τ, rather than directly on tF. 
In this case, the impulse response of the modified adjoint system does not 
depend directly on tF, and the adjoint time 0 ≤ τ ≤ tF can be interpreted as 
time of flight tF. For this class of system we will denote the impulse response 
as P(tF, t).

The block diagram of the system with the state, input, and output matri-
ces (5.6) and W(s) = (τ1s + 1)–1 shown in Figure 5.4 is similar to Figure 
4.3. The input-output relationships in the frequency domain are character-
ized by the transfer functions of the corresponding units, which will be 

vz zw
BT (tF – τ)

AT (tF – τ)

CT (tF – τ)∫

FIGURE 5.3  Modified adjoint system.
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analyzed in details later. Based on the above mentioned, the relationship 
between the target trajectory yT(t), the target acceleration aT(t), and the miss 
distance y(tF) can be obtained from the analysis of the block diagram of 
the modified adjoint system in Figure 5.5, which for W(s) = (τ1s + 1)–1 is 
similar to Figure 4.4.

As mentioned earlier, a simple first-order transfer function representation 
with time constant τ1 does not describe accurately the relationship between 
the line-of-sight (LOS) rate and the missile acceleration. The transfer func-
tion W(s) should reflect the dynamic responses of the airframe, autopilot, 
guidance filters, and seeker. However, the more complicated W(s) does not 
change the structure of Figure 5.5. Analyzing this structure we will obtain 
the analytical expression for the transfer function P(tF, s) corresponding to 
the impulse response P(tF, t), and the transfer function PT(tF, s) correspond-
ing to the impulse response PT(tF, t) to yT(t).

Let X(τ) be the impulse response of the closed loop of the structure 
in Figure 5.5. Then taking into account equation (4.18), the closed-loop 
dynamics can be presented as:

	
1

0τ
τ σ δ σ σ σ τ

τ

NH X d X( )( ( ) ( )) ( )− − =∫ 	 (5.7)

–

aT aM1
s2

1
vclτ

λ λ

1
s2

yyT

yM

S NvclW(s)

FIGURE 5.4  Modified block diagram of original system.

NvclW(s)s1
vclτ

1
s2

–1
s2

P(tF , s) PT(tF , s) δ(t)

X(s)

FIGURE 5.5  Modified block diagram of adjoint system.

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

2:
40

 2
0 

M
ar

ch
 2

01
6 



Analysis of Proportional Navigation Guided Systems	 81

or using the Laplace transform:

	 NH q X q dq X s
s

( )( ( )) ( )1− =
∞

∫ 	 (5.8)

Differentiating equation (5.8) we obtain:

	 − − = −d X s

ds
NH s X s

( ( ))
( )( ( ))

1
1 	 (5.9)

which is similar to equation (4.16). Taking into account that PT(tF, s) = 1 – X(s), 
we can write similar to equation (4.19):

	 P t s NH dT F

s

( , ) exp ( )= 



∞∫ σ σ 	 (5.10)

and, correspondingly:

	 P t s
s

NH d
s

P t sF

s

T F( , ) exp ( ) ( , )= 



 =

∞∫
1 1
2 2

σ σ 	 (5.11)

where the lower infinite limit in equations (5.10) and (5.11) follows from the 
condition lim

s
T FP t ,s

→∞
=( ) 0.

The step miss equals the integral of the impulse response, i.e., in the fre-
quency domain it corresponds to s–1 P(tF, s). It is easy to check that for the 
first-order system it coincides with the expression for Z4(s) obtained from 
the previous chapter [see equation (4.20)]. However, the above-described 
approach is not limited to determining the miss step only, the miss distance 
due to a step target maneuver. It will be used to determine the miss distance 
for a wide class of target maneuvers.

5.3  FREQUENCY DOMAIN ANALYSIS

First we consider the fourth-order flight control system, which is widely 
used at the initial stage of analysis and design. Then the obtained expres-
sions will be generalized for the n-th order system.

A block diagram of the guidance system under consideration is given 
in Figure  5.6. Here, missile acceleration aM is subtracted from target 
acceleration aT, and the result is integrated to obtain relative separation 
between a missile and target y, which at the end of flight tF is the miss dis-
tance y(tF). Division by range (closing velocity vcl multiplied by time-to-go 
tgo until intercept) yields the geometric line-of-sight (LOS) angle λ, where 
the time-to-go is defined as tgo = tF – t. The missile seeker is presented for-
mally as a perfect differentiator that effectively provides a measurement 
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of the rotation rate of LOS from the interceptor to the target. The filter and 
seeker dynamics are represented by a transfer function

	
G s

s

s
z

1
2

1

1
( ) =

+
+

τ
τ

where τz and τ2 are constant coefficients. An estimation of the LOS rate 
generates a guidance command ac based on the proportional navigation 
law with the effective navigation ratio N > 2.

The flight control system guides the missile to follow this acceleration 
command.

The flight control system dynamics, which combine its airframe and 
autopilot dynamics, are represented by the following transfer function:

	 G s
a s

s
s

s
M M

2

1

2

2
1

2
1

( )
( )

( )
=

+ + +



τ

ω
ζ

ω

	 (5.12)

where 

	
a s

s

z

( ) = −1
2

2ω

for tail-controlled missiles and a(s) is a first-order polynomial for nontail-
controlled missiles; the flight control system damping ζ, natural frequency 
ωM, time constant τ1, and airframe zero ωz are the flight control system 
parameters.

s

λ

G2(s)

G1(s)

Nvcl

Target
maneuver

aT = ÿT

aM = ÿM
Missile acceleration

ac
Guidance command 

Miss

1
s2

1
vcltgo

y(tF)

Seeker dynamics 

λ

y–

FIGURE 5.6  Missile guidance model.
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According to equation (5.10), in the complex domain, the miss distance 
at time tF can be presented as:

	 Y t s N H d Y sF

s

T( , ) exp ( ) ( )= 



∞∫ σ σ 	 (5.13)

where YT(s) is the Laplace transform of a target vertical position yT(t), 
Y(tF, s) is the Laplace transform of y(tF) and similar to equation (4.18):

	 H s
W s

s
( )

( )= 	 (5.14)

and

	 W s G s G s
r s r s r s

s
( ) ( )* ( )

( )(
= = + + +

+ +
1 2

1 2
2

3
3

1

1

1 1τ τ22

2

2
1

2
s s

s

M M

) + +





ζ
ω ω

	 (5.15)

where rk (k = 1,...,3) are constant coefficients.
The integral ∫∞

i H dω σ σ( )  can be calculated by writing H(s) in the form:

	 H s
A

s

B

s

B

s

Cs D
s

M

( ) = +
+

+
+

+ +

+

1 1

1

2 2

2
2

2

1 1 2
/
/

/
/

τ
τ

τ
τ

ω
ζζ

ωM

s +1
	 (5.16)

where the coefficients A, B1, B2, C, and D can be calculated as:

	

A

B
r r

r

M

=

=
− + −

−



 − −

1

1
2 11

1
2

1 1 2
3

1

2

1
1

1

τ τ
τ

τ
τ

ζ
ω

τ
τ ωω

τ τ
τ

τ
τ

ζ
ω

τ

M

M

B
r r

r

2

2

2
2

1 2 2
3

2

1

2

1
2







=
− + −

−



 − 22

2
2

2

1

1
2

2

2
2

1

1

−





= − − −

τ ω

ω τ ω τ ω

M

M M M

C
B B

	 (5.17)

	
D r B B

M

= − − − + −1 1 2 1 2
2

( )τ τ ζ
ω
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For τ2 = 0:

	 B
B r

M
2

0

2

2
2

3

1
0

2

= = −
→

and lim
τ τ ω τ 	 (5.18)

If also τ1 = 0 and r3 = 0, then:

	 B
B

r
M

1
0

1

1
2 20

1

= = −
→

and lim
τ τ ω 	 (5.19)

To obtain the transfer function P(tf, s) of the guidance system with respect 
to a target acceleration, the components (5.16) of the integral ∫∞

i H dω σ σ( )
should be calculated.

The upper limit of integration of the first three terms of equation (5.16) 
gives, respectively:

	 ln , ln( ) ln( )s
B

s
B

s1

1
1

2

2
21 1

τ
τ

τ
τ+ +/ and /

The integral of the last term of equation (5.16) can be presented as:

	

Cs D
s

s
ds

C s D

s s

M M
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M M
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+ +
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∞∫ 2
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2
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ω ω
ω ζ ωMM
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C D
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2
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Based on equations (5.13), (5.15), and (5.20), the upper limit of equation 
(5.13) for

	 Y s
s

a s a s gT T T( ) ( ) ( )= =1
2

and

can be presented as:
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	(5.21)

The lower infinite limit of integration of equation (5.13) for the transfer 
function (5.15) with the degree of its numerator less than the degree of its 
denominator equals zero (it will be explained later in details (see also [5]), 
and the above equation represents the transfer function characterizing the 
relationship between the miss distance and target acceleration.

The frequency response of the guidance system follows from equation 
(5.21) when s = iω.

For s = iω, the last factor of equation (5.21) can be written as:

	 − −
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+ −
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22( ) +
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ζωM
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where
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(5.23)

and
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	 (5.24)

Here the symbol “Acrtan” is used to denote the inverse tangent function of 
the complex variable and the symbol “tan–1” denotes the inverse tangent 
function of the real variable that characterizes the argument of the com-
plex variable of the logarithmic function.
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Based on equations (5.22)–(5.24) we can present the last factor of equa-
tion (5.21) for s = iω in the following form (it follows directly from equa-
tion (5.21) based on the definition of complex exponents [2]):
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2 1 2−
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(5.25)

The amplitude and frequency characteristics of the guidance system fol-
low immediately from equations (5.21)–(5.25).

The amplitude characteristic P t iF( , )ω  has the following form:
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The phase characteristic φ(tf, iω) has the following form:
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	 (5.28)

The first factor of equation (5.25) corresponds to exp(.) in equation 
(5.27), and the second factor corresponds to the last term of the phase 
characteristic.
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The above expressions were obtained for the fourth-order model. Below 
we generalize them assuming that the flight control system has an arbitrary 
n-th order. Instead of equation (5.15) we have:
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where l + 2m = n; l = 2 and m = 1 correspond to the denominator of equa-
tion (5.15); rk (k = 1,...,n-1) are constant coefficients.

The partial-fraction expansion of H(s) has the form:
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where αp (p = 1,..,n) are the poles of W(s)—for simplicity they are assumed 
to be distinct—and the coefficients A, Bq, Cj, Dj, and Kp can be calculated 
as:

	 K s H s A sH s Wp
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0 1	 (5.31)

for the real poles αp = –1/τp:

	 B Kq q q= τ 	 (5.32)

for the pair of complex-conjugated poles α ζ ω ω ζp p p p p pi, + = − ± −1
21  the 

coefficients Kp and Kp+1 are also complex conjugated, so that from equa-
tion (5.30) and
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we have:

	 C
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The transfer function P(tF, s) for the n-dimensional flight control system 
is:
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(5.34)

The frequency response of the guidance system follows from equation 
(5.34) when s = iω. The amplitude characteristic P t iF( , )ω  has the follow-
ing form:
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The phase characteristic φ(tF, iω) has the following form:
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The equations (5.35)–(5.37) follow immediately from the below expres-
sions that present the generalization of equations (5.22)–(5.27):
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Based on equation (5.21), analogous to equations (5.35) and (5.37), for the 
amplitude P t iT F( , )ω  and phase φT(tF, iω) characteristics of PT(tF, iω) we 
have:
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and
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The real and imaginary parts of P(tF, iω) and PT(tF, iω) are:

	
Re[ ( , )] ( , ) cos( ( , ))

Re[ ( ,

P t i P t i t i

P t

F F F

T F

ω ω ϕ ω=

ii P t i t iT F T Fω ω ϕ ω)] ( , ) cos( ( , ))=
	 (5.44)

and
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P t i P t i t i

P t

F F F

T F

ω ω ϕ ω=

ii P t i t iT F T Fω ω ϕ ω)] ( , ) sin( ( , ))=
	 (5.45)

The obtained analytical expressions for the missile guidance system transfer 
function and its frequency characteristics enable us to analyze the missile 
system performance without resorting to simulation utilizing adjoint models 
in the time domain.

5.4  STEADY-STATE MISS ANALYSIS

The frequency approach also enables us to analyze the steady-state miss 
for various types of maneuvers analogous to the analysis of the steady-
state mode in control theory [3]. As known, the steady-state solution may 
be a good approximation for sufficiently large values of time.
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For the step maneuver the steady-state miss Misss is determined as:

	 Miss P t ss F s= =( , ) 0 	 (5.46)

It follows from equations (5.21) and (5.34) that Misss = 0 if N ≥ 2.
For the ramp maneuver:

	 Miss
d

ds
P t ss F s= =( ( , )) 0 	 (5.47)

It follows from equations (5.21) and (5.34) that Misss = 0 if N ≥ 3.
For the parabolic maneuver:

	 Miss
d

ds
P t ss F s= =

2

2 0( ( , )) 	 (5.48)

It follows from (5.21) and (5.34) that Misss = 0 if N ≥ 4.
For weave maneuvers, the miss steady-state response is determined 

directly from the frequency response (5.26)–(5.28), (5.35)–(5.37), (5.44), 
and (5.45).

5.5  WEAVE MANEUVER ANALYSIS

Maneuvers present the best strategy for missiles to achieve their goals. 
Evasive maneuvers are one of the most effective defense penetration features 
used on offensive missiles. The evasive maneuver causes the interceptor to 
expend additional energy, so that it becomes unable to reach the necessary 
point of engagement. As a result, interceptor miss distances are inevitable 
and subsequently intolerable, especially for hit-to-kill missiles. If designed 
properly, the maneuver can render the entire defense system useless. As 
indicated in [7,8], sinusoidal or weave maneuvers of a target can make it 
particularly difficult for a pursuing missile to engage the threat. Targets 
with very low weaving frequency appear as targets with “near-constant” 
maneuvers and in many cases will cause no problems for a proportional 
navigation guidance system. Targets with very high weaving frequencies 
also cause minimal problems for a missile guidance system because there 
is very little resultant target displacement as a result of the maneuver. The 
miss distance increases between these target weaving frequency extremes. 
The existence of the optimal maneuvering frequency, that is, the frequency 
that maximizes the steady-state miss distance amplitude, was established 
in [5].

The obtained above closed-form solution for the miss distance as a 
function of the effective navigation ratio, guidance system time constant, 
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92	 Guidance of Unmanned Aerial Vehicles

natural frequency, and damping ratio makes it possible to use the frequency 
analysis in practice. The established existence of the optimal evasive weave 
frequency and the procedure for determining it lead to the optimization 
approach for the design of attacking maneuvering missiles, as well as to 
the evaluation of the worst-case scenario when developing defensive mis-
siles to defeat maneuvering targets.

First, we consider the simplest dynamic model of the missile guidance 
system with W(s) = (τ1s + 1)–1. As it follows from equations (5.26) and 
(5.28), the amplitude and phase characteristics P t iF( , )ω  are:

	 P t i gF
N B N( , ) ( ) /ω ω ω τ τ= +−2 2

1
2 21 1 1/ 	 (5.49)

and

	 ϕ ω π π
τ

ωτ( , ) tan ( )t i N N
B

F = − + + −

2
1

1

1
1 	 (5.50)

where B1 = –τ1.
The steady-state miss distance due to a weaving target with a frequency 

ω can be presented in the time domain as:

	 y t P t i t t iF F F F( ) ( , ) sin( ( , ))= +ω ω ϕ ω 	 (5.51)

For example, for N = 3 we have:

	 y t
g

tF F( )
( )

sin( tan (
.

=
+

+ − −ω
ω τ

ω π ωτ
2

1
2 1 5

1
11

2 3
/

/ ))) 	 (5.52)

For τ1 = 0.5 s the peak miss as a function of a target frequency is shown 
in Figure 5.7.

The maximum magnitude of the steady-state miss distance 0.93 m cor-
responds to a target frequency 1.5 rad/s (i.e., the weaving period is 4.2 s).

5.6  EXAMPLE

To illustrate the effectiveness of the approach described above we consider a 
realistic example of a tail-controlled aerodynamic missile operating at high 
altitude [5,12].

The flight control dynamics are assumed to be presented by a 
third-order transfer function with damping ζ = 0.7 and natural fre-
quency ωM = 20 rad/s; the flight control system time constant τ1 = τ = 0.5 s; 
and the right-half plane zero ωz = 5 rad/s corresponds to high altitudes of 
missile flight. The filter and seeker dynamics are neglected (G1(s) = 1) and 
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perfect estimation of the LOS rate is assumed to generate a guidance com-
mand ac based on the proportional navigation law, so that in equation (5.15) 
τ2 = 0, r1 = 0, r3 = 0, and r z2

21= − /ω .
The flight control system of a tail-controlled endoatmospheric missile 

with the indicated parameters was considered in [12]. It was shown that 
at high altitude the performance of a tail-controlled aerodynamic missile 
can deteriorate because of the existence of low frequency right half-plane 
zeroes ωz.

Table 5.1 shows the influence of the flight control system parameters 
on the miss amplitude and the optimal weaving frequency ωopt; deviations 
were considered with respect to the values used in Figure 5.7. As it is seen 
from Table 5.1, the peak miss decreases drastically when ωz ≥ 10 rad/s, but 
right half-plane zeroes do not significantly influence the optimal weaving 
frequency. The increase of the amplitude miss for smaller values of time 
constant and larger values of damping and natural frequency is stipulated 
by the unsatisfactory dynamic properties of the flight control system (peak 
overshoot, settling time, etc.).

The frequency analysis enables us to evaluate the miss without simula-
tion of the guidance system. Moreover, the miss for weave maneuvers, 
which are more realistic than step maneuvers, can be analyzed directly 
from the analytical expressions for the frequency response given above. 
They allow us to examine the influence of the guidance system param-
eters on the missile system performance.

The model of the flight control system (4.1) is more precise than the 
binomial model considered in [10,11]. The results obtained based on this 
model are more reliable.
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FIGURE 5.7  Peak miss distance for 1-g target maneuver amplitude.
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94	 Guidance of Unmanned Aerial Vehicles

For example, the larger effective guidance time constant in binomial 
models gives the larger miss [10,11]. However, for the given example, 
because of the significant influence of the right-half plane zero ωz = 5 rad/s, 
the decrease of the flight control system time constant τ increases the miss. 
The solid line in Figure 5.8 presents the relationship between the maximum 

Table 5.1
Influence of Flight Control System Parameters on 
Optimal Weaving Frequency and Peak Miss 
Distance

Case 
Number

ωz 
rad/s

τ
s

ζ ωM 
rad/s

Peak miss 
m

ωopt 
rad/s

1 5 0.5 0.7 20 234 1.4
2 10 0.5 0.7 20 7.9 1.3
3 20 0.5 0.7 20 4.4 1.3
4 100 0.5 0.7 20 2.8 1.3
5 5 0.2 0.7 20 22100 5.5
6 5 0.6 0.7 20 151 1.2
7 5 0.7 0.7 20 115 1.0
8 5 0.5 0.6 20 265 1.4
9 5 0.5 0.8 20 208 1.4
10 5 0.5 0.7 10 34.8 1.3
11 5 0.5 0.7 30 2325 1.5
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FIGURE 5.8  Relationship between the maximum miss and the flight control 
system time constant.D
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miss and τ obtained from equation (5.26) for ωz = 5 rad/s and demonstrates 
tail-controlled missiles performance problems at very high altitudes. For 
lower altitudes (i.e., for higher values of ωz), the maximum miss decreases 
with the decrease of τ (see dashed line in Figure 5.8 for ωz = 20 rad/s; for 
this case the maximum miss scale is 100:1).

5.7  FREQUENCY ANALYSIS AND MISS STEP RESPONSE

There exists a relationship between the frequency response and the step 
response [3] that enables us to use frequency analysis to build the miss step 
response based on the frequency response of the missile guidance system.

The relationship between the transfer function and the impulse response 
of the missile guidance system is described by:

	 P t s P t t e dtF F
st( , ) ( , )= −

∞

∫0
	 (5.53)

Assuming s = iω, we obtain the expressions that relate the frequency and 
impulse response:

	 P t i P t t e dtF F
i t( , ) ( , )ω ω= −

∞

∫0
	 (5.54)

and

	 P t t P t i e dF F
t( , ) ( , )=

−∞

∞

∫1
2π

ω ωω 	 (5.55)

which are valid only for a stable P(tF, s); otherwise the integral of the right 
part of (5.54) would diverge.

By presenting

	 P t i P t i i P t iF F F( , ) Re[ ( , )] Im[ ( , )]ω ω ω= + 	 (5.56)

and taking into account that

	 e t i ti tω ω ω= +cos sin

the expression for the impulse response can be written as:

	

P t t P t i t P t iF F F( , ) (Re[ ( , )]cos Im[ ( , )]s= −1
2π

ω ω ω iin )

(Re[ ( , )]sin Im[ ( ,

ω ω

π
ω ω

t d

P t i t P tF F

−∞

∞

∫
+ +1

2
ii t dω ω ω)]cos )

−∞

∞

∫
	 (5.57)
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The integrand of the second integral is an odd function of frequency ω, so 
that this integral equals zero. The integrand of the first integral is an even 
function of frequency ω, so that this integral can be changed by the double 
value of the integral with limits 0 and ∞, i.e.,

	 P t t P t i t P t iF F F( , ) (Re[ ( , )]cos Im[ ( , )]si= −1
π

ω ω ω nn )ω ωt d
0

∞

∫ 	 (5.58)

Taking into account the condition of physical realization:

	 P t t tF( , ) ≡ ≤0 0for

i.e.,

	 P t t P t i t P t iF F F( , ) (Re[ ( , )]cos( ) Im[ ( ,− = − −1
π

ω ω ω))]sin( ))−
∞

∫ ω ωt d
0

0=

or

P t t P t i t P t iF F F( , ) (Re[ ( , )]cos Im[ ( , )]s− = +1
π

ω ω ω iin )ω ωt d
0

0
∞

∫ = 	 (5.59)

and adding equations (5.58) and (5.59) we obtain:

	 P t t P t i tdF F( , ) Re[ ( , )]cos=
∞

∫2

0π
ω ω ω 	 (5.60)

The miss step response equals the integral of the impulse response P(tF, t), 
i.e.,

	 Miss = ∫ P t dF

tF

( , )σ σ
0

	 (5.61)

Substituting equations (5.60) in (5.61) and changing the order of integration 
we have:

	 Miss =
∞

∫ ∫2

0 0π
ω ωσ σ ωRe[ ( , )] cosP t i d dF

tF

or

	 Miss =
∞

∫2

0π
ω

ω
ω ωRe[ ( , )]

sin
P t i

t dF
F 	 (5.62)
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Analysis of Proportional Navigation Guided Systems	 97

As established in control theory (see, e.g., [3,4]), if ωs is the frequency 
that characterizes a system bandwidth, then the time of the transient 
response satisfies the inequality

	

π
ω

π
ωs s

t≤ ≤ 4
,

which for guidance systems can be reformulated in the following way: If 
determined from the real part of the frequency response ωs characterizes the 
guidance system bandwidth, then the step miss is small for the flight time:

	 tF
s

≥ 4π
ω

	 (5.63)

The procedure of obtaining the miss step response based on equation (5.62) 
is demonstrated on the example of the guidance system analyzed above.

The frequency response of the guidance system [see equations (5.44) and 
(5.45)] for N = 3 is given in Figure 5.9. Figure 5.10 presents the real part of 
the frequency response [see equation (5.44)]. As indicated above, based on 
this characteristic it is possible to evaluate the time of flight tF, when the 
miss becomes small enough. Substituting in equation (5.63) ωs ≈ 3rad/s 
(see Figure 5.10), we obtain the estimate tF ≥ 4.2 s.

The miss due to the step maneuver is calculated based on equation (5.62). 
The miss values are shown in Figure 5.11 by the “*” symbol. The miss due 
to the unit step maneuver, obtained by simulation of the guidance system in 
Figure 5.6, is shown in Figure 5.11 by the solid line.

As seen from Figure 5.11, the frequency analysis enables us to evaluate the 
miss step without simulation of the missile guidance system.
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FIGURE 5.9  Frequency response of guidance system.
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5.8  BOUNDED INPUT—BOUNDED OUTPUT STABILITY

The expression for the frequency response of the missile guidance system 
is obtained assuming that the Fourier transform (5.54) and (5.55) exists 
or, in other words, the system is stable with respect to y(tF), tF ∈ [0, ∞). 
However, the stability conditions present the most difficult part of analy-
sis and synthesis of guidance systems. Since guidance systems operate 
on a finite time interval, their stability is determined as finite-time stabil-
ity and is called in [1] the Lyapunov stability. The known conditions are 
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FIGURE 5.10  Real frequency response of guidance system.
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FIGURE 5.11  Miss due to step maneuver.
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sufficient and are based on results related to the stability of nonlinear 
systems.

In contrast to finite-time stability that analyzes y(t), t ∈ [0, tF], the input-
output relation between the miss distance y(tF) and target acceleration [see 
equations (5.13), (5.14), and (5.34)] enables us to analyze y(tF), tF ∈ [0, ∞) 
and formulate the stability of the proportional navigation guidance sys-
tems as BIBO (bounded input – bounded output) stability.

Definition: The proportional navigation guidance system is BIBO sta-
ble, if for any bounded target acceleration its miss y(tF) is bounded for all 
times of flight tF ∈ [0, ∞).

It is obvious that y(tF) is bounded on a finite interval. We can expect that 
y(tF) is bounded, when tF → ∞ because 1/tgo → 0.

Using the expression for the transfer function (5.34), the stability con-
dition can be written similar to the BIBO stability condition of linear 
systems, i.e., L–1(P(tF, s)) should be absolutely integrable on [0, ∞) (L is 
the symbol of the Laplace transform). This condition is equivalent to the 
requirement for the transfer function P(tF, s) to be analytical in the right 
half-plane of the complex variable (including the imaginary axis) and 
lims→∞ P(tF, s) = 0.

Theorem: The proportional navigation guidance system with the transfer 
function W(s) [see equation (5.29)] is BIBO stable if and only if the follow-
ing condition is satisfied:

	 N N B N Ck k

k

l

j j

j

m

− + + <
= =

∑ ∑2 0
1

2

1

/ τ ω 	 (5.64)

where τk and ωj are parameters of the missile guidance system; N is the 
effective navigation ratio; Bk, and Cj are coefficients of the partial fraction 
expansion (5.30) of W(s)/s.

Proof. Necessity: If the condition (5.64) does not hold, then 
lims→∞ P(tF, s) ≠ 0. This contradicts the condition of the existence of an 
inverse Laplace transform.

Sufficiency: Let the condition (5.64) hold. The function P(tF, s) defined 
by equation (5.34) is analytic in the region Cv = {s : Res > – σ}, where 
σ = min(1/τk, ζjωj), k = 1,..,l, j = 1,...,m, i.e., it is analytic in the right-half 
plane (Res ≥ 0) so that L–1(P(tF, s)) is absolutely integrable on [0, ∞). 
The last statement needs additional clarification taking into account that 
P(tF, s) is a multiple-valued function of the complex variable s. Appendix 
B contains the rigorous proof of this statement.
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100	 Guidance of Unmanned Aerial Vehicles

Corollary: Proportional navigation missile guidance systems with the 
transfer function (5.29) are BIBO stable for all ri (i = 1,...,n–1).

Since H(s) is a proper rational function and the degree of its numerator 
equals n-1, presenting equation (5.30) in the form (5.29) and equating to 
zero the term of the numerator of power n, we have:

	

1 0
1

2

1

+ + =
= =

∑ ∑N B N Ck k

k

l

j j

j

m

/τ ω

so that the inequality (5.64) is always satisfied.
The established property of the structures in Figure 5.6 serves as a 

justification of the described procedure that can be used for analysis and 
synthesis of proportional navigation guidance systems in the frequency 
domain.

5.9 � FREQUENCY RESPONSE OF THE 
GENERALIZED GUIDANCE MODEL

The missile guidance models widely used in the literature do not take into 
account target dynamics. A target acceleration considered in most publica-
tions is, in essence, a commanded target acceleration rather than a real tar-
get acceleration. Nevertheless, this acceleration is compared with a missile 
acceleration that is presented as a result of the transformation of a missile 
commanded acceleration by a certain dynamic unit (first-order or higher) 
that reflects dynamic features of a missile flight control system.

Ignoring target missile dynamics can bring inaccuracies when evalu-
ating engagement performance. The generalized missile guidance model 
presented in Figure 5.12 can be used to obtain more accurate results.

Analogous to equation (5.12), the flight control dynamics of a target are 
presented by a third-order transfer function (below we consider a tail-con-
trolled missile):

	 W s

s

s s
sT

Tz

T
T

T T

( )
( )

=
−

+ + +





1

1 1
2

2

2

2

2

ω

τ ζ
ω ω

	 (5.65)

with damping ζT, natural frequency ωT, the flight control system time con-
stant τT, and the right-half plane zero ωTz.

The transfer function PG(tF, s) of the generalized model of the guidance 
system with respect to a commanded target acceleration can be presented 
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as the product of P(tF, s) and WT(s). Taking into account that the frequency 
response of the target flight control system WT(iω) is

	 W i P i i iT T T( ) ( ) exp( ( ))ω ω ϕ ω= 	 (5.66)

where

	 P iT T Tz T T( ) ( )( ) (( )ω ω ω ω τ ω ω ω= + + − +−2 2 2 2 2 2 2 2 21 1/ 44 2 2 2 2ζ ω ωT T )− 	 (5.67)

and

	 ϕ ω ωτ ωω ζ
ω ωT T

T T

T

i( ) tan ( ) tan= − −
−







− −1 1
2 2

2
	 (5.68)

the amplitude P t iG f( , )ω and phase φG(tf, iω) characteristics of the general-
ized model of the missile guidance system have the following form:

	 P t i P t i P iG F F T( , ) ( , ) ( )ω ω ω= ⋅ 	 (5.69)

and

	 ϕ ω ϕ ω ϕ ωG F F Tt i t i i( , ) ( , ) ( )= + 	 (5.70)

Target
maneuver λ λ

Missile
acceleration

Miss
y(tF)

1

s2 s
1

vcltgo

Nvcl

Guidance
command
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Seeker dynamics

y

Flight control
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FIGURE 5.12  Generalized missile guidance model.
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102	 Guidance of Unmanned Aerial Vehicles

The other frequency characteristics of the generalized model and the esti-
mates of the miss distance can be obtained from equations (5.44)–(5.48), 
and (5.62) by changing P t iF( , )ω  and φ(tF, iω) to P t iG F( , )ω  and φG(tF, iω), 
respectively.

As mentioned, the generalized missile guidance model gives more accu-
rate results than the model that does not take into account target dynamics. 
Figure 5.13 presents the amplitude characteristics of the missile guidance 
system considered above (dashed line) and the generalized missile guid-
ance model (solid line) for a target with ζT = 0.8, ωT = 3.5 rad/s, τT = 0.15 s 
and ωTz = 15 rad/s. The miss for the generalized model is less than for the 
model that ignores target dynamics.

The above discussion and examples were focused mainly on tail-
controlled missiles. As shown in Figure 5.8, the airframe zeroes can sig-
nificantly decrease missile performance. The tail configuration is also 
known as the nonminimum phase, due to the location of a zero in the right 
half s-plane in the corresponding transfer function of the linear model 
representation. The long moment arm between the tail controls and the 
forward position of the center of gravity after burnout requires smaller 
control forces for constructing the angle of attack, resulting in a lower drag 
configuration. These control forces are exerted in a direction opposite to 
the required maneuver, thus, generating a delay in the missile response in 
the correct direction.

The delayed response of the tail controls can be compensated by employ-
ing an additional forward control device, using either divert thrusters or 
aerodynamic canard fins. Missiles with forward control fins, or canards, 
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FIGURE 5.13  Amplitude characteristics of frequency response.
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Analysis of Proportional Navigation Guided Systems	 103

have been used for many years. However, this type of missile can suffer 
from adverse induced rolling moments. The use of grid fins, or “lattice con-
trols,” for the tail control surfaces—instead of conventional planar fins—
was recently proposed as a possible remedy for the roll control problems. 
Studies have shown that when compared to conventional planar fins, grid 
fins have certain advantages, such as effective aerodynamic control at high 
angles of attack and high Mach number, attenuated body-vortex interfer-
ence, and improved roll control. The primary disadvantage of the grid fin 
concept is a higher drag than conventional planar fins. The canard fins, 
located in the front part of the fuselage, generate an aerodynamic force that 
is in the same direction as the required maneuvering force, thus generat-
ing an immediate response in the correct direction. Canard missiles have 
forward and aft control systems.

In contrast to equation (5.12) and Figure 5.6, the flight control system 
dynamics of this type of missile can be represented by two transfer func-
tions: a minimum phase transfer function for the forward control and a 
nonminimum phase transfer function for the aft control. The use of two 
control systems offers new capabilities, for example, the ability to generate 
a very high angle of attack for fast and large turns. The additional degree 
of freedom offered by the dual control system requires special consider-
ation in the guidance and control design. The appropriate blending of the 
two controls can significantly improve performance of canard missiles. 
The material of this chapter allows readers to obtain the analogous equa-
tions for this type of missiles.
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6 Design of Guidance 
Laws Implementing 
Parallel Navigation. 
Frequency–Domain 
Approach

6.1  INTRODUCTION

The classical approach to missile guidance is usually based on applying a 
guidance law obtained from certain line-of-sight (LOS) geometrical rules. 
The guidance law is the algorithm by which the desired geometrical rule is 
implemented. According to the well-known proportional navigation (PN) 
law, widely used in military applications, the missile acceleration is pro-
portional to the measured LOS rate. However, acting as the commanded 
missile acceleration, this law produces the missile real acceleration, which 
differs from the desired commanded acceleration. Usually, kinematics of 
PN are analyzed without taking into account missile dynamics, and most 
recommendations concerning guidance law parameters are made based on 
this analysis. In the previous chapters, we acted the same way. As shown in 
Chapter 4 [see equation (4.6)], the miss distance due to a step target maneu-
ver is exactly zero for an idealized linearized inertialess two-dimensional 
PN missile-target engagement model. The influence of missile dynamics 
was examined analytically for single-lag models of guidance systems by 
using the method of adjoints [see equation (4.22)]. As indicated, the single-
lag models, as well as the binomial models, do not quite match reality 
and do not accurately reflect flight control system dynamics. The analyti-
cal approach to analysis of effectiveness of PN for more realistic models 
of guidance systems, reflecting airframe and autopilot dynamics against 
weaving targets was considered in Chapter 5.

It is known that PN demonstrates good performance for nonmaneuvering 
or moderately maneuvering targets. For highly maneuvering targets the so-
called optimal guidance laws (based on optimal control or game theory) can 
theoretically get significantly better results. However, as indicated earlier, 
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these laws require complete and detailed information about missile dynam-
ics and future behavior of a target. They are too complicated and the closed-
form solution is obtained only for simple guidance system models [6,12–14].

As mentioned above, the actual missile acceleration differs from the 
commanded acceleration because of the flight control system dynamics. 
On the one hand, its transient response may make the difference signifi-
cant. For weaving targets, the frequency response of the flight control 
system determines the steady-state amplitude and phase shift of the real 
acceleration compared to the commanded acceleration [7,8]. On the other 
hand, external disturbances usually ignored in many engagement models 
(e.g., drag) contribute to the difference between the actual and commanded 
accelerations and increase the miss distance.

The PN guidance law acts as a simple proportional controller that was 
used at the initial stage of control systems development [3–5]. Now the PID 
(proportional-integral-differential) controllers are widely used in practice. 
Usually, the instruction of utilizing these controllers contains the following: a 
proportional controller will have the effect of reducing the rise time and will 
reduce, but never eliminate, the steady-state error; an integral control will 
have the effect of eliminating the steady-state error, but it may make the tran-
sient response worse; a derivative control will have the effect of increasing the 
stability of the system, reducing the overshoot, and improving the transient 
response. Can these recommendations be applied to the PN guidance law?

Over the years, control theory has made enormous progress, and 
various types of control laws have been developed and used in practice. 
Nevertheless, the guidance laws used in the aerospace field have not changed 
significantly and the PN continues to dominate research and development. 
The so-called neoclassical approach that, at a certain degree, is similar to 
the utilization of proportional-differential controllers (that have been used 
since the 1940s) was considered only in 2001 [1].

Taking into account that both transient and frequency responses can be 
improved by utilizing feedback/feedforward control signals, we will consider 
how to use the classical control theory approach to improve the performance 
of missile systems with PN guidance. The approach to decrease significantly 
the miss distance by modifying the PN guidance and using in the guid-
ance law the actual missile acceleration signals is discussed. New guidance 
laws and the conditions for choosing their parameters are considered.

Although the below discussion focuses on missile guidance, it is applied 
also to a wide class of unmanned aerial vehicles, including UAVs.

6.2  NEOCLASSICAL MISSILE GUIDANCE

Let us again consider the missile guidance system discussed in Chapter 5 
(see Figure 5.6 and 6.1). The relative separation y(t) between a missile and 
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a target is obtained by integrating the missile acceleration aM subtracted 
from the target acceleration aT. A division by range (closing velocity vcl 
multiplied by time-to-go tgo until intercept) yields the geometric line-
of-sight (LOS) angle λ, where the time-to-go is defined as tgo = tF – t. 
Analogous to Figure 5.6, the missile seeker is presented formally as a 
perfect differentiator; the filter and seeker dynamics are represented by 
a transfer function 

	
G s

s

s
z

1
2

1
1

( ) ,= +
+

τ
τ

where τz and τ2 are constant coefficients. An estimation of the LOS rate 
generates a guidance command ac based on the proportional navigation 
law with the effective navigation ratio N. The flight control system dynam-
ics, which combine its airframe and autopilot dynamics, are represented by 
the transfer function (5.12).

Here we rewrite the main relationships (5.13)–(5.15) in Chapter  4 
(for simplicity we do not consider here G1(s) of higher order and do not use 
equation (5.29) for W(s))

	 Y t s N H d Y sF

s

T( , ) exp ( ) ( )= 



∞∫ σ σ 	 (6.1)

G2(s) ?

?

Target
maneuver

1
G1(s)

1
s2 y–

λ λ

svcltgo

Nvcl

Missile
acceleration

aM = ÿM

aT = ÿT

Miss
y(tF)

ac
Guidance
command

Seeker dynamics

FIGURE 6.1  Modified missile guidance model.
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where YT(s) is the Laplace transform of a target vertical position yT(t), Y(tF, s) 
is the Laplace transform of y(tF):

	 H s
W s

s
( )

( )= 	 (6.2)

and

	 W s G s G s
r s r s r s

s
( ) ( ) ( )

( )(
= ⋅ = + + +

+ +
1 2

1 2
2

3
3

1

1

1 1τ τ22

2

2
1

2
s s

s

M M

) + +





ζ
ω ω

	 (6.3)

where rk (k = 1,…,3) are constant coefficients.
In contrast to Figure 5.6, Figure 6.1 contains the feedforward and feed-

back units, which should be determined to improve the performance of the 
PN guidance law.

The problem of obtaining small miss distance is similar to the problem of 
reaching high accuracy of conventional feedback systems. It is known that 
high accuracy can be achieved by increasing the controller gain in conven-
tional feedback systems. However, the controversy between accuracy and 
stability makes the problem of designing high accuracy systems difficult.

A special class of linear systems admitting infinite gains was consid-
ered in [4], and the link between this class of linear structures and a class 
of linear optimal systems was discussed in [9]. The class of linear struc-
tures examined in [4,9], described by the n-order differential equations, 
requires n-1 “pure” differentiators. As shown in [10,11], their practical 
realization can make the system unrobust.

For idealized linearized inertialess two-dimensional PN missile-target 
engagement model, discussed in Chapter 4 (see (4.6)), W(s) = 1, so that an 
intuitive approach to achieve zero-miss-distance for the PN guided missile 
systems with the transfer function W(s) described by equation (6.3) con-
sists in utilizing the feedforward sequential unit with the transfer function 
1/W(s), so that the transfer function (6.3) of the modified system (see Figure 
6.1) would be equal to 1. Such a “naïve” approach was used in the inverse 
operator method applied to control systems admitting infinitely high gain 
[9]. Offered in the 1960s, this method suffers significant drawbacks. First, 
it ignores the transient response that cannot be eliminated. As the result, it 
cannot be applied to the systems with unstable zeroes, because the whole 
system with the inverse operator is unrobust; it becomes unstable [9]. 
Finally, its realization usually requires multiple differentiation operations 
that makes the real system susceptible to noise.

It looks like the similar idea to decrease the miss distance in the PN 
guided systems by including in the “acceleration channel” additional 
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differentiating units was considered in [1]. The approach of achieving 
zero-miss-distance (ZMD) was called the neoclassical guidance. The main 
result is stated by the following theorem [1].

Theorem: Consider a strictly proper rational function H(s) = W(s)/s of the 
form:

	 H s
b s

a s

b s b s b

s a s

n n
n

n n
( )

( )
( )

...
= = + + +

+

− −

−
1

1
2

2

1
1 ++ +

≥
−

...
,

a s
b

n 1
1 0

where a(s) and b(s) are coprime polynomials.
Denote by r the relative order of H(s), i.e., r = deg[a(s)] – deg[b(s)]. Under 

these conditions, if s = Res + iω:

	 F F s H s ds
iff r

i
( ) ( ) ( )lim lim∞ = = 



 →

≥

∞→∞ →∞ ∫ω ω

0 2

fff r =





 1

Proof: By presenting H(s) in the form 

	 H s
b
s

h sjj
j( ) ,= + ∑ =

1
2

∞ −

where hj are coefficients of this series, and integrating the above expres-
sion, we obtain for b1 ≠ 0 (when r = 1) the integral tends to infinity since 
ln(∞) → ∞. For b1 = 0 (when r ≥ 2), the result of integration gives the com-
ponents hjs1–j/(1 – j), j > 1, which tend to zero.

Since the infinite value of the above integral corresponds to the lower 
limit of integration in equation (6.1), i.e., the corresponding exponent fac-
tor equals zero, the condition r = 1 gives zero Y(tF, s).

As stated in [1], if the guidance system is linear and the degree of the 
numerator of W(s) equals the degree of the denominator (the biproper transfer 
function W(s)) and b1 > 0, then the zero miss distance (ZMD) is obtained for 
any bounded target maneuver.

It is important to indicate that the expression (6.1) was obtained based 
on the impulse response presentation by using the method of adjoints, so 
that it is assumed that the planar model of the PN guided missile system 
has zero initial conditions. Hence, ZMD can be achieved only for the men-
tioned zero initial conditions.

Although the guidance systems operate on a finite interval of time so 
that y(tF) is limited, to conclude only based on equation (6.1) that the ZMD 
property is attainable for the linearized models and satisfying the condition 
of the above-given theorem means to ignore the missile system dynam-
ics. This is inadmissible and, as the result, the neoclassical approach can 
significantly worsen, rather than improve, the missile system performance.
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The biproper transfer function can be obtained only if a compensator 
contains a “pure” differential operator. In practice, operations of differ-
entiation can be performed only approximately, so that instead of the case 
r = 1 we have the case r = 2.

Using the analytical expressions (5.16)–(5.21), we obtain the expression 
for the miss distance for these two cases and compare the results for the 
“ideal” guidance system and the system with very close characteristics 
(with a real differentiation operator). The miss distance due to a weaving 
target will be evaluated by determining the magnitude of the steady-state 
component when the input, target acceleration, is a unit harmonic signal of 
frequency ω (e.g., nT = 1g sinωt; g is acceleration of gravity), i.e., from the 
expression (5.26).

The case of the “ideal” neoclassical guidance we discuss considering an 
example of a tail-controlled missile with

	 G s

s

s
s

s

z

M M

2

2

2

1

2

2

1

1
2

1
( )

( )
=

−

+ + +





ω

τ
ω

ζ
ω

	 (6.4)

and the compensator

	 G s s1 1 1( ) = − +τ 	 (6.5)

The negative sign of derivative –τ1s is stipulated by the condition b1 > 0. 
According to the theorem, this type of correction gives the zero-miss-
distance.

Now, instead of (6.5) we consider a physically realizable unit:

	 G s
s

s1
1 1

1
( ) = − +

+
τ
ε

	 (6.6)

where ε is a small parameter.
The expression for the amplitude characteristic [see equations (5.17)–

(5.19), (5.26)] has the form:

	
P t gF

N
B N

B N( , ) ( ) ( ) /ω ω ω ε ω τε τ= + +− −2 2 2 2 2
1
2 2

2

1 11/ ((( )

) exp(.)/

ω ω

ω ζ ω

M

M
CN M

2 2 2

2 2 44 2

−

+
	 (6.7)

where exp(.) is given by equation (5.27).
For N = 3, ωM = 20 rad/s, ωz = 5 rad/s, τ1 = 0.5 s, and ζ = 0.7 the maxi-

mum miss distance (peak miss) of 234 m corresponds to a target maneuver 
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with the frequency of 1.4 rad/s, i.e., with the period of 4.48 s. For τ1 = 0.2 s 
and ε = 0.01 s we obtain the miss distances of order O(10–6), i.e., a very 
good accuracy. However, the step response of the flight control system 
with the transfer function W(s) = G1(s)G2(s) (see Figure 6.2) shows that the 
dynamic characteristics of the flight control system does not correspond to 
the design requirements. The signal generated by the negative derivative 
amplifies the “wrong way tail effect,” so that dynamics of the modified 
system becomes inadmissible.

Remark: In [2] the nonlinear planar missile guidance system model was 
considered taking into account saturation due to aerodynamic or structural 
constraints. The positive realness (PR) condition was imposed for no satu-
ration to occur. Since the PR condition is widely used in the nonlinear con-
trol theory as a stability condition, its relationship with finite time stability 
was established [1], so that its combination with the accuracy condition 
[1] enables us to obtain appropriate dynamic characteristics of the flight 
control system. However, the PR condition restricts significantly the class 
of missile systems where, theoretically and under zero initial conditions, 
zero-miss-distance can be achieved. The important class of tail-controlled 
missiles does not satisfy the PR condition.

6.3  PSEUDOCLASSICAL MISSILE GUIDANCE

The proportional navigation guidance law is so popular that it is consid-
ered as classical. Below we describe its modification by using the results 
of classical control theory. The approach offered is based on utilizing 
feedforward/feedback control signals to make the real missile acceleration 
close to the commanded acceleration generated by the PN law. The perfor-
mance of the modified guidance law is equivalent to the performance of 
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FIGURE 6.2  Step response for τ1 = 0.2 s and ε = 0.01 s.
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the PN law applied to a fictitious flight control system with better dynamic 
characteristics.

We will consider the modified PN guidance law based on analysis of 
the following structure widely used in control theory (see Figure 6.3). 
Figure 6.3 presents in details the part of the structure in Figure 6.1 that 
contains the symbol “?.” Here the new commanded acceleration aA (a new 
guidance law) is formed as a sum of the feedforward signal G4(D)ac and 
the feedback signal G3(D)(ac – aM), i.e.,

	 a G D a G D a aA c c M= + −4 3( ) ( )( ) 	 (6.8)

(D is the differential operator; transfer functions G3(s) and G4(s) character-
ize the feedback and feedforward channels, respectively.)

The transfer functions WΣ(s) characterizing the input-output relations 
between ac and aM can be presented as:

	 W s
G s G s G s

G s G sΣ ( )
( )( ( ) ( ))

( ) ( )
= +

+
2 3 4

2 31
	 (6.9)

where G4(0) = 1 (it follows from the condition WΣ(0) = 1, which is similar 
to W(0) = 1).

We will consider the fictitious flight control system WΣ(s) with better 
dynamic characteristics than the original flight control system W(s) with 
respect to the commanded acceleration (the PN law).

The analysis of the guidance system with the new guidance law (6.8) 
is equivalent to the analysis of the guidance system in Figure 6.1 with the 
commanded acceleration ac and the fictitious flight control system with the 
transfer function WΣ(s).

The problem of designing the new guidance law, which performance is 
better than the performance of the PN guidance law, reduces to determin-
ing WΣ(s) (the transfer functions of the feedback and feedforward channels 

G2(s) G3(s)

G4(s)

Missile
acceleration

aM = ÿM

ac
Guidance
command

e
–

aA

FIGURE 6.3  Modified guidance law.
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G3(s) and G4(s)) that gives the smaller miss distance y(tF) than in the case 
of the initial W(s) and has the transient response satisfying the design 
specifications.

According to equation (6.1), the miss distance due to a weaving target 
is evaluated by determining its steady-state component when the input is 
a unit harmonic signal of target acceleration with frequency ω, i.e., from 
the expression

	 P t i N H d
g

iF

i

( , ) exp ( )
( )

ω σ σ
ω

ω

= 



∞∫ 2

	 (6.10)

where P(tF, iω) is the frequency response relating the miss distance at 
moment tF to the target acceleration aT.

We will evaluate the steady-state component of equation (6.1), when 
the input is a sinusoidal signal; the peak miss distance characterizes its 
amplitude.

The integral in equation (6.10) can be presented in the following form:

	

H d i H i i H i d

i H

i

i

( ) (Re ( ) Im ( ))

( Re

σ σ ω ω ω
ωω

= +

= −

∞∞ ∫∫
(( ) Im ( ))i H i dω ω ω

ω
+

∞

∫
	 (6.11)

Since the absolute value of exp( ( ) )N H di∫∞
ω σ σ  equals exp( Im ( ) ),N H i d∫∞

ω ω ω  
we will analyze the expression for ∫∞

ω ω ωIm ( ) .H i d  Taking into account 
equation (6.2), we have

	 H i
W i

i
i

W i

i

W i
i

W i
( )

Re ( ) Im ( ) Im ( ) Re (ω ω
ω

ω
ω

ω
ω

ω= + = − ))
ω

	 (6.12)

so that

	 exp Im ( ) exp
Re ( )

N H i d N
W i

dω ω ω
ω

ω
ω ω

∞ ∞

∫ ∫



 = −



 	 (6.13)

Theorem: The peak miss distance under the new guidance law aA of 
equation (6.8) is less than under the PN guidance law if WΣ(s) of equation 
(6.9) has no poles in the right half-plane of the complex variable s and

	 exp
Re ( )

exp
Re ( )W i

d
W i

d∑
∞ ∞

∫ ∫



 > 


ω

ω
ω ω

ω
ω

ω ω


 	 (6.14)
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Proof: The first condition is required for the existence of the integral in 
equation (6.10). The inequality (6.14) follows immediately from equations 
(6.10) and (6.13).

Corollary 1 of Theorem: If WΣ(s) is not a strictly proper rational 
function and its nominator and denominator are polynomials of the same 
order, then the peak miss distance equals zero.

Proof: In the case where the nominator and denominator have the same 
order, WΣ(s) and, hence, ReWΣ(iω) contain a positive constant term, so that 
the integral in the left part of the inequality (6.14) equals infinity (i.e., the 
exponential term of equations (6.10) and (6.13) equals zero). Therefore, the 
peak miss equals zero.

Zero-miss-distance for a nonstrictly proper rational transfer function 
was discussed in the previous section. Here the conditions of ZMD were 
proved in a different way. Moreover, the above statement relates only to 
the steady-state component of the miss distance. As mentioned earlier, the 
class of nonstrictly proper rational transfer functions is very sensitive to 
noise and its realization requires “pure” differential units that cannot be 
realized in practice. That is why we will consider only strictly proper ratio-
nal functions WΣ(s).

Corollary 2 of Theorem: The peak miss distance under the new 
guidance law aA [see equation (6.8)] is less than under the PN guidance 
law for target maneuver frequencies ωT, if WΣ(s) has no poles in the right 
half-plane of the complex variable s and

	 Re ( ) Re ( ),W i W i T∑ > ≥ω ω ω ω 	 (6.15)

Proof: Because the denominator of the integrand of (6.14) is positive, the 
condition (6.14) is satisfied if the condition (6.15) holds.

In practice, it is easier to use the condition (6.15) than the condition 
(6.14). However, it is difficult (in the general case simply impossible) to find 
physically realizable units G3(s) and G4(s) to satisfy the condition (6.15) 
for all ω ≥ ωT. That is why it is reasonable, first, to try to choose G3(s) and 
G4(s) from the condition (6.15) for ω ∈ [0, ωc], where ωc characterizes the 
guidance system W(iω) bandwidth, and then check whether the condition 
(6.14) is satisfied. If the condition (6.14) is not satisfied, G3(iω) and G4(iω) 
should be chosen from the condition (6.15) for a higher range of ω.

The conditions (6.14) and (6.15) were obtained for the steady-state mode. 
Because of the correlation between the transient and frequency responses, 
it is plausible to assume that the new guidance laws satisfying these con-
ditions will decrease the miss distance for small times of flight as well. 

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

2:
41

 2
0 

M
ar

ch
 2

01
6 



Design of Guidance Laws Implementing Parallel Navigation	 115

Below the described approach is demonstrated by using simple enough 
control structures, so that the new guidance laws can be easily realized in 
practice. Both transient and frequency responses are considered.

6.4  EXAMPLE SYSTEMS

The bounded input – bounded output (BIBO) stability conditions for the 
considering class of the PN guidance structures were discussed in Chapter 5. 
The transfer functions G3(s) and G4(s) should be chosen so that WΣ(s) is 
asymptotically stable.

6.4.1 P lanar Model of Engagement

For a missile guidance model in Figure 6.1, G1(s) = 1 and G2(s) is described 
by equation (4.12). The feedforward and feedback units in Figure 6.2 are 
chosen as

	 G s
k s

s3
1 10

2 1
( )

( )= +
+

τ µ
τ

	 (6.16)

and

	 G s k4 2( ) = 	 (6.17)

where τ10, τ2 and k1 are constant parameters, µ = 1 or 0, k2 = 1 or 0.
Based on equation (6.9) the transfer function WΣ(s) equals

	 W s
k k s k k a s

s s
∑ = + + +

+
( )

(( ) ) ( )

( )(

1 10 2 2 1 2

2 11

τ τ µ

τ τ ++ + +



 + +1

2
1

2

2 1 10) ( ) ( )
s

s k s a s
M Mω

ζ
ω

τ µ
	 (6.18)

The procedure of finding G3(s) and G4(s) is demonstrated on examples of 
tail-controlled missiles where the right half-plane airframe zero can sig-
nificantly influence dynamics of the flight control system. The two cases 
ωz = 30 rad/s and ωz = 5 rad/s will be considered. As mentioned earlier, 
the last case corresponds to high altitudes of missile flight. The other 
parameters of G2(s) are chosen as ζ = 0.7, ωM = 20 rad/s, and τ1 = 0.5 s. 
The effective navigation ratio N = 3; it can be changed as shown below.

Formally, it is possible to present the condition (6.15), accompanied by the 
conditions for the poles of WΣ(iω) to guarantee a certain transient response, 
as a part of a mathematical programming problem to determine the unknown 
parameters of WΣ(iω). However, we will employ a standard engineering 
approach utilizing elements of control theory and Matlab software.
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The frequency response of W(iω) for ωz = 30 rad/s is given in Figure 6.4 
(solid line). Dynamic properties of a system with such response are satisfac-
tory and the system has a sufficient margin of stability. According to control 
theory, the increase of gain k1 (see Figure 6.3) decreases the steady-state 
error e = ac – aM. As seen from Figure 6.4, for ω ≥ 10 rad/s W(iω) <  < 1 and 
Re W(iω) < 0, so that the condition (6.14) should be checked for the range of 
frequencies ω ∈ [0, 10].

First, we consider the case of G3(s) = k1. Analysis of equation (6.9) shows 
that by choosing, for example, k1 = 5 we significantly decrease e = nc – nl 
(i.e., make aM closer to ac). There exist two realizations of WΣ(iω) for k1 = 5: 
k2 = 0 and k2 = 1. In the first case, the gain of WΣ(iω) equals 5/6, so that 
to satisfy the condition WΣ(0) = 1 the effective navigation ratio should be 
increased by factor 6/5. In the future, we assume the corresponding increase 
(if necessary) of N, so that the gain of WΣ(s) equals 1. The frequency response 
WΣ(iω) in Figure 6.4 (dashed line) shows that ReWΣ(iω) > ReW(iω) for 
ω ∈ [0, 10] (see also Figure 6.5). The real frequency response in Figure 6.5, 
as well as the step response in Figure 6.6, shows that the modified system 
WΣ(iω) has better dynamic characteristics than the original one.

Comparing the peak miss characteristics for the missile system with the 
PN guidance law and the modified guidance law given in Figure 6.7, we 
can conclude that the guidance laws [see equation (6.8)]:

	 a a a N a NvA c M c cl= − = =5 3 6 5( ), * ,/ λ 	 (6.19)

–2
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ω = 10 rad/s

FIGURE 6.4  Frequency response W(iω) and WΣ(iω) for ωz = 30 rad/s.
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or

	 a a a a N a NvA c c M c cl= + − = =5 3( ), , λ 	 (6.20)

significantly decrease the miss distance.
By using a phase-lead network with parameters τ10 and τ2 that increases 

ReWΣ(iω) more and, as a result, by using a more complicated guidance 
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FIGURE 6.5  Real frequency response W(iω) and WΣ(iω) for ωz = 30 rad/s.
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FIGURE 6.6  Step response of W(s) and WΣ(s) for ωz = 30 rad/s.
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law (see Figure 6.6 and Figure 6.7; the case k2 = 1; τ10 = 0,1 s; τ2 = 0.02 s; 
µ = 1) we get an additional decrease of the miss distance. However, the 
additional change is not significant.

The step and frequency responses of the flight control system for 
ωz = 5 rad/s are given in Figures 6.8 and 6.9. At high altitudes the 
“wrong way tail effect” of tail-controlled endoatmospheric interceptors 
is substantial, so that their dynamic characteristics at high altitudes are 
significantly worse than at lower altitudes. Given in Figure 6.10, the 
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FIGURE 6.7  Comparison of the peak miss for the PN and modified guidance 
law for ωz = 30 rad/s.
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FIGURE 6.8  Step response of W(s) and WΣ(s) for ωz = 5 rad/s.
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amplitude characteristic of the frequency response for the missile with 
the PN guidance law shows that the peak miss for ωz = 5 rad/s is sig-
nificantly higher than for the case ωz = 30 rad/s (see Figure 6.6). The 
analysis of the frequency response W(iω) in Figure 6.9 (solid line) shows 
that gains k1 > 0.8 would make the flight control system WΣ(s) unstable. 
Moreover, compared to the case ωz = 30 rad/s, here W(iω) has a wider 
bandwidth and the domain, where ReW(iω) < 0.
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FIGURE 6.9  Frequency response W(iω) and WΣ(iω) for ωz = 5 rad/s.
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FIGURE 6.10  Comparison of the peak miss for the PN and modified guidance 
law for ωz = 5 rad/s.
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Creating a feedback system with a gain k1, similar to the case 
ωz = 30 rad/s, would require G3(s) to narrow the bandwidth significantly 
(i.e., τ1 = 0 and the time constant τ2 should be big enough). The analysis 
similar to the case ωz = 30 rad/s shows that τ2 = 2.25 s enables us to 
decrease the miss distance significantly (see Figures 6.8–6.10; dashed 
lines). The guidance law has the following form:

	 2 25 5 3 6 5. ( ), , a a a a N a NvA A c M c cl+ = − = ⋅ =/ λ 	 (6.21)

As seen from the step response (Figure 6.8), the wrong way tail effect acts 
as a “negative force” that can be compensated by an opposite directed 
force, which can be realized by a positive feedback unit with a transfer 
function τ10s/(τ2s + 1).

The frequency and step responses and the amplitude characteristic of the 
frequency response for the parameters k2 = –1; k2 = 1 τ10 = 0.1 s; τ2 = 0.05 s; 
µ = 0, chosen from the condition (6.15), are given in Figures 6.8–6.10 (dash-
dot lines). It follows that the guidance law

	 0 05 0 05 0 1. . . ,   a a a a a a NvA A c c M c cl+ = − + + = λ 	 (6.22)

enables us to obtain a lower peak miss than under the guidance law (6.21).

6.4.2 M ultidimensional Model of Engagement

The above results were obtained and tested for the considered linear planar 
model assuming zero initial conditions of the flight control system coor-
dinates and a constant closing velocity. The new guidance laws are tested 
also on a more precise multidimensional nonlinear model of engagement, 
similar to that considered in Chapter 3, with the following parameters:

A target initial condition •	 RT1 = 4500 m, RT2 = 2500 m, RT3 = 0

	 VT1 = –350 m/s, VT2 = 30 m/s; VT3 = 0

A missile initial condition •	 RM1 = RM2 = RT3 = 0; 

	 VM1 = 165 m/s, VM2 = 475 m/s; VM3 = 0

A target acceleration •	 aT1 = 0, aT2 = 3g sin1.31t, aT3 = 0
A missile acceleration limit •	 a gc ≤ 10

	 (Ri, Vi, i = 1 – 3, are distance and velocity coordinates)

The flight control system has the same parameters as in the linear planar 
model.
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The simulation results are presented in Table 6.1. The miss distance and 
the time of intercept correspond to the moment of time, when the closing 
velocity became positive.

As seen from the table, the considered new guidance laws decrease the 
miss distance significantly (i.e., increase the missile performance).

In Chapter 3, the class of the guidance laws developed based on the 
Lyapunov method was discussed. Below we consider as the commanded 
acceleration the guidance law containing the “cubic” power of the LOS 
rate components λi (i = 1 – 3), i.e.,

	 a Nv N N N ici cl i i i i= + > > = λ λ1
3

12 0 1 2 3, , ( , , ) 	 (6.23)

where N1i are chosen as in the example of Chapter 3.
As mentioned earlier, even from a purely physical consideration we can 

assume that the missile guidance system with a variable gain, which is 
bigger, when LOS rate is big, and smaller, when LOS rate is small, would 
act better than the traditional PN system. The component (6.23) with a 
properly chosen N1i serves this purpose.

Because of the different “ideology” of the guidance laws considered 
in this and the previous chapters, we will test the effectiveness of the 
“cubic” term by considering the commanded acceleration (6.23) and the 
guidance laws (6.19)–(6.22), i.e., instead of the PN law with N = 3 the 
commanded acceleration has the form of equation (6.23). Formally, the 
nonlinear term in equation (6.23) does not allow us to rely on the ana-
lytical expressions (6.14) and (6.15), because they were obtained for the 
linear model of the missile guidance system. However, the basic idea 
to make the actual acceleration closer to the commanded acceleration 
enables us to assume that the guidance laws (6.19)–(6.22) can be used 
with the “cubic” term in equation (6.23). The simulation results are pre-
sented in Table 6.2.

Table 6.1
Comparative Analysis of Guidance Laws

Case 
#

Parameters Time of 
Intercept 

(s)

Miss 
(m)

1 ω τ τz rad s N k k= = = = = =30 3 0 1 0 01 2 10 2/ ; ; ; ; ; 8.0 2.01
2 ω τ τ µz rad s N k k= = = = = = =30 3 6 5 5 0 0 0 11 2 10 2/ /; * ; ; ; ; ; 8.0 0.52
3 ω τ τz rad s N k k= = = = = =5 3 0 1 0 01 2 10 2/ ; ; ; ; ; 8.0 5.58
4 ω τ τz rad s N k k s= = = = = =5 3 6 5 5 0 0 2 251 2 10 2/ /; * ; ; ; ; . ; µµ = 1 8.0 0.81

5 ω τ τz rad s N k k s s= = = − = = =5 3 1 1 0 1 0 051 2 10 2/ ; ; ; ; . ; . ; µµ = 0 8.0 0.29

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

2:
41

 2
0 

M
ar

ch
 2

01
6 



122	 Guidance of Unmanned Aerial Vehicles

The simulation results show that the guidance laws (6.8), (6.19)–(6.22) 
can work successfully with other guidance laws, which contain the PN law 
as their component.

In contrast to the acceleration feedback used in autopilot systems (its influ-
ence is reflected in G2(s)), the additional acceleration feedback described 
above is used to generate the new guidance law (6.8). It is assumed that the 
new guidance would work with existing autopilots. However, the expres-
sion of (6.8) and, especially, the acceleration operator G4(s) can also be 
used for the integrated design of guidance and autopilot systems.

The traditional approach to missile guidance and control system design 
has been to neglect interactions between these systems. Usually, individual 
missile systems are designed separately. Then they are assembled together. 
If the whole system performance is unsatisfactory, the individual subsys-
tems are redesigned to improve the system performance. Because of its 
iterative nature, the design process can be highly time-consuming and 
expensive. The approach discussed in this chapter can be considered as an 
important component of design methods for integrated guidance-autopilot 
systems.
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7 Guidance Law 
Performance Analysis 
under Stochastic Inputs

7.1  INTRODUCTION

The guidance law analysis in the previous chapters was strictly determin-
istic. It was assumed that the information about their parameters contains 
no errors and the components of the missile guidance system have fixed 
parameters, so that no uncertainties exist. This approach is very useful at 
the initial stage of design.

The realization of the discussed guidance laws requires information 
about the line-of-sight (LOS) rate, closing velocity, and target acceleration. 
This information is received from the sensors that measure the variables 
that are present in the guidance laws. As with any measurements, these 
measurements are accompanied with noises that can significantly increase 
the miss distance, if the necessary means are not taken to decrease their 
influence on vehicle performance.

Here we consider noises that distort the guidance laws and their influ-
ence on the miss distance. As to the evaluation of the effect of uncertainties 
induced by the autopilot and airframe parameters, such types of problem 
are considered in control theory [1,5,10]. The appropriate results can be 
used when designing autopilot systems.

Because of the random nature of noises, the analysis of their influence 
on the miss distance requires the utilization of the mathematical apparatus 
of random functions, analysis of random processes driven by noise.

Random processes related to the guidance problems can be also stipu-
lated by the random character of target maneuvers.

Below we present basic facts from the theory of stochastic processes, 
which are necessary for understanding the following material. The char-
acterization of the main sources of noise that influence the proportional 
navigation (PN) guidance law performance is given. The effect of ran-
dom disturbances (measurement noise and random maneuvers) on the 
guided system performance is evaluated by the root-mean-square miss 
distance. The analytical expressions of the miss distance under the above-
mentioned stochastic inputs will be obtained. Analytical expressions for 
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the root-mean-square miss are examined in details for a simple first-order 
model of the guidance system. For the higher order models, the compu-
tational procedure and corresponding algorithms based on the obtained 
analytical expressions are discussed. The advantage of the approach con-
sidered is that it excludes the necessity of simulating the adjoint system to 
analyze the miss distance under the stochastic inputs (see, e.g., [3,11]) and, 
as a result, significantly simplifies the computational process.

Analytical expressions and related computational algorithms are given 
for the PN guided vehicles. However, the same expressions can be used for 
analysis of the more sophisticated guidance laws considered in Chapter 6 
if, instead of the real flight control system, we will operate with a fictitious 
one [see equation (6.9)].

In Chapters 3–6 we considered the laws applied to missile guidance. In 
the next chapter we will show that they can be applied directly or with some 
modification to a wide class of unmanned aerial vehicles. Moreover, since 
the PN guidance law is the main component of these laws, the analysis of 
its influence on the miss distance is useful at the initial stage of design of all 
guided unmanned aerial vehicles.

7.2  BRIEF DISCUSSION OF STOCHASTIC PROCESSES

The theory of stochastic signals in its most general form is extremely 
abstract, and a rigorous presentation requires a degree of mathematical 
sophistication beyond the scope of this book. Our main objective here is 
to present a specific set of results related to random signals that will be 
used later. Although the material related to random signals cannot be con-
sidered rigorous, we will summarize the important results and the math-
ematical assumptions accompanying them. We assume that the reader is 
familiar with fundamental concepts of the theory of probability such as 
random variables, probability distributions, and averages.

The general concept of a stochastic process can be stated in the follow-
ing way. Let U be a set of elementary events and t is a continuous parame-
ter. A stochastic process η(t) is defined as the function of two arguments:

	 η( ) ( , ), ,t f e t e U t T= ∈ ∈ 	 (7.1)

For every moment of time t, the function f(e, t) is a function of e only and, 
consequently, is a random variable. For every fixed value of the argument e 
(i.e., for every elementary event), f(e, t) depends only on t (i.e., is a function 
of time). Every such function is called a realization, or sample function, of 
the stochastic process η(t). A stochastic process can be regarded either as 
a collection of random variables η(t) that depend on the parameter t, or as 
a collection of the realizations of the process η(t). To define a process it is 
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necessary to specify a probability measure (e.g., a set of probability distri-
bution functions) in the functional space of its realizations.

The probability law of a random variable η can always be specified by 
stating its distribution function or the probability density function p(η).

The average or mean of a random variable η is defined by:

	 m E p dη η η η η= =
−∞

∞

∫[ ] ( ) 	 (7.2)

The variance of η is defined by:

	 Var[ ] [( [ ]) ] [ ] [ ] [ ]η η η σ η η η= − = = −E E E E2 2 2 2 	 (7.3)

The standard deviation of η is defined by:

	 σ η η[ ] [ ]= Var 	 (7.4)

It can be shown that, if random variables ηi are independent, the mean m0 
and the variance σ0

2 of the sum are the sum of the means and variances, 
respectively, i.e.,

	 m E E mi i i0 =   = =∑ ∑ ∑η η η[ ] 	 (7.5)

and

	 σ η η ση η0
2

0

2 2 2= −( )



 = −( )  =∑ ∑ ∑E m E mi i i i

	 (7.6)

Below we present two important probability density functions: the uniform 
distribution puniform(η) and the Gaussian or normal distribution pnormal(η).

For the uniform distribution we have:

	 p
b a

m
b a

d
b a

a

b

uniform uniform( ) ,η η η=
−

=
−

= +∫1 1
2

	 (7.7)

and

	 σ ηuniform uniform
2 2 2

3 3

3 2
= − = −

−
− +(E m

b a
b a

b a
[ ]

( ) )) = −2
( )b a 2

12
	 (7.8)

where the variable η ∈ [a, b].
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For the normal distribution we have:

	 p
m

normal
normal

normal

norm

( ) exp
( )η

πσ
η

σ
= − −1

2 2

2

aal







	 (7.9)

where mnormal and σnormal
2  are the mean and variance, respectively.

Analogous to the averages that characterize a random variable, the 
ensemble averages such as the average or mean of a process:

	 m t E t t p t d( ) [ ( )] ( ) ( , )= =
−∞

∞

∫η η η η 	 (7.10)

the mean-square value:

	 E t t p t d[ ( )] ( ) ( , )η η η η2 2=
−∞

∞

∫ 	 (7.11)

the rms, the root-mean-square (rms) value:

	 rms E t= [ ( )]η2 	 (7.12)

and the variance:

	 σ η η η ηη
2 2 2 2( ) [( ( ) [ ( )]) ] [ ( )] [ ( )]t E t E t E t E t= − = − 	 (7.13)

are introduced for stochastic processes, where p(η, t) is the probability 
density function of a stochastic process introduced formally analogous to 
the probability density function of a random variable.

The square root of the variance ση
2 ( )t  is also known as the standard 

deviation. For random processes with zero mean the rms value coincides 
with the standard deviation.

The role played for a random variable η by its mean and variance is 
played for a stochastic process by its mean value function and its covari-
ance kernel:

	 Cov t E E t E t[ ( ), ( )] [( ( ) [ ( )])( ( ) [ ( )η τ η η τ η τ η η= − − ]])] 	 (7.14)

A stochastic process η(t) is called stationary if the probability distribu-
tion functions for two finite groups of variables η(t1), η(t2),…,η(tn) and 
η(t1 – k), η(t2 – k),…,η(tn – k) coincide and, hence, are independent of k.
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Guidance Law Performance Analysis under Stochastic Inputs	 129

Clearly, any numerical characteristic of a stationary process η(t) is inde-
pendent of the time t, i.e., for the expectation and variance we have:

	 E t m t ti i i[ ( )] , [ ( )] ( )η η ση η= = −∞ < < ∞Var 2 	 (7.15)

The covariance kernel Cov[η(τ), η(t)] of a stationary process is a function 
of the absolute difference t − τ , i.e.,

	 Cov t t R[ ( ), ( )] ( )η η τ τη+ = 	 (7.16)

where Rη(τ) is called the covariance function.
The stochastic process η(t) was defined as the function of two argu-

ments. It can be shown that for a class of stochastic processes, called the 
ergodic processes, which includes the stationary processes (more rigorous 
formulation can be found, e.g., in [2]), averages computed from a sample 
of a stochastic process can be identified with corresponding ensemble 
averages.

Given a finite sample {η(t), 0 ≤ t ≤ T} of the process, we define the 
sample covariance function for stationary stochastic processes with zero 
mean as:

	 R
T

t t dtT
t

t T

η τ η η τ( ) ( ) ( )= +
+

∫1

0

0

	 (7.17)

Based on the ergodic property:

	 lim ( ) ( )
T

TR R
→∞

=η ητ τ 	 (7.18)

where R(τ) is called the autocorrelation function.
Frequency-domain methods, based on the Fourier transform, are widely 

used for analysis of deterministic signals. The Fourier transform of the 
autocorrelation function plays the significant role in analysis of the station-
ary random signals also.

The Fourier transform of the function (1/2π) Rη(τ):

	 Φη η
ωτω

π
τ τ( ) ( )=

−∞

∞
−∫1

2
R e di 	 (7.19)

of the stationary random function η(t) is called the power spectral density 
of η(t) or simply the spectral density.
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130	 Guidance of Unmanned Aerial Vehicles

Using the expression of the inverse Fourier transform and equations 
(7.13), (7.17), and (7.18), we can obtain

	 σ η ω ωη η η
2

2

0= = =
−∞

∞

−∞

∞

∫ ∫( ) ( ) ( )t dt R dΦ 	 (7.20)

This expression is widely used to determine the mean-square value of a 
stationary random function.

The spectral density of a signal exists, if and only if the signal is a wide-
sense stationary [2]. If the signal is not stationary, then the same methods 
used to calculate the spectral density can still be used, but the result can-
not be called the spectral density. Based on the above expression, it can be 
shown that the power spectral density Φη(ω) of the signal η(t) is the square 
of the magnitude of the Fourier transform Π(ω) of the signal (Parseval’s 
theorem), i.e.,

	 Φ Π Π
η

ωω ω ω
π π

η( )
( ) ( )

( )
*

= = −

−∞

∞

∫2
1

2

2

t e dti t 	 (7.21)

where the symbol “*” indicates the complex conjugate operation.
The random process is said to be a white noise process, if it possesses a 

constant power spectral density Φη. White noise is so called as an analogy 
with white light, which contains all frequencies. An infinite-bandwidth 
white noise signal is purely a theoretical construct. By having power at 
all frequencies, the total power of such a signal is infinite. White noise 
is the abstract, physically unrealizable, random process with autocorrela-
tion function equal to a delta-function (as mentioned, it is equivalent to a 
constant spectral density). Despite its abstract nature, white noise is widely 
used for analysis of real systems, when the real noise bandwidth signif-
icantly exceeds the system bandwidth (i.e., in practice, a signal can be 
“white” with a flat spectrum over a defined frequency band).

The above definition of white noise states only that it has equal energy 
at all frequencies and refers to correlations at two distinct times, which 
are independent of the noise amplitude distribution. While the frequency 
distribution may be the same, the amplitude distribution can be differ-
ent. Noise with a Gaussian amplitude distribution (normal distribution) is 
called Gaussian noise. This says nothing of the correlation of the noise in 
time or of the spectral density of the noise. It is often incorrectly assumed 
that Gaussian noise is necessarily white noise. Gaussianity refers to the 
way signal values are distributed, while the term “white” refers to correla-
tions at two distinct times, which are independent of the noise amplitude 
distribution. Gaussian white noise (white noise with a Gaussian amplitude 
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distribution also called the pseudowhite noise) is a good approximation of 
many real-world situations and generates mathematically tractable models. 
A useful relationship between the desired white noise spectral density Φη 
and the standard deviation σ  of the pseudowhite noise (white noise has 
infinite standard deviation), i.e., the Gaussian random numbers generated 
every interval Δ, is given by [11]:

	 Φ ∆η σ= 2 	 (7.22)

The output y(t) of a linear system with the impulse response P(t, τ), when 
the input signal η(t) is white noise with the spectral density Φη, equals

	 y t P t d
t

( ) ( , ) ( )=
−∞∫ τ η τ τ 	 (7.23)

The mean-square value of y(t) can be presented as:

	 E y t P t P t E d d[ ( )] ( , ) ( , ) [ ( ) ( )]2
1 2 1 2 1 2=

−
τ τ η τ η τ τ τ

∞∞−∞ ∫∫
tt

	 (7.24)

Taking into account that the autocorrelation function (7.17) of white noise 
equals

	 E[ ( ) ( )] ( )η τ η τ δ τ τη1 2 1 2= −Φ 	 (7.25)

the previous expression can be simplified as:

	 E y t P t d
t

[ ( )] ( , )2 2=
−∞∫Φη τ τ 	 (7.26)

It follows from equation (7.26) that the mean-square response of a linear 
system influenced by white noise with the spectral density Φη is propor-
tional to the integral of the square of the impulse response.

7.3  RANDOM TARGET MANEUVERS

In Chapter 4 we obtained the analytical expression for the miss distance 
for a constant maneuver aT. This type of maneuver is convenient for the 
analytical analysis but is far from reality. In Chapter 5 we considered 
sinusoidal target maneuvers and determined the miss peak for the various 
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132	 Guidance of Unmanned Aerial Vehicles

times of flight tF. The shape of this maneuver policy is deterministic and 
quite realistic. It corresponds to the so-called barrel-roll strategy, which 
in contrast to the sinusoidal deterministic maneuver is random. The miss 
peak enables us to evaluate, at a certain degree, the worst case. A more 
realistic scenario corresponds to sinusoidal target maneuvers with random 
starting times of the maneuver (i.e., with a random phase).

The result of [3], showing how to use the concept of a shaping filter 
to the statistical representation of signals with known form but random 
starting time, is used here to write the expressions for the random step 
and sinusoidal signals, if their starting time is uniformly distributed over 
the flight time.

The ability of using shaping filters exited by white noise to generate 
random signals follows from equations (7.23)–(7.26) and (7.21) and based 
on the fact that random processes that have the same mean and autocor-
relation functions are mathematically equivalent for problems dealing with 
the mean-square values of random signals.

A signal x(t) of a known form a(t) with random starting time T can be 
presented as:

	 x t a t T s t T( ) ( ) ( )= − − 	 (7.27)

where s(t) is the unit step function, i.e., s(t) = 0, t < 0 and s(t) = 1, t ≥ 0.
In the case of uniformly distributed starting time over the flight time tF, 

the probability density function pT(t) of T is given by:

	 p t
t t t

t t
T

F F

F

( )
,

,
=

≤ ≤

>







1 0

0

/
	 (7.28)

Hence, the autocorrelation function of the signal (7.27) with random start-
ing time is:

	 R t t E x t x t x t x t p T dTx T( , ) [ ( ) ( )] ( ) ( ) ( )1 2 1 2 1 2= =
−∞

∞∞

∫ 	 (7.29)

For a random step signal aT we have:

	 R t t a s t T s t T dT tx T F

tF

( , ) ( ) ( )1 2
2

1 2
0

= − −∫ / 	 (7.30)

Assuming 0 ≤ t1 ≤ t2 ≤ tF, the above expression can be simplified to:

	 R t t
a

t
s t T s t T dTx

T

F

t

( , ) ( ) ( )1 2

2

1 2
0

1

= − −∫ 	 (7.31)
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The autocorrelation function of the output y(t) of the linear time-invariant 
system with the impulse response P(t), when the input signal η(t), 0 ≤ t ≤ tF, 
is white noise with the spectral density Φη, equals [see equations (7.17), 
(7.18), (7.23), and (7.25)]:

	 R t t P t P t d dy ( , ) ( ) ( ) ( )1 2 1 1 2 2 1 2 1 2
0

= − − −τ τ δ τ τ τ τηΦ
ttt 21

0 ∫∫ 	 (7.32)

Assuming 0 ≤ t1 ≤ t2 ≤ tF, the above expression becomes:

	 R t t P t P t dy

t

( , ) ( ) ( )1 2 1 1 2 1 1
0

1

= − −∫Φη τ τ τ 	 (7.33)

Equations (7.31) and (7.33) are equivalent, if

	 Φη = =a t P tT F
2 1/ and ( ) 	 (7.34)

For the sinusoidal target maneuver that starts at time T, we have:

	 x t a t T s t TT T( ) sin( ) ( )= − −ω 	 (7.35)

so that, instead of equation (7.30), the autocorrelation function of this sig-
nal with random starting time is:

	 R t t a t T t T s t T sx T T T( , ) sin( )sin( ) ( )1 2
2

1 2 1= − − −ω ω (( )t T dT tF

tF

2
0

−∫ /

(7.36)

or, assuming 0 ≤ t1 ≤ t2 ≤ tF:

	 R t t
a

t
t T t T dTx

T

F
T T

t

( , ) sin( )sin( )1 2

2

1 2
0

1

= − −∫ ω ω 	 (7.37)

Equations (7.33) and (7.37) are equivalent, if

	 Φη ω= =a t P tT F T
2 / and ( ) sin 	 (7.38)

The above consideration shows that step and sinusoidal maneuvers of 
amplitude aT, whose starting time is uniformly distributed over the flight 
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134	 Guidance of Unmanned Aerial Vehicles

time tF, i.e., the probability density function is given by equation (7.28), 
have the same autocorrelation function as a linear network, driven by white 
noise with spectral density Φη = a tT F

2 / , with transfer functions:

	 W s
sfilter ( ) = 1

	 (7.39)

and

	 W s
sfilter

T

T

( ) =
+

1
12 2

/
/

ω
ω 	 (7.40)

respectively.

7.4 � ANALYSIS OF INFLUENCE OF NOISES 
ON MISS DISTANCE

As mentioned earlier, the ability to use the adjoint system to obtain the ana-
lytical expression (4.13) for the miss distance is stipulated by specifics of 
the considered model of the missile guidance system. Its state matrix [see, 
e.g., equation (3.8)] is a function of tF – t. Its impulse response as a function 
of tF can be analyzed as a function of σ (0 ≤ σ ≤ tF), where σ is the impulse 
application time, by varying tF – σ. The relationship between the impulse 
responses of the adjoint (more precisely, modified adjoint system) and origi-
nal systems Pma(tF – σ, tF – t0) = P(t0, σ), where t0 is the impulse observa-
tion time, enables us to examine P(tF, σ) as a function of tF by considering 
Pma(tF – σ, tF – tF) = Pma(tF – σ, 0) as a function of σ (0 ≤ σ ≤ tF).

Here the adjoint system impulse response is used for statistical analysis 
of the original system in the presence of stochastic inputs.

The root-mean-square (rms) response y(tF) of a linear time-varying system 
with the impulse function P0(t, σ) at the finite time tF, stipulated by the white 
noise input with the spectral density Φn, is presented [see equation (7.26)] by:

	 rms = = ∫{ [ ( )]} ( , )/E y t P t dF n F

tF
2 1 2 2

0
0Φ σ σ 	 (7.41)

The analytical expressions for P0(tF, σ) will be obtained by the method 
of adjoints. Earlier we used the method of adjoints to obtain analytical 
expressions of the miss distance assuming that the target acceleration is a 
deterministic function of time, here we will evaluate the effect of random 
disturbances (measurement noise and random target maneuvers) on the 
guided missile system performance, choosing the root-mean-square miss 
criterion. Assuming the linearized engagement planar model, the PN law, 
and the linear guidance system dynamics (see Figure 5.3) we will use the 
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Guidance Law Performance Analysis under Stochastic Inputs	 135

expression (5.10) and (5.34) to analyze the influence of the random distur-
bances on the miss distance.

Figure 7.1 is similar to Figure 5.6. It contains only additional stochastic 
inputs, which will be discussed in details.

Target tracking represents an estimation of position, velocity, and accel-
eration of a target. The estimation must handle different perturbations.

One of the perturbations is glint noise. Glint noise occurs, when radar is 
used in target tracking, because of interference between the reflected radar 
waves. In real radar target tracking systems, changes in the target aspect 
with respect to the radar can cause the apparent center of radar reflections 
(direction “seen” by the antenna) to wander significantly. The random wan-
dering of the apparent radar reflecting center gives rise to noisy or jittered 
angle tracking. This form of measurement noise is called angle fluctua-
tions or target glint. Glint noise mainly affects the performance of radar-
guided missiles and to a smaller extent the performance of missiles with 
electro-optical seekers, where infrared radiance fluctuations are smaller 
than radar reflection fluctuations [6].

Glint affects the measurement components (mostly the angles) by produc-
ing heavy-tailed, non-Gaussian disturbances, which may severely affect the 
tracking accuracy. Glint noise is non-Gaussian, which makes the estimation 
more difficult. One of the most common target tracking methods today is the 
Kalman filter. This method assumes the perturbations to be Gaussian, but this 
will not be true for glint noise. In target tracking, the measurement noise is 
usually assumed to be Gaussian. However, as mentioned above, the distribu-
tion of glint noise is non-Gaussian long-tailed. Moreover, it may be highly 
correlated, so that, to be rigorous, it cannot be modeled as white noise.

G2(s)

Target
maneuver

1

λ

s1
s2 vcltgo

Missile acceleration

Miss
 y(tF)

–

acaM = ÿM

aT = ÿT

Guidance command 

Nvcl

G1(s)

Seeker dynamicsηg ηr

y

λ

FIGURE 7.1  Missile guidance model.
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136	 Guidance of Unmanned Aerial Vehicles

Nevertheless, to get the analytical expression that enables us to evaluate 
approximately the rms due to glint noise ηg (see Figure 7.1), we assume that 
ηg is white noise with the power density Φgn.

The model of the system adjoint to the system in Figure 7.1 is presented in 
Figure 7.2. The output Pg(tF, t) corresponds to the impulse response of the PN 
missile guidance system to the white noise input ηg(t). The analytical expres-
sion for Pg(tF, s) can be written based on the earlier obtained expression of

	 P t s NH dT F
s( , ) exp ( )= ∫( )∞ σ σ

(see (5.10)). For the structure in Figure 7.2 with the input δ(t) and the output 
Pg(tF, t) we have:
	 P t t t P t tg F T F( , ) ( ) ( , )= −δ
or
	 P t s P t sg F T F( , ) ( , )= −1 	 (7.42)

Hence, based on equation (7.41), the rms miss distance due to glint noise 
can be obtained from the equation:

	
rms E y t

L P t s
F gl

T F

2 2
1 1

Φ Φgn gn

=
[ ]

= −[ ]{ }−
( )

( , )int 22

0
dt

tF

∫ 	 (7.43)

where L−1 is the symbol of the inverse Laplace transform.
Noises that accompany range measurements are divided usually on 

range independent and range dependent. Within the structure in Figure 7.1, 
we will link the range independent and dependent noise with the LOS 
measurements. For the midcourse guidance, when the missile is guided 
by radar, the information concerning the LOS is transmitted based on 
measurements of the range components [see equation (1.8)]. During the 
terminal stage for semiactive systems in which the target is illuminated 
by a transmitter (illuminator) situated not on the missile, range dependent 

P(tF , s)
1 1 s

–1

s2 νclτ NνclW(s)

s2

PT(tF , s)
δ(t)

Pg(tF , s) Pr(tF , s)

FIGURE 7.2  Modified block diagram of adjoint system.
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Guidance Law Performance Analysis under Stochastic Inputs	 137

noise, sometimes called fading noise, is the terminal noise produced in the 
missile receiver and also caused by various factors (e.g., by signal process-
ing effects or a source independent of the radar, such as a jammer). For 
active systems, in which the missile has its own radar, range dependent 
noise, also called receiver noise, is also the terminal noise produced in the 
missile receiver. In both cases the noise dependence on range follows from 
the radar range equation, which shows that the signal noise ratio (SNR = 
σ σsignal noise/2 2 ) is inversely proportional to the fourth power of range r [4]. 
The factor r–4 in the radar equation characterizes the divergence of the 
electromagnetic radiation with range r (on the outward and return pass). In 
contrast to active systems, semiactive systems operate only with the return 
pass. In this case, a received signal power is inversely proportional to the 
second power of range. That is why the active-receiver noise for active 
systems is proportional to the square of the distance between the missile 
and the target, and the passive-receiver noise for semiactive systems is 
proportional to the distance between the missile and the target.

The output Pr(tF, t) in Figure 7.1 corresponds to the impulse response of 
the PN missile guidance system to the white noise input ηr(t), which mod-
els the range independent LOS angular noise. The analytical expression 
for Pr(tF, s) is given based on the earlier obtained expression of PT(tF, s) and 
following the rules of operations with transfer functions in control theory 
[1,5]. We have

	 P t s P t s
s

Nv W s sr F T F cl( , ) ( , ) ( )= −





1
2

	 (7.44)

It is easy to check that the absolute value of the above expression equals the 
absolute value of the product of the derivative of PT(tF, s) and the closing 
velocity [see also equation (4.14) describing the relationship between H(s) 
and W(s)]:

	

dP t s

ds
NH d NH s

NH

T F
s( , )

exp ( ) ( )

exp (

= 





=

∞∫ σ σ

σσ σ)
( )

( , )
( )

∞∫




 =

s

T Fd N
W s

s
P t s N

W s

s

	 (7.45)

By comparing equations (7.44) and (7.45) we can obtain the rms miss dis-
tance due to range independent noise from:

	
rms2 2

1

Φ Φfn

F independent noise

fn
cl

E y t
L v=

[ ]
= −

( ) ddP t s
ds

dtT F
tF ( , )



{ }∫

2

0
	 (7.46)

where Φfn is the power spectral density of range independent noise.

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

2:
43

 2
0 

M
ar

ch
 2

01
6 



138	 Guidance of Unmanned Aerial Vehicles

As seen from equation (7.46), the rms value is proportional to the clos-
ing velocity, i.e., higher closing velocity yields more miss distance due to 
range independent noise.

The block-diagram of the missile guidance system for the case of range 
dependent noise is given in Figure 7.3. Usually spectral density of range 
dependent noise is given for a certain reference range r0, so that the noise level 
is estimated with respect to the chosen reference level. The white noise signal 
ηr(t) inputs the unit with the gain equal the range (r/r0)i of power i, where i = 1 
for semiactive systems and i = 2 for active systems.

Using the known expression r = vcl(tF – t), we present the system, adjoint 
to the given one in Figure 7.3, with the output Pri(tF, s) in the form shown 
in Figure 7.4.

Taking into account that:

	 P t s v
dP t s

dsr F cl
T F( , )

( , )= − 	 (7.47)

and that for a function f(t) the Laplace transform

	 L t f t
d L f t

ds
i i

i

i
{ ( )} ( )

{ ( )}= −1

using equation (7.46) we can write the expression for the rms miss distance 
due to passive-receiver noise:

	
rms E y t

L
v
r

d P t

pn

F passive

pn

cl T
2 2

1
2

0

2

Φ Φ
=

[ ]
= −

( ) ( FF
t s

ds
dt

F , )
2

2

0





{ }∫ 	 (7.48)
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FIGURE 7.3  Missile guidance model with range dependent noise.
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and for the rms miss distance due to active-receiver noise equals:

	
rms E y t

L
v
r

d P t

an

F active

an

cl T
2 2

1
3

0
2

3

Φ Φ
= [ ] = −( ) ( FF

t s
ds

dt
F , )

3

2

0





{ }∫ 	 (7.49)

where Φpn and Φan are the power spectral density of the passive-receiver 
noise and the active-receiver noise, respectively.

As seen from the above expressions (7.47)–(7.49), for the passive- and 
active-receiver noise the rms value is proportional to the square and cube 
of the closing velocity, respectively, i.e., higher closing velocity yields more 
miss distance due to range dependent noise.

The neoclassical guidance discussed in the previous chapter is based 
on the structure of the missile guidance system that corresponds to 
PT(tF,  s) = 0 [see equations (5.10), (6.1), (6.4), and (6.5)]. As it follows 
from equations (7.46), (7.48), and (7.49), the neoclassical guidance sup-
presses range independent and dependent noises, i.e., eliminates their 
influence on the miss distance. The case of glint noise is different. For 
long flight times the right part of equation (7.43) is close to 1 (for tF → ∞ 
it tends to 1), so that the neoclassical guidance does not reduce the 
influence of glint on the miss distance. However, even the “theoretical 
ability” of the neoclassical guidance to nullify the influence of range 
independent and dependent noises is difficult to realize in practice, espe-
cially for fin-controlled missiles. As indicated earlier, the neoclassical 
guidance structure requires proportional-derivative controllers, which 
are sensitive to noise, i.e., they create additional noise sources whose 
effect on the miss distance can be significant.

1
s2 νclτ

(νclτ/r0)i

1 s NνclW(s)

–1
s2

δ(t)

Pri(tF , s)

P(tF , s) PT (tF , s)

Pr(tF , s)

FIGURE 7.4  Modified block diagram of adjoint system with range dependent 
noise.
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140	 Guidance of Unmanned Aerial Vehicles

7.5 � EFFECT OF RANDOM TARGET 
MANEUVERS ON MISS DISTANCE

It was shown above that step maneuvers of amplitude aT, whose starting 
time is uniformly distributed over the flight time tF, and the random-phase 
sinusoidal maneuvers aT(t) = aTsinT(ωTt + φT), where φT is a uniformly dis-
tributed random variable, can be represented as a white noise process with 
the power spectral density Φϕ = a tT F

2 /  passing through the shaping fil-
ter with the transfer functions Wfilter(s) = 1/s and Wfilter(s) = (s2/ωT + ωT)–1, 
respectively [see equations (7.39) and (7.40)]. The missile guidance model 
that reflects random target maneuvers is shown in Figure 7.5. The adjoint 
model is given in Figure 7.6.

It follows immediately from Figure 7.6 and the expressions (7.34) and 
(7.38)–(7.40) that for the step maneuvers with starting time uniformly dis-
tributed over the flight time tF the rms miss distance is given by:

	
rms E y t

L
P t s

s
d

F T F
2 2

1
3

2

Φ Φϕ

ϕ

ϕ
=

[ ]
= 



{ }−

( ) ( , )
tt

tF

0∫ 	 (7.50)

and for the random-phase sinusoidal maneuvers the rms miss distance is:

rms E y t
L s

P t sF
T T

T F
2 2

1 2 1

Φ Φϕ

ϕ

ϕ
ω ω=

[ ]
= +− −

( )
( / )

( , )
ss

dt
tF

2

2

0





{ }∫ 	 (7.51)
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FIGURE 7.5  Missile guidance model with random target maneuvers.
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Since for the neoclassical guidance PT(tF, s) = 0, based on equations (7.50) 
and (7.51) we can conclude that such guidance is the best remedy against 
maneuvering targets. However, as mentioned in the previous chapter and 
in the previous section, the seeming simplicity of the neoclassical guid-
ance is deceptive.

The rms miss distance in equations (7.50) and (7.51) corresponds to the 
steady-state miss (i.e., when the transient response of the missile guid-
ance system has disappeared) [7–9]. The expressions (7.43), (7.46), and 
(7.48)–(7.51) enable us to analyze the influence of random disturbances on 
the miss distance and to design filters that would decrease this influence.

7.6  COMPUTATIONAL ASPECTS

The analytical expressions obtained for the rms miss distance can be easily 
transformed into computational algorithms. It is important to mention that 
the computational programs based on these algorithms are more compact 
and the time of computing is less (currently computers are very fast, so 
that the time factor does not play a dominant role) than by using the exist-
ing modeling procedure of the method of adjoints in the time domain. 
Moreover, the computational programs can be flexible enough to analy-
sis the influence of various parameters of the missile guidance system’s 
performance.

In Chapter 5 we showed that the impulse response P(tF, t) can be cal-
culated based on the real part of the frequency response Re[P(tF, iω)] 
[see equation (5.60)]. Analogous to equation (5.60), the expression of the 
impulse response PT(tF, t) can be obtained, i.e.,

	 P t t P t i tdT F T F( , ) Re[ ( , )]cos=
∞

∫2

0π
ω ω ω 	 (7.52)

1
s2 νclτ

1 s NνclW(s)

–1
s2

Wfilter (s)

PT (tF , s) δ(t)

FIGURE 7.6  Block diagram of adjoint system for random maneuvers.
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Multiplying

	

Re[ ( , )], Re
( , )

,

Re
(

P t i
dP t i

ds

d P t

T F
T F

T

ω ω





2
FF T Fi

ds

d P t i

ds

, )
, Re

( , )ω ω
2

3

3













and

by cosωt and integrating similarly to equation (7.52), we can obtain the 
expressions of the impulse responses corresponding to the expressions in 
parentheses of equations (7.43), (7.46), (7.48), and (7.49), respectively. It is 
impossible to obtain analogously the expressions of the inverse Laplace 
transform of equations (7.50) and (7.51), because the Fourier transform cor-
responding to the Laplace transform of equations (7.50) and (7.51) does not 
exist. However, taking into account that [see equations (5.10) and (5.11)]:

	
P t s

s

P t s

s
T F F( , ) ( , )

3
= 	 (7.53)

the inverse Laplace transform of PT(tF, s)/s3 can be obtained analogous to 
the step miss using equation (5.62). The approximation of equation (7.51) 
will be discussed later.

The numerical integration of the modified equations (7.43), (7.46), and 
(7.48)–(7.51), does not present any difficulties.

The above-indicated computational procedure can be simplified, if 
in all operations we would operate with the real and imaginary parts of 
PT(tF, iω). Taking into account that:

	
dP t s

ds
i

dP t i

d
T F

s i
T F( , ) ( , )

= = −ω
ω

ω

	
d P t s

ds
i

d P t i

d
T F

s i
T F

2

2
2

2

2

( , )
( )

( , )
= = −ω

ω
ω

and

	
d P t s

ds
i

d P t i

d
T F

s i
T F

3

3
3

3

3

( , )
( )

( , )
= = −ω

ω
ω

and presenting PT(tF, iω) = Re[PT(tF, iω)} + iIm[PT(tF, iω)], after simple 
operations we can write:

	 Re
( , )

( )
Im[ ( , )]d P t i

ds
i

d P t ik
T F

k
k

k
T Fω ω



 = − −1

dd
k

kω
, ,= 1 3
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and

	 Re
( , ) Re[ ( , )]

,
d P t i

ds
i

d P t i

d
kT F T F

2

2

2

2

ω ω
ω





 = − == 2 	 (7.54)

Since the expressions (7.43), (7.46), and (7.48)–(7.51) include the squares 
of the inverse Laplace transform values, we can ignore signs in the above 
expressions.

The expressions (7.43), (7.46), and (7.48)–(7.49) can be reduced to:

	
E y t

P t i t
F glint

gn
T F

2

0

2
1

( )
Re[ ( , )]cos

[ ]
= −

∞

∫Φ π
ω ω dd dt

tF

ω





∫

2

0
	 (7.55)

for the rms miss distance due to glint noise;

E y t
v

d P tF independent noise

fn
cl

T F
2 2( ) Im[ ([ ]

=
Φ π

,, )]
cos

i
d

td dt
tF ω

ω
ω ω

0

2

0

∞

∫∫ 







(7.56)

for the rms miss distance due to range independent noise;

E y t v
r

d P t iF passive

pn

cl T F
2 2

0

22( ) Re[ ( , )][ ]
=

Φ π
ω

dd
td dt

tF

ω
ω ω

2
0

2

0

∞

∫∫ 







cos 	 (7.57)

for the rms miss distance due to passive-receiver noise;

	
E y t v

r
d P t iF active

pn

cl T F
2 3

0
2

32( ) Im[ ( , )][ ] =
Φ π

ω
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td dt
tF

ω
ω ω

3
0

2

0

∞

∫∫ 







cos 	 (7.58)

for the rms miss distance due to active-receiver noise.
It is important to underline that the above expressions are valid, because 

the Fourier transform exists (see Chapter 5 and Appendix B). As mentioned 
earlier, the expressions for the rms miss distance due to random maneuvers 
(7.50) and (7.51) cannot be written analogously because the Fourier trans-
form of functions having the Laplace transform

	

P t s
s

s P t s
s

T F

T
T

T F( , ) ( , )
3

1

2
and

2

ω
ω+





−

does not exist. Based on equation (7.53), we can present equation (7.50) 
analogous to the expression (4.62) for the step miss, i.e., for the step 
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maneuvers with starting time uniformly distributed over the flight time tF 
the rms miss distance is:

	
E y t P t i

td
F F

2

0

2( ) Re[ ( , )]
sin

[ ]
= 







∞

∫ϕ

ϕ π
ω

ω
ω ω

Φ ∫
2

0
dt

tF

	 (7.59)

For the random-phase sinusoidal maneuvers, the simplified form of equa-
tion (7.51) can be written only under assumption that we can neglect the 
transient of P(tF, s), so that only the stationary term of the inverse Laplace 
transform is considered. The approximate value of the rms miss distance 
(in some cases the mistake can be significant) is given by:

	
E y t

P t i t t i
F

F T T F T

2
2

( )
{ ( , ) sin( ( , ))}

[ ]
= +ϕ

ϕ
ω ω ϕ ω

Φ
ddt

tF

0∫ 	 (7.60)

where the amplitude P t iF T( , )ω and phase φ(tF, iωT) are determined from 
equations (5.26) and (5.28), respectively.

The described approach is used below to analyze the rms miss distance 
for the missile guidance systems with parameters similar to the considered 
in the previous chapters.

7.7  EXAMPLES

For the first-order model of the missile guidance system, the expressions 
(7.43), (7.46), and (7.48)–(7.51) can be obtained in the analytical form. We 
will write them and compare with the results obtained based on the algo-
rithmic procedure described below. This procedure will be applied to more 
realistic models of the missile guidance system to demonstrate how mis-
leading the results obtained from the analysis of a simple first-order model 
can be. For this model we have [see equations (3.19) and (4.21)]:

	 P t s
s

sT F

N

( , ) =
+





1/τ

so that

	 1 1
1

− = −
+





P t s

s

sT F

N

( , )
/τ

	 (7.61)

	
dP t s

ds

N s

s
T F

N

N

( , )
( )

=
+

−

+τ τ

1

11/
	 (7.62)
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d P t s

ds

N s s N

s
T F

N

N

2

2

2

2

2 1
1

( , ) ( ( ) / )
( / )

= − + −
+

−

+τ
τ

τ
	 (7.63)
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	 (7.65)

and
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sT T
T F

T T

N
2 1

2
2 1

2

1
/ /ω ω ω ω+ = +

+
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−

//τ)N
	 (7.66)

The below calculations are made for an effective navigation ratio N = 3 
and a guidance time constant τ = 0.5 s; random quantities are assumed to 
have zero mean.

The inverse Laplace transform of equation (7.61) equals

	 L t t eglint
t− −= − +1 2 24 12 6( )

Integrating the square of the above expression, from equation (7.43) we 
obtain the rms miss distance due to glint noise with spectral density 
0.4 m2/ Hz shown in Figure 7.7 (solid line).
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FIGURE 7.7  The rms miss distance due to glint noise.
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The inverse Laplace transform of equation (7.62) equals

	 L t t t eindependent
t− −= − +1 2 3 26 12 4( )

Integrating the square of the above expression and assuming a closing 
velocity of 1500 m/s, from equation (7.46) we obtain the rms miss distance 
due to the independent range noise with spectral density 6.5 · 10–8 rad2/Hz, 
as shown in Figure 7.8 (solid line).

The inverse Laplace transform of equation (7.63) equals

	 L t t t epassive
t− −= − + −1 4 3 2 24 12 6( )

Integrating the square of the above expression and assuming a closing 
velocity of 1500 m/s, from equation (7.48) we obtain the rms miss distance 
due to passive-receiver noise with spectral density 6.5 · 10–4 rad2/Hz at a 
reference range 10,000 m, as shown in Figure 7.9 (solid line).

The inverse Laplace transform of equation (7.64) equals

	 L t t t eactive
t− −= − +1 3 4 5 26 12 4( )

Integrating the square of the above expression and assuming a closing 
velocity of 1500 m/s, from equation (7.49) we obtain the rms miss distance 
due to active-receiver noise with spectral density 6.5 · 10–4 rad2/Hz at a 
reference range 10,000 m, as shown in Figure 7.10 (solid line).

The inverse Laplace transform of equation (7.65) equals

	 L t e t
ϕ1
1 2 20 5− −= .
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FIGURE 7.8  The rms miss distance due to independent angle noise.
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Integrating the square of the above expression and assuming a 3-g step 
maneuver with uniformly distributed starting time, from equation (7.50) 
we obtain the rms miss distance as shown in Figure 7.11 (solid line).

The inverse Laplace transform of equation (7.66) for ωT = 1.4 rad/s 
equals

	 L t t tϕ2
1 20 025 1 4 0 093 1 4 0 235− = − + + − −. cos . . sin . ( . 00 08 0 025 2. . )t e t+ −

Integrating the square of the above expression and assuming a 3-g ampli-
tude of a target acceleration, from equation (7.51) we obtain the rms miss 
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FIGURE 7.9  The rms miss distance due to passive-receiver noise.
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FIGURE 7.10  The rms miss distance due to active-receiver noise.
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distance due to the uniformly distributed random-phase sinusoidal maneu-
ver with the frequency ωT = 1.4 rad/s, as shown in Figure 7.12 (solid line).

The above analytical expressions and the corresponding relationships 
between the rms miss and the time of flight tF can be obtained by using the 
Laplace transform tables or Maple software. However, even the mentioned 
sophisticated software cannot help in a case of more realistic models of 
the missile guidance system, which contain complex-conjugated poles 
stipulated by the flight-control system damping and natural frequency [see 
equation (5.21)].
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FIGURE 7.12  The rms miss for 3-g random-phase sinusoidal maneuver.
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FIGURE 7.11  The rms miss for uniformly distributed 3-g step maneuver.
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The precise solution (solid lines in Figures 7.7–7.12) for the first-order 
model was compared with the results of simulation based on equations 
(7.55)–(7.60) and the analytical expressions (5.35), (5.37), (5.42), and (5.43) 
for PT(tF, iω) and P(tF, iω) (dashed lines in Figures 7.7–7.12). In most cases 
the error does not exceed 1%–3%. For the uniformly distributed step 
maneuver (Figure 7.11), the simulation result is very close to the precise 
solution so that the solid and dashed lines coincide. The largest error is 
obtained for the random-phase distributed maneuver (Figure 7.12). As 
expected, it becomes smaller after the transient (i.e., tf > 3 s).

Below we present the results of a MATLAB rms miss simulation based 
on the expressions (5.35), (5.37), (5.42), (5.43), and (7.55)–(7.60). Parallel 
with the considered above simple model with a time constant 0.5 s, more 
realistic models will be considered:

	 i.	ωz = 30 rad/s, ζ = 0.7, ωM = 20 rad/s, τ = 0.5 s
	 ii.	ωz = 5 rad/s, ζ = 0.7, ωM = 20 rad/s, τ = 0.5 s
	 iii.	ωz = 30 rad/s, ζ = 0.7, ωM = 20 rad/s, τ = 0.1 s
	 iv.	ωz = 5 rad/s, ζ = 0.7, ωM = 20 rad/s, τ = 0.5 s

Comparative analysis of the rms distance for the missile guidance systems 
due to glint noise is given in Figure 7.13. The solid line, which coincides 
with the solid line in Figure 7.7, corresponds to the case of a first-order sys-
tem. The dotted and dashed lines correspond to the case of a tail-controlled 
missile system with the airframe zero frequency ωz = 30 rad/s. 

In both cases, the rms miss distance is more than for the simple first-
order model. The larger is flight control system time constant, the smaller 
is the rms miss distance.
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FIGURE 7.13  Comparative analysis of the rms miss due to glint noise.
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The significant increase of the rms miss distance for the airframe 
zero frequency ωz = 5 rad/s (see Figure 7.14), which corresponds to high-
altitude endoatmospheric interceptors, is stipulated by the “wrong way tail 
effect.”

As mentioned in the previous chapters, because of the wrong way tail 
effect the dynamic characteristics of tail-controlled missiles operating at 
high altitude are significantly worse than at low frequencies. However, if 
in the deterministic case the decrease of the flight control system time con-
stant decreases the miss distance at low altitudes (high values of ωz) and 
increases it at high altitudes (low values of ωz), the rms miss distance due 
to glint noise increases with the decrease of the flight control system time 
constant for all considered cases.

The above-mentioned effect of glint noise may look strange, especially 
for the first-order model, because the decrease of the time constant makes 
it closer to the ideal inertialess case. However, the described effect can be 
predicted by analyzing equation (7.55) and the above-given expression of 
the first-order system P(tF, s) [see also equation (3.19)] as a function of τ.

Although the results shown in Figure 7.14 are far from reality and 
because glint noise may be highly correlated and should not be modeled 
as white noise, they are very informative. As seen from Figure 7.13 and 
Figure 7.14, the rms miss distance increases substantially at high altitude 
and the decrease of the flight control system time constant brings an addi-
tional drastic increase. As seen from equations (5.13) and (7.43), the rms 
miss due to glint noise increases with the increase of the effective naviga-
tion ratio.

Analysis of the influence of the independent range noise presented in 
Figures 7.15 and 7.16. The solid line in Figure 7.15 coincides with the solid 
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FIGURE 7.14  Comparative analysis of the rms miss due to glint noise.
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line in Figure 7.8 built based on the analytical expression for the first-order 
guidance system model. The dotted and dashed lines correspond to the case 
of a tail-controlled missile system with the airframe zero frequency ωz = 30 
rad/s. In contrast to the case of glint noise, the decrease of the flight control 
system time constant decreases the rms miss distance due to independent 
noise at low altitudes (high values of ωz) and increases it at high altitudes 
(low values of ωz), i.e., analogous to the deterministic case.

Correlation between the above-considered cases for range independent 
noise is not changed qualitatively for passive- and active-range dependent 
noises. As follows from Figures 7.17 and 7.18, the rms miss distance for 
active-receiver noise is less than the passive-receiver noise miss. In the 
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FIGURE 7.15  Comparative analysis of the rms miss due to independent noise.
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FIGURE 7.16  Comparative analysis of the rms miss due to independent noise.
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case of range dependent noise, the decrease of the flight control system 
time constant at high altitude increases the rms miss significantly less than 
due to range independent noise.

Since the range independent and dependent noise miss distances depend 
on a closing velocity, they can be significant for ballistic missiles.

Comparative analysis of the rms distance for the step maneuvers with 
starting time uniformly distributed over the flight time according to 
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FIGURE 7.17  Comparative analysis of the rms miss due to passive-receiver 
noise.

0
0 1 2

τ = 0.5 s

τ = 0.5 s, ωz = 30 rad/s
τ = 0.1 s, ωz = 30 rad/s

τ = 0.5 s, ωz = 5 rad/s (scale 100 : 1)

3 4 5
tF (s)

6 7 8 9 10

1.5

2

2.5

1

0.5

rm
s m

iss
 (m

)

FIGURE 7.18  Comparative analysis of the rms miss due to active-receiver 
noise.
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equation (7.59), and for the random-phase sinusoidal maneuvers based on 
equation (7.60) is presented in Figure 7.19 and Figure 7.20.

As seen from Figures. 7.19 and 7.20, the rms miss distance is very 
sensitive to the flight-control system time constant. The solid lines in 
Figures 7.19 and 7.20 correspond to the precise solution for the first-order 
model. 
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FIGURE 7.20  Comparative analysis for 3-g random-phase sinusoidal maneuver.
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FIGURE 7.19  Comparative analysis for uniformly distributed 3-g step 
maneuver.
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By choosing an appropriate quantization in the time h and frequency h0 
domains, the operations of integration and differentiation are approximated 
by the summation and difference operations, respectively. In practice, the 
upper infinite limit of integration in equations (7.55)–(7.60) is changed to 
ωc0, the frequency being chosen so that for ω ≥ ωc0 the values of the inte-
grands of equations (7.55)–(7.60) are less than 5%–10% of their maximum 
values, respectively. In the above examples, ωc = 19 rad/s, h0 = 0.1 rad/s 
and h = 0.1 s.

The methods of computational mathematics enable us to increase accu-
racy of the operations of integration and differentiation. It is known that 
the first, second, and third derivatives of a continuous function y(t0) at t0 
can be approximated by:
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where h is a quantization step size and Diff (y0, i) denotes the i-th order 
difference of y(t0) at t0.

The approximation of the third derivative by the third-order difference, 
i.e., by using only the first term of the h y t3

0( ) approximation, can give a 
tangible error. Instead of using the high order differences, the expression 
(7.58) can be transformed into:
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	 (7.67)

This expression is easily obtained by using integration by parts of equation 
(7.58) and taking into account that Im(i)[PT(tF, 0)] = Im(i)[PT(tF, ∞) = 0] = 0, 
i = 0, 1, 2, where i is the order of derivative. The above equation, as well 
as equations (7.56) and (7.57), can be simplified analogously, taking into 
account Re(1)[PT(tF,0)] = 0.

Instead of equation (7.56), we can use
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	 (7.68)
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Instead of equation (7.57), we can use
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sin 	 (7.69)

However, the accuracy of the computational procedure based on equations 
(7.67)–(7.69) is very sensitive to ωc0, especially for big tF because of t fac-
tors in equations (7.67)–(7.69).

The expressions of Re[PT(tF, iω)] and Im[PT(tF,iω)] can be obtained directly 
from equations (5.42) and (5.43) or from equation (5.10) [see also equations 
(6.10)–(6.13)]:
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so that the amplitude P t iT F( , )ω  and phase φT (tF , iω) of PT (tF , iω) equal
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and
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The computational procedure based on equations (7.70) and (7.71) is sim-
pler than the above-described procedure using the analytical expressions 
for the frequency response (5.35), (5.37), (5.42), and (5.43). It requires only 
the knowledge of the frequency response W(iω) of the missile guidance 
system. Moreover, W(iω) can be presented approximately based on experi-
mental data. The results of simulation for the first-order model based on 
equations (7.70) and (7.71), instead of equations (5.42) and (5.43) (see dot-
ted lines in Figures 7.7–7.12), show that the accuracy of this procedure is a 
little bit lower than the above-described procedure employing the analyti-
cal expressions P(tF, iω) and PT(tF, iω). The accuracy can be improved by 
increasing the upper limit ωc0 of integration in equations (7.70) and (7.71).
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In all considered cases, the first-order system analysis gives a signifi-
cantly less miss estimate than a more realistic model with a high airframe 
frequency ωz. The first-order model gives absolutely unacceptable results 
in a case of small values of the airframe frequency.

7.8  FILTERING

Above-described noises corrupt seeker measurements. To get reliable 
information for the line-of-sight rate required by the PN guidance law or 
its modifications considered in the previous chapters, it is necessary to use 
a filter that would decrease the rms miss distance contributed by all noise 
sources. Assuming independence of the random variable considered, the 
total rms miss distance can be determined as the square root of the sum of 
the variances of the miss distances from glint, independent, and dependent 
noises.

Considering G1(s) as the filter transfer function (see Figures 7.1–7.3), the 
filtering problem can be formulated as the problem of finding G1(s) that 
would decrease the total rms miss distance. Such formulation has a certain 
drawback, because it ignores the miss distance stipulated by the target 
maneuver. Dynamic characteristics of the filter influence this component 
of the total miss distance.

For highly maneuvering targets, the assumption that the phase angle of 
target weave, which is associated with initial conditions at the start of the 
missile’s terminal guidance, can be treated as a random variable uniformly 
distributed between 0 and 2π over a set of engagement is quite realistic, 
and the corresponding rms miss distance can be considered as the mea-
sure of effectiveness in analyzing missile performance against weaving 
targets. It means that the transfer function G1(s) of a filter should be chosen 
to minimize the total rms miss including the rms for the random phase 
sinusoidal maneuvers.

Below we describe an engineering approach for choosing a filter with 
the transfer function G1(s) to improve the performance of a tail-controlled 
missile with ωz = 30 rad/s, ζ = 0.7, ωM = 20 rad/s and τ = 0.5 s. From the 
comparative analysis of the rms miss due to range independent and depen-
dent noises and the rms for the random phase sinusoidal maneuvers (see 
Figures 7.15, 7.17, 7.18, and 7.20) for the given missile guidance system 
and the system with parameters ωz = 30 rad/s, ζ = 0.7, ωM = 20 rad/s and 
τ = 0.1 s we can conclude that the decrease of τ significantly decreases all 
rms miss components, but the component due to glint and the total rms 
miss is significantly less for the missile guidance system with τ = 0.1 s. 
Based on this analysis, it is easy to conclude that by applying the filter with 
the transfer function
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we would improve significantly the performance of the given missile guid-
ance system at low altitudes. As  indicated, at high altitudes its dynamic 
parameters are changed so that the filter parameters should be changed 
as well.

We will not consider here any optimal filtering problems. Simple con-
stant gain and optimal digital filters widely used in practice will be dis-
cussed in the next chapter.
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8 Guidance of UAVs

8.1  INTRODUCTION

As mentioned in Chapter 1, the United States currently possesses five major 
UAVs: the Air Force’s Predator and Global Hawk, the Navy and Marine 
Corps’s Pioneer, and the Army’s Hunter and Shadow.

Predator is a medium-altitude (7.6 km), long-endurance (24 hours), 
8.23 m long UAV that typically operates at a 3–4.5 km altitude to get the 
best imagery from its video cameras, although it has the ability to reach a 
maximum altitude of 7.6 km. It launches and lands like a regular aircraft, 
but is controlled by a pilot on the ground using a joystick. The vehicle’s 
operational radius is about 740 km and airspeed up to 400 km/h. The 
Predator’s primary function is airborne reconnaissance and target acquisi-
tion. To accomplish this mission, the Predator is outfitted with a 200 kg 
surveillance payload, which includes two electro-optical (E-O) cameras 
and one infrared (IR) camera for use at night. It also includes synthetic 
aperture radar (SAR), which allows the UAV to operate in severe weather 
conditions. The Predator’s satellite communications provide for beyond 
line-of-sight (LOS) operations. The Predator’s primary satellite link con-
sists of a 6.1 meter satellite dish and associated support equipment. The 
satellite link provides communications between the ground station and the 
aircraft when it is beyond the line-of-sight and is a link to networks that 
disseminate secondary intelligence. In 2002, the Predator’s military desig-
nation was changed from RQ-1B (reconnaissance unmanned) to the MQ-1 
(multimission unmanned) due to its added capabilities of laser designation 
and missile firing. New types of Predators have a multispectral targeting 
system that will add a laser designator to the E-O/IR payload. The so-
called B variant, also referred to as the “hunter-killer,” is a larger version 
of the Predator (length 10.97 m) with improvements in altitude, payload, 
speed, and range. The MQ-9 can fly at altitudes of 13.5–16 km, and carry 
eight Hellfire missiles (compared to two for the MQ-1).

The Global Hawk is the largest (13.54 m long), high altitude (20 km), 
long endurance (35 hours) remotely piloted UAV. The vehicle’s operational 
radius is 24,985 km and airspeed 650 km/h. It provides near real-time imag-
ery of large geographic areas. Besides the obvious size difference between 
the Predator and Global Hawk, another significant difference between them 
is that the Global Hawk flies autonomously from takeoff to landing. Its 
high quality imagery is delivered by more sophisticated integrated suite 
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of sensors compared to the Predator, which significantly increased its pay-
load (880 kg). A ground station for controlling the Global Hawk, monitor-
ing its status and making operational changes if necessary consists of two 
segments: a Mission Control Element (MCE) and Launch and Recovery 
Element (LRE). The MCE is used for mission planning and execution, 
command and control, and image processing and dissemination; an LRE- 
for controlling launch and recovery and associated ground support equip-
ment. The LRE provides precision differential global positioning system 
corrections for navigational accuracy during takeoff and landings, while 
the GPS and INS are used during mission execution. Both ground segments 
are equipped with external antennas for line-of-sight and satellite commu-
nications with the air vehicles.

At 4.25 m long, the Pioneer is roughly half the size of the Predator. It 
can reach maximum altitudes of 4.5 km but flies an optimal altitude of 
1–1.5 km above its target with a speed 200 km/h. The Pioneer can stay aloft 
for five hours during the daytime, and has a range of 185 km. Its mission 
is to provide real-time intelligence and a reconnaissance capability to the 
field commander. Its 30–45 kg payload includes an electro-optical and IR 
camera and may also include a meteorological sensor, a mine detection 
sensor, and a chemical detection sensor. The vehicle is launched by rocket 
assist (shipboard), by catapult, or from a runway; it recovers into a net 
(shipboard) or with arresting gear.

Possessing the standard UAV mission of reconnaissance and surveil-
lance, the 7 m long Hunter is a medium-altitude (4.5 km) UAV with an 
operating range of 265 km, a 111–148 km/h speed, and about 10 hours 
endurance. It is equipped with an E-O/IR sensor payload (90 kg) for day/
night operations. The vehicle is controlled by two operators—one con-
trolling flight and the other controlling the payload functions. It can be 
launched from a paved or semipaved runway or it can use a rocket assisted 
(RATO) system, where it is launched from a zero-length launcher using 
a rocket booster. The RATO launch is useful on board small ships and in 
areas where space is limited. The vehicle can land on a regular runway, 
grassy strip, or highway using arresting cables.

The Shadow is a 3.4 m long UAV with an average flight duration of 
six hours, a 111–148 km/h speed, and the operational range is 78 km. 
Although it can reach a maximum altitude of 4.5 km, its optimum level 
is about 2.5 km. The Shadow provides real-time reconnaissance, surveil-
lance, and target acquisition information. Weighing 127.3 kg, the vehicle 
is catapulted from a rail on a launcher and has an automatic takeoff and 
landing capability; it recovers on a runway via a tail hook. The Shadow’s 
12.25 kg payload consists of an E-O/IR sensor turret that produces day or 
night video, and can relay its data to a ground station in real-time via a 
LOS data link.
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If the considered UAVs require additional support equipment and staff 
for launch and landing operations, a simplified launch and recovery within 
a confined area, operations at low speeds for precise targeting and special 
operations, or an ability to loiter within a large speed range are reached in 
some VTOL UAVs by incorporating certain features of helicopters.

The Eagle Eye takes off like a helicopter, but then tilts up its rotor to fly 
like a plane. This remote-controlled aircraft is 5.46 m in length and weighs 
around 900 kg (depending on payload, which is usually 98 kg). It can fly 
at up to 400 km/h for up to six hours at altitudes of 0.5–6 km and has an 
operational radius of roughly 500 km. The vehicle’s potential applications 
are surveillance and reconnaissance of both land and sea, border patrol, 
NBC (nuclear, biological, and chemical) detection and contamination area 
operations, delivery of critical supplies, fire detection, fisheries protection, 
and so on.

Similar to the Eagle Eye, the Dragon Warrior is a vertical takeoff and 
landing UAV resembling a small helicopter. With a weight of 120 kg, a 
payload capacity of 11–16 kg, and at 2.7 m long it has a range of 90 km and 
an endurance of 3 hours. It flies at an altitude of 1.3–1.7 km with a speed of 
185 km/h. Its payload includes an E-O/IR (electro-optical/infrared) sensor 
and laser designator. The Dragon Warrior is envisioned to play a major role 
in urban reconnaissance.

The Dragon Warrior and Eagle Eye realize all useful features of heli-
copters were being used. Although helicopters are used mostly for trans-
portation, military transport helicopters can be modified or converted to 
conduct specific missions such as combat search and rescue and can be 
armed with weapons for attacking ground targets. Weapons used on attack 
helicopters can include auto-cannons, machine guns, rockets, and guided 
Hellfire missiles. The helicopter’s ability to take off and land almost any-
where, fly very slow, and hover in one place for extended periods of time 
make them very attractive in accomplishing tasks that fixed-wing aircraft 
cannot perform. The above-mentioned features motivated the development 
of unmanned helicopters.

The helicopter-derived Fire Scout is about 7 m long UAV with an alti-
tude ceiling of 6 km, and an endurance of more than six hours that flies at a 
speed of 200 km/h. It carries an E-O/IR sensor payload that incorporates a 
laser designator. The Fire Scout is capable of autonomous takeoff, landing, 
and flight; but of course it can be controlled remotely as well.

The A-160 Hummingbird unmanned helicopter (weight 1,815 kg) oper-
ates autonomously at a range of 3,700 km and flies at 200–260 km/h at a 
maximum altitude of 9 km, with a hover capability up to 4,570 m for up to 
30 hours while carrying a 135 kg payload. Potential missions include surveil-
lance, reconnaissance, target acquisition, communications and data relay, 
lethal and nonlethal weapons delivery, and special operations missions.
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162	 Guidance of Unmanned Aerial Vehicles

Various operational tactical requirements, technological progress, and 
the desire to decrease the cost of UAVs brought to life the so-called mini-
UAVs that usually fly below 300 m and because of their small size have 
much less chance of a collision threat than larger UAVs. The mini-UAV 
can be carried, launched, and recovered by soldiers. They generally have 
ranges up to 20 km, and an endurance of not more than three hours. These 
UAVs are not designed to do depth reconnaissance, but to look over the 
next hill, watch a neighborhood in a city before troops enter it, patrol a 
base’s outer perimeter, and so on. Even smaller micro-UAVs are in devel-
opment that focus more tightly on local objects.

Among mini-UAVs, the Organic Air Vehicle (OAV) is designed to pro-
vide small combat teams and individual soldiers with the capability to 
detect the enemy forces concealed in forests or hills, around buildings in 
urban areas, or in places where the shooter does not have a direct line-
of-sight. The OAV weighs about 35 kg and has a mission endurance of 
25 minutes, a range of up to 2 km and speeds of 80–100 km/h. Its 3–3.5 kg 
payload comprises of E-O sensors and can be upgraded to include infra-
red and acoustic sensors and mine detectors. Smaller portable versions 
of the OAV are under development. These vehicles should weigh up to 
10 kg, including 0.5 kg payload. Powered by a diesel fuel engine, it will be 
required to perform relatively short missions, of up to 15 minutes with a 
range of 1 km. The operational ceiling will be 2.4 km above sea level.

The 1.3 m and 4.5 kg hand launchable Pointer can fly at an altitude of 
3–10 m and can stay airborne for about 90 minutes at a range of 4.8 km 
from its ground station.

The 0.9 m and 2.27 kg Dragon Eye provides over-the-hill reconnais-
sance, surveillance, and target acquisition at the tactical level. The UAV can 
be stored in a backpack and launched by either hand or bungee cord. The 
reconnaissance UAV can fly 65 km/h, cover a combat radius of 10 km, and 
stay aloft for an hour. Its operating altitude is 90–150 m. Interchangeable 
payloads for the Dragon Eye include a daytime camera, an infrared cam-
era, and a low-light black and white camera.

The Desert Hawk UAV is a battery powered 3 kg mini-UAV. It has a 
length of 1 m, flies at altitudes of less than 330 m, can carry a payload of 
0.5 kg, and has an operational radius of 10 km, with an endurance of 60–90 
minutes. Launched into the air by two people using a bungee cord as a 
slingshot, the mini-UAV flies its mission fully autonomously, at speeds of 
40 to 80 km/h, following a flight path that has been plotted out beforehand 
on a laptop using GPS coordinates. The plane can be directed to circle over 
an area of interest, or the operator can alter its flight path while the plane 
is in the air. Its payloads comprise of interchangeable systems, including 
an infrared thermal imaging system for night use or a set of three color 
cameras for daylight. The ground control system features a touch-screen 
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laptop allowing operators to easily place waypoints. Mission information 
is immediately updated when the unmanned vehicle is re-tasked to support 
a dynamically changing tactical environment.

The rapidly increasing fleet of UAVs, along with the widening 
sphere of their applications, puts new problems before designers of the 
unmanned aerial vehicles. The more complicated the problems the more 
sophisticated the guidance required. Advanced guidance algorithms 
development is essential and necessary for meeting new requirements 
with the increasing area of UAV applications and for defining future 
UAV concepts and associated critical technologies.

The more autonomous ability a UAV has, the more complex its guidance 
and control system is and, as a result, the higher is its weight, size, and 
cost, the less—its endurance, a combat radius, and/or speed. The desire to 
reduce the operator’s load leads to an increase of a UAV’s payload, so that 
it becomes more difficult to reach its best potential performance charac-
teristics. A well justified tradeoff between the operator and autonomous 
UAV’s functions remains the most important problem that would allow 
minimizing the size and cost of future UAVs.

Many new models of UAVs will be flight-tested within 5 to 10 years. 
There is a tendency to focus on building small, even microscopic UAVs 
with smaller weapons that can hunt in swarms, engage targets in the close 
quarters of urban battlefields and as soon as possible. Nevertheless, recently 
Israel built a new powerful 4.5 ton mega-UAV, the Eitan, with 24–36 hour 
endurance and the ability to operate above 12 km. The United States is 
developing the UAV with close characteristics of the Eitan to be used as a 
part of boost-phase intercept systems, which are considered in Chapter 11.

8.2 � BASIC GUIDANCE LAWS AND 
VISION-BASED NAVIGATION

The UAV path planning is considered in terms of global (mission) plan-
ning and local (trajectory) planning. The global planning determines the 
main most important requirements to the UAV flight path, its length, time 
of flight, and evaluates possible environment uncertainties. The local plan-
ning deals with the trajectory algorithm development based on the avail-
able information. The UAV’s trajectory can be divided in three parts: the 
initial uncontrolled part immediately after its launch, the controlled part in 
accordance with the predetermined flight path, and the terminal part cor-
responding to its landing that can be completely or partially controllable. 
Depending upon the mission requirements and especially in the case of 
surveillance and reconnaissance flights, the trajectory can contain the low 
speed parts. Moreover, in special cases, hovering UAVs should stay in a 
particular position/area for a certain period of time.
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164	 Guidance of Unmanned Aerial Vehicles

The increasing areas of UAV applications and, as a result, a variety 
of UAV missions make the flight path preparation a nonstandard proce-
dure and the most important factor determining the success of the mis-
sion. Usually, the flight path planner tries to take into account all details 
available concerning the area of interest. For UAVs that perform patrolling 
or surveillance functions along a definite narrow ground area of a simple 
configuration, it is not difficult to design a detailed flight path with neces-
sary UAV velocities at its separate parts. However, the trajectory planning 
in the case of a complex environment presents a difficult problem.

Realistic mission scenarios may include obstacles and other no-fly zones. 
Additionally, the UAV must be able to overcome environmental uncer-
tainties such as modeling errors, external disturbances, and an incomplete 
situational awareness. Path planning problems have been actively studied 
in robotics. The problem of planning a path is formulated such as finding a 
collision-free path in an environment with static or dynamic obstacles. As 
in robotics, the UAV path planning in adversarial environments (adversar-
ies are considered obstacles) has the objective to complete the given mis-
sion efficiently while maximizing the safety of the UAV. The goal of the 
trajectory planner is to compute, within an appropriate time window, an 
optimal or suboptimal path for surviving penetration through the environ-
ment while satisfying mission objectives. The planner considers terrain 
data, threat information, fuel constraints, time constraints, and other con-
straints specified based on available information.

Typically, a trajectory planner returns waypoint locations and estimated 
time of arrivals, headings, resource utilization (e.g., fuel consumption, sen-
sor constraints), and metrics indicating the characteristics of the route such 
as risk and effectiveness. Trajectory planning can be considered as a draft 
of the future guidance law. The optimal approach is used to make the 
trajectory, for example, energy efficient to increase the UAV endurance or 
to realize the minimum time trajectory, and so on [1,2,14]. The operations 
research methods enable us to formulate and solve such types of problems. 
If one has perfect information of the threats that will be encountered, a 
safe path can always be constructed by solving an optimization problem. 
If there are uncertainties in the information, usually several scenarios are 
considered and a tradeoff solution is offered. In all cases the flight path 
can be presented as a sequence of waypoints with additional requirements 
(constraints) to separate parts of the trajectory.

The hypothetical trajectory of a UAV is given in Figure 8.1. The flight 
plan comprises a series of waypoints (for simplicity only four waypoints 
are indicated) assumed to be joined by straight line trajectory segments, 
originating at the climb phase just after takeoff and terminating at the 
landing phase. The main difference between industrial robot path plan-
ning and fixed-wing UAV path planning is that the UAV must maintain 
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its velocity above a minimum velocity, which implies that it cannot follow 
a path with sharp turns or vertices. Given the waypoints, a possible fly-
able route can be generated. But is it necessary? Usually, it is impossible 
to predict all possible flight situations and the “common sense” approach 
reinforced by training—the way a pilot acts—is the best solution.

The guidance algorithms considered in the previous chapters [see, e.g., 
equations (3.16), (3.74), and (3.92)] can be applied to navigate the UAV 
sequentially from the initial waypoint to the next one, and so on. In this 
case, each waypoint is considered as a dummy target and the LOS rate can 
be calculated based on equation (1.11). Because of relatively small distances 
between the waypoints, usually the UAV trajectory is close to a straight line 
and significant LOS changes can take place (excluding the case of unexpected 
obstacles) only in the vicinity of the waypoints. The trajectory planner should 
transfer to the UAV onboard computer only the sequence of the waypoints 
with the speed constraints for the trajectory segments and the acceleration 
limits, usually only in the vicinity of the waypoints. (Avoidance of obstacles 
and the corresponding algorithms are considered in Section 8.5.)

The guidance system implementing the considered guidance laws will 
stabilize and control the air vehicle flight between the chosen waypoints. 
The cubic term in equation (3.16) amplifies the effect of the proportional 
navigation (PN) term and is efficient in the case of maneuvering targets. For 
many UAV missions, there is no need to use this term and the proportional 
navigation algorithms is sufficient to guide the UAV between the waypoints. 
Specifics for applying the above-considered guidance laws and corresponding 
algorithms to UAVs are in the necessity of imposing limits on the UAV speed 
either during the whole flight or on its separate parts. During the autonomous 
flight, the airborne computer system collects the data in real-time from the 
sensing units such as the GPS/IMU to generate the commands to drive servo 
systems controlling the UAV flight. (IMU, an inertial measurement unit, is 
an electronic device that measures velocity, orientation, and gravitational 
forces, using a combination of accelerometers and gyroscopes.)

Usually, the terminal landing is the most difficult part of the UAV tra-
jectory. The guidance laws considered in the previous chapters do not work 
in this case. They are to straightforward and do not take into account many 
specific details that accompany the landing process. The most promising 

Takeoff 

Controlled flight

Landing
1

2 3

4

FIGURE 8.1  Standard flight profile.
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166	 Guidance of Unmanned Aerial Vehicles

approach is to develop a control system replicating the forced landing func-
tion as performed by a human pilot. A vision-based navigation approach 
and related computational algorithms should be a part of this control sys-
tem. First of all, video images allow a UAV to identify a safe landing site, 
and then keep track of the chosen landing point as the vehicle descends 
toward the chosen landing site. The vision-based navigation ability to 
detect and avoid obstacles is an important feature that can also be used 
during the landing process. However, the main advantage of using vision-
based navigation during the landing phase is that the landing environment 
makes the UAV positioning information from GPS or any other similar 
positioning devices unreliable. Reasons for this may vary from signal jam-
ming to obstacles that occlude positioning signals.

Many researchers have suggested computer-vision systems to provide a 
more accurate estimate of the vehicle’s changing position. The difficulty 
that arises in applying vision technologies is that a human’s experience and 
intuition cannot be adequately transferred to a computer program. To com-
pensate for a computer’s “slow-wittedness,” it must be given extra data, 
such as a second camera image, to replace human intuition with explicit 
calculations. The primary goal of stereo vision analysis is to determine the 
3-D form of an environment that is represented by 2-D images, since one 
image is insufficient for this type of deduction. However, if another pic-
ture is taken of the same scene from a slightly different position or angle, 
then the two images can be compared and the distance can be estimated 
between the camera and the objects represented in the images.

The analysis of the vision-based algorithms and their application to 
perform the tasks of landing-site selection and position estimation can be 
found in other material [4,15,19–23]. 

The possibility of using the guidance laws discussed in the previous 
chapters to guide UAVs we demonstrate on an example of a hypothetical 
surveillance problem assuming that a UAV should travel along a circular 
path of a 50 km radius. Approximating the circle by a regular octagon we 
obtain nine waypoints PIPi(j) (i = 1 – 3; j = 1 – 9) with the following coor-
dinates (distances are given in meters):

PIP1(1) = 500; PIP2(1) = 0; PIP3(1) = 1000

PIP1(2) = 15,150; PIP2(2) = 35,550; PIP3(2) = 1000

PIP1(3) = 50,500; PIP2(3) = 50,000; PIP3(3) = 1000

PIP1(4) = 85,850; PIP2(4) = 35,550; PIP3(4) = 1000

PIP1(5) = 100,500; PIP2(5) = 0; PIP3(5) = 1000

PIP1(6) = 85,850; PIP2(6) = –35,550; PIP3(6) = 1000

PIP1(7) = 50,500; PIP2(7) = –50,000; PIP3(7) = 1000

PIP1(8) = 15,150; PIP2(8) = –35,550; PIP3(8) = 1000

PIP1(9) = 500; PIP2(9) = 0; PIP3(9) = 1000
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Guidance of UAVs	 167

We assume that the controlled part of the UAV trajectory (RM1, RM2, RM3) 
starts at RM1 = 250 m; RM2 = 0; RM3 = 500 m and the velocity components 
VM1 = 20 m/s; VM2 = 40 m/s, and VM3 = 0. The chosen acceleration limit 
equals 2-g. The fight control dynamics are assumed to be presented by 
a third-order transfer function with damping ζ = 0.7, natural frequency 
ωM = 100rad/s and the flight control system time constant τ = 0.1 s.

The PN law generated trajectory in the horizontal plane for the navi-
gation ratio N = 3 and the corresponding UAV speed and acceleration 
are given in Figures 8.2–8.4. Formally, λ( )t  does not exist at the way-
point, since we deal with a discontinuous function. However, a discrete 
model enables us to evade this “inconvenience.” The round trip takes 
about 10 hours. Since the PN law, considered here as the only source of 
motion, produces the lateral motion, the initial energy dissipates at the 
waypoints and the UAV speed decreases. Correspondingly, the spikes 
of the commanded acceleration become smaller. The above-mentioned 
could be easily predicted since the simulated flight is without any 
permanently acting thrust force. That is why for more realistic initial 
conditions (VM1 = 20 m/s; VM2 = 0 and VM3 = 40 m/s) the circular flight 
cannot be finished; simulation results show that it fails after the third 
waypoint).

In contrast to many missiles that have uncontrollable thrust, UAVs con-
trol their propulsion force, which is a dominant factor of their longitudinal 
motion. Moreover, as we indicated earlier, different parts of the trajectory 
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FIGURE 8.2  UAV trajectory for the PN law.
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168	 Guidance of Unmanned Aerial Vehicles

may require a different UAV speed. While for many missiles the change 
of their axial acceleration depends on time (it is determined by specifics of 
rocket engines) and in some types it depends also upon the target motion, 
in the case of UAVs the longitudinal motion and its velocity are planned in 
advance and it is supposed that the UAV has a certain speed in each part of 
the flight. This determines the required longitudinal acceleration and the 
corresponding propulsion forces. 
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FIGURE 8.3  UAV speed for the PN law.
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FIGURE 8.4  UAV commanded acceleration for the PN law.
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This requirement should be reflected in the guidance law. Figures 8.5–
8.7 correspond to the modified guidance law:

	 a t v t k v t t v t sMs cl s M s Ms( ) ( ) ( ( ) ( ) ( )) (= + − =3 10
λ λ ,, , )2 3 	 (8.1)

where vM0(t)λs(t) (s = 1, 2, 3) are the desired components of the UAV veloc-
ity, vM0(t) is a preferable speed, and k is a constant coefficient.

The simulation results correspond to the case vM0(t) = 50 m/s and 
k = 0.005. The flight time is less than two hours and the UAV speed is 
close to the desired value during the most part of the flight. It is clear that 
better initial conditions, which depend on the quality of the launch opera-
tion, more waypoints and the tuned properly gain k will allow to get a more 
precise trajectory.

The PN law in the considered guidance model, based on a sequence 
of waypoints the UAV should follow, acts as a corrector in the vicinity of 
the waypoints. In the modified guidance law we combined the lateral and 
longitudinal motions as we did in Chapter 3. 

Usually, these motions are controlled by different systems, so that 
methods of analysis and design of the PN guided systems considered in 
Chapters 4–7 applied traditionally to missiles can be also employed for 
UAVs.
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FIGURE 8.5  UAV trajectory for the modified law.
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170	 Guidance of Unmanned Aerial Vehicles

In Chapter 3 the guidance laws were developed based on a rigorous 
mathematical approach; here the modified guidance was obtained based 
on physical rather than rigorous mathematical consideration. The math-
ematical justification of this guidance law follows from the material of the 
next section.
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FIGURE 8.6  UAV speed for the modified law.
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8.3  GENERALIZED GUIDANCE LAWS FOR UAVS

In Chapter 3 the motion of an unmanned aerial vehicle was presented con-
sisting of two components—lateral and longitudinal. The lateral and longi-
tudinal motions are analysed from the following equations [see equations 
(3.87) and (3.88)]:

	    λ λ λ λs s s

s

st r t r t t r t t( ) ( ) ( ) ( ) ( ) ( )+ +
=

∑2 2

1

3

(( ) ( ) ( ) ( , , )t a t a t sTts Mts= − =1 2 3 	

(8.2)

and

	  r t r t t a t a ts

s

Tr Mr( ) ( ) ( ) ( ) ( )− = −
=

∑λ2

1

3

	 (8.3)

where, applied to UAVs, aTr(t) and aMr(t) are the target and UAV radial 
accelerations, respectively; the target can be a waypoint or an unmanned 
aerial vehicle.

8.3.1 W aypoint Guidance Problem

Returning to the waypoint guidance considered in the previous section, 
we should modify only the longitudinal motion acceleration aMr(t) (3.91) to 
meet the requirement for the axial speed vM(t) = vM0.

Similar to the approach in Chapter 3 by introducing a 
pseudoacceleration:

	 a t a t r t tMr Mr s

s

1
2

1

3

( ) ( ) ( ) ( )= −
=

∑ λ

we decouple the dynamics of longitudinal and lateral motions reducing 
equations (8.2) and (8.3) to:

	
   λ λ λ λs s s

s

st r t r t t r t t( ) ( ) ( ) ( ) ( ) ( )+ +
=

∑2 2

1

3

(( ) ( ) ( ) ( , , )t a t a t sTts Mts= − = 1 2 3
	

(8.4)

	 r t a t a tTr Mr( ) ( ) ( )= − 1

In the case of the UAV waypoint guidance, the system (8.4) has the form:

	
   λ λ λ λs s s

s

st r t r t t r t t( ) ( ) ( ) ( ) ( ) ( )+ +
=

∑2 2

1

3

(( ) ( ) ( , , )t a t sMts= − = 1 2 3 	 (8.5)

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

2:
45

 2
0 

M
ar

ch
 2

01
6 



172	 Guidance of Unmanned Aerial Vehicles

and

	 r t a tMr( ) ( )= − 1 	 (8.6)

and the longitudinal motion should satisfy the indicated speed condition 
vMi(t) = vM0i for each linear segment i of the trajectory between two con-
secutive waypoints (vM0i and vMi(t) are the UAV required and actual axial 
speeds).

This condition can be achieved by choosing for each segment i:

	 a t k t v v t k t v rMr i M i Mi i M i1 2 0 2 0( ) ( )( ( )) ( )( (= − = +  tt)) 	 (8.7)

where k2i(t) has constant positive values at each segment of the trajectory.
In the case of the missile guidance problem, the condition (3.91) guaran-

tees lim ( )
t tF

r t
→

→ 0; here the system (8.6) and (8.7) is only partially asymp-
totically stable with respect to r t( ), similarly to the partial asymptotically 
stability of the system (8.5) with respect to λs t( ) [see the discussion related 
to the system (2.36) and (2.37)]. The analysis of equation (8.5) shows 
that the considered earlier guidance laws realize the parallel navigation 
if r t( ) < 0, i.e., there exists tF, which corresponds to r(tF) = 0. The time t 
satisfying r(t) = 0 can be found from the solution of equations (8.5) and 
(8.6). It means that there exists such k2i(t) that the guidance law [see also 
equation (3.96)]:

	
a t Nv t N t N r tMs cl s s s s( ) ( ) ( ) ( ) ( )= + −  λ λ λ1

3
2

21+ (( ) ( )

( )( ( )) ( ) (

t t

k t v v t t s

s

s

i M i Mi s

=
∑

+ =

1

3

2 0 1

λ

λ− ,, , ; , )2 3 1 2i = …

	 (8.8)

at least approximately (with a small error) will satisfy the formulated 
requirements to the UAV trajectory. The considered earlier guidance law 
follows from equation (8.8) if N1 = 0 and N2s = 1.

8.3.2 R endezvous Problem

As indicated in Chapter 1, rendezvous is the guidance when, in addition 
to the coincidence of an object’s and a target’s position, the object’s veloc-
ity equals the target velocity. The lateral motion (8.4) enables the object 
to reach the target if r t( ) < 0. To satisfy the equality of velocities, the 
tangential component of the guidance law should contain the term that 
equals the tangential target acceleration us3(t) = aTts(t) (s = 1, 2, 3) (i.e., in 
equations (3.92) and (3.95) N3s = 1). The rendezvous problem is reduced to 
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the choice of the longitudinal acceleration [see equation (8.4)] that would 
guarantee the mentioned additional condition and r t( ) < 0.

We will consider the longitudinal component of the guidance law in the 
form:

	 a t k v t v t a t k r t kMr Tr Mr Tr1 2 3 2( ) ( ( ) ( )) ( ) ( )= − + + = rr t a t k r tTr( ) ( ) ( )+ + 3 	 (8.9)

where vMr(t) and vTr(t) are axial components of the UAV and target velocity 
vectors, respectively; k2 and k3 are positive coefficients.

Substituting aMr1 (t) in equation (8.4) we have

	  r t k r t k r t( ) ( ) ( )= − −2 3 	 (8.10)

This equation is asymptotically stable, i.e., the distance between the UAV 
and target tends to zero, as well as r t( ) → 0. Moreover, for r( )0 0<  it is 
possible to choose such k2 and k3 so that r t( ) < 0. It is clear from the expres-
sion (1.12) that for VMs(t) = VTs(t) (s = 1, 2, 3) r t( ) = 0.

Based on equations (3.92), (3.96), and (8.9), the guidance law for the 
rendezvous problem can be presented in the form:

	
a t Nv t N t N r tMs cl s s s s( ) ( ) ( ) ( ) ( )= + + −  λ λ λ1

3
2

21 (( ) ( )

( ( ) ( )) ( ) ( )

t t

k r t k r t t a t

s

s

s Ts

=
∑

+ + +

1

3

2 3

λ

λ (( , , )s = 1 2 3

	 (8.11)

where the choice of N, N1, N2s and the corresponding expressions were 
discussed earlier.

One possible application of the considered rendezvous problem is the 
so-called aerial refueling, the process of transferring fuel during the flight 
from one aerial vehicle (commonly called the tanker) to another (the 
receiver). Aerial refueling capability is a critical component of the U.S. 
military’s ability to operate military aerial vehicles (e.g., bombers, fight-
ers, or surveillance aircraft) in the theater with maximum effectiveness, 
to deploy to distant theaters of operation quickly, and to remain in the air 
longer while operating in those theaters.

Usually, to complete an aerial refueling, the pilot of the receiver vehicle 
begins by flying formation in a position directly below and approximately 
15 m behind the boom nozzle. The boom is flown in the trail position at 
30° below horizontal, on the tanker’s centerline with the nozzle extended 
about 1 m.

UAVs can be used both as receivers and tankers. The UAV receiver 
should follow the above-described procedure (i.e., it should fly below 
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174	 Guidance of Unmanned Aerial Vehicles

the tanker). The UAV-tanker should position itself above the receiver 
approximately 15 m ahead. Since the mentioned approximate distance 
between the vehicles is small enough, we will apply the guidance law 
(8.11) for the solution of the refueling problem considering it as the ren-
dezvous problem. A more precise solution can be obtained assuming a 
nonzero distance between the moving objects; it will be presented in the 
next section.

Figures 8.8 and 8.9 correspond to the simulation results of the rendez-
vous problem. For simplicity we consider the planar case, i.e., it is assumed 
that the UAV operates remaining in the vertical plane with the target air-
craft and using the guidance law:

	 a t v t t k v t t k r tMs cl s cl s s( ) ( ) ( ) ( ) ( ) ( )= − +3 2 3
λ λ λ (( ) ( ) ( , )t a t sTs+ = 1 2

which is the particular case of equation (8.11), tries to rendezvous with 
the target. The initial position and velocity vectors are: RM = (110, 700); 
RT = (2000, 0); VM = (15, 45); VT = (0, 150). It is also assumed that the tar-
get accelerates (its acceleration components equal 0.1-g and 0, respectively) 
and the UAV acceleration limit equals 3-g. As in the previous example, the 
UAV fight control dynamics are presented by a third-order transfer func-
tion with damping ζ = 0.7, natural frequency ωM = 100 rad/s and the flight 
control system time constant τ = 0.1 s. For k2 = 10 and k3 = 1 (the problem 
of finding their optimal values was not considered) rendezvous took a little 
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FIGURE 8.8  Distance between objects.
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bit more than one minute. Solid and dashed lines in Figure 8.9 show the 
planar components VT1 – VM1 and VT2 – VM2, respectively.

8.3.3 C onditional Rendezvous Problem

In contrast to the above-considered rendezvous problem, conditional ren-
dezvous assumes a specified distance between an object and a target, i.e., 
after a certain period of time the object and target start moving synchro-
nously (i.e., with the same velocity) and keeping their relative position 
unchanged.

The relative position between two objects can be described by indi-
cating the distance r0 between them and their line-of-sight vector 
λ0s(t)  (s = 1, 2, 3). By specifying this vector, the problem of conditional 
rendezvous can be reduced to the above-considered rendezvous problem. It 
means that the UAV trying to implement conditional rendezvous with the 
target rT(t) = (RT1, RT2, RT3) can be considered as a moving object that tries 
to rendezvous a fictitious target with coordinates:

	 R t R t r t sTs
f

Ts s( ) ( ) ( ) ( , , )= − =0 0 1 2 3λ 	 (8.12)

For the lateral motion the guidance law (8.11) can be written as:

	 a t Nv t N t N r tMts cl
f

s
f

s
f

s
f( ) ( ) ( ) ( ) (= + + − λ λ1

3
21 )) ( ) ( ) ( )λ λs

f

s

s
f

Ttst t a t2

1

3

=
∑ + 	

(8.13)
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176	 Guidance of Unmanned Aerial Vehicles

where the LOS λs
f t( ) and the closing velocity vcl

f  (t) should be determined 
with respect to the fictitious target, i.e.,

	

r t R t R t

t R t

f
Ts
f

Ms

s

s
f

Ts
f

( ) ( ( ) ( ))

( ) ( (

= −

=

=
∑ 2 2

1

3

λ )) ( )) ( )

( ) ( ( ) ( ) (

−

= − +

R t r t

t V t V t

Ms
f

s
f

Ts Ms s
f

/

λ λ tt v t r t

v t

R t R t

cl
f f

cl
f

Ts
f

Ms

) ( )) ( )

( )

( ( ) ( ))(

/

= −
− VV t V t

r t

Ts Ms

s
f

( ) ( ))

( )

−
=

∑
1

3

	

(8.14)

(Notations in the above equations are obvious [see equations (1.8)–(1.12)]; 
the upper index “f ” indicates the fictitious target.)

Similar to equation (8.9), the longitudinal component of the guidance 
law is presented in the form:

	 a t k r t a t k r tMr
f

Tr
f

1 2 3( ) ( ) ( ) ( )= + + 	 (8.15)

and substituting aMr1 (t) in equation (8.5) we have:

	  r t k r t k r tf f f( ) ( ) ( )= − −2 3 	 (8.16)

This equation is asymptotically stable. It is clear from the vcl
f  (t) expres-

sion (8.14) that VMs(t) = VTs(t) (s = 1, 2, 3) for r tf ( ) = 0. It follows also 
from equation (8.14) that rf(t) = 0 corresponds to R t R tTs

f
Ms( ) ( )=  or 

RTs(t) – RMs(t) = r0λ0s(t) (s = 1, 2, 3) [see equation (8.12)], i.e., the dis-
tance between the UAV and target tends to r0 and the UAV positions 
itself properly according to the required LOS vector λ0(t).

Based on equations (8.13) and (8.15), the guidance law for the condi-
tional rendezvous problem can be presented in the form:

	
a t Nv t N t N r tMs cl

f
s
f

s
f

s
f( ) ( ) ( ) ( ) ( )= + + − λ λ1

3
21 



λ λ

λ

s
f

s

s
f

f f
s
f

t t

k r t k r t

2

1

3

2 3

( ) ( )

( ( ) ( )) (

=
∑

+ + tt a t sTs) ( ) ( , , )+ = 1 2 3

	 (8.17)

where the choice of N, N1, N2s and the corresponding expressions were 
discussed earlier.
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Usually in practice, it is more convenient to indicate the desired angles 
between the target velocity vector and the LOS vector rather than the 
required LOS vector λ0(t), since λ0(t)changes if the target accelerates or 
decelerates. However, λ0(t) can be easily determined if the target velocity 
vector is known. Various computational procedures can be developed. It 
is possible to make small changes in the guidance law (8.17) based on the 
material of Chapter 3 related to the modified generalized guidance laws.

8.4  GUIDANCE OF A SWARM OF UAVs

The cooperative control of groups of small inexpensive UAVs is of special 
interest in military and civilian applications for their abilities to coordinate 
simultaneous coverage of large areas or cooperate to achieve goals such as 
mapping, patrolling, search and rescue, surveillance, and communications 
relaying. It has been shown that having multiple UAVs flying in formation 
can be used for applications such as interferometric imaging that could not 
be performed by a single UAV [11]. The mentioned tasks may be repetitive 
or dangerous, making them ideal for autonomous aerial vehicles.

When UAVs perform a cooperative task by flying as a group, they can 
be considered flying in formation. A formation may be precisely defined by 
desired relative position vectors or more globally defined such as through 
artificial potential field methods [3,5,7–12,17,18,20]. Formations must 
safely reconfigure in response to changing missions or environments. A 
formation flight guidance law can guarantee the UAVs safe flight by speci-
fying relative position requirements (a fixed formation) or establishing 
general rules governing UAV interaction [9,10,18]. The transition process 
must reassign UAVs to positions in the new formation and provide trajecto-
ries from the initial formation positions to the new ones. These trajectories 
must guarantee UAVs safety and be compatible with their dynamics.

Encouraged by studies of insect colony dynamics, the motion of fish 
schools or bird flocks, researchers have produced numerous papers and 
simulations investigating how the examined swarming behavior can be 
applied to the control of UAVs. In [6,21], the concept of a behavioral con-
trol architecture taking inspiration from natural behaviors was introduced. 
In [7] it was applied to control the behavior of a swarm of UAVs. A set 
of rules was established and applied to all the vehicles in the group. As 
stated in [5], by having this form of control, a system controlled through 
relatively simple laws can achieve a desired behavior and have the advan-
tages of being scalable, robust, and flexible. Artificial potential fields are 
an example of behavioral control architecture [10,11,13,18] and were intro-
duced in [13] in the area of obstacle avoidance for manipulators. More 
recently they have been applied successfully in the area of autonomous 
robot motion planning in [9] and in space applications in [3,12]. The basic 
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178	 Guidance of Unmanned Aerial Vehicles

idea behind artificial potential fields is to create a workspace where each 
UAV is attracted toward a goal state with a repulsive potential ensuring 
collide avoidance [9]. Graph theory was used in [17] as a basis for the 
analysis and control of large groups of cooperating agents, the local inter-
actions, and spatial distribution of a swarm of UAVs. The virtual structure 
approach that treats each UAV as a particle that attempts to maintain a 
fixed geometric relationship was offered in [11].

Trying to be down-to-earth we consider a more practical approach 
to guidance of a swarm of UAVs. To the above-mentioned advantages 
of using a group of UAVs working together we add one more important 
factor. Swarms can be more self-sufficient, since one human would look 
after more UAVs. Cooperation and coordination in UAV groups will allow 
increasingly large numbers of UAVs to be operated by a single user.

Unfortunately, now the Predator ground control station (GCS) only con-
trols one Predator at a time, and it can only control and process informa-
tion from Predator vehicles. The RQ-4 Global Hawk GCS controls and 
processes information only from Global Hawks. Other UAVs use their own 
proprietary GCS systems. But commanders in the theater need access to 
information gathered by all types of UAVs that are flying missions. The 
current trend is to develop a common open GCS architecture supporting 
everything from the MQ-8 Fire Scout unmanned helicopter to the long-
range Global Hawk for controlling multiple types of UAVs and not be 
blocked by proprietary walls.

The UAVs require human guidance to varying degrees and often through 
several operators, which is what essentially defines a unmanned aerial sys-
tem (UAS). For example, the Predator and Shadow each require a crew of 
two to be fully operational. There has been an increasing effort to design 
systems that decrease an operator’s workload and, as a result, the operators 
to vehicles ratio. Supervisory control of the UAV performs two functions: 
(i) to keep the UAV in stable flight; and (ii) to meet mission constraints 
such as routes to waypoints, time on targets, and avoidance of threat areas 
and no-fly zones.

The more autonomous ability a UAV has, the more complex its guidance 
and control systems is and, as a result, the higher is its size and weight, 
the less—its endurance, a combat radius, and/or speed. Payload capacity 
and endurance (fuel capacity) are inversely related. The desire to reduce 
the operator’s load leads to an increase of a UAV’s payload that worsens 
its dynamic properties, so that it becomes more difficult to reach its best 
potential performance characteristics.

A hierarchical control system, where a local operator controls a group 
of UAVs and an operator-manager controls the actions of local operators, 
can provide the best solution of the coordinated control of the fleet of 
UAVs. Moreover, the use of a manned aerial vehicle with an operator as 
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the leader of a local UAV group, instead of using a ground-based opera-
tor, can significantly reduce the UAV’s payload and increase their per-
formance quality.

Based on the above mentioned, we will consider the guidance of a swarm 
of UAVs as guidance implemented by a local operator who determines the 
trajectory of the leading UAV, coordinated with an operator-manager, and 
relative positions of separate UAVs within this group with respect to the 
leading UAV. In this case, the operator’s main workload is focused on the 
leading vehicle, which should be able to communicate with other members 
of its group (it should not be a big data exchange) and the direct operator’s 
commands to separate UAVs can be used only on special occasions.

By setting up the desired relative positions of the separate UAVs, mem-
bers of the group with respect to the leading UAV, the guidance of the 
swarm of UAVs reduces to the conditional rendezvous problem discussed 
in the previous section.

The efficiency of the guidance law (8.17) is demonstrated in two exam-
ples of three UAVs with the UAV leader, which using the previous termi-
nology will be considered as the target, and two other UAVs that should 
follow the leader in a certain formation. For simplicity we consider the 
planar motion, which can be realistic for many practical applications.

The initial position of the vehicles is (distances are given in m, velocities 
in m/s, accelerations in m/s2):

	 RT1 = 1000,  RT2 = 0;  RM11 = 110,  RM12 = 700;

	 RM21 = 110,  RM22 = –700;

	 VT1 = 0,  VT2 = 60;  VM11 = 15,  VM12 = 45;  VM21 = 15,  VM22 = 45;

	 aT1 = 0.1g,  aT2 = 0.

It is assumed that the UAVs have a 4-g acceleration limit and dynamics 
similar to that in other examples of this chapter; the guidance law param-
eters N = 3, N1 = 0, N2s = 1, k2 = 10, and k3 = 1, the same as in the previous 
example.

The first formation (see Figure 8.10) corresponds to the case when all 
three UAVS should move synchronously being on the same vertical (in the 
horizontal plane) line and the distance between the leader (solid line) and 
two others UAVs r0 = 500 m. For this case λ01 = 0, λ02 = ±1. In Figure 8.10 
the UAVs positions are indicated with a 10 s interval. The synchronous 
motion was reached in about 60 s.

The second formation corresponds to the case when two UAVs should fol-
low the leader (solid line) being a 500 m behind and forming a 45° (0.707 rad) 
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180	 Guidance of Unmanned Aerial Vehicles

angle with his flight path in the horizontal plane. In this case, λ01 and λ02 are 
functions of time and they were determined using the values of the UAV leader 
velocity vector (to determine the unit velocity vector, i.e., its direction) and the 
required 45° angle. In Figure 8.11 the UAV’s positions are indicated with a 10 s 
interval. The synchronous motion was reached in less than 40 s.
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FIGURE 8.10  Conditional rendezvous of three UAVs (r0 = 500 m; λ01 = 0, 
λ02 = ±1).
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FIGURE 8.11  Conditional rendezvous of three UAVs (r0 = 500 m; a 45° hori-
zontal flight path angle).
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8.5  OBSTACLE AVOIDANCE ALGORITHMS

Compared to the guidance problem, the avoidance obstacles problem—at 
least on a theoretical level—looks significantly simpler, since the admissi-
ble avoidance area is usually incomparably larger than the admissible area 
dictated by the guidance accuracy requirements. The avoidance problem 
becomes more complicated if additional limitations are imposed on the 
admissible area (e.g., the requirement to minimize the obstacle avoidance 
path, the energy spent on the obstacle avoidance operation, etc.).

An obstacle may take any form and may be either inert or hostile 
(including seeking a collision). Moving obstacle avoidance is more dif-
ficult than stationary ones, since the avoidance operation success depends 
on how precise the future position of the moving obstacle is predicted. The 
most difficult moving objects are missiles fired to destroy the UAV. In this 
case, the UAV should possess high maneuverability to escape a possible 
intercept.

The ability to see and avoid obstacles is a necessary condition for flight 
in civil airspace and effective path planning should guarantee that the UAV 
conforms to the federal aviation regulations (FAR) governing flight within 
the National Airspace System (NAS). 

Once an obstacle has been detected, the flight path must be altered in 
order to ensure the UAV safety while minimizing deviation from the pre-
determined path and continuing to ensure collision avoidance. Planning 
around stationary obstacles is rather trivial and as we indicated in this 
chapter the operation research methods can be used and are used to plan 
optimal paths around stationary objects. Path planning around moving 
obstacles, however, is not a trivial task.

The UAV’s ability to avoid obstacles depends largely on sensors used to 
provide necessary information about obstacles. Preliminary knowledge of 
stationary obstacles allows path planners to design the flight path properly. 
Vision navigation, discussed earlier, presents a reliable way to avoid close 
obstacles. Optical flow sensors can work altogether with other sensors to 
obtain more precise obstacle information.

Sensors used in existing collision avoidance systems can be broken into 
two types: active and passive. Examples of passive sensors include optical 
flow sensors (charge coupled device CCD and complementary metal oxide 
semiconductor CMOS, image sensors that capture images digitally with 
embedded optical flow algorithms), monocular or stereo vision systems 
using object detection and/or extraction and infrared cameras, which can 
be used to identify obstacles by the thermal wavelengths they emit. Active 
sensors include ultrasonic devices, SONAR (sound navigation and rang-
ing), active infrared devices, radar/laser, and Doppler radar-based devices. 
In selecting a suitable sensor for obstacle detection it is imperative to take 
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into account the size, speed, onboard power resources, and payload capa-
bilities of the UAV. Environmental factors such as the available light and 
obstacle density also impact upon the choice of a suitable sensor system. 
The UAV’s onboard system should use GPS/IMU data, terrain data to iden-
tify areas of probable obstacles complemented by using real-time higher 
resolution visual (E-O/IR, radar/laser, etc.), and nonvisual (RF, acoustic, 
etc.) data to detect stationary as well as moving obstacles in its path. The 
vision information, as another source of sensor information, helps to refine 
(or correct) the motion measurements from other sensors.

A possible solution of the obstacle avoidance problem consists of deter-
mining the direction of the obstacle with respect to the UAV’s path, its 
size and speed, if it is approaching the UAV, and directing the UAV in the 
area, where the intersection with the obstacle becomes impossible. Slightly 
modified guidance laws considered in Chapter 3 can be used to reach this 
area. Properly installed and tuned collision avoidance sensors should indi-
cate when the UAV should resume its course to reach the previously tar-
geted waypoint.

In light of the guidance laws discussed in this book, the simplest approach 
to avoid obstacles follows from the analysis of the guidance law related to 
the lateral motion [see equations (3.92)–(3.95)]. As indicated earlier, this 
type of motion, under the condition (2.5), implements parallel navigation, 
i.e., an object quite effectively moves toward the target. It is quite clear that 
the acceleration (force) aMOs(t) acting in an opposite direction, i.e.,

	

a t Nv t N t N r t tMOs cl s s s s( ) ( ) ( ) ( ) (= − − +  λ λ λ1
3

2
2 )) ( )

( ) ( , , )

λs

s

s Tts

t

N a t s

=
∑

− =

1

3

3 1 2 3
	 (8.18)

will direct the UAV from the obstacle. Usually, there is no need to use 
the target acceleration term in equation (8.18) and the desired goal can be 
achieved only by using the linear term; the additional cubic term can pro-
vide more rapid response. 

In equation (8.18), the LOS λs(t) (s = 1, 2, 3) characterizes the line 
between the UAV, which should avoid an obstacle by lateral maneuver, 
and the obstacle. The presented collision avoidance law doesn’t work if 
the vehicle runs into the obstacle, i.e., λs t( ) = 0 (s = 1, 2, 3). Such situation 
should be determined by an appropriate sensor and the UAV should be 
removed immediately from this LOS. An additional lateral acceleration 
term, shifting the vehicle from a “dead course,” should be added. In a case 
of moving obstacles (e.g., missiles attacking the UAV) the required lateral 
acceleration should satisfy the condition ṙ ≥ 0, where r is the distance 
between the UAV and the obstacle.
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When the UAV leaves this “dead” zone, the law (8.18) starts working 
and the UAV moves away from the obstacle until the installed sensors 
would signal that the direction from the current UAV’s position to the way-
point is safe.

The computational algorithm for the whole class of the considered guid-
ance and obstacle avoidance problems can be presented in the following 
form:

a t K t K t K r t tMs s s s

s

( ) ( ) ( ) ( ) ( )= + +
=

1 2
3

3
2

1

3

  λ λ λ∑∑ + +

+ +

λ

λ

s M

s Trs

t K V K r t

K r t t K a

( ) ( ( )

( )) ( ) (

4 0 5

6 7



tt K a t sTts) ( ) ( , , )+ =8 1 2 3

	(8.19)

where the coefficients Ki (i = 1–8) are determined by the given earlier 
expressions.

The ability to use a kind of generic algorithms (8.19) makes the dis-
cussed approach very attractive. The launch and landing operations are 
specific for various UAVs and these operations are not discussed in this 
book.
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9 Testing Guidance 
Laws Performance

9.1  INTRODUCTION

Any simulation focuses on achieving certain goals—to check the validity 
of some ideas, to make a preliminary estimate of design efficiency, and so 
on. Each simulation model deals with a certain scenario. For missiles, the 
presence of a target, its parameters and trajectory, is a necessary part of the 
model, and the intercept accuracy is one of the most important parameters 
determined by simulation. For UAVs, the model should test how precise 
the vehicle follows the prescribed flight path presented by a sequence of 
waypoints.

There are generally three phases to the engagement and interception of 
a target. The first launch phase is usually uncontrolled. During this stage, 
the rocket motor is initiated and the missile is boosted up to its operating 
velocity at the direction of a target. This is followed by the midcourse 
phase, if the missile is not locked onto the target. Usually, during this 
phase the missile is guided by radar into an area that allows it to lock onto 
the target with its own sensor. During the terminal (homing) guidance 
phase, the missile is guided onto the target using its local sensor measure-
ments. Depending on the interceptor and mission, the terminal phase can 
begin anywhere from tens of seconds down to a few seconds before inter-
cept. The purpose of the terminal phase is to remove the residual errors 
accumulated during the prior phases and ultimately to reduce the final 
distance between the interceptor and threat below some specified level. 
For systems that use a fuze and fragmentation warhead, this final miss 
distance must be less than the warhead lethal radius. A direct-hit missile 
can tolerate only very small “misses” relative to a selected aimpoint. In 
either case, during the terminal phase of flight the interceptor must have 
a high degree of accuracy and a quick reaction capability. Moreover, near 
the very end of the terminal phase (often referred to as the endgame), the 
interceptor may be required to maneuver to maximum capability in order 
to converge on and hit a fast moving evasive target.

Threat missile systems continue a steady evolution in technical sophis-
tication leading to increased capability and, consequently, the ability to 
perform a wider range of missions. For example, tactical ballistic missiles 
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can have high velocity and, upon reentry, can exhibit complex coning 
motion and slowdown as they move through the atmosphere. Likewise, 
high performance cruise missiles can fly at supersonic speeds, have high 
lateral acceleration capability, and can execute maneuvers that are difficult 
to anticipate. The diversity of these threat missile systems and missions 
poses a significant challenge to missile interceptor design.

Modern missiles operate over a wide range of flight conditions, which 
vary with altitude, speed, and engine thrust. Aerodynamic missiles use 
aerodynamic forces to maintain their flight path. Ballistic missiles contain 
a part of their trajectory that is not influenced by propulsion or control. 
They are categorized according to their range—the maximum distance 
measured along Earth’s surface from the point of launch to the point of 
impact of the last element of the payload.

The United States divides missiles into five range classes [24]. Battlefield 
short-range ballistic missiles (BSRBM) have a range up to 150 km. Short-
range ballistic missiles (SRBM) have a range up to 1000 km. Medium-
range ballistic missiles (MRBM) have a range of 1000–2400 km. The 
intermediate-range ballistic missile (IRBM) operational range is 2400–
5500 km. Intercontinental ballistic missiles (ICBM) operate at distances 
over 5500 km. Cruise missiles present a special class of missiles targeting 
mostly surface objects and possessing a very high accuracy. The computer 
that guides a cruise missile is programmed prior to launch with infor-
mation about the ground terrain between the point where the missile is 
launched and its intended destination. Using sensors on the missile, it uses 
various terrain references to find the target. A cruise missile has sophisti-
cated tracking equipment, including various sensors such as cameras and 
satellite data receivers that allow it to determine its position. Thus a cruise 
missile can sense its environment, process that information, decide what to 
do next, and execute that decision. Unlike a ballistic missile, which is usu-
ally guided for only a small initial part of its flight after which it follows a 
trajectory governed only by the gravitational field, a cruise missile requires 
continuous guidance since both the velocity and the direction of its flight 
can be unpredictably influenced by a variety of factors.

Various types of missiles have their specific features that should be 
reflected in simulation models. Usually the six degree simulation models 
(6-DOF) are used to imitate the engagement scenarios and to test the 
effectiveness of guidance laws. When nonlinear guidance laws and non-
linearities in a missile guidance system (e.g., acceleration saturation) as 
well as the uncertainties in missile dynamics are considered, it becomes 
necessary to resort to Monte Carlo techniques (repeated simulation trials) 
to arrive at the rms miss distance.

Proportional navigation (PN) is known to be an optimal solution, which 
under the assumption of a constant closing velocity, absence of autopilot 
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lags and absence of target maneuvers minimizes the linear quadratic cost 
functional of the miss distance and missile acceleration. More advanced 
guidance laws depend on more detailed models of the target and missile 
and assumptions concerning the intercept scenario. The more realistic 
optimal problems have been investigated and optimal guidance laws were 
developed. However, their performance is dependent on the estimation of 
the time-to-go, which is assumed to be known and commonly approxi-
mated as the range between the target and missile divided by the closing 
velocity. Typically, the estimates of the range and closing velocity are 
obtained from radar or other ranging devices. In reality, this data are con-
taminated by noise from radar-jamming devices or the processing elec-
tronics. This affects accuracy of the estimation of the time-to-go, which 
causes errors in the terminal miss distance.

The linear approach, based on the assumption that the deviations from a 
nominal collision course are small, fails when the interception kinematics 
are highly nonlinear. Guidance system saturation occurs when the system 
demands (e.g., a commanded lateral acceleration 40-g) exceed the missile 
capability (e.g., the missile is only capable of 30-g). This situation arises in 
short-range engagements where the missile is far from the nominal colli-
sion course and in the case of highly maneuvering targets.

We considered the case of 2-DOF sinusoidal maneuvers, also known as 
weave maneuvers. This type is a useful starting point for analysis of inter-
cept scenarios that involve ballistic missiles, although the ballistic target 
dynamics may involve an arbitrary periodic motion in three dimensions 
when re-entering the atmosphere. Instead of considering the 3-DOF PN 
problem, in many cases we assumed that lateral and longitudinal maneuver 
planes were decoupled by the means of roll-control, so that the consider-
ation of the 2-DOF problem was justified. It was assumed also that the 
gravitational component of the total missile lateral acceleration is negli-
gible. Such simplifications are possible only on the initial stage of analysis 
and design. Moreover, just after booster burnout, axial acceleration, center 
of gravity, and mass moment of inertia characteristics are changed. These 
variations should be incorporated in aerodynamic models.

UAVs capability varies significantly and can be categorized based on 
their type (fixed-wing or rotating-wing), payload or mission profile (alti-
tude, range, duration). The fixed-wing aircraft have been favored as the 
platform for UAV because they are simple in structure, efficient, and easy 
to build and maintain. The autopilot design is easier for fixed-wing aircrafts 
than for rotary-wing aircraft because the fixed-wing aircrafts dynamics are 
simpler. The rotorcraft-based UAVs are desirable for certain applications 
where the unique flight capability of the rotorcraft (to takeoff and land 
within limited space; to hover and cruise at very low speed) is required. 
The trend in design of modern helicopters is toward more lightweight 
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and smaller vehicles while retaining payload capability and performance 
parameters. This often requires that the rotor be closer to the airframe, 
and the higher rotor speeds required often result in higher disk loading. 
However, aerodynamics of such vehicles are very complicated and their 
simulation models do not describe precisely their dynamic features. In 
many cases, simulation of special flight modes of UAVs does not require 
using complicated 6-DOF models. Simplified 3-DOF or 2-DOF models 
give satisfactory results and can be used on the initial stage of design.

Although the described earlier guidance laws exclude the interference 
of an operator in the UAV flight, the real UAV systems should have two 
operation modes: automatic mode and manual mode. The mode switch 
should be controlled by the manual operation system. If necessary, an 
operator can switch from the automatic mode to manual mode to avoid 
disorder of the flight of the UAV.

9.2  FORCES ACTING ON UNMANNED AERIAL VEHICLES

Thrust is the main forward force acting on a missile or an aircraft and gen-
erated by a propulsion system. The thrust equation for missiles and aircraft 
can be derived from the general form of Newton’s second law (i.e., force 
equals the rate of change of momentum with time):

	 T
d mV

dt
= ( )

	 (9.1)

where m is the mass and V is the velocity of an object.
For a moving fluid (gas), the important parameter is the mass flow rate
mp that is defined as:

	 m VS= ρ 	 (9.2)

where ρ, V, and S are the density, velocity, and area, respectively.
Taking into account that a net change of pressure in the flow produces 

an additional change in momentum, thrust T for missiles and aircraft with 
jet engines equals the sum of two components—the momentum thrust and 
the pressure thrust:

	 T = mpve – mava + (pe – pa)Ae	 (9.3)

where mp is the mass expelled in unit time, ma is the input mass flow; ve is 
the exhaust velocity (the average actual velocity of the exhaust gases), va is 
an input gas velocity; pe is the exhaust pressure, pa the ambient pressure, 
and Ae the area of the exit of the motor nozzle.
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The nozzle of turbine engines is usually designed to make the exit pres-
sure equal to the ambient pressure, so that their pressure thrust equals 
zero, and the thrust for a turbojet engine is created due to a change in the 
momentum of air.

Propellers, which are used to drive many lightweight aircraft, generate 
thrust by internal combustion engines; small UAVs use electric engines. 
They act as rotating wings creating a lift force (aerodynamic forces and 
corresponding equations will be considered later).

The forward thrust of fixed-wing aircraft is proportional to the mass of 
the airflow multiplied by the velocity of the airflow [see equation (9.3)]. 
Rotary wing aircraft use engine thrust to support the weight of the aircraft 
and direct some of this thrust to control forward speed. In helicopters, the 
main rotor thrust TM is the source for vertical lift and horizontal force.

For rockets, thrust is produced by the expulsion of a reaction mass, such 
as the hot gas products of a chemical reaction; in equation (9.3) mp is the 
propellant mass flow rate and ma = 0, so that for missiles the second term 
of equation (9.3) drops out.

Even when the propellant flow rate and exhaust velocity are constant so 
that the thrust force is constant, a rocket will accelerate at an increasing 
rate because the missile’s overall mass decreases as propellant is used up. 
The change in velocity depends on the missile initial total weight, glide 
weight (its final weight after the propellant is expended), thrust magnitude, 
and the rate at which the propellant is burning.

If the missile is launched from the air, it already possesses a large 
initial speed. In contrast to such types of missiles, those launched from 
the ground (ground-based missiles), i.e., having zero initial speed need 
more propellant to reach the same speed. Ground-based strategic inter-
ceptors with a large operational range consist of one or two boost stages 
boosters. 

The thrust acceleration profile of a single boost stage missile is given 
in Figure 9.1. Here the boost phase lasts about 7.5 s. Next, the so-called 
sustain phase continues until 25 s. The last glide phase corresponds to 
T = 0.

The thrust force of many types of existing missiles (without throttle-
able engines) is uncontrolled and directed along the x axis of the missile’s 
body (see Figure 9.2). Missiles with thrust vector control are able to change 
the direction of thrust. Their autopilots change the actuator angle and, as 
a result, influence the components of the thrust vector. Thrust is used to 
control the flight of these missiles.

Gravity, which was neglected in the previous chapters, significantly 
influences the aerial vehicle range capability and should be included in 
more rigorous models than considered earlier. Usually, the gravity term 
is presented by the vertical coordinate of the ESF coordinate system that 
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equals g. However, for the IRBM and ICBM missiles the gravity force G is 
distributed along three ESF coordinates as:
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(9.4)

where RE = 6.378137*106 is the Earth’s equatorial radius, RE, RN, and RU 
are the vehicle coordinates. For small altitudes magG = g, GU = g, and 
GE = GN = 0.

Drag and lift belong to the so-called aerodynamic forces. Drag acts along 
the velocity vector (see the wind axis in Figure 9.2) and impedes the aerial 
vehicle’s motion. It reduces vehicle speed so that reduces its acceleration 
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FIGURE 9.1  Thrust acceleration.
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FIGURE 9.2  Coordinate systems used in aerial vehicle dynamics.
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capability. Lift is directed perpendicularly up with respect to drag and is 
the main force controlling the flight of an aerial vehicle. The lift and drag 
forces are presented as:

	 Lift = CLQS,  Drag = CDQS	 (9.5)

where S is a reference area; CL and CD are the lift and drag coefficients, 
respectively; Q is the dynamic pressure that depends on the atmospheric 
pressure PRESS and Mach number:

	 Q = 0.7 PRESS (Mach)2	 (9.6)

In the body coordinate system (see Figure 9.2; the x axis is directed along 
the aerial vehicle’s body), instead of equation (9.5), the normal and axial 
forces generated by lift and drag are considered.

9.3  REFERENCE SYSTEMS AND TRANSFORMATIONS

A reference frame (coordinate axes) determines the origin and direction 
of measurement of the motion states of a dynamic model. The origin is 
the point from which the states are measured. The axes of the reference 
frame define the directions of measurement. Common reference frames 
in simulation are body frames, navigation frames, and inertial frames. 
The inertial frame is the nonaccelerating reference frame used for calcu-
lating the Newtonian equations of motion. The navigation frame is gen-
erally located at a convenient position in space; for simulation of aerial 
vehicles, the navigation frame may be located on the Earth’s surface at a 
given latitude and longitude. The navigation frame may be fixed, rotating, 
accelerating, or moving with respect to the inertial frame. In practice, it is 
difficult to define a reference frame that is not accelerating with respect to 
inertial space. For example, an Earth-fixed reference frame is suitable for 
some low fidelity situations. However, in high fidelity situations the rota-
tion and movement of the Earth needs to be accounted for in the definition 
of the inertial frame. The body-fixed frame has its position and orientation 
fixed to the vehicle body. The body carried frame has its position fixed to 
the vehicle body and its orientation fixed to the navigation frame. Different 
simulations (or phases of a single simulation) may require different iner-
tial reference frames for the fidelity requirements. The choice of reference 
frames affects the numerical error incurred in the simulation. This sug-
gests that the reference frames used by dynamic models could be chosen 
to reduce numerical errors.

As mentioned in Chapter 1, the flight dynamic problems require a num-
ber of reference frames for specifying relative positions, velocities, and 

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

2:
47

 2
0 

M
ar

ch
 2

01
6 



192	 Guidance of Unmanned Aerial Vehicles

accelerations. The equations of motion can be written with respect to any 
reference plane, the choice usually being a matter of convenience and accu-
racy requirements. The motion states of aerospace vehicles are commonly 
expressed using the navigation frame and the body frame. The vehicle posi-
tion is commonly expressed as the position of the body frame with respect to 
the navigation frame, and the vehicle velocity is commonly expressed as the 
velocity of the body frame with respect to the navigation frame. The body 
frame is a convenient reference frame to express many forces and moments 
generated on the body.

Three orthogonal reference systems are used in the six-degree-of-
freedom simulation model described below: the Earth-fixed reference 
system (ESF), the vehicle body system, and the seeker reference system. 
In Chapter 1, we described the north-east-down (NED) vehicle-carried 
coordinate system. As mentioned earlier, in many applications the ESF 
origin is near enough to the vehicle that Earth curvature is negligible, so 
that the NED axes are parallel to the ESF axes.

The orientation of any reference frame relative to another can be char-
acterized by three angles (the Euler angles), which are the consecutive 
rotations about the z, y, x axes, respectively, which carry one reference 
frame into coincidence with the other (see Figure 9.3).

The Euler angles ψ, θ, and ϕ in Figure 9.3 correspond to the following 
order of rotation [4]: rotation about the z  axis through angle ψ; rotation 
about the new position of the y axis through angle θ, putting the x  axis into 
coincidence with the x axis; rotation about the x axis through angle ϕ.

The sequence of rotations that carry the NED frame into coincidence 
with the vehicle body frame are known as the body Euler angles transfor-
mation. The transformation matrices are given by:

x

y

z

θ φ

φ

θ
ψ ψx

y

z

FIGURE 9.3  Euler angles.
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	 (9.7)

so that the transformation from the NED to the vehicle body system can 
be described by:

L L L LEB = =

−

3 2 1( ) ( ) ( )

cos cos cos sin sin

si

φ θ ψ

θ ψ θ ψ θ

nn sin cos sin sin sin sin cos

cos sin co

φ θ ψ φ θ ψ φ θ
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cos sin cos cos sin sin cos cos
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φ ψ

φ θ ψ φ θ ψ φ θ

+ φφ ψ φ ψsin sin cos−



























	

(9.8)

Taking into account that the vector of the angular velocity of the vehicle 
body frame relative the NED frame with coordinates   φ θ ψ, ,  equals the dif-
ference between the angular velocities of the vehicle body frame (p, q, r) 
and the NED frame and assuming the angular velocity of the NED frame 
to be equal to zero, we can use the transformations (9.7) to present the rate 
of change of the Euler angles between the Earth axes and the vehicle body 
axes in terms of the body rotational rates p, q, and r, the so-called roll, pitch, 
and yaw rates, respectively [7]:
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

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


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

p

q

r 






	 (9.9)

If the vehicle is assumed to be roll stabilized (many simulation models are 
built under this assumption), i.e., p = 0, the simplified Euler rate equation 
(9.9) is used.
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194	 Guidance of Unmanned Aerial Vehicles

The Euler angles are obtained by integrating these rates and include 
initial values of the angles at the initiation of the simulation process, i.e.,

	φ φ φ θ θ θ ψ( ) ( ) , ( ) ( ) , ( )t t dt t t dt t
t t

= + = + =∫ ∫ 
0

0
0

0 ψ ψ( )t dt
t

0
0∫ + 	 (9.10)

The above relations relate to the case of nonrotating spherical Earth, i.e., 
the rotation of the NED frame relative to the Earth-centered inertial (ECI) 
frame can be neglected. A more precise model should take into account 
the Earth rotation and its oblateness effect [7].

9.4  UNMANNED AERIAL VEHICLES DYNAMICS

Usually, missiles and aircraft are treated as a rigid body with six degrees 
of freedom. This is, of course, an idealization of actual flight dynamics, 
but avoids the complexities that a consideration of elastic forces would 
introduce. Assuming a rigid body, constant mass and inertia, and taking 
the origin of the body-fixed x, y, and z coordinates system at the vehicle 
center of gravity, the standard body axis six-degree-of-freedom equation 
of motion for a wide class of unmanned aerial vehicles can be presented 
as [4]:

	







v rv qv X G T

v rv pv Y G T

v

x y z x x

y x z y y

z

= − + + +

= − + + + +

= qqv pv Z G T

p L pq L qr L L

q M

x y z z

pq qr T

rp

− + + +

= − − + +

= −



 rrp M r p M M

r N pq N qr N N

r p T

pq qr T

− − + +

= − − + +

2 2
2 2( )



	 (9.11)

where vx, vy, and vz are the components of velocity along the x, y, and z 
axes (see Figure 9.2), respectively; p, q, and r denote the roll, pitch, and 
yaw rates, respectively; Gx, Gy, and Gz are the gravity components; X, Y, 
and Z model accelerations produced by the aerodynamic forces; L, M, and 
N model angular accelerations produced by the aerodynamic moments; 
Tx, Ty, and Tz model propulsion system forces; and LT, MT, and NT model 
the moments produced by the propulsion system. All variables of the right 
part of equation (9.11) have units of acceleration.
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The coefficients Lpq, Lqr, Mrp, Mr p2 2, Npq, and Nqr are obtained as a result 
of simplification of a more general form of moment (mx, my, and mz) equa-
tions [4]:

	

I p I I qr I r q I pq r Ixx yy zz yz xz xy − − + − − + +( ) ( ) ( )2 2 (( )

( ) ( )

rp q m

I q I I rp I r p I

x

yy zz xx xz xy

− =

− − − − −



 2 2 (( ) ( )
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qr p I pq r m

I r I I pq I

yz y

zz xx yy xy

+ + − =

− − +

 

 (( ) ( ) ( )q p I rp q I qr p myz xz z
2 2− − + + − = 

	 (9.12)

where Ixx, Iyy, and Izz denote the mass moments of inertia about the x, y, and 
z axes; Ixy, Ixz, and Iyz denote the mass product of inertia about the x and y, 
x and z, y and z axes, respectively.

It is desirable for the x, y, and z axes to coincide with the principal axes 
of inertia, so that the product-of-inertia terms vanish. For symmetry about 
the xz plane Iyz = 0 and Ixy = 0, so that instead of equation (9.12) we have:

	

I p I I qr I pq r m

I q I I

xx yy zz xz x

yy zz

 



− − − + =

− −

( ) ( )

( xxx xz y

zz xx yy xz

rp I r p m

I r I I pq I q

) ( )

( ) (

− − =

− − +

2 2

 rr p mz− = )

	 (9.13)

In the case of a cruciform configuration, which is symmetrical about both 
the xy and xz planes, Ixz = 0 as well, so that equation (9.13) is reduced to:

	

I p I I qr m

I q I I rp m

I

xx yy zz x

yy zz xx y

zz





− − =

− − =

( )

( )

r I I pq mxx yy z− − =( )

	 (9.14)

Based on the expressions for the lift and drag (9.5) and (9.6), the aerody-
namic forces coefficients Cx, Cy, and Cz are modeled as nondimensional 
quantities and are scaled to units of force, so that:
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	 (9.15)

where m in the mass of the vehicle.
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The system of equations (9.13) can be presented in the form of the 
moment equations of (9.11), where the aerodynamic moments acting on the 
body are modeled as:

	

L
QSl

I I I
C I C I
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l zz n xz

yy
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−

+

=
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2
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ll

I I I
C I C I

xx zz xz
n xx l xz−

+
2

( )

	 (9.16)

where Cl, Cm, and Cn model nondimensional aerodynamic moment coef-
ficients, rolling, pitching, and yawing, and l is a reference length; the cross-
axis inertia symmetry term couples the roll-yaw moment equations; the 
coefficients Lpq, Lqr, Mrp, Mr p2 2, Npq, and Nqr in equation (9.11) equal:
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xx zz xz
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−
	 (9.17)

The above equations (9.11), (9.12), and (9.17) are written for configurations 
possessing the xz plane of symmetry, so that Iyz = 0 and Ixy = 0. Both geo-
metrical and mass symmetry are assumed here, although it is possible that 
slight mass asymmetries may exist in a real vehicle configuration.

If the mass distribution is such that Iyy = Izz (for missiles with circular 
body cross sections), the above expressions can be simplified. In the case 
of a cruciform configuration, which is symmetrical about both the xy and 
xz planes Ixz = 0 as well, so that equations (9.11), (9.16), and (9.17) can be 
further simplified.

The gravitational forces are modeled as
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	 (9.18)
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where the above angles are the Euler angles of rotation by which the x y z, ,
space-fixed system of coordinates with its origin at the center of gravity comes 
into coincidence with the x, y, z body-fixed system of coordinates [4].

It is easy to conclude that equation (9.18) corresponds to the transforma-
tion of the vector (0, 0, g). The angles α0, αs, and φ0 are determined as (see 
Figure 9.1):

	 α α φ0
1 1

0
1= = =− − −tan ( ), tan ( ), tan (v v v v vz x s y x y/ / //vz ) 	 (9.19)

and the total angle αT, determined as the angle between the vehicle x axis 
and the magnitude of its velocity vector V v v vM x y z= + +2 2 2  (see Figure 9.2), 
can be expressed as:

	 tan ( ) / tan tan2 2 2 2 2
0

2α α αT y z x sv v v= + = + 	 (9.20)

For small angles of attack and sideslip α0 ≈ vz/vx, αs ≈ vy/vx and vx ≈ VM. 
Assuming insignificant changes of speed (i.e., vx ≈ 0), the accelerations 
vy and vz can be presented as  v vy x s≈ α  and  v vz x≈ α0 . Under the above 
assumptions, the force equations of (9.11) can be simplified to give:

	

V q r X G T
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M s x x

M s y y

M
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( )

(

α α

α α

0

0

− = + +

+ − = + +

α α0 − + = + +q p Z G Ts z z)

	 (9.21)

These equations are widely used in the preliminary studies to test the auto-
pilot design and guidance laws.

The aerodynamic coefficients Cx, Cy, and Cz related to the aerodynamic 
forces and Cl, Cm, and Cn related to the aerodynamic moments are typi-
cally modeled as functions of the pitch-plane angle of attack α0, the yawn-
plane sideslip angle αs, the aerodynamic roll angle ϕ0 (see Figure 9.2), 
Mach number, body rates (p, q, and r),  α α0 , s, the aerodynamic control 
surface deflections in pitch, yaw, and roll (δP,δY,δR), center-of-gravity 
changes, and whether the main propulsion system is on or off.

According to equation (9.11), the body axis accelerations Ax, Ay, and Az, 
the components of A = (Ax, Ay, Az) are:
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	 (9.22)
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Based on equation (9.15), this equation can be transformed in:
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	 (9.23)

The functions Cx, Cy, and Cz are linearized and presented as:
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= + + + + + +0 00
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y R

z z za za s zV z P zs

δ

δ

δ

α α δ0 00 δδ δδ δY z RY C R+

	 (9.24)

where the meaning of the coefficients of the Taylor’s first-order approxi-
mation is obvious.

Analogous approximation can be done for Cl, Cm, and Cn [see equation 
(9.16)]:
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= + + + + + +0 00

α α δ δδ δ δRR

m m ma ma s mV m P m Y
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α α δ0 00 δδ δδ δY n RY C R+

	 (9.25)

A more precise approximation also includes terms with coefficients 
depending on φ α α0 0, , , ,  s p q, and r [4,7,16]. The aerodynamic coefficients 
are an important part of a typical aerodynamic database for a vehicle that 
returns the aerodynamic forces and moments for a given vehicle orientation 
(α0,αs,φ0, Mach, and altitude), the aerodynamic control surface deflections 
(δP,δY,δR), and the mode of the propulsion system. The aerodynamic coef-
ficients are presented here in a general form. In practice, depending on a 
type of aircraft or missile, the stage of autopilot design and the require-
ments to accuracy, many terms of equations (9.24) and (9.25) can be 
excluded from consideration. The linearized small disturbance rigid body 
equations of motion can be found in [4,7,16,26,27,29].

Although the system (9.11) describes the dynamics of all aerial vehicles, 
the specific features of different types of aerial vehicles, their structure 
configuration, and the type of propulsion require additional equations to 
determine some parameters of the mentioned system and to describe the 
propulsion forces in details.
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The helicopter dynamics look more complicated than that of fixed-
wing aircrafts or missiles. A helicopter’s main rotor is employed to 
generate lift and propulsive force while an anti-torque rotor controls 
the vehicle’s yaw rate. The main rotor, the most important and complex 
subsystem, is a fundamental source of lift and forward motion for the 
aircraft. It produces the forces and moments required to fly and control 
the aircraft transferring aerodynamic forces and moments from the rotat-
ing parts (blades) to the fuselage. The rotation of its central hub with 
an angular speed Ω is generated by the torque created by one or more 
engines located in the fuselage. Each blade, attached by a set of hinges to 
the rotor’s central hub produces the flapping motion (out of the rotor disk 
plane), lagging motion (back and forth in the disk plane), and pitching of 
feathering motion (along its longitudinal axis). By controlling the pitch 
angle of each blade (using the so-called swash-plate actuator), the pilot 
indirectly controls the amplitude and orientation of the load that the rotor 
applies to the fuselage. The interaction between the helicopter’s rotor 
dynamics and aerodynamics (the control actions directly influence the 
aerodynamic loads on blades, which, in turn, influence the distribution 
of the airflow around the rotor) makes the helicopter simulation model 
rather complicated.

Various types of helicopters differ by number of rotors (e.g., dual contra-
rotating rotors, quadrotor, and tandem rotors helicopters) and the type of 
propulsion engines. Electric engines used in many small UAVs simplify 
the construction of helicopters since the lift can be controlled by changing 
the rotor speed. They do not require complex mechanical control linkages 
for rotor actuation. This also simplifies their dynamic models.

Below we consider the basic helicopter model with one main rotor and 
modify the equations (9.11) and (9.13) by summing the forces and moments 
generated from the helicopter’s components such as the main rotor, tail 
rotor, fuselage, horizontal stabilizer, and vertical stabilizer. The force terms 
are represented by X, Y, and Z while the moment terms in roll, pitch, and 
yaw directions are represented by L, M, and N, respectively; the subscripts 
M, T, F, H, and V represent main rotor, tail rotor, fuselage, horizontal sta-
bilizer, and vertical stabilizer.
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	 (9.26)
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I p I I qr L L Y h Y h Y h Y hxx yy zz M F M M T T V V F F − − = + + + + +( ) ++

− − = + + − − −

Z y
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M M H H T T

−

+ + +

	(9.27)

I r I I pq N N Y l Y l Y l Y lzz xx yy M F M M T T V V F F − − = + − − − −( )

where l and h indicate the moment arms of the corresponding forces (their 
components; e.g., hM and hT are the main rotor hub and tail rotor height 
above CG, respectively; lT and lH is the tail rotor hub and stabilizer loca-
tion behind CG, respectively) with respect to the center of gravity of the 
helicopter (CG).

The aerodynamic force coefficients can be calculated as described in 
[2,10,11,17,18,21,25]. Similar to missiles and other aircraft dynamic models 
[see equation (9.24)], the helicopter aerodynamic coefficients related to the 
aerodynamic forces and moments are presented as functions of the trans-
lational (vx, vy, and vz) and angular (p, q, and r) velocities and the control 
actuation vector components.

The main rotor thrust and torque equations can be derived following 
[2,10,15,18,21]. The main thrust is a function of the rotor geometric param-
eters, the aerodynamic parameters of the blade and the operational param-
eters (collective pitch θ0 and rotor speed Ω). The spatial orientation of the 
main rotor thrust TM (i.e., the total aerodynamic force generated by the 
rotor) is controlled by a time-varying pitch command θ(t) a vertical dis-
placement (collective control) or a longitudinal/lateral tilt (longitudinal/
lateral cyclic control) of the nonrotating swash-plate [18]:

	 θ θ θ θ( ) ( ) cos ( )sint t t t tc s= + +0 1 1Ω Ω 	 (9.28)

where θ0, θls(t), and θlc(t) are the collective blade pitch, the lateral cyclic 
pitch, and the longitudinal cyclic pitch, respectively.

The main rotor collective pitch control, by moving the swash-plate up 
and down the rotor shaft, affects the pitch angle of all blades and simultane-
ously changes the angle of attack of each of the blades to achieve a higher 
(smaller) lift. It does not induce any tilt to the swash-plate and, as the main 
rotor blades sweep through the air; the resulting amount of upward thrust 
(generally) increases with the increase of this angle.

By cyclic pitch control, the main rotor can be tilted as a disc to control 
its lateral (lateral cyclic pitch) and longitudinal (longitudinal cyclic pitch) 
motions. Cyclic pitch forces the blade to have a certain cyclic pitch angle 
that is a function of the rotational angle of the main rotor with respect to the 
fuselage. The so-called flapping, the oscillatory motion of the main rotor 
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blades about the hinges, controlled by the cyclic pitch creates an uneven 
lift distribution. Blade flapping compensates the dissymmetry of lift. As 
the advancing blade flaps up due to the increased lift, the retreating blade 
flaps down due to the decreased lift. The change in angle of attack on each 
blade brought about by this flapping action tends to equalize the lift over 
the two halves of the rotor disc.

It is worthwhile to mention that a mathematical model of the blade, partic-
ipating in indicated above types of motion, presents a complicated dynamic 
problem. Simplified models assume that the aerodynamic forces (lift, drag, 
and pitching moment) on the blade are determined only by local airflow, 
which depends on the overall helicopter motion, the rotation of the blade, the 
rotor induced flow, the rigid body motion, and the elastic deformations of the 
blade. The aerodynamic forces are determined by the equations similar to 
equations (9.5), (9.6), and (9.15) and usually the tabulated lift, drag, and pitch 
coefficients are determined based on wind tunnel test data. 

As mentioned in [15], the complexity of helicopter flight dynamics 
makes modeling itself difficult, and without a good model of the flight-
dynamics, the flight-control problem becomes inaccessible to most useful 
analysis and control design tools.

In the coupled airframe/rotor dynamics, the longitudinal and lateral 
blade flapping a1s and b1s are described, respectively, by two coupled first-
order differential equations [15]:

	





a
a

q A b A A

b

s
s

f
b s s lat lat lon lon

s

1
1

1 1

1

= − − + + +
τ

δ δ

== − − + + +b
p B a B Bs

f
a s s lat lat lon lon

1
1 1τ

δ δ
	 (9.29)

where τf is the rotor time constant; Ab1s, Alat, Alon, Ba1s, Blat, and Blon, are the 
rotor flapping terms (see details in [15,18,21]); δlon and δlat are the longitu-
dinal and lateral cyclic inputs, respectively.

Taking into account that the main rotor is coupled to the airframe 
dynamics through the roll and pitch angular dynamics and the longitudinal 
translational dynamics vx and vy, in equations (9.26):

	

X X v X a

Y Y v Y b

L L v L

M v x a s s

M v y b s s

M v x v

x

y

x

= +

= +

= +

1 1

1 1

yy

x y

v L a L b

M M v M v M a

y a s s b s s

M v x v y a s s

+ +

= + + +

1 1 1 1

1 1 MM bb s s1 1

	 (9.30)
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202	 Guidance of Unmanned Aerial Vehicles

where the terms X Y L L M Mv v v v v vx y x y x y
, , , , , , Xals, Ybls, Lals, Lbls, Mals, and 

Mbls are obtained from the corresponding analytical expressions and by 
experiments [15,18,21].

The heave dynamics can be approximately presented as [15]:

	 v Z v Zz v z col colz
= + δ 	 (9.31)

where δcol is the collective input; Zvz
 and Zcol are the rotor flapping terms.

There exist various analytical expressions for XM, YM, ZM, LM, MM, and 
NM (see [2,10,17,18,21,25]). All of them approximately describe the main 
rotor dynamics. We chose those that fit better for the later discussed auto-
pilot design procedure.

The primary role of the tail rotor is to generate horizontal thrust vary-
ing by the collective pitch of the tail rotor blades in order to counteract the 
main rotor torque. It also produces the unbalanced horizontal force, which 
acts as a drifting force in the y direction. Its thrust TT and torque QT can 
be computed using the same procedures as for the main rotor thrust and 
torque with no flapping effect included. The resulting forces and moments 
in equations (9.26) and (9.27) are:

	Y T C R M Q C R X ZT T T T T T Q T T T= − = − = − = − = =ρ ρΩ Ω2 4 2 5 0, , 	 (9.32)

where ρ is the atmosphere density, R and ΩT are the rotor radius and speed, 
CT and CQ are the thrust and torque coefficients, respectively [17,18,21].

The remaining components have less significant contributions and are 
ignored in simpler models. The fuselage produces drag forces and moments 
that are the functions of its geometric shape. Usually, the drag of the fuse-
lage is measured in a wind tunnel or estimated by the projected blocking 
area of the fuselage:

	 X S C u Y S C v Z S CF Fx D
F

a F Fy D
F

a F Fz D= − = − = −ρ ρ ρ
2 2 2

2 2, , FF
aw2 	 (9.33)

where CD
F is the fuselage drag coefficient; SFx, SFy, and SFz are the effective 

frontal, side, and vertical drag areas of the fuselage, respectively; ua, va, 
and wa are the velocity components producing pressure in the indicated 
areas; XF, YF, and ZF can be determined using the standard aerodynamic 
procedure [see also equations (9.5) and (9.6)] and substituted in equation 
(9.26).

The horizontal and vertical stabilizer fins create the restoring moments 
in the pitching and the yawing directions, respectively. They act similar to 
the stabilizer used in fixed-wing aircraft. The forces XH, ZH and XV, YV in 
equations (9.26) and (9.27) created by the horizontal and vertical stabilizer 

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

2:
47

 2
0 

M
ar

ch
 2

01
6 



Testing Guidance Laws Performance	 203

can be presented in the form similar to equation (9.33) and calculated using 
the standard aerodynamic approach [17,18]. The stabilizing effect can be 
reflected indirectly by the rotor time constant in equation (9.29).

9.5  AUTOPILOT AND ACTUATOR MODELS

An autopilot task is to control the motion of the aerial vehicle. Maximizing 
vehicle performance requires choosing the appropriate autopilot structure 
for each stage of flight. Usually, during the midcourse phase of the mis-
sile flight, where a long flyout is required and the terminal phase, where 
terminal homing maneuvers are necessary, autopilots that control the mis-
sile acceleration are used. At the end of terminal homing during a guidance 
integrated fuse maneuver, the missile attitude may be controlled to improve 
the lethality of the warhead. Contemporary aircraft autopilots control an 
aircraft in the roll and pitch axis; control is also possible in the yaw axis, 
as well as an autopilot-controlled landing. Specifics of UAV autopilots are 
that they should be able to direct UAVs to waypoints (the landing operation 
can be considered as a waypoint operation as well). The flight of existing 
UAVs are controlled by the operator by roll and heading, pitch and altitude, 
and also speed commands. The future generations of UAVs will follow 
waypoints mostly without any operator’s participation, so that their motion 
will be similar to a missile’s motion, and their autopilots should have many 
features similar to missile’s autopilots.

The missile dynamics model (9.11) [(9.12)–(9.16), (9.18), (9.21)–(9.25)] 
enables us to determine the desired values of controlled parameters. Their 
comparison with the real measured values of these parameters creates the 
error signals, which are used by autopilot controllers. Usually, instead of 
one autopilot, three autopilots are designed and used in practice: a pitch 
autopilot, a roll autopilot, and a yaw autopilot. Each of them is designed for 
individual channels, pitch, roll, and yaw, ignoring coupling between them. 
The effect of coupling is taken into account in the sophisticated design by 
creating interaction between the autopilots (i.e., by creating coupled auto-
pilot channels).

The pitch rate dynamics were considered in equations (9.11), (9.16), and 
(9.21). Ignoring roll-yaw dynamics and considering only the components
Cza0 0α , CzδPδP, Cma0 0α , and CmδPδP in equations (9.18), and (9.19), we 
can obtain the transfer function characterizing the relationship between 
Az and δP. As shown in [4], for tail-controlled missiles it has the form 
(5.12), i.e.,

	
A s

P s

Bs K AE BC

s AKs C
z ( )

( )
( )

δ
= − + −

+ −

2

2
	 (9.34)
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where

	

A QSC m B QSC m C QSlC I

E QSlC

za z P ma

m P

= = =

=

0 0
/ / /, , ,δ

δ // /I K VM, = 1

The corresponding expressions for the pitch rate and the angle of attack 
are [4]:

	
q s

P s

Es K AE BC

s AKs C

s

P s

B( )
( )

( )
,

( )
( )δ

α
δ

= + −
+ −

= −
2

0 KKs E

s AKs C

+
+ −2

	 (9.35)

The expressions (9.34) and (9.35) are used in the pitch autopilot design. As 
mentioned earlier, for tail-controlled missiles the transfer function (9.34) 
is a nonminimum phase. As the elevator δP deflects, the fin force acceler-
ates the missile in the wrong direction. However, this force creates a pitch-
ing moment that rotates the missile. As the missile rotates, the body force 
accelerates the missile in the correct direction. One of the possible autopilot 
structures is given in Figure 9.4 (Az is a real missile acceleration; Az0 is the 
guidance law acceleration command; τ1 is a time constant of the actuator, 
which is usually modeled as a first-order lag).

The pitch control law given in [4] has the form:

	 δP s W s e s W s q sc P z P( ) ( ) ( ) ( ) ( )= +1 2 	 (9.36)

where WP1(s) and WP2(s) are the transfer functions with respect to the error 
between the measured and desired acceleration ez(s) and with respect to the 
measured pitch q(s).

These transfer functions are determined to guarantee the autopilot sta-
bility with the desired response and ability to operate over a broad range 
of aerodynamic parameters (i.e., over a broad range of aerodynamic con-
ditions). More sophisticated autopilots have time-varying parameters to 
compensate changes in missile dynamics. (In the examples of the previous 
chapters we considered guidance laws for various ωz, which characterized 
changes in missile dynamics for low and high altitudes.)

q

ez

Az

Az0 WP1(s) WP2(s) τ1s + 1
1

δPc

δP

FIGURE 9.4  Pitch control.
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The yaw control law can be chosen similar to the pitch control law, only 
in this case we operate with the components C C Y Cya s y Y na ss s

α δ αδ, , , and 
CnδYδY. Some realizations of the roll control law are based on measured 
roll position and roll rate [4]. A constant p decouples the pitch and yaw 
channels [see equation (9.11)].

Over the past decades many techniques were applied to autopilot design. 
They include classical multivariable, modern, and optimal approaches. 
Integrated design methodologies that combine synthesis of guidance, esti-
mation, and autopilot control systems have the potential for increasing 
missile efficiency. Testing the guidance law should be linked with a certain 
structure of autopilot with appropriate parameters.

Since many examples in the book relate to tail-controlled missiles, we 
consider here only the widely used fin actuator model. Usually, the fin 
actuator dynamics is modeled with a first- or second-order differential 
equation. The nonlinearities related to position and rate limits, as well as 
mechanical backlash of electromechanical actuators, should be included 
in the model. The autopilot pitch, yaw, and roll fin commands (δP,δY,δR) 
are distributed to the four fins producing real deflections δi (i = 1,…,4). The 
above-mentioned nonlinearities relates to δi (i = 1,…,4). The relationship 
between the actuator commands δP,δY,δR, and individual fin deflections 
depends upon whether the missile has an “+” or “x” tail, i.e., whether 
the control surfaces are in line with wings or in planes midway between 
the wings.

For an “+” and “x” tail we have, respectively [4]:

	 δ δ δ δ δ δ δ δ δ δ δ
P Y R= − = − = + + +2 4 1 3 1 2 3 4

2 2 4
, ,

and

	 δ δ δ δ δ δ δ δ δ δ δ δ δ δ
P Y R= − + + − = + − − = + +1 2 3 4 1 2 3 4 1 2

4 4
, , 33 4

4
+ δ

	

(9.37)

To obtain the unique solution of equation (9.37) with respect to the actual 
fin deflections δi (i = 1,…,4), the additional condition, the so-called squeeze 
mode (SM) condition:

	 δ δ δ δ δ
SM = − + −1 2 3 4

4
	 (9.38)

should be satisfied. The actual fin deflection should be chosen to make 
the axial force resulting from deflections as small as possible [4]. The 
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206	 Guidance of Unmanned Aerial Vehicles

restrictions related to the fin deflections are transformed into the auto-
pilot limits (δP, δY, δR) that, in turn, impose constrains on the missile 
acceleration.

In contrast to missiles, where autopilots realize motion in accordance 
with the guidance commands that serve as the missile’s brain, autopilots 
and control systems of aircraft realize the commands of their pilots.

A pilot of a fixed-wing aircraft uses rudder pedals, which move the rud-
der to control yaw, and a yoke (or a joystick) to control the attitude of the 
aircraft in pitch by moving elevators, when moved backward or forward, 
and in roll by moving ailerons, when deflected left or right. The aircraft 
autopilot can maintain or change the aircraft flight conditions. It can hold 
the aircraft attitude, altitude, and flight trajectory by controlling the control 
surface deflection of the aircraft and control the aircraft speed (throttle con-
trol). The three-axis autopilot controls the aircraft in pitch, roll, and yaw.

Usually, a pilot of a helicopter uses the cyclic stick, the collective lever, 
and the anti-torque pedals. Depending on the complexity of the helicopter, 
the cyclic and collective may be linked together. On most helicopters, the 
cyclic, which changes cyclically the pitch of the rotor blades, is similar to 
a joystick in a conventional aircraft. If the pilot pushes the cyclic forward, 
the rotor disk tilts forward, and the rotor produces a thrust vector in the 
forward direction. If the pilot pushes the cyclic to the right, the rotor disk 
tilts to the right and produces thrust in that direction, causing the helicop-
ter to move sideways in a hover or to roll into a right turn during forward 
flight, much as in a conventional aircraft.

The collective pitch control, or collective lever, changes the pitch angle 
of all the main rotor blades collectively (i.e., all at the same time), so that 
increasing collective causes a climb while decreasing collective causes a 
descent of the helicopter. The anti-torque pedals serve a similar purpose 
as the rudder pedals in an airplane. They control heading by changing the 
pitch of the tail rotor blades, increasing or reducing the thrust produced 
by the tail rotor and causing the helicopter to yaw in the direction of the 
applied pedal, to turn left or right.

As in aircraft, the helicopter throttle should keep the rotor speed within 
allowable limits. It is necessary for the rotor to generate enough lift for 
flight. Turbine engine helicopters and some piston helicopters use electro-
mechanical control systems to maintain rotor speed. Recently becoming 
very popular, electric engine helicopters are the most suitable for rotor 
speed control.

In the existing UAVs, the pilot commands are generated by an opera-
tor, a remote pilot, from a ground control station. The UAV servo systems 
generate inputs used by pilots, i.e., the UAV’s brain activity is mostly out-
side of the vehicle (avoidance algorithms allow the UAV to demonstrate a 
certain intellect).
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The guidance laws discussed in the previous chapters set the acceler-
ation commands for the UAV autopilots to perform flights without any 
operator (realistically, with his minimal interference). Since these inputs 
are different from the inputs used by the current aircraft autopilots, the 
UAV autopilots should be designed for these inputs.

The autopilot design is easier for fixed-wing aircrafts than for rotary-
wing aircrafts because the fixed-wing aircrafts have relatively simple, 
symmetric, and decoupled dynamics. That is why the fixed-wing aircraft 
have been favored as the platform for the UAV.

Similar to missile design, the fixed-wing UAV autopilot designer must 
devise a roll autopilot to provide stabilization and pitch and yaw autopilots 
to provide the longitudinal and lateral motions relative to the stabilized 
position. The design procedure is similar to missile design and pitch con-
trol law [see equations (9.34)–(9.36)] is similar to the described above (see 
Figure 9.4). Only the parameters of the transfer functions (9.34) and (9.35) 
are different, and δP is the elevator deflections. Knowledge of the transfer 
function of the yaw channel (its input is the rudder deflection) enables one 
to design control of the aircraft in yaw. The relationship between thrust T 
and the throttle-angle displacement δth is approximated by the first-order 
transfer function:

	
T s

s

k

sth

th

th

( )
( ) ( )δ τ

=
+1

	 (9.39)

where kth is a gain constant and τth is a time constant.
Details of autopilot systems design can be found in [4,6,7,16,26,27,29]. The 

system of equations (9.11)–(9.15), (9.21)–(9.24) describing the aircraft dynam-
ics is basic to design a controller that would meet certain requirements.

Here we touch briefly on specifics related to design of the helicopter 
autopilots. Because of complicated helicopter dynamics [see equations 
(9.26) and (9.27)] and difficulty in determining reliably some of its dynamic 
parameters, the frequency approach widely used in the engineering prac-
tice to describe the input-output relationship was used in [15].

The yaw dynamics with an additional yaw rate feedback is given by [15]:

	
r s

s

k s k

s k s kped

r r

r r

( )
( )

( )
δ

= +
+ +

1

2
2 3

	 (9.40)

where δped is the anti-torque pedal input; kr, k1r, k2r and k3r are constant 
parameters.

The acceleration YT is determined by equation (9.32), where CT is a 
function of δped.
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208	 Guidance of Unmanned Aerial Vehicles

The second-order nature of the response is also seen from the frequency 
response of the rolling and pitching rates p and q to the longitudinal δlon 
and lateral δlat cyclic inputs [15]. The mentioned frequency responses and 
the corresponding transferred functions can be obtained for the function-
ing helicopters with existing autopilots and/or for specific flight conditions 
(hover, forward flight, vertical, sideward, or rearward flight), since in the 
general case the helicopter dynamics (9.26) and (9.27) are unstable and 
should be stabilized by feedback using q, p, vx, vy, φ, and θ.

The aerodynamic transfer functions for the simplified equations (9.29) 
and (9.30) [see equations (9.26) and (9.27)] are very useful on the initial 
design stage. Solving equation (9.29) with respect to a1s and b1s we obtain 
the relationship between the acceleration components XM and YM and the 
longitudinal δlon and lateral δlat cyclic inputs:

	

a s
s

s b q s A s As s f lat lat1 1
1

( )
( )

[( )( ( ) ( )= + − + +
∆

/τ δ llon lon

b s lat lat lon lon

s

A p s B s B

δ

δ δ

( ))

( ( ) ( )− − −1 (( ))]

( )
( )

[( )( ( )

s

b s
s

s a p s Bs s f lat la1 1
1= + − +

∆
/τ δ tt lon lon

a s lat lat l

s B s

B q s A s A

( ) ( ))

( ( ) ( )

+

− − −

δ

δ1 oon lon sδ ( ))]

	 (9.41)

and

	 X s X v s X a sM v x a s sx
( ) ( ) ( )= + 1 1

	 Y s Y v s Y b sM v y b s sy
( ) ( ) ( )= + 1 1 	 (9.42)

where:

	 ∆( ) ( )( )s s a s b A Bs f s f b s a s= + + −1 1 1 1/ /τ τ 	 (9.43)

The above expressions enable us to build controllers that realize the guid-
ance law components aM1(t) and aM2(t) [see equations (8.8), (8.17), and 
(8.18)]. They should be used in the pitch and roll autopilot design.

The acceleration command aM3(t) generated by the guidance law should 
be created by the collective δcol and cyclic (longitudinal δlon and lateral δlat 
cyclic) controls [see equations (9.26), (9.27), (9.41)–(9.43); to compensate 
for negative effect of other forces additional terms can be added in the 
final stage of design]. The acceleration collective component can be devel-
oped similarly to the considered earlier missile pitch control [see equations 
(9.34)–(9.36) and Figure 9.4].
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Autopilot design is beyond the scope of this book. Control theory offers 
various approaches and structures to build high quality controllers. For dif-
ferent stages of flight, different flight modes, some parameters of control-
lers should be changed or various autopilots should be applied. We only 
discussed a general approach that is compatible with the guidance laws 
considered in the book.

9.6  SEEKER MODEL

As a device used in a moving object, especially in a missile, a seeker locates 
a target by detecting some kind of emission (light, heat, or radio waves). IR 
imaging sensors are used in optical seekers; an antenna is used as the sen-
sor in radar seekers. Since weaponized UAVs are able to launch missiles, 
the seeker systems become a part of the UAV systems, which also contain 
video cameras. Seekers can be useful in detecting obstacles also. A new 
generation of small missiles promises to improve precision strike and bring 
new capabilities to UAVs. It accommodates a variety of precision seekers 
that are accurate to within a meter of their target. A semiactive laser seeker 
guides the vehicle to a target being illuminated by a laser; a millimeter-
wave seeker finds targets through fog and rain; and imaging infrared and 
shortwave infrared seekers go after heat sources such as engines.

During the terminal phase of flight, the target tracking is performed by 
a seeker that detects a target and tracks it within its field-of-view. Usually, 
seekers are mounted on gimbals. Mostly they are equipped with two mutu-
ally perpendicular yaw and pitch gimbals. Sometimes a third gimbal, the 
so-called roll gimbal, is added. Seekers are always stabilized (i.e., their axes 
remain fixed in space). To achieve stabilization and pointing control, the gim-
bals are controlled by torque motors using signals from rate gyros, as well as 
sensor information of the target position.

Analogous to the Euler body angles defined for the vehicle body frame 
with respect to the NED frame, the Euler angles between the vehicle body 
axes and the seeker axes can be defined. As indicated earlier, the x axis of 
the vehicle body coordinate system is coincident with the longitudinal axis 
of the vehicle; the y axis points out of the right side of the vehicle’s body; 
and the z axis is orthogonal to both the x and y axes and defined by the 
right-hand rule, so that positive is defined as down. The xs axis for the seeker 
onboard the vehicle coincides with the boresight of the seeker. The ys and zs 
axes are referred to as the yaw and pitch seeker axes. When the seeker bore-
sight axis xs coincides with the vehicle body x axis and the seeker gimbal 
angles are zero, the ys and zs axes coincide with the vehicle body y and z 
axes, respectively. The rotational sequence from the x, y, z axes to the xs, ys, 
zs axes LBS is yawn, pitch, and zero roll (ψs, θs, 0). This corresponds to such a 
seeker’s platform that it tracks the target in azimuth and elevation.
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210	 Guidance of Unmanned Aerial Vehicles

For this case:

	 L L LBS s s

s s s s s

= =

−

2 1( ) ( )

cos cos cos sin sin

θ ψ

θ ψ θ ψ θ

−−









sin cos

sin cos sin sin cos

ψ ψ

θ ψ θ ψ θ

s s

s s s s s

0












	 (9.44)

Taking into account that the seeker angular velocity vector in the NED 
frame equals the sum of the seeker angular velocity vector with respect to 
the vehicle and the vehicle angular velocity vector in the NED, this relation-
ship can be redefined in terms of the seeker body rates (ps, qs, rs), the seeker 
Euler angle rates ( , , ) ψ θs s 0 , and the vehicle body rates (p, q, r), i.e.,

	 p q rs s s s s s s s sx y z z x y x+ + = + − + + + ψ θ ψ ψs ( sin cos ) p qq ry z+ 	 (9.45)

and solved for the seeker Euler angle rates (here we assume the unit coor-
dinate vectors).

Using equation (9.44) and assuming zero vehicle body and seeker roll 
rate (p = ps = 0), equation (9.45) can be written in the seeker coordinate 
system:

	
q

r

s

s

s s

s s s s









 =

− sin cos

sin cos sin sin

ψ ψ

θ ψ θ ψ

0

ccos

sin

cos
θ

θ ψ

θ ψ

ψ
s

s s

s s

s

q

r











−

+

+














 






	 (9.46)

The seeker Euler angle rate equations follow immediately from equation 
(9.46):

	 ψ θ ψ
θs

s s s

s

r q
r= − −sin sin

cos
	 (9.47)

and

	 θ ψs s sq q= − cos 	 (9.48)

The seeker Euler angles are obtained by integrating the rate equations.
Typically, the line-of-sight error is sensed in two orthogonal components 

measured along the ys and zs axes. The elevation error θes z xR R
s s

= −−tan ( )1 / , 
measured along zs axis, and the azimuth error αes y xR R

s s
= −tan ( )1 / , measured 
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Testing Guidance Laws Performance	 211

along the ys axis, are used as the input signals to the seeker head control 
system that, after filtering these signals, produces torques about the axes 
perpendicular to the sensed error axes, which causes a gyroscopic preces-
sion of the seeker head to reduce the LOS error (the seeker Euler angle rates 
tend to zero). A block diagram of the seeker dynamics loop is presented in 
Figure 9.5.

Here the motor and filter are characterized by the first-order transfer 
functions with the time constants τm and τf and gains Kf and Km, respec-
tively; the purpose of cosines of the gimbal angles cosψs cosθs is to reduce 
the torque of the motor as the gimbal angles increase. The closed-loop 
dynamics correspond to equations (9.47) and (9.48).

One of the factors that degrade performance of radar-guided missiles is 
the radome, which is designed to protect the missile from the airflow and 

–

Rx

Rzs

Rxs

Rys

tan–1(Rys
/Rxs

)

tan–1(–Rzs
/Rxs

)

s
1

cos θs

q sin θs  sin ψs  + r cos θs

q cos ψs

ψs

ψs

θs

θs

cos ψs  cos θs

cos ψs  cos θs
Km

τms + 1

Km

τms + 1

Kf

τf s + 1

Kf

τf s + 1

θes

αes

1

s
1

–

Ry LBS

Rz

rs

qs

FIGURE 9.5  Seeker dynamics loop.
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212	 Guidance of Unmanned Aerial Vehicles

reduce drag. A nonhemispheric radome causes a refraction of the incom-
ing electromagnetic wave, thus giving a wrong indication of the target 
location. The radome reflection has a destabilizing effect on the missile 
guidance system, especially at high altitudes [30,32]. The radome effect 
couples the missile LOS angles to the body dynamics through the gimbal 
angles and causes the aberration of the measured LOS angles. One of the 
ways of compensating the radome effect is described in [23,32]. It com-
bines filtering with utilization of nondestructive dither on the acceleration 
command signal. The LOS angles measured by the seeker are not equal to 
the true LOS angles. They depend nonlinearly on the horizontal and verti-
cal gimbal angles ψs and θs, respectively. The first-order approximation 
gives the additional error terms ρψψs and ρθθs, respectively. Following [14], 
in the simulation model the radome slope coefficients can be described by 
random processes:

	  ρ ρψ ρψ θ ρθ= =w w, 	 (9.49)

where wρψ and wρθ are zero-mean Gaussian white noise stochastic 
processes.

Seekers may saturate, because they operate only within their field-
of-view limits. The limits on ψs and θs should be incorporated into the 
simulation model. The detailed seeker model including the stabilization 
loop enables us to obtain more accurate estimates of the line-of-sight 
and its derivative. It should be included in the very sophisticated models. 
This is beyond the scope of this book, which is focused primarily on 
guidance problems. For the purpose of testing guidance laws, a simpli-
fied seeker model can be considered [5]. It includes the unit determining 
the LOS and LOS rate and a filter. The seeker dynamics can be presented 
by the first- or second-order (for some types of seekers) differential equa-
tion. Noise and errors because of the radome effect can be incorporated 
directly into the LOS rate expression.

9.7  FILTERING AND ESTIMATION

Information required by guidance laws is obtained based on measurements 
provided by various sensors. As known, any measurement is accompanied 
with noise that distorts, at a certain degree, the result of measurement. Special 
measures are used to increase the accuracy. Until recently, most of measure-
ments have been typically carried out using analog equipment. Now we are 
living in the digital era, when digital devices are dominating. The so-called 
weapon control system (WCS, a computerized program) operates missiles 
during the launch and midcourse phases, and microprocessors (controllers) 
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Testing Guidance Laws Performance	 213

guide missiles during the homing stage. Even if some sensors and simple 
filters remain analog, the information from them inputs as digital. The dialog 
between UAVs and their operators is in the digital language. That is why we 
describe digital filters below that are used in the guidance process and that 
can be easily incorporated in the simulation model.

The α, β and α, β, γ filters are widely used in target tracking [1]. Tracking 
radar systems are used to measure the target’s relative position in range, 
azimuth angle, elevation angle, and velocity. The α, β filter produces, on 
the n-th observation, smoothed estimates for the position and velocity 
xs(n) = xs(n, n) and  x n x n ns s( ) ( , )= , respectively, as well as a predicted posi-
tion for the (n + 1)-th observation xp(n + 1, n), i.e.,

	 x n x n x n x ns p m p( ) ( ) ( ( ) ( ))= + −α 	 (9.50)

	  x n x n
T

x n x ns s m p( ) ( ) ( ( ) ( ))= − + −1
β

	 (9.51)

and

	 x n x n n x n Tx np p s s( ) ( , ) ( ) ( )+ = + = +1 1  	 (9.52)

where α, β are the filter gains, T is the sampling period, xm is the measured 
position sample, and initial conditions are defined as:

	 x x x x x x xs p m s s m m( ) ( ) ( ), ( ) , ( ) ( ( )1 2 1 1 0 2 2= = = = −  (( ))1 2/

The recommendations concerning the choice of the parameters α and β:

	 β α
α

=
−

2

2
	 (9.53)

are motivated by the goal to reduce the measurement noise and minimize 
the tracking error (i.e., so the filter should be able to track maneuvering 
targets).

The fading memory filters are a subclass of the α, β filters. The filter 
parameters depend upon the so-called smoothing factor 0 ≤ ξ ≤ 1 and are 
given by:

	 α ξ β ξ= − = −1 12 2, ( ) 	 (9.54)

where heavier smoothing corresponds to larger values of the smoothing 
factor.
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214	 Guidance of Unmanned Aerial Vehicles

Most of the guidance laws considered earlier require some knowledge 
of the target’s acceleration. The target’s acceleration cannot be estimated 
accurately enough using only angle measurements made by imaging sen-
sors on the vehicle; usually range information is required. It can be sup-
plied either by off-board passive sensors or by onboard active sensors.

The α, β, γ filter produces, on the n-th observation, smoothed estimates 
for the position, velocity, and acceleration  x n x n ns s( ) ( , )= , as well as a pre-
dicted position for the (n + 1)-th observation, i.e.,

	 x n x n x n x ns p m p( ) ( ) ( ( ) ( ))= + −α 	 (9.55)

	   x n x n Tx n
T

x n x ns s s m p( ) ( ) ( ) ( ( ) ( ))= − + − + −1 1
β

	 (9.56)

	  x n x n
T

x n x ns s m p( ) ( ) ( ( ) ( ))= − + −1
2

2

γ
	 (9.57)

	 x n x n Tx n
T

x np s s s( ) ( ) ( ) ( )+ = + +1
2

2
  	 (9.58)

where initial conditions are:

	

x x x x x xs p m s s s( ) ( ) ( ), ( ) ( ) ( ) ,1 2 1 1 1 2 0= = = = =   



x
x x

x
x x

s
m m

s
m m

( )
( ( ) ( ))

,

( )
( ) ( )

2
2 1

2

3
1 3

= −

= + − 22 2
2

x

T
m ( )

The analog of equation (9.53) for the α, β, γ filter is given as:

	 2 2 0β α α β γ− + + =( / ) 	 (9.59)

and for the fading memory α, β, γ filters analog of equation (9.54) is:

	 α ξ β ξ ξ γ ξ= − = − + = −1 1 5 1 1 13 2 3, . ( ) ( ), ( ) 	 (9.60)

As in the case of the α, β filters, ξ = 0 means that there is no smoothing.
The Kalman filter is considered as a more sophisticated filtering and 

estimation tool than the above-described filters. It is known to be optimal 
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Testing Guidance Laws Performance	 215

in the white Gaussian noise environment. The optimal filtering problem is 
formulated in the following way. For the system of difference equations:

	 x x x( ) ( ) ( )n A n B n x n H n v nn n m n+ = + = +1 w( ), ( ) ( ) 	 (9.61)

where w(n) and v(n) are independent Gaussian random processes with 
zero means and covariances Qn and Rn, respectively, based on the mea-
surements xm(k) (k = 1, 2,…,n) find the estimates x(n, n) of x(n) that min-
imize the sum of squares of the measurement errors

	 ( ( ) ( , )) ( ( ) ( , ))x i H i i R x i H i im i
T

i m ii
n − −∑ = x x1

(here w(n) and v(n) are scalars describing the process and measure-
ment noises, respectively; An, Bn, and Hn are the matrices of appropriate 
dimensions.

The solution of the filtering problem is given as (see, e.g., [13]):

	
x x( , ) ( , ) ( , )

[ (

n n A n n P n n H

H P n

n n
T

n

+ + = + +

+

+

+

1 1 1

1

1

1 ,, ) ( )n H R n H A n nn
T

n m n n+ +
−

++ + −1 1 11] [ ( , )]1 x x
	

(9.62)

where the matrix P(n, n) is the solution of the matrix Riccati equation:

	 P n n A P n n A B Q Bn n
T

n n n
T( , ) ( , )+ = +1 	 (9.63)

	
P n n P n n P n n H

H P n

n
T

n

( , ) ( , ) ( , )

[ (

+ + = + − +

+

+

+

1 1 1 1

1

1

1 ,, ) ] ( , )n H R H P n nn
T

n n+ +
−

++ +1 1
1

1 1
	 (9.64)

P(n, n – 1) and P(n, n) are interpreted as covariance matrices representing 
errors in the state estimates before and after an update, respectively.

The Kalman filter equation can be presented in a form close to equa-
tions (9.50), (9.51), and (9.55)–(9.57) that describe the α, β and α, β, γ 
filters. By introducing the state prediction vector x(n + 1, n) that satisfy the 
state prediction equation:

	 x( , ) ( , )n n A n nn+ =1 x 	 (9.65)

and the filter gain Kn:

	 K P n n H H P n n H Rn n
T

n n
T

n= − − + −( , ) [ ( , ) ]1 1 1 	 (9.66)

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

2:
47

 2
0 

M
ar

ch
 2

01
6 



216	 Guidance of Unmanned Aerial Vehicles

the equation (9.62) can be rewritten as:

	 x x x( , ) ( , ) ( )n n n n K x n H nn m n+ + = + + + − ++ +1 1 1 11 1[ ( 1,nn)] 	 (9.67)

It looks similar to equations (9.50), (9.51), and (9.55)–(9.57), which were 
obtained based on an intuitive approach. In contrast to the α, β and α, β, γ 
filters, the Kalman filter gain is time-varying. It depends on P(n, n), i.e., 
the solution of equations (9.63) and (9.64). The solution of equations (9.63) 
and (9.64) depends on the initial conditions P(0, 0). This presents the sepa-
rate and most difficult part of the filtering problem. Nevertheless, Kalman 
filters are very popular and widely used in practice. The interpretation of 
P(n, n – 1) and P(n, n) as covariance matrices helps choosing P(0, 0). The 
justification of this interpretation is based on the following.

Subtracting equation (9.65) from equation (9.61) yields the state prediction 
error:

	 e( , ) ( , ) ( )n n A n n B w nn n+ = +1 e 	 (9.68)

so that the state prediction covariance P(n + 1, n) = E[e(n + 1, n) e(n + 1, n)T] 
satisfies equation (9.63); P(n, n) = E[e(n, n) e(n, n)T], called the updated cova-
riance, and e(n, n) is the updated error in the state estimates [see equation 
(9.67)].

Subtracting equation (9.67) from the state equation (9.61) and acting in a 
manner similar to equation (9.68), we can obtain equation (9.64), which can 
be rewritten as:

	 P n n P n n K S n Kn n
T( , ) ( , ) ( )+ + = + − ++ +1 1 1 11 1 	 (9.69)

where:

	 S n H P n n H Rn n
T

n( ) ( , )+ = ++ + +1 11 1 1 	 (9.70)

is called the measurement prediction covariance; 
S(n + 1) = E[em(n + 1, n) em(n + 1, n)T]; em(n + 1, n) is the measure-
ment prediction error:

	 em n nn n n H n n H n n( , ) ( ) ( , ) ( , )+ = + − + = ++ +1 1 1 11 1x x em ++ +v n( )1 	 (9.71)

The widespread tracking models (nearly constant velocity x t w t( ) ( )= 0  and 
near constant acceleration x t w t( ) ( )= 0  models [1]; w0(t) is the zero-mean 
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Testing Guidance Laws Performance	 217

white noise process) are analyzed based on the above-given expressions. 
For these models, the matrices An = A, Bn = B and Hn = H are:

	
A

T
B Hn n n=









 =









 =











1

0 1

0

1

1

0
, ,

for thee nearly constant velocity model

	 (9.72)

and

	

A

T T

T Bn n=



















=














1 0 5

0 1

0 0 1

0

0

1

2.

,





=



















, Hn

1

0

0

for the nearly consttant acceleration model

	 (9.73)

In the discretized state equations with the sampling period T, the discrete 
time process noise relates to the continuous time zero-mean white noise 
process w0(t) with the spectral density Q0 as:

	 w n e Bw nT dA T
T

c( ) ( )( )= +−∫ τ τ τ0
0

	 (9.74)

where Ac is the state matrix of the equations x t w t( ) ( )= 0  and x t w t( ) ( )= 0 , 
respectively. Then Q = E[w(n)w(n)T] equals:

	 Q

T T

T
T

Q=





















3 2

2
0

3 2

2

for the nearly cconstant velocity model 	 (9.75)

and

Q

T T T

T T T

T T
T

=






















5 4 3

4 3 2

3 2

20 8 6

8 3 2

6 2





Q0 for the nearly constant acceleration mmodel 	(9.76)
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218	 Guidance of Unmanned Aerial Vehicles

Based on the steady-state solution of the Riccati equations (9.63) and (9.64), 
for these two models, the relationship between the parameters of the α, β 
and α, β, γ filters and the steady-state parameters of the corresponding 
Kalman filters is established [1]. The position gain α, velocity gain coef-
ficient β, and acceleration gain γ are the functions of the so-called target 
maneuverability index

	
λ σ

σ
= w

v

T 2

,

where σw and σv, the variances of the process and measurement noise, 
characterize the motion and observation uncertainty, respectively.

The described target state estimators are important subsystems in 
advanced vehicle guidance systems. Target state estimators are required for 
two reasons. First, the measurements provided by onboard seekers such as 
line-of-sight angles and its rates, as well as range and range rate, are often 
contaminated by noise and are not in a form usable by the guidance laws. 
Second, advanced guidance laws require additional information about the 
target such as its acceleration, which cannot be provided by the onboard 
sensors. The proportional navigation guidance law has been used most 
widely in the homing phase. However, there exist many situations (highly 
maneuvering targets) where the PN law performs unsatisfactorily. This 
fact has given rise to various modifications of the proportional navigation 
guidance law; some of them were considered in the previous chapters. The 
augmented proportional navigation guidance law, as well as other guid-
ance laws considered in the previous chapters, need information about the 
target acceleration for their implementation. The optimal guidance laws are 
based on information about the target acceleration and the predicted inter-
cept point or time-to-go, so that their implementation needs the estimates of 
the corresponding parameters. Even in the case of the classical PN law, the 
LOS rate and closing velocity need to be estimated, since the corresponding 
measurements are noisy. In the example of Chapter 3, the Kalman filter was 
used to produce a smoothed LOS rate estimate for use in the PN law.

In general, the use of Kalman filters can be rigorously justified, when 
the dynamics is considered to be linear. Moreover, although various elegant 
expressions have been obtained, the application of the above-described 
Kalman filters requires certain skills and experience. The 9-DOF and 
6-DOF filters are used for estimating the position, velocity, and accelera-
tion of the target. There exist algorithms that operate with both models and 
that determine when to switch from one model to another.

Although Kalman filters are based on the theory developed for linear mod-
els, they are applied also for nonlinear models. The kinematics of the target 
are modeled usually in the NED coordinate system, but the target position 
measurements are assumed to be made in the spherical system consisting of 
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range, azimuth, and elevation angles (see (1.4) and (1.5)). The transformation 
from the spherical coordinate system to the Cartesian coordinate system is 
nonlinear. The so-called extended Kalman filters are used to increase accu-
racy of estimations. The approach used in the extended Kalman filter is based 
on the linearization of nonlinear functions by utilizing a first-order Taylor 
series expansion (ignoring the second- and higher-order terms). The result-
ing approximate measurement equation becomes linear, but the measurement 
matrix should be calculated in every iteration. Despite the lack of the rigor-
ous mathematical justification (in contrast to the Kalman filter), the extended 
Kalman filter is widely used in attitude estimation (e.g., Euler angles). The 
Kalman filters (original and extended) require complete prior covariance 
information on the initial state, process noise, and measurement noise.

In numerous applications, essential statistic information concerning the 
process and measurement noise may either be missing or may be poorly 
defined. The filter operation is further affected by modeling errors, linear-
ization approximations, and, as a result, the covariance matrix, computed 
from the Riccati equation of the extended Kalman filter, may not resemble 
the true covariance matrix of errors in the estimated state.

The so-called unscented filters, developed as an improvement of the 
extended Kalman filters, are also used in attitude estimation [28]. However, 
the above-mentioned filters and their tuning require an extensive experi-
mental data.

The filters included in the simulation model used for testing guidance 
laws should contain well-tested parameters. The accuracy and robustness 
of state estimators have been some of the limiting factors for improving the 
guidance performance against maneuvering targets. The above-considered 
filters must be tuned to the most stressing threat that is expected. If the 
threat is less stressing, the performance will be worse than optimal com-
pared to a Kalman filter tuned to a less stressing threat. This leads to the 
consideration of adaptive estimation techniques that give robust perfor-
mance over a wide class of maneuvering targets.

The term target is absolutely clear in the case of missile guidance. In 
the case of UAV guidance, targets can be obstacles, objects of surveillance, 
and so on. Filters are used to get reliable information from measurements 
produced by appropriate devices. Besides the target parameter measure-
ments, Kalman filters are used to get a vehicle’s altitude estimates from 
accelerometer and gyro readings. A survey of numerous estimation tech-
niques can be found in [3].

9.8  KAPPA GUIDANCE

The Kappa algorithm dominates midcourse guidance in the endoatmosphere 
and can be interpreted as maximization of the terminal missile velocity, i.e., 

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

2:
47

 2
0 

M
ar

ch
 2

01
6 



220	 Guidance of Unmanned Aerial Vehicles

Kappa guidance is an optimal guidance law that maximizes missile speed 
at the beginning of the terminal phase of flight [9]. This requirement is essen-
tial against a target at a far distance or at a low altitude. When engaging a 
target at long range or at low altitude, missile velocity is the prime factor. 
Kappa guidance is applied also for targets at close distances. When engaging 
a close-in target, the time line is most important, because the missile must 
destroy the target before it reaches within the minimum range of intercept.

The Kappa algorithm is based on knowledge of the predicted intercept 
point. As indicated in the introduction of Chapter 3, the accuracy of pre-
diction or estimation significantly influences the accuracy of the engage-
ment. Because the Kappa guidance law is obtained as the solution of the 
terminal optimal problem, it requires complete information (current and 
future) about the missile and target, as well as the external conditions dur-
ing the engagement. However, the missile dynamic equations including 
drag and lift can only be implemented approximately, and it is impossible 
to estimate analytically the influence of incomplete information on the out-
come of the engagement. Moreover, the predicted intercept point (PIP) and 
time-to-go are important parameters that dominate the accuracy of the 
optimal solution. These parameters can only be estimated, and it is diffi-
cult to evaluate the influence of the errors on the engagement final results.

It is difficult to reflect all factors when formulating the optimal guidance 
problem, so that many optimal problems discussed in the literature have 
not been implemented in practice. All optimal problems are also rather 
complex for real-time onboard implementation. In many publications, tar-
get maneuvers were either neglected or assumed to be well-defined, mostly 
constant. In guidance laws that explicitly include the target maneuver, the 
estimation of this variable, which cannot be measured directly, becomes 
critical. Formally, the optimal problem that generates the Kappa algorithm 
ignores a target behavior. Indirectly, it is taken into account in the estimate 
of the predicted intercept point. The optimal problem is accompanied by 
many assumptions. However, and it is very important, the Kappa mid-
course guidance algorithm is successfully used in the SM2 (U.S. Standard 
Missile 2) missiles. That is why it deserves to be included in the simulation 
software and is considered below.

Let the vector rPIP indicate the position of the predicted intercept point 
and the vector rM characterize the current missile position. Then the PN 
law (2.24) can be rewritten as:

	 a r r v v vc
go

PIP M M go
go

PIP M

N

t
t

N

t
= − − − −

2
( ) ( )

where the missile velocity vM terms were added with opposite signs to the 
left part of equation (2.24) and vPIP is the missile terminal velocity at the 
intercept point.
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The above equations can be presented in a more general form:

	 a r r v v vc
go

PIP M M go
go

PIP M

K

t
t

K

t
= − − − −1

2

2( ) ( ) 	 (9.77)

where K1 and K2 are some coefficients.
Assuming that the predicted intercept point can be evaluated during the 

missile flight and that vPIP is a desired terminal missile velocity, the prob-
lem of finding the optimal guidance law can be formulated as a problem of 
finding the optimal values K1 and K2 that maximize the terminal value of 
vM. As shown in [9], the optimal values are:

	 K
w r wr

wr wr wr1

2 2 1
2 1

= −
− −

(cosh( ) )
sinh( ) (cosh( ) )

	 (9.78)

and

	 K
w r wr wr

wr wr wr2

2 2

2 1
= −

− −
sinh( )

sinh( ) (cosh( ) )
	 (9.79)

where

	 w
D L T L

m v C T LL

2 0
2

2 4

1
2

= +
+

α α

αα

( )
( )

/
/

	 (9.80)

and

	 D C QS Lift QSC LD L0 0= = =,
α
α αα

D0 is the drag component stipulated by the component CD0 of
C C CD D L= +0

2
α
α  assuming that the so-called drag curve is parabola [17] 

and Lα is the lift factor [see equation (9.5)]; T is thrust, m is the mass, and 
v is the speed of the missile.

The first term of equation (9.77) is called the proportional term and pre-
sented as:

	 a r vc
go

tgo M go

K

t
t1

1

2
= −( ) 	 (9.81)

where rtgo is the range-to-go vector.
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The second term of equation (9.77) is called the shaping term and pre-
sented as:

	 a v vc
go

PIP M

K

t2
2= −( ) 	 (9.82)

The desired terminal velocity vector vPIP = (VPIPN, VPIPE, VPIPD) is given as:

	 V VPIPN M v h= cos cosµ µ

	 V VPIPE M v h= cos sinµ µ 	 (9.83)

	 V VPIPD M v= − sin µ

where the angles µv and µh are the vertical and horizontal trajectory shaping 
angles.

For tactical ballistic missiles µv ≈ 45°, for cruise missiles µv ≈ –75°.
A slightly different presentation of the proportional and shaping terms 

can be found in [22].

9.9  LAMBERT GUIDANCE

The so-called Lambert guidance presents the guidance law based on the 
solution of the Lambert problem, a terminal problem to determine ini-
tial conditions of the given system of ordinary differential equations that 
would satisfy the terminal (at the moment tF) conditions. In contrast to 
terminal problems usually considered in the optimal theory, the Lambert 
problem deals with a part of initial conditions, assuming that the other 
part is known. The problem can be reformulated as a control problem by 
including δ-functions in a class of admissible controls.

The Lambert problem can be stated as follows: given the initial position 
r0 = (x10, x20, x30) of a body in the gravity field described by the Newton’s 
law of universal gravitation [see also equation (9.4)]:

	 x t
gm

r t
x t ss s( )

( )
( ) ( , , )

.
= − =

1 5
1 2 3 	 (9.84)

where g is the gravitational acceleration, m is the body’s mass, xs(t) are its 
coordinates in the Earth-centered coordinate system:

	 r t x ts

s

( ) ( )=
=

∑ 2

1

3
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find the initial velocity orientation V0 10 20 30= ( , , )  x x x  so that at the moment 
tF the body will be at the location r(tF) = (x1(tF), x2(tF), x3(tF)) with the desired 
coordinates xsF, i.e., xs(tF) = xsF (s = 1, 2, 3).

The solution of the formulated problem in the case of linear differential 
equations does not present any difficulty, since there exists the analytical 
expression describing the relationship between r(tF), r0, and V0. For the 
nonlinear system (9.84) such an expression cannot be obtained and vari-
ous computational algorithms were offered to solve this problem. For a 
planar trajectory, the existing expression for V0  is a function of the ini-
tial flight path angle and the expression for tF is a function of V0  and 
the initial flight path angle (the symbol  denotes the Euclidean norm). 
Formally, the number of unknown parameters remains the same, but the 
computational procedure looks more attractive since the iterations to solve 
two nonlinear algebraic equations are conducted only with respect to one 
parameter, the value of a flight pass angle [31]. Computational programs 
for two- and three-dimensional cases can be found in [31].

The existing computational methods enable us to develop algorithms 
dealing directly with  x x10 20, , and x30 (e.g., by solving for the given tF the 
minimization problem

	 min ( )
x

F F
s0

2
r r t−

where rF is the desired position vector and r(tF) is the solution of the system 
(9.84) for the initial conditions ( , )r V0 0

i ; i is the step of iterations; s = 1, 2, 3).
The Lambert problem relates to a body motion in a gravity field and its 

solution, an instant impulse, is more applicable to steer spacecraft rather 
than missiles.

Applying the Lambert problem to missile guidance we assume that the 
moving body is a launched missile, tF is the flight time and the target posi-
tion satisfies the terminal condition rF. The solution of the Lambert prob-
lem gives the missile launch direction and velocity required to reach the 
target at the time tF.

Since some existing guidance algorithms use the predicted intercept point 
and the time to intercept tF, the Lambert problem was modified to obtain 
guidance laws for moving targets [31]. In this case, the Lambert terminal 
problem is solved for the predicted r(tF), i.e., the terminal condition becomes 
fuzzy. The obtained velocity vector V(t) determines the so-called velocity-to-
be-gained vector ΔVM, the difference between the required velocity V(t) and 
the current missile velocity VM(t), i.e.,

	 ∆V V VM Mt t= −( ) ( ) 	 (9.85)
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224	 Guidance of Unmanned Aerial Vehicles

If a current acceleration vector is aM(ti), then the direction of the acceler-
ation at the moment ti+1 should be aligned with the velocity-to-be-gained 
vector VM(t), i.e.,

	 a t a t sMs i M i
Ms

M

( ) ( ) ( , , )+ = =1 1 2 3
∆
∆

V
V

	 (9.86)

Formally, if the missile’s thrust acceleration vector is aligned with the 
velocity-to-be-gained vector, then the desired velocity can be achieved 
(after that the engine should be cut off) and the missile should fly ballisti-
cally to the target. However, this is possible only and only if at the moment 
when the engine is cut off the missile position, the future intercept point 
and the time of intercept satisfy the Lambert equations.

The mathematically rigorous Lambert problem requires the known ini-
tial and final points and the time of flight tF. It can be used for missiles that 
fly ballistically to hit stationary targets. However, for moving targets this 
approach lacks rigorous justification.

The use of a Lambert guidance looks reasonable for offensive bal-
listic missiles, in which the boost phase brings them on a gravity field 
trajectory, which can be calculated in advance. However, the guidance 
law (9.85) requires a more complicated thrust vector controlled (TVC) 
boosting motor with the cut-off mode. In the case when the interceptor 
is a defensive missile, the time of flight and the final point (related to the 
procedure - predicted intercept point/time of intercept) are interconnected 
and unknown so that, as mentioned above, a modified rigorous mathemat-
ical problem became nonrigorous. For interceptors, the minimal time of 
intercept is the most important factor. But a gravity field free trajectory 
takes more time than a forced trajectory, and Lambert guidance deals 
with such trajectories. That is why even if the interceptor operates suc-
cessfully following Lambert guidance (there exists no proof of the con-
vergence of the offered algorithms) its performance (time of intercept) can 
be improved by using another guidance law.

9.10 � SIMULATION MODELS OF 
UNMANNED AERIAL VEHICLES

In the previous sections, we described the main aerial system elements that 
should be included in the simulation model. Depending on the accuracy 
requirements and the guidance laws under consideration, some of the ele-
ments may be not needed in the model, some equations can be simplified.

The simulation model should analyze the performance of guidance 
laws in a realistic simulation environment, which accounts for the effects 
of drag and flight control system dynamics on the vehicle’s performance. 
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Testing Guidance Laws Performance	 225

Analysis of the vehicle’s performance criteria should be used as the mea-
sure of effectiveness and basis of comparison.

Modern threats have become faster, stealthier, and more maneuverable. 
Successfully engaging such threats will require a system approach that 
implements a combination of advanced sensor processing algorithms, guid-
ance algorithms, and control processing techniques. Missile defense inter-
ceptor flight control system design requirements are generally driven by 
high-maneuver rates that are needed for terminal homing. These require-
ments must be met while retaining stability and robustness throughout a 
large possible engagement envelope. The engagement envelope or kine-
matic boundary is of paramount importance. The kinematic boundary rep-
resents the maximum range at which the missile will achieve a hit, when 
there is no noise in the system. It can, therefore, be used as a criterion to 
compare the performance of guidance laws. Among other significant fea-
tures of guidance systems performance are the miss distance, the time of 
intercept, maximum rate of turn, and maximum lateral acceleration. The 
comparative analysis of guidance laws is more restrictive. It includes some 
of these features (the engagement envelope and miss distance, the time of 
intercept), as well as specific features, such as the missile terminal speed 
and impact angle.

The proportional navigation guidance law and the Kappa and Lambert 
guidance laws can be used as the baseline against which the other guidance 
laws will be tested. The candidate guidance laws include the guidance laws 
considered in this book and their combination (i.e., hybrid guidance laws, 
as well as other guidance laws considered in the literature). The guidance 
laws should be tested against nonmaneuvering and maneuvering targets.

The UAV performance should be judged by analyzing how close to the 
prescribed flight pass the UAV operates, how efficiently it avoids obstacles, 
and so on. Since the existing UAVs are guided mostly by operators (i.e., the 
use of the guidance law generated by an operator based on his knowledge 
and ability), it is possible to test the offered guidance laws by comparing 
them with the operator guided flights based on the detailed information 
about these flights.

The simulation model should be built based on the module principle, 
which is the most efficient way to create simulation models that can be 
enhanced in the future or simplified, if it is necessary. Separate modules 
serve as building bricks. If needed, some of them can be deleted without 
damaging the structure or the new ones can be added to make the structure 
more sophisticated.

Normally the design of the models could be developed using a computer 
aided software engineering (CASE) tool supporting an object-oriented 
methodology such as the Unified Modeling Language, an object-based 
methodology such as HOOD or a structured design methodology such 
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226	 Guidance of Unmanned Aerial Vehicles

as Yourdon. These tools generate the model stubs, and the models would 
then typically be implemented in C++, ADA, or C. Simulink and Matlab 
developed software based on six degrees of freedom dynamics and simpli-
fied aerodynamics that can be used in the aerospace industry.

Building a simulation model is an art. Despite the existing design tools, 
deep knowledge of specific problems enables one to create more sophisti-
cated programs than by using the existing “general use” tools. Below we 
describe the structure of hypothetical simulation models that, in our opin-
ion, in the best way meets the research requirements. The missile simulation 
model is focused on analyzing various intercept problems in the endoatmo-
sphere. The UAV simulation model is focused on analyzing various flight 
paths. They can be realized by using, for example, Visual Fortran.

9.10.1  6-DOF Simulation Models

The missile simulation model should properly reflect two stages of the 
missile flight, its midcourse and homing stages. As mentioned earlier, in 
certain scenarios the mission requirements call for the payload to impact 
the target from a specific direction. These requirements are of importance 
during the so-called endgame, the final part of the homing stage.

The simulation process usually starts from the midcourse phase. It 
means that the missile prehistory (its uncontrolled boost stage) should be 
presented by the missile position and velocity at the beginning of the mid-
course stage (see Figure  9.6). The launch parameters, which define the 
direction of the missile flight, are determined by the predicted intercept 
point (PIP). The initial unguided boost stage is strictly programmable 
depending on the target position at the launch time and some other exter-
nal measurable factors.

Typically, there exist tables that enable us to find, depending on the 
predicted intercept point, the position and velocity of the missile up to 
about 6 s after its launch (i.e., at the beginning of the midcourse phase). 

Midcourse
stage

Boost stage

Simulation starts here

Output:
Missile position
velocity

Terminal
homing

stage

Time

Tabular data
input

initial conditions

x

FIGURE 9.6  Stages of the simulation process.
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They have been obtained from various experiments combined with ana-
lytical analysis. For missiles launched from ships, corrections should be 
calculated for ship movement, ballistic wind influence, and launch cell 
parallax. This data and related equations should be incorporated into 
the model.

As indicated earlier, during the midcourse phase the missile is guided 
by the weapon control system. The most sophisticated simulation 
models should be able to model the main WCS operations that include: 
(1) algorithms to determine the predicted intercept point and time-to-go; 
(2) filtering that provides the midcourse guidance with inputs character-
izing the target and missile position, velocity and, if needed, acceleration; 
and (3) midcourse guidance commands. The predicted intercept point and 
time-to-go are used also in some versions of the PN law in the terminal 
guidance phase. As mentioned, the difficulties in predicting target position 
stem from uncertainty in interception time because of unpredictability of 
the target’s future behavior. Factors contributing to uncertainties in the 
intercept point are (1) random and systematic errors in the defense detec-
tion and tracking system’s measurement of the position and velocity and 
estimate of acceleration of the attacking missile, (2) lack of knowledge of 
the attacking missile’s target, and (3) intentional trajectory shaping and 
intentional evasive maneuvers. A reasonable assumption is that at long 
ranges the missile need only travel approximately in the right direction. 
Hence, at long range the time to intercept needs to be estimated only 
roughly. As interception approaches, the need for accuracy increases. 
The time-to-go can be estimated roughly as t r rgo = −  / . In practice, a more 
detailed scenario-specific analysis is used to determine PIP and the time-
to-go. This topic is beyond the scope of this book.

Absence of the PIP module in the simulation model would require a cer-
tain homework to determine the missile initial position and velocity at the 
beginning of the midcourse stage. If the simulation process deals only with 
the terminal stage, the missile position and velocity should be determined 
separately based on specifics of the scenario under consideration.

The filtering module should contain a set of equations discussed ear-
lier. During the midcourse, the interceptor receives frequent updates on 
its position from off-board tracking sensors, so that formally the estimates 
of the position and velocity (as well as acceleration for some guidance 
algorithms) not only of the target but also the missile are needed. In the 
less sophisticated simulation models, the filtering operations are applied 
to the relative position and velocity of the missile with respect to the tar-
get. This relates also to the terminal stage. The filtering module realizes 
signal processing algorithms to provide smoothed data that is used in the 
guidance law. It is very important to model the errors expected in tracking 
using infrared sensors, surface- and air-based radars based on the analysis 
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228	 Guidance of Unmanned Aerial Vehicles

of these sensors. Then the obtained filtering results are more realistic than 
under assumption of Gaussian white noise.

The target module consists of a 3-DOF point-mass presentation of the 
target motion. The target model should be capable of executing a maneuver 
at a given time. The user should be able to adjust the time and extent of 
this maneuver. From an almost infinite variety of possible maneuvers, it is 
important to choose the most representative maneuvers for various types 
of missiles and the intercept scenarios.

In the previous chapters, we considered the so-called step and weave 
maneuvers. Inside these two main classes, special types of maneuvers are 
specified. For example, analyzing boost-phase intercept systems (attacking 
ballistic missiles should be disabled in their boosting phase, during the 
first few minutes of flight) it is reasonable to model a sudden increase or 
decrease in the target’s missile angle of attack and a switch back maneuver, 
in which the target switches from a positive to negative angle of attack. 
Maneuvers like these (lunge maneuvers) might be performed either to shape 
the attacking missile trajectory or to try to evade an anticipated intercep-
tor. In the simulation model, a lunge maneuver should be executed during 
the last few seconds before the predicted intercept time. Another kind of 
maneuver, a jinking maneuver, is a periodic maneuver usually a sinusoidal 
modulation of the acceleration that would produce a fish tail-like motion 
of the missile during the last few seconds before the predicted intercept. 
Such maneuvers are likely to be within the capabilities of the attacker’s 
missiles. Cruise missiles can perform various maneuvers. The most typi-
cal are diving maneuvers, when a cruise missile significantly changes its 
altitude, and weave maneuvers in a horizontal plane, when it approaches 
the target at a very low altitude.

Optimal control and game theories were used to formulate precisely 
and solve the problem of optimal pursuit and evasion. Unfortunately, this 
approach cannot work because it is difficult to build an analytical model 
that matches well to reality and can be used in practice. Deterministic opti-
mal problems require ideal information, which cannot be obtained, about 
the target and missile flight parameters. However, the optimal approach 
does enable an evaluation of the best possible scenario for the evader that 
can be used for comparison with strategies that can be realized in practice. 
The optimal evader’s maneuver, if a priori information concerning the mis-
sile guidance system is available, is described in [31]. An intuitive evasive 
maneuver, which is formulated as the reverse proportional navigation, is 
given in [12]. It is expected (although it is to be proved) that the target would 
be able to avoid the pursuing missile by turning its velocity vector reversely 
proportional to the LOS rate. Based on analysis of the optimal maneuvers 
for various scenarios, practical periodic target evasive maneuvers were con-
sidered in [30,31]. Random target maneuvers were discussed in Chapter 7.
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Evasive maneuver design parameters include magnitude, weave period 
(for weaving evasion), initiation time, and duration. The maximum achiev-
able maneuver magnitude period combination is a function of initiation 
and duration times and may vary within the established flight envelope of 
interest. Offensive missile design information including airframe configu-
ration, mass properties parameters, aerodynamic, and propulsion param-
eters need to be used. Based on this information, flight performance can 
be evaluated and the maximum achievable maneuver, as well as the region 
within the vehicle’s flight profile where the maneuver is most likely to 
occur, can be determined. Missile Datcom, a widely used semiempirical 
datasheet component buildup method for preliminary design of missile 
aerodynamics and performance, can be used to build a dynamic model 
[see, e.g., equation (5.65)] of an offensive missile and establish the maxi-
mum achievable maneuver magnitude. The optimal weaving frequency 
can be determined as described in Chapter 5 (see Figure 5.13).

The midcourse guidance module contains algorithms realizing the guid-
ance law under consideration. Based on smoothed data from the filtering 
module, the commanded acceleration is calculated in the NED coordinate 
system and transferred to the missile model. Taking into account that the 
missile trajectory of the model, formally deterministic and generated by 
the guidance law, differs from the real one, it is reasonable to use in the 
model as the missile data the deterministic signal plus noise depending 
on the missile data accuracy requirements. Usually, the calculation of the 
commanded acceleration is accompanied by the calculation of the gravity 
acceleration [see equation (9.4)]. However, depending on taste, the separate 
missile gravity module can be created that calculates the acceleration in the 
NED coordinates according to equation (9.4) or in the missile body coordi-
nate system according to equation (9.18). The WCS operates with a certain 
frequency (usually, 4–10 Hz). The acceleration commands are transferred 
with this frequency to the missile model that operates with a significantly 
higher frequency.

Typically the missile model includes: (1) the thrust module, (2) the 
aerodynamics module, (3) the missile dynamics module, (4) the autopilot 
module, (5) the fin/actuator module, (6) the seeker module, (7) the missile 
trajectory module, and (8) the coordinate transformation module. 

The thrust module contains data to obtain a certain thrust profile. One 
of its components is the pressure table. It is used to calculate the second 
term in equation (9.4). The aerodynamics module contains the aerody-
namic forces and aerodynamic moment coefficients [see equations (9.15), 
(9.16), and (9.23)–(9.25)] used in the missile dynamics module. The missile 
dynamics module models missile dynamics from the aerodynamic forces 
(aerodynamic module), thrust, and gravity (trust module) [see equations 
(9.6), (9.11)–(9.16), (9.21)]. It contains tables of mass, center of gravity, and 
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230	 Guidance of Unmanned Aerial Vehicles

moment of inertia that are used to determine missile dynamics [see equa-
tions (9.11) and (9.17)].

The autopilot module calculates the required roll, pitch, and yaw within 
admissible limits to realize the guidance law. The fin/actuator module 
receives the fin commands from the autopilot module, translates these com-
mands from roll, pitch, and yaw commands to the required input to each 
actuator. The fins configuration must match the aerodynamic data used in 
the missile aerodynamic module. As mentioned earlier, the autopilot equa-
tions (9.34)–(9.36) correspond only to one channel of control and a certain 
type of autopilot. They are given as an illustration without detailed consid-
eration (see details, e.g., in [4,31]). It is desirable for the simulation model 
to be oriented on a concrete type of autopilot used in specific missiles. The 
real missile acceleration is described by equation (9.23). Based on equation 
(9.11) it is possible to determine the components of the missile velocity that 
correspond to the determined fin deflection. The missile trajectory module 
integrates the equations of motion [see equations (1.1), (1.2), and (1.20)]. 
Preliminary, the missile velocity or acceleration vectors in the missile body 
coordinate system are transferred into the NED coordinate frame by the LBE 
operator; L L LBE EB EB

T= =−1  [see equation (9.8)]. This operation is produced in 
the coordinate transformation module. If the system (9.11) is used and the 
missile position rM,k–1 at tk–1 is known, then at a moment tk:

	 v V r v rM EB
T

M M K M M k
t

t

L dt
k

k

= = + −
−

∫, , , 1
1

	 (9.87)

The less precise expression follows from:

	  r A v r vM EB
T

M k M M k
t

t

L dt
k

k

= = + −
−

∫, , , 1
1

	 (9.88)

where vM,k–1 and vM,k are the missile velocity in the NED frame at tk–1 and 
tk, respectively.

For small time increments Δ, we can use the approximation:

	 v r v r r vM k M k M k M k M k M k, , , , , ,,= + = +− − − ∆ ∆1 1
2 2/ 11 1∆ + −rM k, 	 (9.89)

where the notations are obvious.
During the homing stage, the target information is received by a seeker. 

However, since we use a 3-DOF point-mass presentation of the target 
motion, this motion is presented initially in the NED coordinate frame. 
Then using the transformations LEBLBS from the coordinate transformation 
module, the target position rT, velocity rT, and acceleration rT (if needed) 
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Testing Guidance Laws Performance	 231

vectors are transformed into the seeker coordinate system, altogether with 
rM and rM, and used in the seeker’s module. The relative position of the tar-
get with respect to the missile is used to compute the actual line-of-sight. 
Band limited white noise is added to the LOS components to reflect the 
influence of noise on missile performance. The corrupted LOS vector is 
created by including noise, as described in Chapter 7, as well as the radome 
boresight errors [see equation (9.49)]. The estimated LOS rate is produced 
by a filter. The LOS and LOS rate vectors in the seeker coordinate frame 
are transformed into the missile body coordinate frame, where all opera-
tions are performed similar to the midcourse phase.

The effectiveness of the new missile guidance laws considered in the 
previous chapters should be tested by comparing them with four commonly 
used guidance laws: the “pure” PN guidance [see equation (2.23)], the 
“predictive” PN guidance that requires knowledge of the time-to-go [see 
equation (2.24)], the APN guidance [see equation (2.28)], and the Kappa 
guidance. These laws should be contained in the guidance reference mod-
ule. It is also useful to create the management module that would control 
all operations between all of the above-mentioned modules.

The UAV simulation model should properly reflect all stages and modes 
of the UAV flight stages. Since usually the UAV’s launch and landing are 
very specific operations, they require algorithms not covered in this book. 
They should be developed and tested separately.

As in the case of a missile model, the simulation process usually starts 
from the UAV’s position, which the vehicle reaches several seconds after 
the launch. It means that the UAV prehistory (its uncontrolled launch stage) 
should be presented by the UAV position and velocity (see Figure 8.1). 
Launchers are used for many UAVs, mini UAVs can be launched by hand so 
that the launch operation and the initial part of the UAV trajectory, similar 
to the initial part of the missile trajectory, is not controllable. The launch 
parameters, which define the direction of the UAV flight, are determined by 
the first waypoint generated by the prescribed trajectory model.

Similar to the missile simulation model a certain homework is needed 
to determine the UAV initial position and velocity based on specifics of the 
scenario under consideration.

At a certain degree, the prescribed trajectory model is analogous to 
the target model in the missile simulation structure (see Figure 9.7). The 
desired UAV’s trajectory is presented by a sequence of waypoints, and 
each waypoint presents a dummy target for the UAV. In contrast to the 
target model, in addition to waypoints, the recommended UAV speed can 
also be indicated for each part of the trajectory. The UAV moves toward 
the waypoint as a missile in accordance with the guidance laws discussed 
in Chapter 8. After the first waypoint is reached (within an admissible 
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232	 Guidance of Unmanned Aerial Vehicles

accuracy), the prescribed trajectory model generates the next waypoint, 
and the guidance law directs the UAV to this point, and so on.

The simulation models should include the operations necessary to 
determine all components of the guidance law: (1) equations to determine 
the LOS, the LOS rate, and the closing velocity; (2) filtering that provides 
the guidance with inputs characterizing the UAV position, velocity and, if 
needed, acceleration; and (3) guidance commands.

The filtering module should contain a set of equations discussed earlier. 
It realizes signal processing algorithms to provide smoothed data that are 
used in the guidance law. It is very important to model the errors expected 
from GPS, INS, and other devices. Then the obtained filtering results are 
more realistic than under assumption of Gaussian white noise.

The guidance module contains algorithms realizing the guidance law 
under consideration. Based on smoothed data from the filtering module, 
the commanded acceleration is calculated. Taking into account that the 
UAV trajectory of the model, formally deterministic and generated by the 
guidance law, differs from the real one, it is reasonable to use in the model 
as the UAV data the deterministic signal plus noise depending on the UAV 

WCS

PIP Filtering

Target model Missile model

Midcourse
guidance

�rustAerodynamics

Missile
dynamicsSeeker

Terminal
guidance

Coordinate
transformation

Missile trajectory

Autopilot

Fin/actuator
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FIGURE 9.7  6-DOF missile simulation model structure.
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Testing Guidance Laws Performance	 233

data accuracy requirements. Usually, the calculation of the commanded 
acceleration is accompanied by the calculation of the gravity acceleration 
[see equation (9.18)].

Usually, the INS filtered information is updated at a 10 Hz rate, while 
the GPS filtered information is updated at a 1 Hz rate, so that the guidance 
commands can input with a 1–10 Hz frequency the UAV model that oper-
ates with a significantly higher frequency. 

Typically the UAV model (see Figure 9.8) includes: (1) the thrust mod-
ule, (2) the aerodynamics module, (3) the UAV dynamics module, (4) the 
autopilot module, (5) the actuator module, (6) the obstacle module, (7) the 
UAV trajectory module, and (8) the coordinate transformation module.

The thrust module contains data generating a certain thrust profile and 
relationship between the thrust and speed, which is very important for 
propeller engines. The aerodynamic module contains the aerodynamic 
forces and aerodynamic moment coefficients [see equations (9.15), (9.16), 
(9.23)–(9.25), and (9.30)–(9.33)] used in the UAV dynamics module [see 
equations (9.26) and (9.27)]. The UAV dynamics module models UAV 
dynamics from the aerodynamic forces (aerodynamics module), thrust and 
gravity (trust module) [see equations (9.3), (9.11)–(9.16), (9.21), (9.26), (9.27), 
(9.29)–(9.33)]. It contains tables of mass, center of gravity, and moment 
of inertia that are used to determine UAV dynamics [see equations (9.11), 
(9.17), (9.26), and (9.27)]. The autopilot module calculates the roll, pitch, 
and yaw within admissible limits to realize the guidance law. The actuator 
module receives the commands from the autopilot module, translates these 

Prescribed trajectory model UAV model

Guidance
law

�rustAerodynamics

UAV
dynamics

Obstacle model Autopilot

Actuator

Filtering

UAV trajectory

Coordinate
transformation

FIGURE 9.8  6-DOF UAV simulation model structure.
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234	 Guidance of Unmanned Aerial Vehicles

commands from roll, pitch, and yaw commands to the required input to each 
actuator. As mentioned earlier, the autopilot equations (9.39)– (9.42) corre-
spond, as an illustration, only to several separate channels of control. The 
real UAV acceleration is described by equation (9.23). As indicated earlier, 
the dynamic equations describing fixed-wing UAVs have many common 
features with the equations describing missile dynamics. However, the 
dynamics of rotating-wing UAVs are more complicated and the 6-DOF 
models of such UAVs are less accurate than the 6-DOF models of mis-
siles and fixed-wing UAVs. Based on equations (9.11), (9.26), and (9.27) it 
is possible to determine the components of the UAV velocity and then to 
determine the UAV trajectory by integrating the equations of motion [see 
equations (1.1), (1.2), and (1.20)].

As in the case of the missile simulation model, the UAV velocity or accel-
eration vectors in the vehicle body coordinate system are transferred into the 
NED coordinate frame by the LBE operator; L L LBE EB EB

T= =−1  [see equation 
(9.8)]. The trajectory parameters are calculated by equations (9.87)–(9.89).

The obstacle model can be presented by equations describing the bound-
ary of a certain region, which is very close or belongs to the predetermined 
(represented by the waypoints) UAV’s trajectory. Such an approach will sim-
plify the testing procedure of the obstacle avoidance algorithm, since it does 
not require the model to include any devices that detect obstacles. The obsta-
cle model determines the minimal admissible distance between the UAV and 
the “dangerous” region. When this distance becomes equal or less than an 
admissible bound, which characterizes the resolution of an obstacle detector, 
the obstacle avoidance algorithm starts working instead of the guidance algo-
rithm. The guidance algorithm resumes working and the UAV moves toward 
the waypoint when the distance exceeds the admissible bound.

It is of importance for the future generation of UAVs to be able to operate 
successfully in the National Air Space System with manned commercial 
and military aircraft. The UAV must not interfere with manned aircraft 
operations and must be relied upon to strictly observe the “Right of Way 
Rules” developed for manned aviation platforms. Special simulation sce-
narios should be developed to test these rules.

Of course, the described structure of the 6-DOF simulation models (see 
Figure 9.7 and Figure 9.8) is only a possible realization of the unmanned 
vehicle simulation models. The concise discussion above was focused on 
the main components that should be present in sophisticated 6-DOF simu-
lation models.

9.10.2  3-Dof Simulation Models

The 3-DOF simulation models are significantly simpler than the described 
6-DOF simulation models. However, they can be successfully used to test 
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Testing Guidance Laws Performance	 235

the discussed guidance laws. All operations are performed in the NED 
coordinate system (below the indices 1, 2, and 3 will indicate N, E, and D 
coordinates, respectively). There are no dynamic models of a seeker and 
autopilot. The flight control system is represented by the transfer function 
similar to the planar case considered in the previous chapters [see, e.g., 
equations (3.100), (5.12), (5.15), and (5.34)]. However, in the 3-DOF simula-
tion model the differential equations corresponding to the above-mentioned 
transfer function should describe the relationship between the coordinates of 
the commanded and actual accelerations (i.e., the dimension of the system 
of differential equations is three times higher than in the planar models).

The main difficulty in building the 3-DOF model relates to the presen-
tation of the total vehicle acceleration. The missile’s thrust force is directed 
along to the missile’s body; for missiles without throttleable engines the 
controlled part of the commanded acceleration acts orthogonal to the 
body; drag forces are directed along to the missile velocity vector. Without 
the knowledge of the angle of attack, it is impossible to combine properly 
the corresponding components of the missile acceleration. However, the 
3-DOF missile model contains insufficient information to determine the 
angle of attack. Knowledge of the missile velocity vector enables us to 
determine the component of the missile acceleration orthogonal to this vec-
tor. Assuming small angles of attack, more precisely zero angle of attack, 
the above-mentioned components can be presented along and orthogonal 
to the velocity vector. Such models exist. However, their accuracy is not 
high enough, especially in the case of highly maneuvering targets.

The approximate values of the angle of attack can be obtained from 
the missile aerodynamic data. The aerodynamic module should contain 
the following regression models describing the relationship between the 
angle of attack αT and the lift CL, normal CN, and axial CA force coef-
ficients [the expressions for normal CN and axial CA forces are analogous 
to equation (9.5)]:

	 αT L Lk k C k C= + +00 01 02
2

	 αT N Nk k C k C= + +10 11 12
2

	 C k k kA T T= + +20 21 22
2α α 	 (9.90)

which can be built based on the missile aerodynamic data available 
from experiments or generated, for example, by Missile Datcom (see 
Appendix C).

Here and below we will use the k-coefficients without any additional 
explanation. It is assumed that they are known or can be calculated. 
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236	 Guidance of Unmanned Aerial Vehicles

The coefficients ksl (s = 0, 1, 2; l = 0, 1, 2) are determined for a set of Mach 
numbers Mach(i) (i = 1, 2,…, ni) and altitudes Alt ( j) ( j = 1, 2,…, nj) based 
on the missile aerodynamic data, so that a certain mesh ksl (i, j) (s = 0, 1, 2; 
l = 0, 1, 2) with known values in its nodes (i, j) should be created. For a 
concrete Mach number Mach belonging to [i0, i0 + 1) and a concrete alti-
tude Alt belonging to [ j0, j0 + 1), the regression coefficients can be calcu-
lated by using various interpolation formulas [20], for example,

	 k k i j
k i j k i j
Mach isl

sl sl
1 0 0

0 0 0 01= + + −
( , )

( , ) ( , )
( 00 0

01+ −
−

) ( )
( ( ))

Mach i
Mach Mach i

	 k k i j
k i j k i j

sl
sl sl

2 0 0
0 0 0 01

1 1 1= + + + + − +
( , )

( , ) ( , )
MMach i Mach i

Mach Mach i
( ) ( )

( ( ))
0 0

01+ −
−

	 k k
Alt Alt j

Alt j Alt j
k ksl = + −

+ −
−1

0

0 0
2 11

( )
( ) ( )

( ) 	 (9.91)

Based on equations (9.90) and (9.91), the angle of attack and the drag gen-
erated axial force can be calculated. Formally, the angle of attack could be 
calculated from the first equation of (9.90) and (9.5), assuming that the lift 
is created by the orthogonal (to the velocity) component of the commanded 
acceleration. However, in this case we ignore acceleration limits imposed 
by the autopilot. That is why the first equation of (9.90) can be used only to 
calculate the initial condition αT(0) of the computational procedure deter-
mining the angle of attack.

In the 3-DOF simulation model the autopilot module contains opera-
tions related to the computation of the angle of attack and the commanded 
acceleration affecting the missile trajectory. If vM = (VM1, VM2, VM3) is the 
missile velocity vector, then the unit velocity vector eM = (eM1, eM2, eM3) has 
components:

	 e V V V V iMi Mi M M M= + + =/ 1
2

2
2

3
2 1 2 3( , , ) 	 (9.92)

The projection aL of the guidance law commanded acceleration 
ac = (ac1, ac2, ac3) on the velocity vector is

	 a a eL c M ci Mii= = ∑ =a e 1
3 ,

so that the coordinates of the vector-projection aL = (aL1, aL2, aL3) are

	 a a e iLi L Mi= =( , , )1 2 3 	 (9.93)

and the acceleration acN = (acN1, acN2, acN3) normal to the velocity vector 
equals

	 a a a e icNi ci L Mi= − =( , , )1 2 3 	 (9.94)
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The unit vector eLN = (eLN1, eLN2, eLN3) orthogonal to the velocity vector is 
given by:

	 e a a a a iLNi cNi cN cN cN= + + =/ 1
2

2
2

3
2 1 2 3( , , ) 	 (9.95)

For the given angle of attack αT = αT(0), the unit vector eB = (eB1, eB2, eB3) 
along to the body axis can be presented as:

	 e e eB M T LN T= +cos sinα α 	 (9.96)

Acting analogously to equations (9.93) and (9.94), we obtain the com-
ponents of the commanded acceleration normal to the missile body 
acBN = (acBN1, acBN2, acBN3):

	 a a a e icBNi ci B Bi= − =( , , )1 2 3 	 (9.97)

where
	 a a eB c B ci Bii= = ∑a e =1

3 .

The autopilot acceleration limit alim (pitch, raw/yawn) can be pre-
sented by half-empirical expressions alim = f(Q). They reflect the fact that 
during the flight the missile is subjected to varying pressure depending 
on the altitude of the missile. This affects its fins displacement (which 
is limited), since less deflection is required when the missile is flying in 
dense atmosphere, and more deflection is needed in a rare atmosphere. If
a a a a acBN cBN cBN cBN= + + >1

2
2

2
3

2
lim, then:

	 a a
a

a
icBNi cBNi

cBN= =
lim

( , , )1 2 3 	 (9.98)

Based on the commanded acceleration (9.98) and expressions (9.5) and 
(9.6), the coefficient CN can be calculated, and from the second equation 
of equation (9.90) the new value of the angle of attack αT(1) is determined. 
If the difference between αT (0) and αT(1) is small enough, αT = αT(1). 
Otherwise, a certain computational procedure αT( j + 1) = αT( j) + Δ can 
be applied to make two consecutive αT( j) close enough, where j is a step 
of iterations and Δ is an increment. The new value of the angle of attack 
αT( j + 1) is used in equation (9.96), and the above-described operations 
should be repeated. Assuming the initial value of the angle of attack to be 
positive and evaluating its first difference (equivalent to the derivative for 
discrete time), it is possible to operate with positive and negative angles 
of attack. There is no rigorous proof that the computational procedure 
converges. However, the tests performed on a 3-DOF simulation model 
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238	 Guidance of Unmanned Aerial Vehicles

show that for the quite accurate regression models (9.90) and an appropri-
ate search procedure (see, e.g., [8]), which we leave the reader to choose, 
the required iterations number only in the tens.

The missile dynamics module sums up all components of acceleration 
(thrust athrust = TeB, normal component of the guidance law acBN, gravity, 
and drag generated axial component aaxial). The drag generated axial com-
ponent of acceleration is determined by computing the axial force coef-
ficient CA of equation (9.90), for a given angle of attack, and then using the 
expressions similar to equations (9.5) and (9.15).

The total acceleration aMT = (aMT1, aMT2, aMT3) [see also equations (9.22) 
and (9.23)]:

	 a a T e GBMT cBN A

QS

m
C= + −



 + 	 (9.99)

serves the input of the system of differential equations describing the flight-
control system dynamics:

	  x x x xi i i i1 2 2 3= =, ,

	
x x x xi

M
i

M M
i

M
i

M
3

2

1

2

2 3

22 2 1= − − + − + +ω
τ

ω ζω
τ

ζω τ
τ

ω
τ

aaMTi

	 r x x i jj j i
z

j i= − =−3 2 2 3
1

1 2 3, , ( , , , )
ω

	 (9.100)

Here ωM, ζ, ωz, and τ are the flight control system natural frequency, 
damping, airframe zero frequency, and the actuator time constant, 
respectively. The indicated parameters are functions of time and 
depend on the dynamic pressure, missile aerodynamic characteristics, 
its variable mass, and other factors [see equation (9.34)]. Numerical 
integration of equation (9.100), as well as differential equations consid-
ered earlier, is performed using the Runge-Kutta method described in 
Appendix D. The use of numerical integration routines in simulation 
introduces numerical error, which can be propagated during the course 
of the simulation. To keep results accurate over long simulation runs, 
controlling the numerical errors are essential. Higher order methods, 
such as the Runge-Kutta series, express the derivative function as a 
power series to calculate a more accurate estimate of the incremental 
term. As shown in the previous chapters, the most “sensitive parameter“ 
for tail-controlled missiles is the airframe zero frequency that should be 
changed depending on the missile altitude. The first-order unit describ-
ing the actuator dynamics and included in equation (9.98) can be placed 
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before the autopilot limiter (as a possible modification of the missile 
dynamics module).

The structure of the described 3-DOF missile model is shown in 
Figure  9.9. In addition to the modules considered earlier, this structure 
includes the aerodynamic limit unit. In reality, this unit does not exist. It 
simply reflects the fact that the angle of attack in the regression models 
(9.90) is limited. The models are obtained based on the aerodynamic data 
for the trim angles of attack, so that equation (9.90) are valid for definite 
values of these angles below the upper limit, which depends on Mach num-
ber and altitude. Although the 3-DOF model does not describe missile 
dynamics precisely, and the angle of attack is determined only approxi-
mately, its relative simplicity makes it an effective tool of guidance laws 
performance analysis.

As in the case of the 6-DOF simulation model, the missile trajectory 
[equation (9.88)] and velocity [equation (9.89)] are obtained by integrat-
ing the actual missile acceleration [equation (9.100)]. Both models should 
calculate the closing velocity. Its negative value indicates the end of the 
simulation process. The range between the missile and the target at this 
moment presents the miss distance, and the time of flight is the estimate of 
the time of intercept.

It was mentioned before and it is essential to underline that the miss 
distance is the most important but not the only important parameter 

3-DOF missile model

Mach Pressure

Missile propulsion

Acceleration along body axis

Guidance lawAerodynamic
coefficients

Regression models

Acceleration normal to body axis

Aerodynamic limits

Autopilot limitsTotal acceleration

Flight system dynamics Acceleration output

FIGURE 9.9  3-DOF missile model structure.
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240	 Guidance of Unmanned Aerial Vehicles

characterizing missile performance. The miss distance should be consid-
ered altogether with the engagement envelope. The time of intercept and 
the missile terminal velocity (speed and impact angle) are also important 
factors in evaluating missile performance. It means that the comparative 
analysis of guidance laws should be based on the vector criterion including 
the above-mentioned components.

Since it is impossible to be certain what specific missile threats we will 
face in the future or from where these threats will come, the long-term 
strategy is to strengthen and maximize the flexibility of missile defense 
capabilities. The development of new guidance laws, which are the “brains” 
of missiles, and testing them using sophisticated simulation models is an 
important component of this strategy.

For UAVs, the 3-DOF models can be very efficient to test guidance laws 
since their flight conditions are more predictable than that of missiles and 
their trajectories consist of parts with insignificant changes of altitudes, so 
that aerodynamic conditions are rather stable. For predetermined trajec-
tories, it is possible to evaluate approximate values of the angles of attack 
and the corresponding aerodynamic coefficients and incorporate them in 
the model.

When many system parameters are not precisely determined, a simpler 
model can produce more plausible results than a complicated one. That is 
why the 3-DOF models can be useful especially for rotating-wing vehicles 
with complex aerodynamics. If the parametric errors in the missile model 
can result in erroneous evaluation of the ability to hit maneuvering targets, 
in the case of stationary waypoints some errors in the estimate of the UAV 
acceleration mainly influence the time of flight between the waypoints 
rather than the UAV’s ability to follow the prescribed trajectory. The input-
output relationship between the commanded and real UAV’s acceleration 
presented by the transfer function of the UAV flight control system and 
obtained analytically or experimentally usually provides reliable informa-
tion about dynamic properties of the vehicle.

The 3-DOF model contains significantly less parameters than the 
6-DOF model and it is easier to examine their influence on the UAV 
performance.

However, the main deficiency of the 3-DOF models is that the use of 
transfer functions is equivalent to operating with linear models (i.e., the 
assumption that the commanded acceleration can be “ideally” realized). 
The real acceleration is presented by equation (9.23), and it is necessary to 
include the acceleration limits in the model based on information about the 
components of equation (9.23) for concrete aerial vehicles under consider-
ation. Moreover, these limits should be indicated for all possible flight sce-
narios. Without such limits the results of simulations cannot be considered 
as reliable to judge the efficiency of the tested guidance laws.
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10 Integrated Design

10.1  INTRODUCTION

The development of new aerial vehicle systems starts from the formulation 
of their operational requirements. An operational requirement presents a 
document, which describes the tactical need for the vehicle system and 
the area of its use. The operational requirements are then translated into 
performance specifications, which are given to contractors. In the case of 
a vehicle guidance system, the performance specifications may define the 
specific type of guidance to be employed. The tactical problem is the basis 
for the operational requirement and tactical considerations are the over-
riding considerations in all stages of the design of a vehicle guidance 
system.

The first problem faced by the designer of an aerial vehicle guidance 
system is that of translating the related tactical problem into specifications 
for the guidance system design. After that, the mathematical model (i.e., 
the mathematical expressions) that governs its behavior is developed. The 
design process starts usually with simplified equations of vehicle motion, 
aerodynamic, kinematic, and inertial coupling being ignored. Then cross-
coupling between the subsystems are taken into consideration, and the 
three-dimensional aerodynamic model is needed for the 6-DOF simula-
tion. As an aid to the process of design, simulation of the system accom-
panies the design process. As the design progresses, complete simulation 
may give way to partial simulation by substituting some of the completed 
elements of the system (parts constituting actual “hardware”) for the 
mathematical expressions previously employed. When the guidance sys-
tem has been developed, the behavior of the equipment is proved by flight 
tests. Data collected during these tests provide the designer of the guid-
ance system with additional information to conclude whether the design 
system meets the functional requirements formulated at the beginning of 
the design process or the system needs some corrections or maybe, in the 
worst case, it should be redesigned.

In Chapter 5, we presented a block diagram of an interceptor’s main 
subsystems (see Figure 5.1) and described briefly their functions and the 
subsystems interconnection. 

The traditional approach for missile guidance and control systems 
has been to design these subsystems separately, then to integrate them 
together, and after that to verify their performance. If the overall system 
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performance is unsatisfactory, individual subsystems are redesigned to 
improve the whole system performance.

Integrated design of the flight vehicle systems is an emerging trend 
within the aerospace industry. Currently, there are major research initia-
tives within the aerospace industry, the department of defense, and NASA 
to attempt interdisciplinary optimization of the whole vehicle design, while 
preserving the innovative freedom of individual subsystem designers. 
Integrated design of guidance, control, and fuze/warhead systems repre-
sents a parallel trend in the missile technology. There has been an increas-
ing interest in integrated synthesis of missile guidance and control systems 
in recent literature [3,4,7–11]. Proponents of the integrated approach state 
that missile performance can be enhanced by utilizing methods exploiting 
the synergism between guidance and control (autopilot) subsystems. More 
cautious advocates of integrated missile design believe that because the 
traditional approach can lead to modifications subsequently made to each 
subsystem in order to achieve the desired weapon system performance, 
this approach can result in excessive design iterations, and may not always 
exploit any synergism existing between the missile guidance, autopilot, 
and fuze/warhead subsystems. That is why the methods for achieving 
tighter integration between the missile guidance, autopilot, and fuze/war-
head subsystems have the potential to enhance missile performance and 
should be developed and tested in practice.

The integrated design of missile guidance and control systems is con-
sidered as a first step toward the development of integrated missile design 
methodologies. As indicated in the literature [9–11], integrated guidance 
and control systems are expected to result in significant improvements in 
missile performance, leading to lower weight and enhanced lethality. Both 
of these factors will lead to a more effective, lower-cost weapon system.

Figure 10.1 presents a wording form of Figure 3.1 and Figure 5.4 con-
sidered in the previous chapters. We analyzed the models in Figure 3.1 and 
Figure 5.4 assuming the guidance law is known. In traditional flight control 
systems, the guidance law uses the relative missile/target states to generate 
acceleration commands. More precisely, they were examined analytically 
in the case of the proportional navigation guidance law. The modifica-
tions of the proportional navigation (PN) law were offered based on the 
principle of parallel navigation, without any connection with the autopilot 
design. The guidance laws efficiency was tested for various parameters of 
airframe that, as indicated, depend on the altitude of missile motion.

The autopilot design presents one of the most important parts of mis-
sile design. The autopilot control system makes the real missile accelera-
tion follow the commanded acceleration created by the guidance law. It 
receives the guidance commands and issues the relevant aerodynamic 
(e.g., fin), thrust-vector, or divert control commands necessary to achieve 
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the commanded acceleration. The autopilot tracks the acceleration com-
mands by changing the missile attitude to generate angle of attack and 
angle of sideslip using fin deflections and/or moments generated using the 
reaction jet thrust.

Usually the autopilot designers couple three autopilots: a roll autopilot 
provides roll-stabilization while pitch and yaw autopilots provide controlled 
maneuvers in any desired direction relative to the stabilized position. As 
mentioned in Chapter 9, to maximize overall missile performance for each 
phase of flight the appropriate autopilot command structure should be cho-
sen. This may include designing different autopilots for the boost, mid-
course, and terminal phases [12]. 

The problems connected with the autopilot design were stimulus for 
control theory in the 1940s. The development of nonlinear control theory 
is indebted to the nonlinearity of autopilots (e.g., a limited fin angular 
position).

The autopilot serves as a controller of a nonlinear time-varying plant, 
the missile airframe. Without any doubt, technical advances in the vari-
ous interceptor elements (e.g., airframe, actuation, sensor, and propulsion 
systems) enhance missile performance. However, any advances should 
be tested for the guidance law implemented in practice. It looks natural 
to believe that the decrease of the autopilot time constant will result in 
improving missile performance. However, as we have shown, for fin-con-
trolled missiles guided by the proportional navigation law at high altitudes 
this can significantly decrease missile performance.

Traditional architecture separates guidance and flight control functions. 
Guidance laws are developed separately and tested for existing function-
ing autopilots, and vice versa autopilots are designed independently using 

Target
sensors Filter

Airframe/
propulsion

Target
motion

Flight control system

Autopilot

Guidance law

Missile
motion

FIGURE 10.1  Traditional missile guidance and control design architecture.
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methods of classical or modern control theory [1,2,5,6,12,14] and tested 
for existing functioning guidance laws. The models of the airframe con-
sidered in Chapters 1–8 are too simple compared with the detailed model 
given in Chapter 9, which is used in the autopilot design.

Integrated guidance and control laws are supposed to combine guidance 
and control functions. Integrated missile design operates with a detailed 
missile model and considers the target states relative to the missile as a 
part of a generalized model. The guidance and control laws are obtained as 
the solution of a certain optimal problem, which must guarantee the inter-
nal stability of the missile dynamics. The architecture of the integrated 
guidance and control system is given in Figure 10.2.

Below we describe two basic models of the integrated missile and con-
trol system presented in the literature [9–11]. The integrated guidance-
control law for homing missiles is obtained as a solution of finite-interval 
optimal control problems. The model of [11] includes filter design as a 
part of the integrated design process comprising the design of a guidance 
filter, guidance law, and autopilot. The model of [9,10] looks “more mod-
est” and operates only with guidance law and fin deflections as control 
actions. Since the integrated guidance and control laws are linked with 
optimal problems, the Bellman equations for various performance indices 
are examined.

Special performance indices are considered that make it possible to 
simplify the Bellman functional equations and solve the optimal problems 
dealing with the Lyapunov equations. The integrated laws obtained based 
on the modern control theory procedure are compared with the laws using 
the classical control theory approach. In contrast to the previous chap-
ters, where the term missile guidance system combined the guidance and 

Target
sensors

Filter

Airframe/
propulsion

Target
motion 

 Autopilot

Guidance
law

Missile
motion 

FIGURE 10.2  Integrated missile guidance and control design architecture.
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control units, here we will consider them separately. To emphasize that we 
will use the term missile guidance and control system.

Since the term guidance law was not applied to aerial vehicles operated 
by pilots and there are no publications related to the integrated UAV design, 
we consider only the problem of integrated missile design. However, the 
analysis of this problem and recommendations provided are relevant to all 
unmanned aerial vehicles.

10.2  INTEGRATED GUIDANCE AND CONTROL MODEL

The integrated guidance and control model is presented usually in the 
form:

	 x f x B x u D x w x x( ) ( , ) ( , ) ( ) ( , ) ( ), ( )t t t t t t t= + + =0 0

	 y c x D x w1( ) ( , ) ( , ) ( )t t t t= + 	 (10.1)

where x(t) is the m × 1 state-vector, u(t) is the n × 1 control vector, w(t) 
is the p × 1 vector of disturbances, y(t) is the l × 1 vector of output vari-
ables; f(x, t), c(x, t), B(x, t), D(x, t), and D1(x, t) are vector-functions and 
matrices of appropriate dimensions.

Since we operate with the nonlinear system, the traditional approach 
uses the linearization technique and sequentially uses the solutions of the 
linearized problems. First a set of linearized models at a large number of 
flight conditions is developed and a control law is designed for each linear-
ized model using an appropriate synthesis technique [5].

An alternate approach to control design is based on the so-called 
extended linearization concept that requires a nonlinear system to be fac-
tored (when it is possible) in a way that it has a “linear-looking” structure, 
the so-called state dependent coefficient form [3,4,9–11].

For example, the system:
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However, this parameterization is not unique. There exist infinite num-
bers of possible representations in the state dependent coefficient form and, 
unfortunately, there is no criterion that would justify our choice as the 
best.

For the nonlinear system (10.1), the extended linearization representa-
tion has the following form:

	 x A x x B x u D x w x( ) ( , ) ( ) ( , ) ( ) ( , ) ( ), (t t t t t t t t= + + 0 )) = x0

	 y C x x D x w1( ) ( , ) ( ) ( , ) ( )t t t t t= + 	 (10.2)

where A(x, t) and C(x, t) are matrices of appropriate dimensions.
We rewrite the system (9.11), (9.14), and (9.22) assuming missile airframe 

x–z axis symmetry and that the mass distribution is such that Iyy = Izz:
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	 (10.3)
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	 (10.4)

The vx, vy, and vz are the components of velocity along the x, y, and z 
axes (see Figure 9.2), respectively; p, q, and r denote the roll, pitch, and 
yaw rates; Ax, Ay, and Az are the body axis accelerations; Gx, Gy, and 
Gz are the gravity components; X, Y, and Z model accelerations pro-
duced by the aerodynamic forces; Tx, Ty, and Tz model propulsion system 
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forces;  mx, my, and mz model angular accelerations produced by the 
aerodynamic moments.

Differentiating the expressions for the angle of attack α0 and the sideslip 
angle αs [see equation (9.19)]:

	 tan , tanα α0 = =v v v vz x s y x/ /

i.e.,

	 
 


 

α α α0 2
2

0 2
=

−
=

−v v v v

v

v v v v

v
z x z x

x
s

y x y x

x

cos , ccos2 αs 	 (10.5)

and substituting the components of the derivative of the missile velocity 
vector VM from equation (10.3), taking into account:

	 V v v v v v v vM x y z x x s x x
2 2 2 2 2 2 2 2 2

0= + + = + + =tan tanα α Λ 22 	 (10.6)

where

	 Λ = + +1 2 2
0tan tanα αs 	 (10.7)

the expressions (10.5) can be presented in the following form:
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0 0 0
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A
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2
0

(10.8)

and
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M
s
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V
r p q= − − − +

Λ Λcos cos sin
( tan

2

)) tan cosα α0
2

s

(10.9)

The last three equations of (10.3) can be solved for  p q, , and r:
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	 (10.10)
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To meet the requirements of the extended linearization representation, the 
expressions for the aerodynamic forces and moments are presented as [see 
also equations (9.23)–(9.25)]:

	

X

Y

Z

m

m

m

V

c c

x

y

z

M

X X





























= 2

0α αα δ δ δ

α α δ δ δ

α α

s X P X Y X R

Y Y s Y P Y Y Y R

Z Z s

c c c

c c c c c

c c

0

0 cc c c

c c c c c

c

Z P Z Y Z R

m m s m P m Y m R

m

x x x x x

y

δ δ δ

α α δ δ δ

α

0

0 cc c c c

c c c c c

m s m P m Y m R

m m s m P m Y m

y y y y

z z z z

α δ δ δ

α α δ δ0 zz R

s

P

Y

R

δ

α

α

δ

δ

δ































⋅
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


+


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c
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c

M

X

Y

Z
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my

mz

2

0

0

0

0

0

0



























	 (10.11)

i.e., the aerodynamic force and moment coefficients ckl
s  are described 

in a polynomial form with respect to the angle of attack α0, the sideslip 
angle αs, the pitch fin deflection δP, the yaw fin deflection δY, and the roll 
fin deflection δR. The possible constant terms in the polynomial repre-
sentation have the upper index “0.” The most significant nonzero term 
is the drag component cX

0 . For simplicity, here and below we indicated 
the dependence of the aerodynamic forces and moments on the dynamic 
pressure only by the factor VM

2  of equation (9.6); it is assumed that other 
components of the dynamic pressure, as well as the missile mass m and 
reference parameters S, l in equations (9.15) and (9.16), are reflected in the 
coefficients ckl

s .
As an example, assuming cmx

0 0= , the roll rate expression (10.10) is 
parameterized as:

	 p
c c c P c Y c R

I
m m s s m P m Y m Rx x x x x=

+ + + +α α δ δ δα α δ δ δ0 0

xxx

	 (10.12)

The requirements to the missile aerodynamic model to be specified in a 
polynomial form may not be acceptable in situations where the design has 
to be based on nonsmooth aerodynamic data obtained from wind tunnel 
tests.

Using the first equation of (9.9)

	 φ φ θ φ θ= + +p q rsin tan cos tan 	 (10.13)
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and comparing the commanded Euler roll angle rate φc  with φ deter-
mined by equation (10.13), the expression for the roll error εφ can be pre-
sented as [11]:

	  ε
τ

ε
τ

φ φ θ φ θφ
φ

φ
φ

= − + − − −1 1
( sin tan cos tan )c p q r 	 (10.14)

where τϕ is an adjustable parameter.
Tail-fin actuators are modeled as having second-order dynamics [11], 

so that:

	  δ ξ ω δ ω δ δP a a P a P= − + −2 2
1( )

	  δ ξ ω δ ω δ δY a a Y a Y= − + −2 2
2( )

	  δ ξ ω δ ω δ δR a a R a R= − + −2 2
3( ) 	 (10.15)

where δi (i = 1, 2, 3) is the commanded pitch-yaw-roll angular tail-fin posi-
tion, ωa and ξa represent the natural frequency and damping ratio of the 
tail-fin servo-actuator, respectively. The control vector u(t) = (δ1, δ2, δ3) 
consists of the three tail-fin angular position commands. This is typical for 
tail-controlled missiles.

The expression for target-missile relative acceleration in the Earth-fixed 
inertial frame is similar to equation (1.20):

	   r a a r a a r a ax Tx Mx y Ty My z Tz Mz= − = − = −, , 	 (10.16)

where rx, ry, and rz are the components of the range-vector.
In [11], the target acceleration model is presented as the first-order lag 

process:

	   a a w a a w aTx
T

Tx T Ty
T

Ty T Tz= − + = − + =1 1 1
τ τ τ

( ), ( ),
TT

Tz Ta w( )− +

(10.17)

where τT represents the target maneuver time constant and wT(t) is a dis-
turbance input.
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The above-considered equations can be presented in the form (10.2) 
with the following state, output and control vectors:

	

x( )

( )

( )

( )

( )

( )

( )

( )

t

r t

r t

r t

r t

r t

r t

t

x

x

y

y

z

z

=







α0

αα

ε

δ

δ

δ

δ

φ

s

P

P

Y

Y

t

p t

q t

r t

t

t

t

t

( )

( )

( )

( )

( )

( )

( )

( )

(



 tt

t

t

a t

a t

a t

R

R

Tx

Ty

Tz

)

( )

( )

( )

( )

( )

δ

δ























































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


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

































=y( )t

rr t

r t

r t

a t

a t

a t

p t

q t

r

x

y

z

Mx

My

Mz

( )

( )

( )

( )

( )

( )

( )

( )

(( )

( )

( )

( )

( )

( )

( )

( )

t

t

t

t

t

a t

a t

a t

A

P

Y

R

Tx

Ty

Tz

ε

δ

δ

δ

φ

xx t

g t

0 ( )

( )



























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
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
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

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
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

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
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
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















=



















u( )

( )

( )

( )

t

t

t

t

δ

δ

δ

1

2

3

(The components of the output vector Ax0 and g(t) are defined as pseudomea-
surements to account for axial thrust-minus-drag and gravity, respectively.)
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In the above-considered model, the state variables r r r r r r a ax x y y z z Tx Ty, , , , , , , ,    
and aTz do not depend directly upon other state variables, so that the system 
(10.2) consists of two separate subsystems. The dynamic equations were writ-
ten separately for the guidance and control subsystems as if they are considered 
independently. However, this is not the case. The components of the missile 
acceleration in equation (10.16) written in the Earth-fixed inertial frame cor-
respond to the components (10.4) presented in the missile body frame, so that 
all subsystems of the model are interconnected.

The linkage between the missile-target position coordinates and the state 
variables of equation (10.3) is more evident in the model considered in [9]:

	






x v y r z q

y v x r z p

x v x q y p

b x b b

b y b b

b z b b

= + −
= − +
= + −

	 (10.18)

where the missile-target position coordinates xb, yb, and zb are presented in 
the missile body coordinate system.

However, equation (10.18) is valid under the assumption that the tar-
get velocity vector is negligible compared with the missile velocity vec-
tor. In the general case, the missile-target position coordinates rx, ry, and 
rz in the Earth-fixed inertial frame should be transformed to the missile 
body frame [see equation (9.8)] and the relationship (9.9) between the 
Euler angles and the body rotational rates p, q, and r should be used. Of 
course, such a model will be more complicated.

To increase accuracy of the aerodynamic model, the aerodynamic forces 
and moments in equation (10.3) can be approximated by higher-order poly-
nomials. Then instead of equation (10.11) we have:
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(10.19)

(Notation of additional coefficients is obvious.)
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Substituting the aerodynamic forces and moments from equa-
tion (10.19) into equation (10.3) and considering the state vector 
x(t) = (p q r vx vy vz xb yb zb)T, we obtain the following components of 
the matrix  A( , )x t Aij= [ ]  in equation (10.2):

	 A A A A A A11 12 13 17 18 19 0= = = = = =

	 A
I

c c c c c
xx

mx m m m s s mx x x x14
0

0 0 0
1

0
31= + + + +( α α αα α α αα αs s xv1 3)

	 A
I

c c c c c
xx

mx m m m s s mx x x x15
0

0 0 0
1

0
31= + + + +( α α αα α α αα αs s yv1 3)

	 A
I

c c c c c
xx

mx m m m s s mx x x x16
0

0 0 0
1

0
31= + + + +( α α αα α α αα αs s zv1 3)

	 A
I I

I
r A A A A Azz xx

yy
21 22 23 27 28 29 0=

−
= = = = =,

	 A
I

c c c c c
yy

my m m m s s my y y y24
0

0 0 0
1

0
31= + + + +( α α αα α α αα αs s xv1 3)

	 A
I

c c c c c
yy

my m m m s s my y y y25
0

0 0 0
1

0
31= + + + +( α α αα α α αα αs s yv1 3)

	 A
I

c c c c c
yy

my m m m s s my y y y26
0

0 0 0
1

0
31= + + + +( α α αα α α αα αs s zv1 3 +)

	 A
I I

I
q A A A A Axx yy

zz
31 32 33 37 38 39 0=

−
= = = = =,

	 A
I

c c c c c
zz

mz m m m s s mz z z z34
0

0 0 0
1

0
31= + + + +( α α αα α α αα αs s xv1 3)

	 A
I

c c c c c
zz

mz m m m s s mz z z z35
0

0 0 0
1

0
31= + + + +( α α αα α α αα αs s yv1 3)

	 A
I

c c c c c
zz

mz m m m s s mz z z z36
0

0 0 0
1

0
31= + + + +( α α αα α α αα αs s zv1 3)
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	 A A A A A v A vz y41 47 48 49 42 430= = = = = − =, ,

	 A c c c c c vX X X X s s X s s44
0

0 0 0
1

0
3 1 3= − + + + +( )α α α αα α α α xx

	 A c c c c c vX X X X s s X s s45
0

0 0 0
1

0
3 1 3= − + + + +( )α α α αα α α α yy

	 A c c c c c vX X X X s s X s s46
0

0 0 0
1

0
3 1 3= − + + + +( )α α α αα α α α zz

	 A v A v A A A Az x51 53 52 57 58 59 0= = − = = = =, ,

	 A c c c c c vY Y Y Y s s Y s s x54
0

0 0 0
1

0
3 1 3= + + + +( )α α α αα α α α

	 A c c c c c vY Y Y Y s s Y s s y55
0

0 0 0
1

0
3 1 3= + + + +( )α α α αα α α α

	 A c c c c c vY Y Y Y s s Y s s z56
0

0 0 0
1

0
3 1 3= + + + +( )α α α αα α α α

	 A v A v A A A Ay x61 62 63 67 68 69 0= − = = = = =, ,

	 A c c c c c vZ Z Z Z s s Z s s64
0

0 0 0
1

0
3 1 3= − + + + +( )α α α αα α α α xx

	 A c c c c c vZ Z Z Z s s Z s s65
0

0 0 0
1

0
3 1 3= − + + + +( )α α α αα α α α yy

	 A c c c c c vZ Z Z Z s s Z s s66
0

0 0 0
1

0
3 1 3= − + + + +( )α α α αα α α α zz

	 A z A y A A A A A A Ab b72 73 74 71 75 76 77 78 71= − = = = = = = =, , , 99 0=

	 A z A x A A A A A A Ab b81 83 85 82 84 86 87 88 81= = − = = = = = =, , , 99 0=

A y A x A A A A A A Ab b91 92 96 93 94 95 97 98 91= − = = = = = = =, , , 99 0=

(signs in Aij, i = 4 – 6, j = 4 – 6, correspond to the direction of axial and 
normal forces.)

For the control vector u(t) = (δP, δY, δR)T the matrix B( , )x t B V Bij M ij=[ ]= [ ]2 0  
in equation (10.2) has the following form [the model can be easily enhanced 
by including tail-fin actuators dynamics similar to equation (10.15)]:

	 B
I

c B
I

c B
I

c
xx

m P
xx

m Y
xx

mx x x11
0

12
0

13
01 1 1= = =δ δ δ, , RR
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	 B
I

c B
I

c B
I

c
yy

m P
yy

m Y
yy

my y y21
0

22
0

23
01 1 1= = =δ δ δ, , RR

	 B
I

c B
I

c B
I

c
zz

m P
zz

m Y
zz

mz z z31
0

32
0

33
01 1 1= = =δ δ δ, , RR

	 B c B c B cX P X Y X R41
0

42
0

43
0= = =δ δ δ, ,

	 B c B c B cY P Y Y Y R51
0

52
0

53
0= = =δ δ δ, ,

	 B c B c B cZ P Z Y Z R61
0

62
0

63
0= − = − = −δ δ δ, ,

	 B B B B B B B B B71
0

72
0

73
0

81
0

82
0

83
0

91
0

92
0

93= = = = = = = = 00 0=

The difference between the above-described two models used in the inte-
grated guidance and control system is in choosing the state variables of 
the models. The state variables in [11] combine the state variables of 
two separate designs—the guidance law and autopilot. The choice of the 
angle of attack and the sideslip angle as the state and output variables is 
physically justifiable and used in the current practice of autopilots design. 
However, the matrix A(x, t) of the extended linearization representation 
(10.2) is too complicated. It depends upon the Euler angles and the com-
ponents of the missile velocity vector, i.e., the first three equations of 
(10.3) are indirectly present in the model. The model of [9] has a certain 
advantage over the model of [11]. As an integrated model, it looks more 
logical than the model in [11] because the coupling of the guidance and 
control is more noticeable. However, as mentioned, it is obtained under 
the assumption that the target velocity vector is negligible compared with 
the missile velocity vector.

The above models presented in the state-space form required by the 
modern control theory are used to formulate the integrated guidance and 
control problem as an optimal control problem. The authors of [9–11] offer 
the solution of the integrated design problem utilizing the existing solu-
tions of linear optimal problems. Assuming first w(t) = 0 and consider-
ing the linearized model (10.2) and the performance index [see equations 
(A7)–(A17)]:

	 I t t t t t dtF F
t

tF

= + +( )∫1
2 0

2

0

x C x x Rx uT T( ) ( ) ( ) ( ) ( )




 	 (10.20)
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we obtain the optimal solution in the form:

	 u B x( ) ( ) ( )t W t tT= − 	 (10.21)

and

	 W W W W W W tT T
F+ + − + = =A A BB R C0 0, ( ) 	 (10.22)

Instead of the Riccati equation (10.22), the so-called state dependent 
Riccati equation was considered in [3,4,9–11]. The state dependent Riccati 
equation technique is applied for the equations of motion in the extended 
linearized form (10.2) together with a state dependent quadratic perfor-
mance index. A state dependent algebraic Riccati equation is formulated 
using the model (10.2) ignoring disturbances and assuming A(x, t) = A(x) 
and B(x, t) = B(x) and introducing the state dependent weight matrix R(x) 
in the performance index. As shown in [3,4] for the performance index:

	 I t t t dt
t

= +
∞

∫ ( ( ) ( ) ( ) ( ) )x R x x uT 2

0

	 (10.23)

the state dependent algebraic Riccati equation can be written as:

	 A x W x W x A x W x B x B x W x R xT T( ) ( ) ( ) ( ) ( ) ( ) ( )+ − + =( ) ( ) 0 	 (10.24)

For the performance index:

	 I t t t x t t dF F= + +( )1
2 0

2
x C x x x R x uT T( ) ( ) ( ) ( ) ( ) ( )( ) tt

t

tF

0
∫



 	 (10.25)

the modification of equation (10.24), similar to equation (10.22), can be 
obtained.

The linear quadratic dynamic games approach to the model (10.2) 
allows us to find the control u(t) counteracting to the disturbances w(t), i.e., 
the optimal solution for the functional

	

min max ( ) ( )

( )

( ) ( )u t w t
F FI t t

t

= 


+

1
2 0x C x x

x R

T

T

( )

(( ) ( ) ( ) ( )x t t t dt
t

tF

x u w+ +( ) 
∫ 2 2

0

γ
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is similar to the optimal solution for the functional (10.25), where γ is a 
constant coefficient, which is also obtained from the Riccati equation [11]. 
In all above-mentioned cases the control structure is the same:

	 u B W x x( ) ( ) ( ) ( )t x tT= − 	 (10.26)

i.e., at each moment fin deflections depend on the current values of the 
state vector of the model chosen in the design process. If not all the system 
states are available from measurements, the procedure can be modified to 
synthesize state dependent estimators.

The described method of the integrated guidance and control system 
design based on the modification of the optimal solution for linear optimal 
problems by utilizing the nonlinear equations in the extended linearized 
form needs more rigorous mathematical justification. It looks too compli-
cated to be used in practice despite the published literature [9–11] experi-
mental results supporting its efficiency.

Since the control laws used in [9–11] are obtained based on the proce-
dure of dynamic programming, below we describe more general optimal 
control laws that do not require the extended linearized representation of 
guidance-control models.

10.3  SYNTHESIS OF CONTROL LAWS

10.3.1 M inimization of Standard Functionals

First we consider the optimal problem for the system presented in more 
general form than equation (10.1):

	 x f x u x x( ) ( , , ), ( )t t t= =0 0 	 (10.27)

and the generalized performance index:

	 I V t L t t t dtF

tF

= + ∫0
0

( ( )) ( ( ), ( ), )x x u 	 (10.28)

where the function L(x(t),u(t),t) depends simultaneously on two 
variables—the state vector x(t) and the control vector u(t); V0(x(tF)) is 
the function of the terminal state x(tF).

The synthesis problem of a closed-loop optimal control system con-
sists of finding the controller equations u(t) = Γ[x(t), t] that, together with 
equation (10.27), form the stable system and minimize the functional 
(10.28). The procedure of obtaining the Bellman functional equation is 
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described in Appendix A. For the performance index (10.28) and the 
system (10.27) it can be presented as:

	
∂
∂

+ + ∂
∂{ } =V

t
L t

V
x

t
u t

T

min ( , , ) ( , )
( )

x u x uf , 0 	 (10.29)

where the function V(x(t)) should satisfy the condition V(tF) = V0(x(tF)) and 

	

∂
∂

= ∂
∂

∂
∂







V
x

V
x

V
x

T

m1

, , .…

Although equation (10.29) is presented in a compact form, in many 
practical cases it is difficult to find its solution. Assuming that u0(t) mini-
mizes the expression in braces of equation (10.29) and substituting u0(t) in 
equation (10.29) we have:

	 ∂
∂

+ ∂
∂

= −V
t

V
x

t L t
T

f ( , ) ( , , )x u x u, 0 0
	 (10.30)

or

	
∂

∂
+ ∂

∂
∂
∂{ } =

u
L t

u

V

x
t

T

0
0

0
0 0( , , ) ( , )x u f x u, 	 (10.31)

where the partial derivatives is written with respect to the components of 
u0 = (u01,…,u0n)T.

The optimal synthesis problem can be solved only if we can obtain the 
solution of the system of nonlinear partial differential equations (10.31) 
and then present u0 as a function of x and t. Difficulties in solving this 
problem are demonstrated below.

Let us consider the model similar to equation (10.1):

	 x f x B x u x x( ) ( , ) ( , ) ( ), ( )t t t t t= + =0 0 	 (10.32)

For this model and the additive functional:

	 I V t R t t Q t t dtF
t

tF

= + +∫( ( )) ( ( ( ), ) ( ( ), ))x x u
0

	 (10.33)

the equations (10.30) and (10.31) have the form:

	 ∂
∂

+ ∂
∂

+ + = −V
t

V
x

t t Q t R t
T

( ( , ) ( , ) ) ( , ) ( , )f x B x u u x0 0
	 (10.34)
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and

	
∂

∂
+ ∂

∂
=Q t

u
V
x

t
T T( , )

( )
u

B x0

0

0, 	 (10.35)

Assuming that equation (10.35) can be resolved with respect to 
u0 = (u01,…,u0n)T, i.e.,

	 u t
V

x
tT

0 = ∂
∂







Γ B x( ) ,, 	 (10.36)

and substituting equation (10.36) in equation (10.34) we obtain:

	

∂
∂

+ ∂
∂

+ ∂
∂

∂
∂

V
t

V
x

t
V
x

t t
V
x

t
T T

Tf x B x B x( , ) ( , ) ( ) ,Γ ,





+ ∂
∂











 = −Q t

V
x

t t R tTΓ B x x( ) , , ( , ),

	 (10.37)

The solution of this equation satisfying the boundary condition 
V(tF) = V0(x(tF)) should determine the optimal control based on equation 
(10.35). It is possible to prove that if

	 Q t Q t
Q t

u

T

( , ) ( , )
( , )

( )u u
u

u u− − ∂
∂

−0
0

0
0

is a positive definite function of u that equals zero only when u = u0, then 
equation (10.36) is the optimal control [6,13].

Let the functional (10.33) have the form:

	 I V t R t t t K t dtF
T= + +





−
0

1

0

1
2

( ( )) ( ( ), ) ( ) ( )x x u u
ttF

∫ 	 (10.38)

where K kii= [ ] is a diagonal matrix with kii > 0.
In this case, the function

	 Q t Q t
Q t

u

T

( , ) ( , )
( , )

)u u
u

(u u− − ∂
∂

−0
0

0
0
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satisfies the above-mentioned conditions of the existence of the unique 
optimal solution (10.36). The Bellman functional equation and the expres-
sion for the optimal control can be written as [see equations (10.30) and 
(10.31)]:

	 u u B x= = − ∂
∂0 K t
V

x
T ( , ) 	 (10.39)

and

	

∂
∂

+ ∂
∂

− ∂
∂

∂
∂

=V
t

V
x

t
V
x

t K t
V
x

T T
Tf x B x B x( , ) ( , ) ( , )

1
2

−−

=

R t

V t V tF F

( , ),

( ) ( ( ))

x

x0

	 (10.40)

The solution of the functional Bellman equation even in the form (10.40) is 
a matter of insurmountable difficulties even when we seek an approximate 
solution of Bellman functional equations. The analytical solution exists 
only for the linear-quadratic problems. The method of power series to 
solve equation (10.40) was offered in [1]. The solution is sought as:

	 V x x x x xij i j ijr i j r

r

m

j

m

i

m

= + +
===

∑∑∑1
2

1
3

111

γ γ ...
jj

m

i

m

==
∑∑

11

	 (10.41)

where the unknown coefficients should be determined from the system of 
the ordinary differential equations. This approach can be useful for the 
models similar to equation (10.2).

10.3.2 M inimization of Special Functionals

For the model described by equation (10.32) we consider the functional:

	 I V t R t t Q t t Q t tF= + + +0 0( ( )) ( ( ), ) ( ( ), ) ( ( ), )x x u u0(( )∫ dt
t

tF

0

	 (10.42)

where Q(u(t), t) and Q0(u0(t), t) are such functions that

	 Q t Q t
Q t

u

T

( , ) ( , )
( , )

u u
u

u+ − ∂
∂0 0

0

0
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is the positive definite, with respect to u, function that equals zero at 
u = u0. The function u0 is an unknown optimal control. The function-
als including unknown optimal controls were introduced and used for 
synthesis of control systems in [6].

Following [6], we will show that the optimal control for the functional 
(10.42) is determined from the expression:

	
∂

∂
= − ∂

∂
Q t

u

V

x
t

T T( , )
( , )

u
B x0

0

	 (10.43)

where V(x, t) is the solution of the Lyapunov equation (10.32) when 
u ≡ 0:

	
∂
∂

+ ∂
∂

= − =V

t

V

x
t R t V t V t

T

F Ff x x x( , ) ( , ), ( ) ( ( ))0 	 (10.44)

The Bellman equation for the optimal problem (10.42) and (10.32) has the 
form:

	
∂
∂

+ + + + ∂V

t
R t t Q t t Q t t

V
u t

min{ ( ( ), ) ( ( ), ) ( ( ), )
( )

x u u0 0

TT

x
t t

∂
+ =( ( , ) ( , ) )}f x B x u 0

(10.45)

Minimization of the expression in braces immediately gives equation 
(10.43). Substituting equation (10.43) in the modified equation (10.45):

	
∂
∂

+ + + + ∂
∂

V

t
R t t Q t t Q t t

V

x

T

( ( ), ) ( ( ), ) ( ( ), )x u u0 00 (( ( , ) ( , ) )f x B x ut t+ =0 0

(10.46)

and taking into account that

	 Q t Q t
Q t

u

T

( , ) ( , )
( , )

u u
u

u0 0 0
0

0
0+ − ∂

∂

equals zero we obtain equation (10.44).
For the “modernized” functional (10.38):

	 I V t R t t t K t tF
T T= + + +−

0
1

0
1
2

( ( )) ( ( ), ) [ ( ) ( ) (x x u u u )) ( )]K t dt
t

tF
−



∫ 1

0
0

u

(10.47)
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the optimal solution is:

	 u u B x= = − ∂
∂0 K t
V

x
T ( , ) 	 (10.48)

i.e., it looks identical to equation (10.39).
However, if here V = V(x, t) is the solution of the Lyapunov equa-

tion (10.44), for the performance index (10.38) and control law (10.39) 
V(x, t) is the solution of a more complicated nonlinear partial differen-
tial equation (10.40), i.e., instead of the Bellman equation we operate 
with the Lyapunov equation (10.44) and the Lyapunov function V(x, t). 
The existence of the Lyapunov function satisfying equation (10.44) 
assumes the uncontrolled (u ≡ 0) process described by equation (10.32) 
to be stable. In the case of instability, it should be initially stabilized. 
Later the stabilization feedback should be included in the controller 
structure obtained by the above-considered method.

Similar to equation (10.41), the method of power series can be used 
to solve the Lyapunov equation (10.44). Assuming that the components 
of f(x(k)) = [ fi] in equation (10.32) can be presented by convergent power 
series in a certain domain X, i.e.,

	 fi ij j

j

m

ijk j k ijkr j

r

m

k ra x a x x a x x x= + + +
= =

∑ ∑
1 1

...
kk

m

j

m

k

m

j

m

====
∑∑∑∑

1111

	 (10.49)

and presenting the positive definite functions V0 and R of the functional 
(10.46) as:

	 V0

111

1
2

1
3

= + +
===

∑∑ρ ρij i j ijr i j r

r

m

j

m

i

m

x x x x x ...∑∑∑∑
== j

m

i

m

11

	 (10.50)

and

	 R = + +
===

∑∑∑1
2

1
3

111

µ µij i j ijr i j r

r

m

j

m

i

m

x x x x x ...
jj

m

i

m

==
∑∑

11

	 (10.51)

where a* and µ* are constant or time-dependent coefficients and ρ* are 
constant coefficients, we seek the solution of the Lyapunov equation in the 
form (10.41). It is supposed that the power series:

	
∂
∂

= + + +
= =

∑V

x
x x x x x x

i
ij j

j

m

ij j k ijkr j k r

r

γ γ γ
1 1

...
mm

k

m

j

m

k

m

j

m

∑∑∑∑∑
==== 1111

	 (10.52)

converges in X.
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For the functional (10.46) and the diagonal matrix K(t) = [Ki(t)] the opti-
mal control law (10.47) can be written as:

	 u k t B
V

xi i ij

j

m

j

= − ∂
∂

=
∑( )

1

	 (10.53)

where the coefficients of equation (10.52) satisfy the system of differential 
equations [6]:

	 


γ γ
i q

S

S

si h

S
S

S S S

S...
...

!( )!
( )!

− −
−

=

−

∑ 1 1

1

1

1
1

1

 


akj q

s

m

i q
S S

S

...
...

−
{ } = −

=
∑

1
1

µ 	 (10.54)

with the boundary conditions:

	 γ ρi q F i qt i q m... ...( ) , , , , , ,= =… …1 2 	 (10.55)

(Here the symbol {*} denotes summation of the product in braces for each 
possible change of indices in γ and a.)

There exists one more very effective approach to solve the problem 
(10.47) of minimization of the performance index (10.47) subject to equa-
tion (10.32). Taking into account that the expression (10.44) corresponds to 
the derivative of V along any trajectory of the uncontrolled (u ≡ 0) system 
(10.32), i.e.,

	 x f xu ut t( ) ( , )= 	 (10.56)

we can rewrite equation (10.44) as:

	
dV

dt
R tu= − ( , )x 	 (10.57)

From this equation we have:

	 V t t V t t R t t dtu F F u u
t

tF

( ( ), ) ( ( ), ) ( ( ), )x x x− = −∫ 	 (10.58)

or, taking into consideration the terminal condition V(tF) = V0(x(tF)),

	 V t t V t R t t dtu u F u
t

tF

( ( ), ) ( ( )) ( ( ), )x x x= + ∫0 	 (10.59)
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Let X(x, t, σ) be the solution of equation (10.56) for the initial condition 
xt = x(t), where x(t) is the current state of the system (10.32). Then instead 
of equation (10.43) we can present the analytical expression of the optimal 
control in the form:

	
∂

∂
= − ∂

∂
+ ∫Q t

u x
V X t t R X t

T

F
t

tF( , )
( ( , , )) ( ( , ,

u
x0

0
0 x σσ σ)) ( , )d t

T






B x 	 (10.60)

For the functional equation (10.46) we have:

	 u u x x x= = − ∂
∂

+ ∫0 0K t
x

V X t t R X tT
F

t

tF

B ( , ) ( ( , , )) ( ( , ,σσ σ))d





	 (10.61)

The performance indices considered in this section enable us to obtain the 
optimal control algorithms that require significantly less computational 
operations than the performance indices examined in the previous sec-
tion. In turn, the control law (10.61) has a certain advantage over others 
considered in this section. The computational algorithm based on equation 
(10.61) should include the following operations in the discrete-time:

	 i.	At the beginning of each discrete moment of time k = k0, k0 + 1,…, kF, 
when the control values are determined, the current value of the state 
vector of equation (10.32) should be determined (or estimated).

	 ii.	The solution X(x, t, σ) of (10.56) on the interval [k, kF] for the ini-
tial conditions coinciding with the current (or close to it) state of 
equation (10.32) should be determined.

	 iii.	Computation of the gradient of V(x, t) for the current moment of 
time k [see equations (10.59) and (10.60)].

	 iv.	Computation of the control actions according to equation (10.61).

Since computational operations are performed by a computer, the integra-
tion in equation (10.60) is changed to the summation. The discrete form of 
equation (10.60) is obvious.

Below we consider the discrete-time analogue of the problem (10.32) 
and (10.42):

	 x f x B x u x x( ) ( ( )) ( ( )) ( ), ( )k k k k k+ = + + =1 1 0 0 	 (10.62)

and

	 I V k R k Q k Q kF

k

kF

= + + +∑0 0

0

( ( )) ( ( )) ( ( )) ( ( ))x x u u0 	 (10.63)
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assuming that the function

	 Q Q
Q

u

T

( ) ( )
( )

u u
u

u+ − ∂
∂0 0

0

0

is positive definite with respect to u and equals zero at u = u0.
The Bellman equation can be presented as:

	V i R i Q i Q i Vi
u i

i[ ( )] min{ ( ( )) ( ( )) ( ( ))
( )

x = + + + +x u u0 10
TT i i i[ ( ( )) ( ( )) ( )]}f x B x u+

(10.64)

	 V k V k i k kF F F F( ( )) ( ( )), , ,...x x= = − −0 1 2

Acting analogously to the continuous case, instead of equations (10.43) and 
(10.44) we have:

	
∂

∂
= − ∂

∂ +
+Q i

u

V

x i
i

T
i
T( ( ))

( )
( ( ))

u
B x0

0

1

1
	 (10.65)

and

	 V i i i V i
V

i i
i
T

+
++ − − ∂

∂1 0
1[ ( ( )) ( ( )) ( )] ( ( ))f x B x u x

xx i
i i R i

( )
( ( )) ( ) ( ( ))

+
= −

1 0B x u x

(10.66)

The first-order approximation of Vi+1[ f(x(i)) + B(x(i))u0(i)] as:

V i i i V i
V

i i+ ++ ≈ + ∂
1 0 1[ ( ( )) ( ( )) ( )] [ ( ( ))]f x B x u f x ii

T

x i
i i+

∂ +
1

01( )
( ( )) ( )B x u 	 (10.67)

makes it possible to simplify equation (10.66), so that it instead of equation 
(10.66) we can use the equation in the form similar to equation (10.44):

	 V i V i R i V k V ki i F+ − = − =1 0[ ( ( ))] [ ( )] ( ( )), ( ( )) ( (f x x x x x FF ))	 (10.68)

As mentioned earlier, the examined optimal problems here have a certain 
computational advantage over the optimal problems considered in the pre-
vious section and can compete successfully with them being used in the 
integrated guidance and control systems design.
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10.4  INTEGRATION AND DECOMPOSITION

Decomposition means the disintegration, the division of the whole system 
into absolutely independent or weakly interconnected subsystems, which on 
certain stages can be treated separately. Solutions obtained for these sub-
systems are used later to obtain the solution for the whole problem. During 
many years, this approach was considered as a natural and logical way and 
in many cases as the only way to resolve complex problems. The decompo-
sition methods formed a special part of computational mathematics. They 
were widely developed and used especially on the initial stage of the com-
puter era, when the time of computation was the main restricting factor.

The term integration means an act of combining into an integral whole. 
Currently, powerful computers enable us to solve problems we can only 
have dreamed about solving years ago. Does it mean that it is worth load-
ing computers with huge models, containing many “fuzzy” parameters and 
rely upon the solutions obtained? Does it mean that we should not trust 
our intuition and rely upon sober sense? Computers, how powerful they 
might be, need time for computations. Homing missiles use their onboard 
computers, and for them the time of computation, as well as the computer’s 
weight, depending on its computational ability, are very important factors.

As shown in Figure 10.1, the guidance law and control units are con-
nected in series. It means that, formally, each of these units, at least on the 
initial stage, can be designed separately. However, as seen from Figure 10.1, 
they are interconnected also by the existing feedback loop, and that is the 
reason why the integrated approach to missile guidance and control has 
merit.

The system concept is paramount on all stages of design, because a deci-
sion in one particular design area on one specific component may radically 
affect other parts of the missile system design. However, it does not contra-
dict the necessity to examine thoroughly separate elements of the system.

As mentioned earlier, the natural approach to solving a complicated 
problem is to consider simplified parts of the problem and solve them first; 
later the problem is brought closer to reality by gradually including the 
complicating factors of the full problem. This enables the designers to feel 
deeply all aspects and details of the problem.

This approach is used in the autopilot design [5]. At the earliest stages 
of design, the behavior of servos and airframe is approximated by linear 
differential equations with constant coefficients, so that well-known ana-
lytical methods can be used to evaluate (roughly) some design parameters. 
Despite the approximate nature of the obtained analytical solutions, they 
make it possible to arrive at qualitative estimates of the most important 
effects of the missile system parameters on the system’s accuracy. As 
mentioned earlier, at the preliminary stage of the autopilot design, three 
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rotational channels (roll, pitch, and yaw) are investigated separately. The 
flight control system must stabilize and control the attitude of a missile 
about the three body axes—roll, pitch, and yaw. As shown in Figure 9.2, 
roll is defined as being about the longitudinal axis; yaw is orthogonal to 
roll and is contained in the trajectory plane, pitch is orthogonal to both and 
completes the right-handed set. The three channels of the flight control 
system are similar, with pitch and yaw usually being nearly identical. Their 
separate consideration significantly simplifies the design procedure. Their 
aerodynamic coupling is taken into account later, and the control system is 
modified to meet additional requirements.

The item of prime importance to the designer is the accuracy of the 
missile system. However, accuracy requirements are linked with other 
important characteristics of the whole missile system. In addition, the 
autopilot should guarantee the system stability over the missile operational 
range. The desired autopilot response is required to be fast with minimum 
overshoot to meet structural limitation. The autopilot should also provide 
attenuation of high frequencies, so that it does not react to high-frequency 
aeroelastic behavior that can affect the sensor signals or to noise accompa-
nying the acceleration commands [5].

The airframe parameters and structure significantly influence missile 
performance, and the guidance system designer should have full knowl-
edge of the airframe response (e.g., its frequency response characteristics) 
to the guidance system commands. In turn, the dynamic characteristics of 
the airframe depend on the type of control chosen (e.g., jet, tail, canard, or 
wing) and the location of control devices.

The guidance designer is vitally interested in the weight admissible for 
the guidance equipment and the dimensions and locations of the space 
allocated for it. The location of some elements of the guidance system 
(e.g., gyros) may be quite critical. The designer should be involved in the 
airframe design and space allocation to place the motion-sensitive ele-
ments properly. During the preliminary design, the missile body is usu-
ally assumed rigid. However, taking elastic behavior of the structure and 
its effect on aerodynamics into account later, additional corrections can 
be made. For example, the accelerometers should be placed where the 
translational vibrations of the structure are minimal, and the pitch and 
yaw rate sensors should be placed where the rotational vibrations are 
minimal.

We described only some problems that should be resolved in the process 
of the missile guidance and control system design. Most of them relate 
to the autopilot design, assuming that the guidance law has been already 
chosen.

Proponents of the integrated approach [3,4,7–11] offer to design the 
autopilot and to determine the guidance law based on a certain criterion. 
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However, the criteria chosen [see equations (10.25) and (10.30)] are closely 
linked with the generalized Riccati equation [see equations (10.22) and 
(10.24)]. As indicated in [9–11], after transforming the missile model into 
the state dependent coefficient form, the next major responsibility of the 
designer is to select the state weighting matrices C0(x) and R(x) positive 
semidefinite for all expected values of  x. As admitted in [9], selecting 
matrix functions that meet these requirements for all values of the state 
vector is not generally practical. It is difficult to justify the choice of coef-
ficients in the above-indicated matrices for various engagement scenarios. 
Moreover, there is no rigorous proof that the closed-loop, nonlinear system 
based on the procedure described in [9–11] will be stable. That is why the 
optimal approach discussed in the previous section looks more encourag-
ing. It is more rigorous and it is easier to solve the Lyapunov equations 
similar to equation (10.44) than the Bellman equations (10.20), (10.24), or 
(10.40).

The optimal methods described in this chapter belong to a class of the 
analytical controller design and suffer the drawback pertaining to this class: 
the choice of the performance index coefficients presents a separate inde-
pendent problem, and the realization of the optimal solution entails certain 
difficulties because the measurement of the whole state-vector is required.

The methods of analytical design of controllers based on the state-space 
models and optimal control theory have been extensively presented in the 
literature. During the last 50 years, thousands of papers and books were 
dedicated to this problem [14]. However, they were not widely used in the 
engineering practice. Engineers, dealing with real physical systems, prefer 
to operate with the input-output relationships and frequency characteristics 
of separate elements of the systems. They feel better about the system poten-
tial, when they know, for example, its bandwidth. Frequency domain meth-
ods, developed in the United States many years ago, are still very popular 
and widely used in the engineering practice because they are very physical. 
Following the traditional autopilot design procedure, as soon as the method 
of guidance has been determined, and the general bandwidth specifications 
for the main autopilot components have been developed, the design of the 
system then proceeds using analytical methods, modeling, and simulation.

Too much passion for mathematics, rather than physics of a process 
under consideration, can be more dangerous than neglecting modern math-
ematical tools and relying on intuition based on deep physical understand-
ing of the process.

It is worth reminding that traditionally, based on past experience, the 
guidance objective is formulated in terms of line-of-sight (LOS). The 
widely used proportional navigation and pure pursuit guidance laws are 
based on certain principles, the so-called geometrical rules. As mentioned 
earlier, according to the pure pursuit rule, the pursuer should be directed 
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at the target; according to the parallel navigation rule, the direction of the 
line-of-sight should be kept parallel to the initial LOS. People adopted 
these rules from nature, observing the behavior of predators. The optimal 
law corresponding to the proportional navigation, which is the simplest 
implementation of the parallel navigation rule, was obtained as a solu-
tion of a specially constructed optimal problem for an extremely simplified 
missile guidance model (2.44) and (2.54), or (2.37) and (3.17). The optimal 
solution requires information about the future target behavior. Indirectly, 
it can be presented by the indication of the time-to-go or/and the predicted 
intercept point. It can be justified for the midcourse guidance, where at 
least there is time to improve the situation. However, for homing guidance 
the mistake in determining the time-to-go or the predicted intercept point 
can be crucial.

Classical control theory is based on the feedback principle. The optimal 
control theory supplies us with an optimal control law as a function of 
time. Only for a special class of optimal problems the optimal solution can 
be presented as a function of the system state vector (i.e., present controller 
equations similar to the closed-loop system examined in classical control 
theory).

Does it mean that the optimization methods of modern control theory 
are useless? Not at all. The optimal solutions (10.26), (10.47), (10.53), 
and (10.61) help engineers to choose a rational structure for the control 
system. Although the measurements available on board the missile are 
limited, and the authors of [9–11] assumed that all the measurements 
required for the implementation of the integrated guidance and control 
law were available, analyzing the structure in Figure 10.1 and the optimal 
solution (10.26) we can easily conclude that the autopilot input in Figure 
10.1 lacks many components of the state vector of equation (10.2). Most 
of these components influence the missile actual acceleration aMx, aMy, 
and aMz, so that it is logical to conclude that the structure with the mis-
sile acceleration feedback is better than the structure in Figure 10.1. We 
made the same conclusion in Chapter 6, supporting the necessity of the 
acceleration feedback as a measure to make the actual missile accelera-
tion close to the commanded acceleration (in full accordance with the 
feedback principle).

Here we present Figure 6.1 in a more general form. As seen from 
Figure 10.3, the autopilot input is considered as the commanded accelera-
tion, i.e., the real guidance law consists of two parts: the first component 
depends directly on a chosen initially guidance law; the second component 
presents a correction caused by the difference between the chosen guid-
ance law and its realization. The same structure can be interpreted in a dif-
ferent way. We can consider it as consisting of the guidance part presented 
by a chosen guidance law and the autopilot that includes the acceleration 
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feedback. The difference in terminology does not change the whole prob-
lem aimed to increase the missile system accuracy.

Usually the design of a product, which has its “predecessors,” does not 
start from zero. It uses components of the previous design and improves 
them. Should we ignore this approach?

The structure in Figure 10.3 and the procedure of determining its com-
ponents can be considered as a modernization of the existing systems. 
Analysis of the relationship between the miss distance and the unmanned 
aerial vehicle parameters (see Chapters 5 and 7) enables the designers to 
establish the “critical” parameters and to see the way of improving vehicle 
accuracy (to redesign certain components that would change these param-
eters). The design procedure to modernize the existing guidance and con-
trol systems will enable designers to modify the existing design procedure 
analyzing the influence of the vehicle main design parameters on the 
miss distance and consider the new guidance laws and the new guidance-
autopilot structure to improve vehicle performance.

As mentioned in Chapter 9, the design process is an art and we hope the 
above given material presents useful information for reflection.
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11 Guidance Laws for 
Boost-Phase Interceptors 
Launched from UAVs

11.1  INTRODUCTION

The considered guidance laws were developed without taking into con-
sideration a real missile acceleration ability. The commanded acceleration 
is a command to the missile guidance and control system to realize the 
prescribed acceleration. However, the missile inability to perform these 
commands would demonstrate practical inefficiency of the chosen guid-
ance law. That is why the implementation of the guidance laws should be 
accompanied with simulation that helps to choose proper guidance law 
parameters. Acceleration limits depend on types of interceptors and tech-
nology invested in their production. These limits should be taken into con-
sideration on all stages of missile design.

Here we will consider the procedure of choosing and testing the guid-
ance laws for the future generation of interceptors with one of their pos-
sible applications—boost-phase defense against intercontinental ballistic 
missiles (ICBNs). Our current national missile defense program focuses 
on ground-based interceptors that would destroy warheads launched by 
ICBMs but before they re-enter the atmosphere. Although during the so-
called midcourse phase of flight, which lasts approximately several tens 
of minutes, the warheads follow predictable ballistic trajectories to expect 
high probability to destroy them, many experts believe that the defense 
system can be defeated by countermeasures and penetration aids, includ-
ing a large number of lightweight decoys that would be difficult to distin-
guish from real warheads outside the atmosphere.

Boost-phase intercept systems, which would try to disable ICBMs dur-
ing the first few minutes of flight, while their boosters are still burning, 
are considered as a possible alternative of the existing defense scheme. 
The boost phase of an ICBM usually lasts only several minutes, so that 
interceptors should be able to operate at a very high speed not achievable 
now by existing missiles.

The technical feasibility and required performance of boost-phase 
intercept systems were examined by the American Physical Society (APS) 
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Study group [2]. The APS report found that the interceptors that burnout 
in 40 to 50 seconds and reach speeds of at least 6.5–10 km/s would be 
required to defend against ICBMs launched from North Korea and Iran. 
Such interceptors would have to be substantially larger and capable of 
higher performance than existing interceptors. A 5 km/s interceptor would 
work against slow-burning (5 minutes or longer) liquid-propellant ICBMs; 
to defend against solid-propellant ICBMs would require interceptors that 
could reach speeds of about 10 km/s [2].

It is assumed that boost-phase intercept systems include the following 
important components. The detection and tracking system, which can be 
space, ground, sea, or aircraft based, should detect the initial ballistic 
missile launch and then to track the target from launch or cloud break 
until intercept. The target should be tracked at a high enough data rate to 
generate accurate guidance commands to the interceptor until its seeker 
can acquire the target. The interceptor consists of a boost vehicle that 
accelerates a kill vehicle (KV) to the burnout velocity required to engage 
the target when the interceptor launch point may be far from the target 
launch point. The kill vehicle guides to the target by the use of lateral 
divert engines and should destroy the target in a high speed collision. It 
is assumed that the KV consists of a terminal infrared (IR) seeker with 
possibly a laser-ranging device, lateral divert engines, a receiver, and an 
inertial reference unit. When the IR seeker acquires the boosting target 
it must provide angular rate information of sufficient accuracy to enable 
the KV to hit the target. The KV laser ranging device may also be used 
in conjunction with an IR seeker to provide range information that can be 
used for better guidance accuracy. The KV lateral divert engines generate 
the acceleration required by the guidance law. A receiver is required dur-
ing the KV’s midcourse phase of flight (i.e., before the KV seeker acquires 
the target) to receive guidance commands from the off-board tracking 
system and possibly range information during the homing phase of flight. 
An inertial reference system and possibly GPS are also required in order 
to determine the kill vehicle position, velocity, acceleration, and angular 
orientation with sufficient accuracy.

A limited interceptor’s speed and the short time available to intercept the 
attacking missile restrict the interceptor’s operational range. The intercep-
tor’s range is limited by the highest speed that is technically feasible and 
the time available to complete the intercept, so that boost-phase defense is 
possible only if interceptors can be positioned close enough to the required 
intercept locations, generally within 400–1000 km.

The innovative approach to boost-phase intercept offered in [3] 
involves the use of UAVs to launch interceptors. Because of UAV pay-
load weight constraints, airborne interceptors would have lower burnout 
velocities than surface-based interceptors. But this drawback of airborne 
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interceptors is compensated by the advantage of unmanned aircraft, their 
ability to penetrate much closer to ICBM launch sites than it would be 
possible by using surface-based interceptors, so that that the required 
burnout velocity of air-launched interceptors can be significantly less than 
that of surface-based interceptors. In addition, the use of stealthy UAVs 
with an IR search and track system would make less severe time lines for 
intercepting ICBMs. (In [2] the following time lines were determined for 
surface-based missiles to intercept ICBMs launched from North Korea 
to Alaska: for a liquid-propellant ICBM having burnout time 240 s the 
rocket detection time is 45 s, an interceptor is launched 30 s after the 
rocket has been detected, and the maximum time available to achieve 
intercept is 92 s; for a solid-propellant ICBM having burnout time 170 s 
the rocket detection time is 30 s, an interceptor is launched 30 s after the 
rocket has been detected, and the maximum time available to achieve 
intercept is 62 s.)

In this chapter we will test the guidance laws considered in the book 
applying them to the airborne interceptors launched from UAVs to dem-
onstrate their advantages (less time of intercept, higher accuracy, and sim-
plicity of implementation) over the existing widespread guidance laws. 
Advanced guidance algorithm development is essential and necessary 
for meeting lethality requirements against future advanced maneuvering 
threats and for defining future interceptor concepts and associated critical 
enabling technologies. The specific features of the boost-phase intercep-
tors, which distinguish them from other types of interceptors are the robust 
ability to intercept maneuvering targets and accelerating and maneuvering 
boosters. This requirement translates into a need for large divert capability 
and relatively high acceleration capability. The problem of the develop-
ment of a boost-phase intercept system is a part of a more general problem 
to develop a next generation interceptor and concept of operations that can 
defeat a wide range of threats in the boost and terminal phases of flight.

Since the kill vehicle is the most important component of the boost-
phase interceptors, it is important first to choose guidance laws that would 
guarantee its best performance.

11.2  KILL VEHICLES FOR BOOST-PHASE DEFENSE

The flight of the kill vehicle may be divided in three stages: kill vehicle 
divert, kill vehicle homing, and the endgame [2]. In [2], the different pro-
portional navigation (PN) law gains were used for the different stages; 
the “hybrid” PN/APN guidance scheme was also used. The two types of 
maneuvers (lunge and jinking) were considered, and the miss distance of 
0.5 m or less was considered as the most important kill vehicle’s func-
tional requirement [2]. The kill vehicle’s dynamics were modeled by a 
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fifth-order binomial model with five time constants τ = 0.1 s, i.e., (see 
Figure 5.6):

	 G s s2
51( ) ( )= + −τ 	 (11.1)

This model is assumed to be conservative, so that for the real model the 
performance results will be better [2]. The step miss for various effec-
tive navigation ratios N of the linear PN guided missile model is given 
in Figure 11.1 (solid, dashed, and dash-dotted lines correspond to N = 3, 
N = 4, and N = 5, respectively).

Based on Figure 11.1, it is possible to conclude that with the time-to-go 
about 5 s we cannot expect intercept for an 8-g lunge maneuver, since the 
miss distance is less than 0.5 m only for N = 3 and the time-to-go more 
than 4 s. However, if we take into account the 15-g KV’s acceleration limit, 
then the nonlinear system describing the missile guidance model [the sys-
tem in Figure 5.6 with a limited ac(t)] becomes BIBO unstable with respect 
to tF for the effective navigation ration N = 3 and N = 4.

To test the efficiency of guidance laws for maneuvering targets, equa-
tion (5.42) is used to determine the optimal weaving frequency of evasive 
maneuvers (see also Figure 5.7). The peak miss and the target weaving 
maneuvers for various effective navigation ratios is analyzed based on the 
expressions of Chapter 5 and presented in Figure 11.2 (solid, dashed, and 
dash-dotted lines correspond N = 3, N = 4, and N = 5, respectively). For the 
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FIGURE 11.1  Step miss for the linear binomial model for various N.
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binomial model, the optimal target frequency is around 8 rad/s for N = 3, 
10 rad/s for N = 4, and 11 rad/s for N = 5, i.e., its range is 1.25 – 1.75 Hz.

Based on Figure 11.2 we can conclude that for the fifth-order model 
the peak miss for a 2-g jinking maneuver is more than 0.5 m, so that this 
binomial model and the PN guidance law gain chosen cannot guarantee 
the performance requirements formulated in [2].

For the first-order model, the optimal target frequency and peak miss 
are around 7.2 rad/s and 0.038 m/G for N = 3; 10 rad/s and 0.025 m/G for 
N = 4; 12 rad/s and 0.018 m/G for N = 5, respectively.

The maximum acceleration that can be provided by the kill vehicle’s 
propulsion system is modeled by imposing a fixed upper limit on the com-
manded acceleration ac(t). According to [2], a series of simulations showed 
that a 15-g acceleration is adequate to assure a miss distance of 0.5 m 
or less for closing velocities less than or about 14 km/s. The acceleration 
of the kill vehicle was limited to 15-g for a lunge 8-g maneuver, and the 
effective navigation ratio N = 6 was used for the endgame simulations in 
[2]. Although a high N = 6 gain tends to increase the effect of sensor noise, 
in the endgames analyzed in [2] the noise was low enough relative to other 
factors to be acceptable. Figure 11.3 shows the results of simulations for 
N = 5, 6, and 7 (solid, dashed, and dash-dotted lines, respectively).

Based on Figure 11.3, we cannot expect intercept within 5 s. Since bino-
mial models are not realistic, they should not be used as the worst sce-
nario even on the initial stage of design. Figure 11.4 shows the results of 
simulations of the PN guidance law for the first-order model of the kill 
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FIGURE 11.2  Peak miss for the linear fifth-order binomial model for various N 
and weaving maneuvers.
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278	 Guidance of Unmanned Aerial Vehicles

vehicle with τ = 0.1 s for N = 5 and 6 (solid and dashed lines, respectively). 
Although usually such a simple model gives optimistic results, the consid-
ered nonlinear model for N = 3 and 4 is BIBO unstable, as in the case of 
the binomial nonlinear model.

In the future we will consider a more realistic model than in [2] and 
compare the results with that of the first-order model.
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FIGURE 11.3  Step miss for the fifth-order binomial model (PN law, 8-g lunge 
maneuver, 15-g limit).
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11.3 � DEVELOPMENT OF THE MISSILE MODEL AND 
SELECTION OF GUIDANCE LAW PARAMETERS

In [2], the authors adopted the admissible miss distance of 0.5 m or less. 
They believe that the 0.2 m diameter kill vehicle capable of aiming at 
the centerline of 1 m diameter booster with a high probability of a miss 
distance of 0.5 m or less would almost certainly collide with the offensive 
missile. In their simulations, they used a simple KV model with 0.1  s 
time constant and with the fixed 15-g acceleration limit. The endgame 
simulations were made for an 8-g lunge maneuver and a 2-g jinking 1 Hz 
maneuver.

As mentioned earlier, if the KV acceleration is limited to 15-g, the 
missile guidance system for the gains N = 3 and 4 is BIBO unstable. This 
explains why the unusually high N = 6 gain was chosen in [2]. Figure 
11.5 shows the miss distance of the first-order model with τ = 0.1 s for 
8-g lunge and 2-g, 1 Hz jinking maneuvers (the lunge maneuver cor-
responds to N = 6, the jinking maneuver corresponds to N = 3). The PN 
law applied to this model satisfies the formulated earlier requirements. 
However, it is unrealistic to assume that that the created kill vehicle 
would have such dynamic characteristics. The considered first- and fifth-
order models ignore such important dynamic characteristics of the kill 
vehicle as the natural frequency and damping. That is why the PN law 
applied to the model that takes into account these characteristics pro-
duces different results.
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FIGURE 11.5  Miss distance for the first-order model (8-g lunge and 2-g, 1 Hz 
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The parameters of the KV’s flight control system depend on the kill vehi-
cle’s mass, configuration, and so on. These parameters are time-varying. 
However, even the model with constant parameters, which reflects prop-
erly the KV’s dynamics, would allow a designer to obtain more realistic 
estimates than the first- and/or fifth-order models.

Although the performance of guided missile systems is assessed by their 
terminal effect and the generation and intelligent control of this terminal 
effect is one of the key requirements to the missile systems, the terminal 
effect depends significantly on parameters of the subsystems. The perfor-
mance of a separate subsystem dictates requirements to the interconnected 
ones. For example, the KV’s airframe parameters determine the airframe 
natural frequency ωM that influences significantly KV dynamics and, as 
a result, influences the autopilot system requirements. Higher accuracy 
guidance and autopilot systems can employ smaller warheads. The seeker 
dynamic parameters influence the guidance system accuracy. As indicated 
in the previous chapter, the traditional approach to designing missile guid-
ance and autopilot systems usually neglects interaction between these sys-
tems and treats individual missile subsystems separately. The subsystems 
are designed separately and then integrated before verifying their perfor-
mance. The quantification of the impact of missile parameters on the miss 
distance is the first important step toward integrated design of missile guid-
ance and autopilot systems. As mentioned in Chapter 5, the main factors 
that influence the miss distance in homing missiles are the seeker errors, 
airframe characteristics, autopilot lag τ, and target maneuvers. An appro-
priate choice of the estimation system parameters can reduce requirements 
to a seeker’s accuracy and a guidance law effective navigation ratio N. The 
frequency response (5.42) and (5.43) obtained for the proportional naviga-
tion law enables us to analyze the influence of the basic guidance system 
parameters on the miss distance for step and weave maneuvers.

Dynamic properties of the flight control system that are close to reality 
are very important on the initial stage of design. It is impossible to ignore 
the natural frequency of the airframe. It should be taken into account 
that the payload will affect the natural frequency of the KV’s structure, 
i.e., when the payload is increased, the system fundamental frequency 
will be decreased. The natural frequency depends on the kill vehicle con-
figuration, number, displacement of thrusters, and so on. Although this 
information is unavailable, we will choose the model’s parameters based 
on the known models of small size missiles and analyze the relationship 
between optimal evasive maneuver weaving frequency, peak miss, and the 
kill vehicle dynamic parameters (damping, natural frequency, and time 
lag). The new model is compared with the model considered in [2]. Then 
the parameters of the guidance laws will be chosen for the newly devel-
oped model.
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The flight control system dynamics are presented by the third-order 
transfer function:

	 W s
s

s
s

M M

( )
( )

=
+ + +





1

1
2

1
2

2
τ

ω
ζ

ω

	 (11.2)

with damping ζ and natural frequency ωM (ζ = 0.7 and ωM = 20 rad/s), 
the flight control system time constant τ = 0.1 s. (On this stage, we con-
sider the deterministic case and ignore the influence of a filter on missile 
performance.)

Figure 11.6 compares the step responses of the fifth- (dash-dotted line), 
first-order (dashed line) binomial, and newly developed (solid line) models. 
It is natural to expect that the PN guidance law for the new model, with bet-
ter dynamic characteristics than the fifth-order binomial model, results in 
the less miss step than for the fifth-order binomial model (see Figure 11.7 
and Figure 11.1; in Figure 11.7 solid, dashed, and dash-dotted lines cor-
respond to N = 3, 4, and 5, respectively) but worse than for the first-order 
model (see Figure 11.4).

The relationship between the target weaving frequency, the peak miss, 
and the KV main functional parameters is obtained based on equation 
(5.42) and presented in Figure 11.8 (dashed, solid, and dash-dotted lines 
correspond to N = 3, 4, and 5, respectively) and Table 11.1.

As seen from Table 11.1, the less KV flight control system time constant 
gives the less peak miss and higher the optimal target weaving frequency ωopt, 
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FIGURE 11.6  Comparison of step responses.
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which is more difficult to implement efficiently (with an appropriate ampli-
tude) by the boosting missile. The increase of damping increases the peak 
miss and decreases the optimal target weaving frequency. The increase of 
natural frequency of the missile flight control system decreases the peak miss 
and increases the optimal target weaving frequency. Designers of the flight 
control system should focus on decreasing its time constant and find a reason-
able tradeoff in choosing its natural frequency and damping. To achieve a 
high-speed missile response the payload must be limited.
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FIGURE 11.7  Step miss for the new model for various N.
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Comparing the peak miss for the considered models, we can conclude 
that the peak miss for the new model is about 10 times larger than for the 
first-order model and about 10 times less than for the fifth-order binomial 
model.

To test the ability of the guidance laws considered in the previous chap-
ters to act better than the PN and APN laws, we will consider the guidance 
law:

	 a t v t N tMc cl1 1
33( ) ( ) ( )= + λ λ 	 (11.3)

Since the effective navigation ratio N = 3 is optimal (the energy efficient 
optimal value) in the accordance with the criteria (2.55) and (3.17) for the 

TABLE 11.1
Influence of Flight Control System 
Parameters on Optimal Weaving 
Frequency and Peak Miss Distance for PN 
Guidance (1-g Weaving Maneuver, N = 3, 
Unlimited Control)

Case
#

τ
s

ζ ωM

rad/s
Peak 
miss
m

ωopt

rad/s

1 0.1 0.7 20 0.4346 4.5
2 0.1 0.6 20 0.3977 4.9
3 0.1 0.65 20 0.4161 4.7
4 0.1 0.75 20 0.453 4.4
5 0.1 0.8 20 0.4724 4.3
6 0.1 0.85 20 0.4916 4.1
7 0.1 0.9 20 0.5117 4.0
8 0.05 0.7 20 0.2629 6.5
9 0.075 0.7 20 0.3473 5.4
10 0.125 0.7 20 0.526 3.9
11 0.15 0.7 20 0.6224 3.5
12 0.1 0.7 25 0.3368 4.9
13 0.1 0.7 30 0.2765 5.2
14 0.1 0.7 35 0.2364 5.4
15 0.1 0.7 40 0.2076 5.6
16 0.075 0.7 25 0.2639 5.9
17 0.075 0.7 30 0.2133 6.3
18 0.075 0.7 35 0.1795 6.6
19 0.075 0.7 40 0.1557 6.9
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parallel navigation, we use this optimal value. The gains N1 of the cubic 
terms should be chosen based on available information about the admis-
sible noise level and acceleration limits.

As mentioned earlier, it is impossible to realize the PN law with N = 3 and 
4 in a case of an 8-g lunge maneuver because of the insufficient 15-g missile 
acceleration ability. For N = 5 and the PN law is realizable but gives worse 
results than in the case N = 6. It is easy to calculate that the line-of-sight 
(LOS) rate that corresponds to the 15-g limit and the closing velocity 14 km/s 
for the PN guidance with N = 5 equals λ0 15 9 81 5 14000 0 0021= ⋅ ⋅ =. ./ . 
Since, as indicated in [2], the gain N = 6 does not make the noise level 
unacceptable, the upper limit of N1 is determined from the condition that 
the guidance law (11.3) should not exceed the 15-g limit for λ0 and N = 6, 
i.e., N1 0

23= =/ λ 6.8 ⋅ 105.
Since the miss distance for the fifth-order binomial model is far away 

from the performance requirement, we will demonstrate the efficiency of 
the guidance (11.3) on the example of the first-order model.

11.4 � ENDGAME REQUIREMENTS AND THE COMPARATIVE 
ANALYSIS OF EFFICIENCY OF GUIDANCE LAWS

11.4.1 P lanar Model

The step miss for the guidance law (11.3) (here and earlier, it is clear from 
the text what kind of missile acceleration, commanded or real, is meant) 
for the first-order model is shown in Figure 11.9 (solid line). It is slightly 
worse than for the PN law with N = 6 (see Figure 11.5) but consumes less 
energy (as mentioned earlier, the PN law with N = 3 cannot be realized).

According to [2], “APN might reduce somewhat 15-g acceleration result, 
but its response to switchback maneuvers and jinking maneuvers could be 
counterproductive and would have to be studied” ([2], p. 237). Figure 11.9 
(dashed line) shows the step miss for the guidance law:

	 a t Nv t N t N a tM cl T( ) ( ) ( ) ( )= + + λ λ1
3

3 	 (11.4)

	 where aT(t) = 8g, N = 3, N1 = 2.26 ⋅ 105, N sign a t tT3

1

1 1 0
0=





 ≥
≤

.
( ( ) ( ))if λ

The step miss is significantly better than without the target acceleration 
term.

Figure 11.10 shows the miss distance in the newly developed model 
for an 8-g lunge maneuver for the guidance law (11.3) (solid line), where 
N = 3 and N1 = 6.8 ⋅ 105. For comparison, the miss distance for the PN 
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law for N = 5 (dashed line) and N = 6 (dash-dotted line) are shown. As 
indicated earlier, for N = 3 and 4, the PN guided system under an 8-g 
lunge maneuver is BIBO unstable.

The dotted line in Figure 11.10 characterizes the miss distance for the 
guidance law (11.4), where N = 3 and N1 = 2.26 ⋅ 105. It shows that the addi-
tional target acceleration term significantly improves missile performance. 
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FIGURE 11.9  Miss for the first-order model with 15-g acceleration limit (8-g 
lunge maneuver and guidance law (11.3)).

0
0 1 2 3 4 50.5 1.5 2.5

Time tF (s)
3.5 4.5

1

2

3

4

St
ep

 m
iss

 (m
)

5

6

FIGURE 11.10  Miss distance for an 8-g lunge maneuver (new model).

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

2:
49

 2
0 

M
ar

ch
 2

01
6 



286	 Guidance of Unmanned Aerial Vehicles

All above-considered guidance laws are able to hit the target if the maneu-
ver is more than about 2 s to go.

Remark: To reach the target with comparable recourses, the predator with 
limited inner resources distributes these resources properly by declining 
from the optimal strategy (minimum resources) when it is necessary. That 
is why we keep N = 3 all the time as basic, assuming that the additional 
terms should react efficiently only to sharp target maneuvers.

For a 2-g jinking maneuver we consider the same law that was used for 
an 8-g lunge maneuver [see equations (11.3) and (11.4)]. Simulation results 
for the first-order model are given in Figure 11.11.

Although the PN law (solid line) guarantees the peak miss less than 
0.5 m, the guidance law (11.4) with the cubic term (dashed line) and, in 
addition, with the target acceleration term (dotted line) significantly 
decrease the peak miss.

Figure 11.12 shows the miss distance for the model (11.2) and the 
weaving frequency 1 Hz. The additional target acceleration term (dotted 
line) decreases the peak miss insignificantly compared to the cubic term 
(solid line) to satisfy the requirement 0.5 m or less. Inefficiency of the 
cubic term in this case can be explained by the existing 15-g accelera-
tion limit and a significantly higher than in reality range of the LOS rate 
in the chosen planar model (see also Figure 11.8 and Table 11.1 for the 
linear case).
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FIGURE 11.11  Miss distance for a 2-g, 1 Hz jinking maneuver (first-order model 
and new guidance law).
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As seen in Figure 11.8, for low target frequencies, less than the frequen-
cies corresponding to the peak values, the increase of N gains decreases 
the peak miss. The opposite character of the gain influence can be seen 
for high frequencies. Table 11.2 shows that the peak frequencies for the 
guidance with the additional cubic term are close to the linear case without 
acceleration constraints. The 1 Hz (6.28 rad/s) target jinking frequency 
used in [2] lies within the range of frequencies of Tables 11.1 and 11.2. 
It will be considered as basic for testing the performance of the three-
dimensional kill vehicle model against targets performing sinusoidal 
weave maneuvers.

As mentioned earlier, according to [2], a 15-g acceleration is adequate 
to assure a miss distance of 0.5 m or less for closing velocities less than 
or about 14 km/s. Such a statement can be reliable only if the parameters 
of the kill vehicle are already known. For the known parameters, it would 
be easier to choose appropriate guidance law parameters. However, on the 
initial stage of design such information is unknown. The models consid-
ered in [2] (first- and fifth-order binomial models) ignore such an important 
parameter as natural frequency of the airframe. The more precise model 
with ωM = 20 rad/s enables us to justify the use of a 1 Hz target weaving 
frequency to test the guidance law performance.

As shown in Chapter 5, the generalized planar model [see Figure 5.12 and 
equation (5.65)], which takes into account the boosting missile dynamics, 
allows us to evaluate more precisely the miss step and peak miss distances. 
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FIGURE 11.12  Miss distance for a 2-g jinking maneuver (new model and new 
guidance law).
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Simulations show that the miss distances for the 8-g lunge and 2-g jinking 
target aT(t) maneuvers and the transfer function:

	 W s

s

s
s

s
T ( )

( . )
.

=
−

+ + ⋅ +



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1
15
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5

1

2

2

2

2

	 (11.5)

are significantly less (more than 20%) than obtained for the usual KV guid-
ance model. However, the conservative approach and using the model in 
Figure 5.6 is reasonable when dealing with insufficient information about 
the KV model.

High values of the effective navigation ratio used in [2] can be explained 
by a low (less than 2) ratio between the target acceleration and the missile 
acceleration limit. This presents an essential difficulty for designers of the 
guidance and control system. Moreover, since in [2] even the first-order 
model with τ = 0.1 s required N = 6 to meet the accuracy requirements, 

TABLE 11.2
Influence of Flight Control System 
Parameters on Optimal Weaving 
Frequency and Peak Miss Distance for the 
Guidance Law (11.3) (2-g Weaving Target 
Maneuver and 15-g Acceleration Limit)

Case
#

τ
s

ζ ωM

rad/s
Peak 
miss
m

ωopt

rad/s

1 0.1 0.7 20 1.02 4.5
2 0.1 0.65 20 0.9859 4.6
3 0.1 0.75 20 1.064 4.5
4 0.1 0.8 20 1.1043 4.4
5 0.1 0.85 20 1.1462 4.3
6 0.1 0.9 20 1.1940 4.2
7 0.05 0.7 20 0.6418 5.8
8 0.075 0.7 20 0.8365 5.3
9 0.125 0.7 20 1.2135 4.3
10 0.15 0.7 20 1.4104 3.8
11 0.1 0.7 25 0.7705 4.6
12 0.1 0.7 30 0.6184 5.1
13 0.1 0.7 35 0.5331 5.8
14 0.1 0.7 40 0.4658 6.3
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it would be more difficult to meet these requirements for a more precise 
model under the PN law. The authors of [2] used various values of N for 
different parts of the kill vehicle’s trajectory. It is desirable to have a guid-
ance law with constant parameters for all stages of the kill vehicle’s flight 
or it should be a rigorous rule when and how to change them.

As shown in Chapter 6 (see also Figure 6.3), the use of an additional 
term (actual missile acceleration) can significantly improve missile perfor-
mance and decrease its dependence on the missile parameters. The new 
commanded acceleration aA (a new guidance law) is formed as a sum of 
the feedforward signal G4(D)ac and the feedback signal G4(D)(ac – aM) [see 
equation (6.8)].

Figure 11.13 shows the miss distance for the new model for 8-g lunge 
and 2-g jinking maneuvers when the guidance law with the indicated below 
parameters was used:

	 a t a t a t a t a vMc Mc Mc M Mc cl( ) ( ) ( ( ) ( )),= + − =1 1 14 3 λ ++ = ⋅N N1
3

1
56 8 10λ , . 	

(11.6)

This law satisfies the performance requirements and is more efficient than 
the law containing only the component aMc1 examined earlier.

The linear approach, based on the assumption that the deviations from 
a nominal collision course are small, fails when the interception kinemat-
ics are highly nonlinear. Guidance system saturation occurs when the 
system demands (e.g., a commanded lateral acceleration 40-g) exceed the 
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FIGURE 11.13  Miss distance for 8-g lunge and 2-g jinking maneuvers (new 
model and guidance law (11.6)).
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kill vehicle capability (e.g., the KV is only capable of 15-g). This situation 
arises when the KV is far from the nominal collision course and in the case 
of highly maneuvering targets.

The considered 2-DOF step and sinusoidal maneuvers are a useful start-
ing point for analysis of intercept scenarios that involve ballistic missiles, 
although the ballistic target dynamics may involve an arbitrary periodic 
motion in three dimensions. Instead of considering the 3-DOF problem, 
in many cases we assumed that lateral and longitudinal maneuver planes 
were decoupled by the means of roll-control, so that the consideration of 
the 2-DOF problem is justified. It was assumed also that the gravitational 
component of the total missile lateral acceleration is negligible. Such sim-
plifications are possible only on the initial stage of analysis and design.

11.4.2  3-DOF Model. Nominal Trajectory

A more precise evaluation of missile performance is based on simulations 
using 3-DOF and 6-DOF models. Just after booster burnout, axial accel-
eration, center of gravity, and mass moment of inertia characteristics are 
changed. These variations should be incorporated in aerodynamic mod-
els. The simulation model should analyze the performance of guidance 
laws in a realistic simulation environment, which accounts for the effects 
of forces influencing the missile trajectory and flight control system 
dynamics on the missile’s performance. Analysis of the missile’s kine-
matic boundary and other criteria should be used as the measure of effec-
tiveness and basis of comparison. The engagement envelope or kinematic 
boundary is of paramount importance. The kinematic boundary repre-
sents the maximum range at which the missile will achieve a hit, when 
there is no noise in the system. It can, therefore, be used as a criterion 
to compare the performance of guidance laws. Among other significant 
features of guidance systems performance are the miss distance, the time 
of intercept, maximum rate of turn, and maximum lateral acceleration. 
The comparative analysis of guidance laws is more restrictive. It includes 
some of these features (the engagement envelope, miss distance, and the 
time of intercept), as well as specific features, such as the missile terminal 
speed and impact angle.

To demonstrate the effectiveness of the considered guidance laws, 
the initial conditions for the KV in the developed simulation models are 
chosen so that the intercept can be achieved by using the APN guidance 
as recommended in [2].

The representative target trajectory was created for a three-stage, solid-
propellant model with about 250 km altitude at the burn time 188 s (see 
Figure 11.14). The created target module consists of a 3-DOF point-mass 
presentation of the target motion. The target model is capable of executing 
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a maneuver at a given time; time and extent of this maneuver can be 
adjusted. The most representative maneuvers and the intercept scenar-
ios for the mentioned type of targets will be considered. As indicated in 
Chapter 9, evasive maneuver design parameters include magnitude, weave 
period, initiation time, and duration, and the maximum achievable maneu-
ver magnitude-period combination is a function of initiation and duration 
times. The information about existing ballistic missiles airframe configu-
ration, aerodynamic, and propulsion parameters was used to reflect the 
target missile dynamics [see equation (11.5)].

Initially, a nominal rather smooth target trajectory was generated that 
corresponded to the acceleration profile in Figure 11.14. In the model, filters 
evaluate the target velocity and acceleration based on measurements of the 
position components [see equations (9.50)–(9.60)]. Tabulated data concerning 
the target acceleration components were used. By interpolating this data and 
using integration operations [see equation (9.89)], the target velocity and posi-
tion components were obtained.

The relative position of the target with respect to the KV is used to 
compute the actual line-of-sight components λs(t) and their derivatives 
λs t( ) (s = 1, 2, 3) using equations (1.8), (1.11), and (1.12).

Zero-mean Gaussian white noise can be added to the target position or the 
line-of-sight components, i.e., the LOS can be corrupted by noise directly or 
indirectly.

The KV’s flight control system is represented by the transfer function 
similar to the considered above planar case [see equation (11.2)]. In the 
3-DOF simulation model, the differential equations corresponding to 
the above-mentioned transfer function should describe the relationship 
between the coordinates of the commanded and actual accelerations, i.e., 

50 100 150 200
Time (s)

4-g

8-g

12-g

Figure 11.14  Acceleration profile of the target.
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the dimension of the system of differential equations is three times higher 
than in the planar model.

Four types of guidance laws are compared.

	 i.	The PN guidance

	 a t v t scs cl s( ) ( ) ( , , )= =3 1 2 3λ 	 (11.7)

	 with the effective navigation ratio N = 3.
	 ii.	The APN law

	 a t v t a t scs cl s TN s( ) ( ) ( ) ( , , )= + =3 2 1 2 3λ 	 (11.8)

	 where aTNs are the orthogonal components of the target accelera-
tion aTs(t) (s = 1, 2, 3).

	 a t a t t a t t sTNs Ts s Ti

i

i( ) ( ) ( ) ( ) ( ) ( , ,= − =
=

∑λ λ
1

3

1 2 33) 	 (11.9)

	 and the guidance laws considered in Chapters 3 and 6.
	 iii.	Three-dimensional variant of equation (11.6)

	

a t a t a t a t

a t

Mcs Mc s Mc s Ms

Mc s

( ) ( ) ( ( ) ( )),

(

= + −1 1

1

4

)) ( ) ( ) .

( , , )

= + = ⋅

=

3 6 8 10

1 2 3

1
3

1
5v t N t N

s

cl s s
 λ λ 	 (11.10)

	 or
	 iv.	Its modification, where

	

a t v t N t a t

N

Mc s cl s s Ts1 1
3

1

3

2 2

( ) ( ) ( ) ( ),

.

= + +

=

 λ λ

66 10 1 2 35⋅ =( , , )s
	 (11.11)

	 and aMs(t) (s = 1, 2, 3) is a real missile acceleration [see also 
equation (11.6)].

In addition, the effectiveness of the shaping term [see equation (3.76)]:

	 u t N t r ts s s2 2( ) ( ) ( )= − λ  	 (11.12)

is examined.
For missiles with the controlled part of the commanded acceleration 

acting orthogonal to the missile’s body, it is impossible to reproduce the 
corresponding components of the missile acceleration precisely without 
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knowledge of the angle of attack. However, for the KV operating at high alti-
tudes it is possible to consider the angle of attack equal to zero. Knowledge 
of the missile velocity vector enables us to determine the component of the 
KV acceleration orthogonal to this vector [see equations (9.92)–(9.97)].

The orthogonal part of the commanded acceleration acNs(t) (s = 1, 2, 3; 
a 15-g acceleration limit was imposed) serves the input of the system of 
differential equations describing the flight-control system dynamics [see 
equations (9.100)].

The total KV acceleration aM(t) = (aM1, aM2, aM3) equals:

	 a t a t grav sMs cNs s( ) ( ) ( , , )= + = 1 2 3 	 (11.13)

where gravs (s = 1, 2, 3) are the gravitation components [see equation 
(9.4)].

Since the analytical expressions for the PN, APN, and guidance laws 
(11.10)–(11.12) were obtained without considering the influence of gravity 
on the missile trajectory, simulations are made with and without gravity 
compensation. In the case of gravity compensation, which is widely used 
in the PN law applications, the commanded acceleration of the developed 
3-DOF models contains an additional term to compensate the gravity effect 
on the actual missile acceleration, i.e., the gravitation components [see 
equation (9.4)] are added with the opposite sign to the components of the 
guidance law under consideration. By integrating equation (11.13), as indi-
cated earlier [see equation (9.89)], and using the target position and velocity 
measurements, all parameters needed to calculate the commanded accel-
eration [see equations (1.8), (1.11), and (1.12)] are obtained. The sampling 
period of target information varies depending on the distance between the 
KV and target. It is selected: 0.2 s if the distance exceeds 250 km, 10–2 s if 
the distance exceeds 50 km and less 250 km, 10–3 s if the distance exceeds 
100 m and less 50 km, 10–4 s if the distance is less than 100 m, and 10–5 s 
if the distance is less than 1 m. The fourth-order Runge-Kutta integration 
technique is used to solve the system of differential equations. The step of 
integration coincides with the sampling period for the distances less than 
250 km and equals 0.01 s otherwise.

Since the KV’s guidance laws are tested, we chose the following initial 
conditions for the kill vehicle at t = 100 s (it is assumed that the intercep-
tor was launched about 80 s later than the target) taking into account that 
the interceptor’s burn time and burnout velocity are about 20 s and 5 km/s, 
respectively:

	 RM1 =  = –520 km;  RM2 = 550 km;  RM3 = 90 km

	 VM1 = 2.8 km/s;  VM2 = –2.7 km/s;  VM3 = 2.9 km/s
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At the time t = 100 s the target has the following position and velocity 
generated by a filter, which starts working at t = 94 s:

	 RT1 = –65.8 km;  RT2 = 68.4 km;  RT3 = 68.3 km

	 VT1 = –1.58 km/s;  VT2 = 1.64 km/s;  VT3 = 1.19 km/s

This data, as well as about 760 km initial distance of the interceptor from 
the target’s launch-site, is in accordance with the material in [2].

Since we initially considered, similar to [2], the planar first-order model 
of the flight control system, the three-dimensional case of this system was 
tested using the developed 3-DOF model. The miss distance and time of 
intercept (time when the closing velocity vcl < 0) for the PN guidance (11.7) 
with the effective navigation ratio N = 3, APN law (11.8) and (11.9) with 
N = 3 and the gain N0 = 2, as it was used in the planar model in [4], and 
the guidance law (11.10) are presented in Table 11.3. Although the miss 
distances for the PN, APN, and guidance (11.10) laws satisfy the accu-
racy requirements, the guidance law (11.10) without gravity compensation 
shows the best performance: the minimal time of intercept.

Table 11.4 contains simulation results for the more realistic dynamic 
model (11.2) of the KV’s flight control system. Although the PN law 
accuracy is worse in the case of the model (11.2), the miss distances 
in all cases satisfy accuracy requirements, so that KV dynamics do not 
influence significantly KV performance for smooth target trajectories. 
Using the gravity compensation in the guidance law does not influence 
missile accuracy meaningfully. The guidance law (11.10) and the APN 
law give the best performance, the guidance (11.10) gives minimal time 
of intercept.

The commanded acceleration components of the PN, APN, and (11.10) 
guidance laws for the model (11.2) (see Table 11.4) are presented in Figures 
11.15–11.17 (solid, dashed, and dash-dotted lines correspond to aMc1, aMc2, 
and aMc3; indices 1, 2, and 3 correspond to axes E, N, and U, respectively). 
For APN guidance (see Figure 11.16), we considered an “almost ideal fil-
ter” that does not distort the form of the target acceleration signal; it only 
reduces its value by about 10%.

Since the APN formally requires precise information about the target 
acceleration, significant efforts of researchers are spent developing high 
accuracy filters reproducing the target acceleration. However, Figure 11.15 
shows that such high accuracy can lead to unnecessary expenditure of mis-
sile energy resources. Sharp changes of the KV’s acceleration at T = 130 s 
are triggered by the target acceleration plunge. This acceleration drop 
serves as a misleading signal when the APN law is applied, and the better 
filter—the more misleading the reaction of the missile will be.
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TABLE 11.3
Performance of the KV Model With the Time Lag τ = 0.1 s

PN Law With 
Gravity 
Compensation

PN Law 
Without 
Gravity 

Compensation

APN Law With 
Gravity 

Compensation

APN Law 
Without Gravity 
Compensation

Law (11.10) With 
Gravity 

Compensation

Law (11.10) 
Without Gravity 
Compensation

Tint = 179.585 s 179.381 s 179.8058 s 179.5921 s 179.9623 s 178.928 s

Miss = 0.037 m 0.05104 m 0.0455 m 0.087 m 0.015 m 0.0043 m
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TABLE 11.4
Performance of the KV Model With the More Realistic Dynamics

PN Law With 
Gravity 
Compensation

PN Law 
Without 
Gravity 

Compensation

APN Law With 
Gravity 

Compensation

APN Law 
Without Gravity 
Compensation

Law (11.10) 
With Gravity 

Compensation

Law (11.10) 
Without Gravity 
Compensation

Tint = 179.5849s 179.3891 s 179.85478 s 179.5999 s 178.9838 s 178.937 s

Miss = 0.0715 m 0.1225 m 0.05621 m 0.08819 m 0.00242 m 0.01972 m
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Contrary to the APN law, the commanded accelerations in the case of 
the PN and guidance (11.10) laws do not distinguish significantly.

Remark: Although the APN guidance law is widely discussed in the litera-
ture, it had no rigorous justification. It was derived from the rephrased miss 
distance expression for the PN guidance for the planar zero-lag homing loop 
model (see [4]) assuming a constant target maneuver. In the above-mentioned 
case, the target position second derivative changes drastically at T = 130 s 
(theoretically, if we neglect the target’s dynamics, it is the delta-function) so 
that the APN law should be applied cautiously. From a purely physical con-
sideration, information about target acceleration is useful, and by increasing 
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FIGURE 11.15  Commanded acceleration components for PN guidance.
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FIGURE 11.16  Commanded acceleration components for APN guidance.
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its acceleration so that its velocity would exceed the target velocity, the mis-
sile can intercept the target if its acceleration would be kept equal to the 
target acceleration (their relative motion would correspond to the collision 
triangle). That is why the gain N0 = 1 can be more accurate than N/2 or 2, 
as recommended in [2,4]. The APN law justification given in Chapter 3 [see 
equations (3.41)–(3.47)] shows that the target acceleration term depends on 
the future target strategy, so that a temporarily sharp decrease of the target 
acceleration should not produce a similar reaction of the kill vehicle.

11.4.3  3-DOF Model. Step and Weaving Target Maneuvers

In Section 11.4.1 the miss distance of several planar models was analyzed 
for 8-g lunge and 2-g jinking maneuvers. Instead of a rather smooth nomi-
nal target trajectory considered in the previous section, here we analyze 
the miss distance for the perturbed trajectory. We consider the maneuver 
generated at t = 175 s: an 8-g vertical target acceleration and a 2-g sinusoi-
dal fluctuation of the target acceleration in the horizontal plane, i.e.,

	 a t a t t a tT T n T n1 1 12 9 81 2 175( ) ( ) . sin( ( )) (= + ⋅ ⋅ − ⋅π )) ( ) ( )/ a t a tT n T n1
2

2
2+

	 a t a t t a tT T n T n2 2 22 9 81 2 175( ) ( ) . sin( ( )) (= + ⋅ ⋅ − ⋅π )) ( ) ( )/ a t a tT n T n1
2

2
2+

	 a t tT 3 8 9 81 175( ) . ;= ⋅ ≥

where the lower index n relates to the nominal trajectory.
The simulation results for the perturbed trajectory are presented in Table 

11.5. As seen from Table 11.5, the PN law performance is unsatisfactory; 
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FIGURE 11.17  Commanded acceleration components for the guidance (11.10).
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the miss distance is above 50 m, and without gravity compensation it is 
above 100 m. The APN law acts with a little bit better accuracy than the 
guidance (11.10) but worse with respect to the time of intercept.

Figure 11.18 shows the target and missile trajectories for the guidance law 
(11.10).

The guidance law (11.10) parameters were determined earlier based 
on the preliminary analysis of the planar model. They can be tuned 
on the 3-DOF model to satisfy the accuracy requirements even better 
(miss < 0.5 m). However, we did not do that because miss = 0.41 m is also 
a satisfactory value taking into account that the total acceleration of the 
chosen perturbed trajectory exceeds the maximum acceleration level in 
accordance with Figure 11.14. Moreover, we assumed an almost ideal 
acceleration filter and ignored the target dynamics. The data of Table 11.5 
in parenthesis correspond to the case of the target dynamics (11.5) related 
to the aT3 jump, and the acceleration term of the APN law reflecting the aT3 
jump at T = 175 s is presented as

	 0.9(25.31 + (aT3F – 25.31)(1-e–0.5(t–175))),

where aT3F is a real target acceleration and 25.31 m/s2 corresponds to aT3 at 
T = 174.99 s. It is possible to assume that the APN performance for exist-
ing filters is worse.

To examine the effectiveness of the acceleration term of the guidance 
laws (11.11) simulations were repeated with the gains N = 3, N1s = 2.26.105, 
N3s = 1 (s = 1, 2, 3) [see also equation (3.77)]. In contrast to the APN law, 
here aTs rather than aTNs (s = 1, 2, 3) are used. The miss distance in all cases 
is below 0.5 m. However, the additional acceleration term with the gain 
N3s = 1 did not produce any meaningful improvement of the KV’s perfor-
mance. More complicated time-varying gains N3s (s = 1, 2, 3) [see equa-
tion (3.77)] were not considered. As mentioned, using target acceleration 
information in the guidance law requires additional devices, sophisticated 
filtering, and so on, so that it should be used only in cases when it can pro-
duce substantial positive results.

The tests show that gravity compensation does not influence notably the 
guidance (11.10) performance. Moreover, in most cases the KV’s perfor-
mance without gravity compensation is better. This can be explained by 
the effectiveness of the feedback term that also reflects the effect of gravity 
[see (6.8), (6.20), (11.6), and (11.10)].

In contrast to the considered target maneuvers that act during a short 
period of time, we also examine the KV’s performance in the case of target 
trajectories perturbed for a significantly longer time. The so-called general-
ized energy-steering (GEMS) maneuvers started at t = 150 s are considered. 
The components of the acceleration of the third stage are chosen close to [2].
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TABLE 11.5
Performance of the KV Model, Target Maneuvers at T = 175 s

PN Law With Gravity 
Compensation

PN Without Gravity 
Compensation

APN Law With 
Gravity 

Compensation

APN Without 
Gravity 

Compensation

Law (11.10) With 
Gravity Compensation

Law (11.10) Without 
Gravity Compensation

Tint = 179.591 s
(179.5823 s)

179.405 s
(179.393 s)

179.8536 s
(179.847 s)

179.6038 s
(179.5956 s)

178.995 s
(178.992 s)

178.9521 s
(178.9486 s)

Miss = 63.619 m
(52.1016 m)

149.2654 m
(121.4533 m)

0.16735 m
(0.09775 m)

0.081236 m
(0.1748 m)

0.64348 m
(0.1446 m)

0.4115 m
(0.07315 m)
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The solid and dashed lines of Figure 11.19 show the commanded and real 
target acceleration components, respectively. Since the PN law produced 
unsatisfactory results in the case of maneuvering targets, here we compare 
only the APN law with the guidance laws (11.10). As in many previous tests, 
here we assume that the kill vehicle has perfect knowledge of a target’s 
acceleration without any time lag. The used assumption of a 10% mistake 
(less than in reality) in determining the target acceleration value is equiva-
lent to the 10% decrease of N0. In this way, we reflect only a small distortion 
of the target acceleration and ignore more influential factors such as time 
lag and noise, so that the obtained simulation results for the APN law (see 
Table 11.6) can be considered as optimistic ones. The data in parenthesis 
corresponds to the real target acceleration (dashed line in Figure 11.19). 
Target dynamics are presented by the transfer function (11.5). As seen from 
Table 11.6, the guidance (11.10) enables the KV to intercept the target faster 
than by using the APN law; the miss distance is also smaller. Moreover, the 
intercept can be performed without knowledge of the target acceleration.

As seen in Figure 11.18, the curvature of the target trajectory at the ini-
tial part of a flight is greater than during the later stage even in a case of the 
described maneuvers at t = 175 s. This enables us to assume that additional 
information about the second derivative of range, when it is not too small, 
can be used in the guidance law [see the so-called shaping term (11.12)]. 
Simulations show that for N = 3 and N1 = 6.8 ⋅ 105 the influence of this term 
is insignificant because of a 15-g acceleration limit.

The above tests were repeated under the assumption of state-estimate 
uncertainties for the different sensors related to the target-tracking problem. 
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FIGURE 11.18  Target (dashed line) and KV (solid line) trajectories (for the 
guidance law (11.10) tF = 178.95 s; miss = 0.41 m).

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

2:
49

 2
0 

M
ar

ch
 2

01
6 



302	 Guidance of Unmanned Aerial Vehicles

150

A
cc

el
er

at
io

n 
A

T2
 (m

/s
2 )

0

10

20

30

40

50

60

70

155 160 165 170 175
Time (s)

180 185 190

150

A
cc

el
er

at
io

n 
A

T3
 (m

/s
2 )

0

10

20

30

40

50

60

70

155 160 165 170 175
Time (s)

180 185 190

150
–60
–50
–40
–30
–20
–10

A
cc

el
er

at
io

n 
A

T1
 (m

/s
2 )

0
10
20
30

155 160 165 170 175
Time (s)

180 185 190

(a)

(b)

(c)

FIGURE 11.19  Components of acceleration during a GEMS maneuver.
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It was assumed the target position uncertainty to be equal to 200 m for 
ranges of more than 50 km and 30 m for ranges of less or equal to 50 km; 
the last 100 m, the measurements are assumed to be ideal. Target accel-
eration uncertainty was assumed to be 16 m/s2 and 12 m/s2 for distances 
exceeding 50 km and less or equal to 50 km, respectively; the last 100 m, 
the measurements are assumed to be ideal. In the software program, zero-
mean Gaussian distributed numbers and uniform distributed numbers, 
independent from sample to sample, were added to the target position and 
acceleration components every 1 s for ranges exceeding 50 km and 0.01 s 
for smaller ranges; the last 100 m, the measurements were not accompa-
nied with noise.

The results of KV performance based on a 100-run Monte Carlo simu-
lation for uniform and Gaussian distribution show that the standard devia-
tion in all simulations has the order O(10–3). The simulation model did not 
take into account the dynamic errors of filters, information delay of IR sen-
sors, and some other factors that should be reflected in the higher stage of 
design. However, very small miss distances can justify the unsophisticated 
enough simulation model.

11.5 � ADVANCED GUIDANCE LAWS APPLIED 
TO BOOST STAGE

11.5.1 I nterceptor’s Model

Since the authors of [2] conducted an extensive research on the future sur-
face-based boost-phase interceptors, we compared their results with the 
KV’s performance that can be obtained by using the guidance laws dis-
cussed in this book.

The KV’s design is a part of the boost-phase interceptor’s design and it 
cannot be considered separately. The KV’s and boosting motor’s weight and 

TABLE 11.6
Performance of the KV Model, GEMS Target Maneuver

APN Law 
With Gravity 
Compensation

APN Law 
Without Gravity 
Compensation

Guidance Law 
(11.10) With Gravity 

Compensation 

Guidance Law (11.10) 
Without Gravity 
Compensation

181.136 s
(181.24 s)

180.90 s
(181.01 s) 

180.37 s 180.358 s

0.101 m
(0.131 m)

0.0796 m
(0.1 m)

0.041 m 0.01335 m

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 2

2:
49

 2
0 

M
ar

ch
 2

01
6 



304	 Guidance of Unmanned Aerial Vehicles

velocity are interconnected. The KV’s guidance and control system param-
eters influence the weight of the kill vehicle, which, in turn, has an effect 
on design requirements to the boosting motor and the guidance and control 
system of the interceptor. It is desirable to use the same guidance law for the 
entire flight of boost-phase interceptors. In this case, the whole guidance and 
control system will be simpler and more reliable.

At the altitude at which surface-based boost-phase interceptors typically 
burnout, the atmosphere is still too dense for a kill vehicle to start operating; 
it begins operating autonomously at 80–100 km altitudes [2]. Airborne inter-
ceptors have less the burnout time and velocity than surface-based intercep-
tors. But they are launched from UAVs operating at altitudes about 15 km. 
Their trajectories are predetermined and can be realized as described in 
Section 8.3.1 [see equation (8.8)]. Here we will build the model of an air-
borne interceptor with about 3.6 km/s burnout velocity reached in 20 s.

Recommendations concerning the kill vehicle’s performance needed to 
ensure that engagements have a high probability of being successful, based 
on the analysis of boost-phase engagements using kinetic-energy weapons, 
are reliable only in the case when the considered dynamic models of the 
interceptor and the kill vehicle, as its part, are close to reality.

In contrast to the previous sections, here the guidance algorithms are used 
during all controlled stages of the interceptor’s flight. The proposed meth-
odology and algorithm developments constitute a design tool that can be 
used by the offensive or defensive missile designers to produce, in the initial 
design stage, an assessment of the threat ballistic missile evasive maneuver 
capability and to design sophisticated guidance and control systems.

In contrast to the PN and APN laws, the acceleration generated by the 
considered class of guidance laws is not perpendicular to the line-of-sight. As 
mentioned earlier, in many missiles its axial component cannot be realized. 
Since thrust vector control (TVC) motors have such capability, the discussed 
guidance laws are tested to control the interceptor’s motion in its boost phase 
with and without axial control. The interceptor’s performance with the TVC 
boosting motor is compared with the performance of a more simple boosting 
motor able to control only the lateral acceleration.

The interceptor is assumed to have two booster stages with a total burn-
out time 20 s. The acceleration profile (thrust) of each stage is presented by 
a second-order polynomial:

	 thrust t g= +( . )5 0 45 2 	 (11.14)

and

	 thrust t g= + −( . ( ) )5 0 45 10 2 	 (11.15)

where t is the time after the interceptor’s launch.
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The average axial acceleration corresponding to the boost stage is about 
20-g, and the vertical burnout velocity is about 3.6 km/s. The E, N, U com-
ponents thrusts (s = 1, 2, 3) of the axial acceleration equal:

	 trust trust e ss Ms= ⋅ =( , , )1 2 3 	 (11.16)

where eMs are the components of the unit velocity vector.
It is impossible to present the corresponding components of the mis-

sile acceleration precisely without knowledge of the angle of attack. If for 
the KV operating at high altitudes it is possible to consider the angle of 
attack equal to zero, for the boost stage it does not equal zero. But since 
we consider a hypothetical acceleration profile (11.14) and (11.15) with a 
20 s burnout time, for analysis of the efficiency of the tested guidance laws 
the assumption of a zero angle of attack is not very restrictive. After the 
main design parameters of the boost stage are determined, a more precise 
6-DOF model should be used.

It is assumed that the boost stage consists of the uncontrolled (up to 3 s) 
and controlled phases.

First, we consider the boosting motor with an unmovable nozzle—
the motor without controlled axial acceleration, and assume that the con-
trolled boost stage lateral acceleration is changed by the guidance laws 
(11.10)–(11.12) and has a 12-g acceleration limit.

The boosting motor design to realize an additional 12-g lateral accelera-
tion is simpler than in the case of using Lambert guidance, which requires 
thrust vector control (TVC) and also the ability to cut off the interceptor’s 
engine. A more sophisticated boosting motor with axial control, a gim-
baled TVC boosting motor, will be considered later.

The KV’s commanded lateral acceleration acNs(t) (a 12–20-g accelera-
tion limit, depending on the time of flight, was imposed) and the positive 
axial acceleration aLs(t) (s = 1, 2, 3) (a 3–5-g acceleration limit, depend-
ing on the time of flight, was imposed) serve the input of the system of 
differential equations describing the flight-control system dynamics [see 
equation (9.100)].

Similarly, the boosting motor commanded lateral acceleration 
acNs(t)  (it has a 12-g acceleration limit) or the TVC boosting motor 
acceleration acMs(t) (s = 1, 2, 3) serves as the input of equation (9.100).

For the interceptor during its first two boost stages, we consider in 
equation (9.100) τ = 0.5s, ζ = 0.7 and ωM = 10rad/s. For the KV: τ = 0.1s, 
ζ = 0.7s and ωM = 20rad/s. The total input interceptor’s acceleration 
aM(t) = (aM1, aM2, aM3) equals:

	 a t a t grav thrust sMs cMs s s( ) ( ) ( , , )= + + = 1 2 3 	 (11.17)
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306	 Guidance of Unmanned Aerial Vehicles

Since the acceleration profile of the boost stage is presented approximately 
by equations (11.14) and (11.15), in the case of the uncontrolled axial accel-
eration, for simplicity, we included the axial components directly in equa-
tion (11.17).

The acceleration’s components related to the boost stage act the first 
20 s of the interceptor’s flight; after that they equal zero. The components 
related to the KV’s operation act 14 s after the end of the boost stage.

Although the KV’s seeker can begin operations after the KV is above a 
50 km altitude (at altitudes of less than about 40–50 km and speeds above 
2.5–3 km/s there can be seeker window heating issues), assuming that the 
time to eject the KV is around 3 s and reserving time for related prepara-
tory operations, taking also into account that higher altitudes are more 
preferable, we chose a 14 s period between the end of the boost stage and 
the beginning of the KV’s operations.

Since the previous analysis shows that the discussed guidance laws are 
efficient without gravity compensation, which is widely used in the PN law 
applications, the gravity compensation is not considered.

The interceptor’s model, which includes a kill vehicle’s model, with 
the time-varying parameters of the flight control system and time-varying 
acceleration limits more realistically reflects interceptor’s dynamics.

As an additional possibility to improve the KV’s performance, the effi-
ciency of a supplementary axial guidance component is discussed, i.e., 
the KV with axial-thrust capability is considered. The generalized new 
guidance laws [see equation (3.96)] are applied to this problem. Based on 
this analysis, the recommendations can be made whether it is worthwhile 
to use an additional axial thruster.

We use the unchanged guidance law parameters for the control boost 
stage and the homing stage. The effective navigation ration N = 3, which 
corresponds to the optimal energy efficient mode. The cubic term coeffi-
cient N1s = 6.8 ⋅ 105 (s = 1, 2, 3), as it was chosen earlier. The shaping term 
coefficients N21 = N22 = 0 and N23 = 1. This reflects the fact that during the 
boost phase the second derivative of range is mostly influenced by the 
change of a target’s altitude. The shaping term acts throughout the con-
trolled boost phase. During the KV’s flight, the shaping term is used only 
for large range distances, when the curvature of the target trajectory may 
be substantial.

The 3 s uncontrolled part of the interceptor’s flight imposes more rig-
orous requirements to the initial launch parameters of the interceptor. 
Formally, the situation is similar to the decision a predator makes before 
starting a pursuit—the initial direction of motion depends on the preda-
tor’s inner resources and position compared to the target’s resources esti-
mate and position. As in the case of SM missiles, the initial elevation and 
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azimuth angles of the interceptors and their related position and veloc-
ity during the initial uncontrolled flight should be determined from the 
developed tables and/or empirical/half-empirical expressions based on 
approximate calculations accompanied by multiple simulations for various 
types of targets and tests results of the interceptor’s prototype. The men-
tioned tables and/or expressions to determine these parameters should be 
developed after the interceptor’s acceleration profile has been determined. 
Necessary corrections should be made for the position and velocity of the 
interceptor at the beginning of the controlled flight that relate to the speed 
of the UAV and weather conditions (e.g., wind).

Since the construction of a boosting motor with a fixed axial acceleration 
is simpler than that of a TVC boosting motor, most of simulations relate to 
this type of motors. In simulations, the initial elevation El and azimuth Az 
angles were chosen so that the intercept would take place within a period 
of time that does not exceed a target’s burnout time. For the chosen axial 
thrust acceleration profile [see equations (11.14) and (11.15)] the intercep-
tor’s vertical velocity at the beginning of the controlled boost stage equal
V gM ( ) ( . )3 5 3 0 45 32= ⋅ + ⋅  = 186.93 m/s.

The corresponding E, N, and U coordinates of the interceptor’s velocity 
vector (the indices 1, 2, and 3 are used) at the beginning of the controlled 
flight are determined as:

	 V El AzM1 186 93= ⋅ ⋅cos sin .

	 V El AzM 2 186 93= ⋅ ⋅cos cos . 	 (11.18)

	 V ElM 3 186 93= ⋅sin .

The boost motor is controlled by the guidance law:

	 a t v t t N vMc s cl s s s cl1
5 3

23 6 8 10( ) ( ) . ( )= + ⋅ +  λ λ λss t s( ) ( , , )= 1 2 3 	 (11.19)

The KV’s flight is controlled by the same law; only in this case the shap-
ing term works at ranges more or equal to 250 km. The efficiency of the 
shaping term and its influence on the time of intercept and the cumulative 
velocity change will be examined.

11.5.2 S imulation Results. Nonmaneuvering Target

It is assumed that the interceptor is launched at t = 75 s, its controllable boost 
phase starts at t = 78 s and ends at t = 95 s, and the kill vehicle starts operat-
ing at 109 s.
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308	 Guidance of Unmanned Aerial Vehicles

The target position and velocity at t = 78 s equal:

	 RT1 = –35.845 km,  RT2 = 37.234 km,  RT3 = 43.666 km

	 VT1 = –1.16 km/s,  VT2 = 1.2 km/s,  VT3 = 1,06 km/s

The interceptor’s U-coordinate RM3 at t = 75 s is 15 km. Its position and 
velocity at the beginning of the controlled boost stage is determined based 
on the elevation and azimuth angles at the time of launch [see equation 
(11.18)].

The simulation results presented in the Tables contain the following 
parameters: the ground range between target and missile launch sites (km); 
the interceptor’s position (km) at t = 78 s; the interceptor’s elevation and 
azimuth reference angles (degree/rad) at t = 75 s; the interceptor’s velocity 
components (m/s) at the beginning of a controlled flight t = 78 s; the KV’s 
initial position at t = 109 s; the time of intercept Tint (s), the miss distance 
(m), and the intercept position (m).

Table 11.7 shows the target intercept for the interceptor’s launches situ-
ated close to the trajectory plane, so that in this case we have close-to-
planar engagements. The standoff distance has its maximum value when 
the target and interceptor trajectories are in the same plane. About 730 km 
standoff distance corresponds to about 187 s intercept time, which is close 
to the last “safe” intercept time. For launch positions closer to the target’s 
launch site, the time of intercept is less; it is about 117 s for the standoff 
distance of about 220 km. (Assuming that the KV is launched at t = 109 s, 
we do not consider smaller standoff distances here.)

The initial interceptor’s direction at the time of launch is the main fac-
tor determining a successful intercept. Figure 11.20 shows the target (solid 
line) and the interceptor (dashed and dotted lines) trajectories that corre-
spond to different elevation and azimuth angles at launch.

Any longitudinal acceleration of the target that is perpendicular to the 
line-of-sight with the interceptor (or even at angles close to a right angle) 
appears as a target maneuver to the interceptor. Such positions of the inter-
ceptor are possible in the case of nonplanar engagements and, as a result, 
the last “safe” intercept time corresponds to standoff distances less than 
for planar engagements. Tables related to nonplanar engagements were 
built similar to Table 11.7 to determine the operational area from which 
the intercept is achievable, i.e., the E-N plane projections of the intercep-
tor’s launch positions that guarantee intercept.

The data of the tables enable us not only to build the operational area 
but also to obtain preliminary information concerning the interceptor’s 
main launch operational parameters—elevation and azimuth angles, their 
values depending on the initial interceptor position.
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TABLE 11.7
Simulation Results for Almost Planar Engagements

Ground Range 
Between Target and 
Missile Launch 
Sites
(km)

Interceptor 
Position at 

t = 78 s
(km)

Interceptor Elevation 
and Azimuth 

Reference Angles at 
t = 75 s

(degree/rad)

Interceptor Velocity 
Components at the 

Beginning of 
Controlled Flight

t = 78 s

Time of 
Intercept

Tint (s)
(Miss (m))

KV Initial 
Position

(t = 109 s)
(m)

Intercept 
Position

(m)

RTMgr = 730.5 RM1 = – 510
RM2 = 523
RM3 = 15.2

46/0.8
135/2.356

VM1 = 92.12
VM2 = –92.05
VM3 = 134.1

186.88
(0.165)

R1 = –469,476
R2 = 482,532
R3 = 71,833

R1 = –307,977
R2 = 319,611
R3 = 213,394

660 RM1 = – 460
RM2 = 473
RM3 = 15.2

46/0.8
135/2.356

VM1 = 92.12
VM2 = –92.05
VM3 = 134.1

178.56
(0.037)

R1 = –419,768
R2 = 432,763
R3 = 72,104

R1 = –272,898
R2 = 283,237
R3 = 193,944

449 RM1 = – 310
RM2 = 325
RM3 = 15.2

46/0.8
136/2.37

VM1 = 90.73
VM2 = –93.42
VM3 = 134.1

151.61
(0.052)

R1 = –273,080
R2 = 286,531
R3 = 74,964

R1 = –181,249
R2 = 188,193
R3 = 142,459

378.4 RM1 = – 260
RM2 = 275
RM3 = 15.2

46/0.8
136/2.37

VM1 = 90.73
VM2 = –93.42
VM3 = 134.1

142.21
(0.025)

R1 = –225,865
R2 = 238,907
R3 = 78,593

R1 = –155,020
R2 = 160,982
R3 = 127,083

(Continued)
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TABLE 11.7  (Continued)
Simulation Results for Almost Planar Engagements

Ground Range 
Between Target and 
Missile Launch 
Sites
(km)

Interceptor 
Position at 

t = 78 s
(km)

Interceptor Elevation 
and Azimuth 

Reference Angles at 
t = 75 s

(degree/rad)

Interceptor Velocity 
Components at the 

Beginning of 
Controlled Flight

t = 78 s

Time of 
Intercept

Tint (s)
(Miss (m))

KV Initial 
Position

(t = 109 s)
(m)

Intercept 
Position

(m)

307.8 RM1 = – 210
RM2 = 225
RM3 = 15.1

16/0.28
137/2.39

VM1 = 122.7
VM2 = –131.2
VM3 = 51.66

130.32
(0.063)

R1 = –171,493
R2 = 182,291
R3 = 74,644

R1 = –121,117
R2 = 129,948
R3 = 108,830

279.5 RM1 = – 190
RM2 = 205
RM3 = 15

5.7/0.1
137/2.39

VM1 = 112
VM2 = –136
VM3 = 18.66

126.09
(0.042)

R1 = –152,236
R2 = 162,361
R3 = 76,091

R1 = –115,330
R2 = 119,789
R3 = 102,631

222.8 RM1 = – 154
…

RM2 = 161
RM3 = 15

–20/–0.35
140/2.45
86/1.5

48.3/0.76

VM1 = 121.1
VM2 = –135.2
VM3 = -64.1

…
VM1 = 9.117
VM2 = 9.577
VM3 = 186.5

116.77
(0.232)

…
186.49
(0.05)

R1 = –113,066
R2 = 115,367
R3 = 72,797

…
R1 = –157,598
R2 = 165,118
R3 = 96,805

R1 = –95,645
R2 = 99,351
R3 = 89,733

…
R1 = –306,137
R2 = 317,702
R3 = 212,382
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Here we do not consider the prelaunch function, which determines the 
elevation and azimuth angles at launch. A firing table is developed from 
simulation experiments accompanied with kinematical consideration that 
also determines which shots are kinematically possible. Flyout and firing 
tables are produced when all components of the interceptor are known and 
reliable flyout tables require firing tests also.

Based on the data in the mentioned tables, the operational area from 
which it is possible to intercept the targets is built (see Figure 11.21; for 
simplicity, only one quadrant is considered). Its boundary is not robust 
with respect to the input parameters (elevation and azimuth angles), since it 
corresponds to the best combination of the parameters for which intercept 
is possible. Inside the bounded area, there exists an admissible domain for 
these parameters. The deeper inside the bounded area the more freedom in 
choosing admissible elevation and azimuth angles. Of course, their choice 
influences the time of intercept. However, it is important that intercept can 
be achieved.

The determination of initial elevation and azimuth angles is an auxil-
iary problem that can be solved, for example, in a way similar to the pro-
cedure used by the Weapon Control System of SM missiles. Some values 
and their trend become obvious directly from the study of the mentioned 
tables. However, the final recommendations require extensive simulations 
accompanied with firing tests also.

0.5
0

1A
lti

tu
de

 (m
)
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× 105

× 105

Downrange (m)
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FIGURE 11.20  Two possible interceptor’s trajectories for different directions at 
launch (Tint = 186.49 s and 116.77 s).
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In Table 11.8 we indicated the admissible intervals (in square brackets) 
of the elevation and azimuth angles and the time of intercept with respect 
to the initially chosen angles of Table 11.7.

It is useful to build the domain (azimuth-elevation) of the admissible 
angles for the operational area and the most representative angles should 
be established. Negative elevation angles for short standoff distances are 
caused by the uncontrolled axial acceleration, which exceeds its “demand.” 
This shows that for short distances less powerful interceptors can be 
used.

A larger operational area (dash-dotted line) that corresponds to the ele-
vation and azimuth angles chosen better than the earlier (dotted line) is 
shown in Figure 11.21. The data related to the most representative points 
of the mentioned area presented in Table 11.9.

11.5.3 S imulation Results. Influence of Shaping Term

Figure 11.21 corresponds to the guidance law (11.19) including the shap-
ing term that acts during the controlled boost stage and during the homing 
phase for ranges more than 250 km. Since we deal with ascending targets, 
we use it only in the guidance law shaping component that influences the 
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FIGURE 11.21  Operational areas (solid line: a projection of the target trajec-
tory; (#): the target position at t = 75 s; (*, + , •): standoff distances corresponding 
to various guidance algorithms.
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U-coordinate. To examine the influence of this term on the interceptor’s 
performance we chose the “most difficult” boundary standoff positions of 
Table 11.7 and a position at the middle of Table 11.7 and excluded the shaping 
term from the guidance law for the controlled boost stage. (As mentioned 
earlier, the influence of the chosen shaping term on the KV’s performance 
was not considerable; it decreases the time of intercept Tint only slightly.) 
The simulation results are given in Table 11.10. As seen from Tables 11.7 
and 11.10, in the case of the standoff distance 222.8 km, the shaping term is 
substantial for intercept. Two other cases do not show any specifics.

Similar to [2], we use the term cumulative velocity change, denoted 
ΔV(t) to refer to the integral of the absolute magnitude of the kill vehicle’s 
acceleration from the time its propulsion system begins to operate until 
time t. We will use the same term referring to the integral of the absolute 
magnitude of the boosting motor lateral acceleration during the controlled 
boost stage and examine the value of ΔV(t) at the end of the boost stage and 
at the time of intercept for the most “difficult” standoff distances.

TABLE 11.8
Admissible Initial Elevation and Azimuth Angles

Ground Range 
Between Target 
and Missile 
Launch Sites (km)

Interceptor 
Position at

t = 78 s
(km)

Interceptor Elevation 
and Azimuth Reference 

Angles at t = 75 s
(degree/rad)

Time of Intercept 
Tint (s)

(Miss (m))

RTMgr = 730.5 RM1 = –510
RM2 = 523
RM3 = 15.2

46/0.8
135/2.356

186.88
(0.165)

660 RM1 = –460
RM2 = 473
RM3 = 15.2

46/0.8  [0.55, 1.4]
135/2.356  [1.4, 3.78]

178.56  [174, 187]
(0.037)

449 RM1 = –310
RM2 = 325
RM3 = 15.2

46/0.8  [–0.85, 1.46]
136/2.37  [1.1, 3.7]

151.61  [150, 166]
(0.052)

378.4 RM1 = –260
RM2 = 275
RM3 = 15.2

46/0.8  [–1, 1.25]
136/2.37  [1.45, 3.34]

142.21  [140, 147]
(0.025)

307.8 RM1 = –210
RM2 = 225
RM3 = 15.1

16/0.28  [–1, 0.58]
137/2.39  [4.25, 2.54]

130.32  [129, 132]
(0.063)

279.5 RM1 = –190
RM2 = 205
RM3 = 15

5.7/0.1  [–0.9, 0.12]
137/2.39  [4.3, 2.48]

126.09  [125, 126.1]
(0.042)
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TABLE 11.9
Admissible Initial Elevation and Azimuth Angles Corresponding To 
a Larger Operational Area

Ground Range 
Between Target and 
Missile Launch 
Sites (km)

Interceptor 
Position at 

t = 78 s
(km)

Interceptor Elevation 
and Azimuth Reference 

Angles at t = 75 s
(degree/rad)

Time of Intercept 
Tint (s)

(Miss (m))

RTMgr = 730.5 RM1 = –510
RM2 = 523
RM3 = 15.2

46/0.8
135/2.356

186.88
(0.165)

705.4 RM1 = –574
RM2 = 410
RM3 = 15.2

51/0.89
105.7/1.845

186.95
(0.48)

655.6 RM1 = –575
RM2 = 315
RM3 = 15.2

46/0.8
63.02/1.1

186.27
(0.32)

585.4 RM1 = –540
RM2 = 226
RM3 = 15.1

48.7/0.85
40.1/0.7

185.28
(0.19)

465.7 RM1 = –450
RM2 = 120
RM3 = 15.2

46/0.8
13.18/0.23

185.97
(0.1)

656 RM1 = –440
RM2 = 572
RM3 = 15.1

43/0.75
166/2.9

186.82
(0.16)

407 RM1 = –400
RM2 = 75
RM3 = 15

22.9/0.4
5.7/0.1

184.63
(0.15)

461 RM1 = –100
RM2 = 450
RM3 = 15.2

45.8/0.8
258.5/4.51

184.74
(0.18)

450.7 RM1 = –439
RM2 = 102
RM3 = 15.1

33.5/0.585
9.45/0.165

186.78
(0.5)

376.7 RM1 = –36
RM2 = 375
RM3 = 15.1

35.5/0.62
266/4.6397

186.34
(0.2947)

220 RM1 = 0
RM2 = 220
RM3 = 15

14.1/0.247
246.4  /4.3

144.17
(0.5)
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Since any additional term of the developed guidance law influences the 
cumulative velocity change and its maximal value, which is an important 
performance parameter, we examined the cumulative velocity change with 
and without the shaping term for the above examples. Figure 11.22 and 
Figure 11.23 show ΔV(t) separately for the boost (solid line) and homing 
(dotted line) stages. Dashed lines correspond to the guidance without the 
shaping term.

Figure 11.22 corresponds to the standoff position on the boundary of the 
operational area with the time of intercept close to the target burn time. 
The shaping term does not influence the KV’s maximal value of ΔV, which 
is about 3 km/s.

As seen from Figure 11.23, the absence of the shaping term can increase 
the KV’s maximal value of ΔV(t).

The cumulative velocity change depends on the initial azimuth and eleva-
tion angles. The properly chosen angles, inside their admissible domains (see 
Table 11.8), decrease ΔV(t). Assuming that ΔV(t) should not exceed, for exam-
ple, 2.5 km/s, we can determine a real operational area, which will be a subset 
of the set of standoff distances in Figure 11.21. We can also expect a larger 
operational area in the case of the uncontrolled boost phase less than 3 s.

The above analysis was made for the deterministic model since its goal 
was to demonstrate the applicability of the developed guidance laws and 
the ability to use the same guidance law, easily implemented in practice, 
both for the boost and homing phases of the interceptor’s flight. We can 
expect that sensors’ noise would decrease the effective operational area by 
not more than 10% since the target acceleration measurements are not used 
in the guidance law. Later we will examine the interceptor’s performance 
taking into account errors of measurements.

TABLE 11.9  (Continued)
Admissible Initial Elevation and Azimuth Angles Corresponding To 
a Larger Operational Area

Ground Range 
Between Target and 
Missile Launch 
Sites (km)

Interceptor 
Position at 

t = 78 s
(km)

Interceptor Elevation 
and Azimuth Reference 

Angles at t = 75 s
(degree/rad)

Time of Intercept 
Tint (s)

(Miss (m))

352 RM1 = –350
RM2 = 38
RM3 = 15.1

24.06/0.42
3.81/0.06649

183.71
(0.199)

220 RM1 = –220
RM2 = 0
RM3 = 15

4.4/0.077
14.3 /0.25

150.03
(0.45)
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TABLE 11.10
Influence of the Shaping Term

Ground Range 
Between Target 
and Missile 
Launch Sites
(km)

Interceptor 
Position at 
t = 78 s

(km)

Interceptor Elevation
and Azimuth 

Reference Angles at 
t = 75 s

(degree/rad)

Interceptor Velocity 
Components at the 

Beginning of 
Controlled Flight

t = 78 s

Time of 
Intercept

Tint (s)
(Miss (m))

KV Initial
Position

(t = 109 s)
(m)

Intercept
Position

(m)

RTMgr = 730.5 RM1 = –510
RM2 = 523
RM3 = 15.2

46/0.8
135/2.356

VM1 = 92.12
VM2 = –92.05
VM3 = 134.1

186.7
(0.097)

R1 = –468,828
R2 = 480,231
R3 = 69,818

R1 = –307,210
R2 = 318,815
R3 = 212,969

378.4 RM1 = –260
RM2 = 275
RM3 = 15.2

46/0.8
136/2.37

VM1 = 90.73
VM2 = –93.42
VM3 = 134.1

142.5
(0.024)

R1 = –227,312
R2 = 239,987
R3 = 79,937

R1 = –155,771
R2 = 161,761
R3 = 127,530

222.8 RM1 = –154
RM2 = 161
RM3 = 15

–20/–0.35
140/2.45 No intercept
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11.6 � INTERCEPTOR’S PERFORMANCE 
WITH AXIAL CONTROL

11.6.1 A xial Control of Kill Vehicle

Here we consider the axial control related only to the KV’s motion. The 
chosen boosting motor, which is significantly simpler than in the case of 
Lambert guidance, does not control the interceptor’s axial acceleration.
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FIGURE 11.22  Cumulative velocity change for the standoff position 
RM1 = –510 km, RM2 = 523 km, RM3 = 15.2 km.
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FIGURE 11.23  Cumulative velocity change for the standoff position 
RM1 = –260 km, RM2 = 275 km, RM3 = 15.2 km.
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318	 Guidance of Unmanned Aerial Vehicles

Initially, it was assumed that the kill vehicle would correct its trajectory 
by using thrusters generating lateral acceleration. But taking into account 
the necessity of achieving intercept within the burnout time of boosting 
targets it is desirable to design kill vehicles with the shortest possible inter-
cept time and the largest possible operational area. We can expect that an 
additional axial guidance component [see equations (11.19) and (3.96)] can 
improve the KV’s performance decreasing the time of intercept. However, 
an additional axial thruster would complicate the KV’s construction and 
would increase the KV’s weight. This, in turn, would add requirements to 
other components of the interceptor.

It is of importance to analyze whether the additional axial control can 
decrease the time of intercept compared to the case of only lateral thrust-
ers (and respectively increase the operational area of the interceptor) at 
such a degree that a more complicated design would be worthwhile.

The axial thruster of future kill vehicles is assumed to work only in a 
positive direction (i.e., only as an accelerator) since such a design is sim-
pler. This brings specifics into the guidance problem.

In addition to the law (11.19) we consider the generalized guidance law 
(3.96):

	

a t v t t N rMc s cl s s s1
5 3

23 6 8 10 1( ) ( ) . ( ) ( )= + ⋅ + − λ λ (( ) ( ) ( )

( ) ( ) ( , , )

t t t

k t a t s

s

s

s

Trs

λ λ2

1

3

1 1 2 3

=
∑

+ =
	 (11.20)

The simulations related to the generalized guidance law algorithm (3.96) 
are done with the gain k1 = 1, N21 = N22 = 0, and N23 = 1. Since the simu-
lation results of Section 11.4 show that the target acceleration term did 
not decrease substantially the time of intercept, here we analyze only the 
influence of its axial component, i.e., equation (11.20) does not contain 
the term N3saTts(t) (s = 1, 2, 3) of equation (3.96).

The mathematical justification of the efficiency of all terms of equa-
tions (11.19) and (11.20) was given without taking into account limits 
imposed on acceleration. Assuming that the acceleration generated by the 
KV’s axial thruster is limited by 3–5-g [in the simulation model it is pre-
sented parametrically (3 + (t – t0)/(tF – t0) ⋅ (5 – 3))g, where t0 is the time 
when the KV starts operating and tF the burnout time of the target] we 
will investigate the influence of the axial components of equations (11.19) 
and (11.20) on the time of intercept. As mentioned, only positive compo-
nents of the axial acceleration (i.e., acceleration rather than deceleration) 
are considered.
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Since the considered earlier guidance algorithm (11.19) does not generate 
a “pure” lateral motion, we will consider first the influence of its axial com-
ponent on the time of intercept and the cumulative velocity change and later 
compare the efficiency of this and the generalized guidance algorithms.

Table 11.11 contains the simulation results of the algorithm (11.19). 
Taking into account the relatively small (3–5-g) axial acceleration limit, 
we do not change the gains of the cubic and shaping terms (such analysis 
can be useful dealing with more definite information about the kill vehicle 
at a later stage of design). As mentioned earlier, the shaping term acts 
for ranges exceeding 250 km and the second derivative of range is deter-
mined approximately based on consecutive measurements of the closing 
velocity.

TABLE 11.11
Simulation Results. Influence of the Axial Component on the 
Time of Intercept

Ground Range 
Between Target 
and Missile 
Launch Sites (km)

Interceptor 
Position at 

t = 78 s
(km)

Interceptor Elevation 
and Azimuth 

Reference Angles at 
t = 75 s (rad)

Time of
Intercept

Tint (s)

RTMgr = 730.5 RM1 = –510
RM2 = 523
RM3 = 15.2

(0.8; 2.356)
(0.7; 2.356)
(0.5; 2.356)
(0.3; 2.356)
(0.; 2.356) 

186.88; [185.56]
No; [184.49]
No; [182.11]
No; [180.02]
No; [178.72]

660 RM1 = –460
RM2 = 473
RM3 = 15.2

(0.7; 2.4)
(0.6; 1.5)
(1.2; 3.)

178.09; [176.74]
181.97; [180.82]
184.77; [184.46]

449 RM1 = –310
RM2 = 325
RM3 = 15.2

(1.2; 3.)
(0.8; 2.37)
(0.5; 2.)

157.94; [157.89]
151.61; [151.39]
150.52; [150.57]

680 RM1 = –550
RM2 = 400
RM3 = 15.1

(0.8; 1.85)
(0.5; 1.1)
(1.; 1.9)

183.04; [181.9]
186.34; [185.26]
184.71; [184.01]

656 RM1 = –400
RM2 = 520
RM3 = 15.1

(0.8; 2.95)
(0.5; 3.6)
(1.; 2.5)

179.46; [178.77]
183.3; [182.41]
180.64; [179.97]

461 RM1 = –100
RM2 = 450
RM3 = 15.1

(0.8; 4.51)
(0.6; 4.1)
(1; 4.1)

184.75; [184.6]
No; [170.09]
No; [175.2]
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320	 Guidance of Unmanned Aerial Vehicles

Since the main goal of using the KV’s axial control is to extend the 
operational area, which can be achieved by decreasing the time of inter-
cept obtained without the controlled axial component of the KV’s accel-
eration, it is tested for the standoff positions in Figure 11.21 with ground 
ranges exceeding 450 km. The last column of Table 11.11 compares the 
time of intercept without and with (data in brackets) the KV’s axial accel-
eration; the miss distances are of order O(10–2) m.

The analysis of the data of Table 11.11 shows that an additional axial 
thruster (or a specially designed TVC), enables us to decrease the time 
of intercept and to extend the operational area. For example, the standoff 
distances 730.5 km and 461 km belong (or very close) to the boarder of the 
operational area, and a notable change of the azimuth or elevation angles 
makes intercept impossible without the additional axial acceleration, which 
widens significantly admissible intervals for these angles and extends the 
operational area as well.

The operational area for the axial control in accordance with the guid-
ance law (11.19) is given in Figure 11.21 (dash-double dotted line). The 
boundary standoff distances are on average about 10% larger than in the 
case without axial control (see dash-dotted line in Figure 11.21).

The simulation results for the guidance law (11.20) are given in Table 
11.12, which is built similar to Table 11.11 (numbers in brackets show the 
time of intercept in a case of the generalized law).

The generalized guidance law enables us to decrease the time of inter-
cept by 5–10 s and to extend the operational area.

The simulation results (see Figure 11.21) related to axial control reflect 
the data related to the most representative points of the operational areas. 
Since the KV’s axial control extends the domain of admissible initial ele-
vation and azimuth angles, the operational areas were built assuming the 
possibility of the interceptor’s horizontal launch (i.e., for zero elevation 
angle). The operational area for the generalized guidance law (11.20) is 
given in Figure 11.21 (dashed line). The boundary standoff distances are 
on average about 15% larger than in the case of absence of axial control 
and about 5% larger than in the case of axial control in accordance with 
(11.19) (see dash-dotted and dash-double dotted lines in Figure 11.21). The 
effect of the axial control is more substantial for standoff distances, which 
are closer to the target trajectory plane, since in this case the axial compo-
nent of the missile acceleration is larger. For boundary short range standoff 
distances, the axial component of the missile acceleration is small and, as a 
result, the effect of the considered more complicated guidance algorithms 
is smaller.

The indicated above ability of the guidance algorithms (11.19) and (11.20) 
to decrease the time of intercept and increase the operational area should 
be evaluated with the analysis of the maximal value of the kill vehicle’s 
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cumulative velocity change. Here the term operational area is used for the 
standoff distances that guarantee intercept, without any restrictions upon 
ΔV. The real operational area should be determined based on an admissible 
maximal value of ΔV.

Figure 11.24 corresponds to the standoff position close to the boundary 
of the three operational areas in Figure 11.21. It compares the cumulative 
velocity change for three guidance laws:

	 i.	Only the KV’s lateral acceleration (dash-dotted line)
	 ii.	The KV’s lateral and axial acceleration in accordance with equa-

tion (11.19) (solid line)
	 iii.	The KV’s lateral and axial acceleration in accordance with the 

generalized guidance law (11.20) (dashed line)

TABLE 11.12
Simulation Results. Generalized Guidance Law

Ground Range 
Between Target 
and Missile Launch 
Sites (km)

Interceptor 
Position at

t = 78 s
(km)

Interceptor 
Elevation and 

Azimuth Reference 
Angles at t = 75 s 

(rad)

Time of 
Intercept

Tint (s)

RTMgr = 730.5 RM1 = – 510
RM2 = 523
RM3 = 15.2

(0.8; 2.356)
(0.7; 2.356)
(0.5; 2.356)
(0.3; 2.356)
(0.; 2.356)

186.88; [177.26]
No; [175.54]
No; [172.3]
No; [170.8 ]
No; [170.46]

660 RM1 = –460
RM2 = 473
RM3 = 15.2

(0.7; 2.4)
(0.6; 1.5)
(1.2; 3.)

178.09; [168.98]
181.97; [173.44]
184.77; [177.63]

449 RM1 = –310
RM2 = 325
RM3 = 15.2

(1.2; 3.)
(0.8; 2.37)
(0.5; 2.)

157.94; [151.95]
151.61; [147.37]
150.52; [146.33]

680 RM1 = –550
RM2 = 400
RM3 = 15.1

(0.8; 1.85)
(0.5; 1.1)
(1.; 1.9)

183.04; [174.78]
186.34; [177.91]
184.71; [177.21]

656 RM1 = –400
RM2 = 520
RM3 = 15.1

(0.8; 2.95)
(0.5; 3.6)
(1.; 2.5)

179.46; [172.06]
183.3; [174.65]
180.64; [173.14]

461 RM1 = –100
RM2 = 450
RM3 = 15.1

(0.8; 4.51)
(0.6; 4.1)
(1; 4.1)

184.75; [174.53]
No; [166.48]
No; [170.29]
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322	 Guidance of Unmanned Aerial Vehicles

As seen from Figure 11.24, the guidance law controlling only the KV’s lat-
eral acceleration has the minimal value of the KV’s ΔV. The additional axial 
control increased the boundary standoff distance about 20% but the maxi-
mal value of ΔV increased more than 50%. (The mentioned increase can be 
less for higher initial elevation angles, but nevertheless it is substantial.)

Since the maximal value of ΔV is an important design parameter, which 
determines the interceptor’s weight, the final recommendation concern-
ing the efficiency of axial control of the KV’s motion should be made in 
a process of solving a more general problem—a multicriterial optimiza-
tion problem including the optimal interceptor’s weight, time of intercept, 
operational area, and so on. The interceptor’s weight (including the KV’s 
weight) and its performance criteria are interconnected. The interceptor’s 
weight, as well as the KV’s weight, limited by the UAV’s admissible pay-
load, determines dynamic properties of the interceptor and the kill vehicle, 
respectively. Their dynamics corrected by the designed future autopilots 
influence the time of intercept and the operational area.

11.6.2 A xial Control of Interceptor

In the previous section we considered the influence of an additional axial 
thruster of the kill vehicle on the interceptor’s performance. As to the 
boosting motor, we chose its simplest construction—an unmovable nozzle 
and ability to control the lateral acceleration up to 12-g. Inability to control 

0
60 80 100 120 140

Time (s)
160 180 200

1000

2000
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5000
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FIGURE 11.24  Cumulative velocity change for the guidance laws (11.19) and 
(11.20); the standoff positions RM1 = –510/–565/–630 km, RM2 = 523/580/643 km, 
RM3 = 15.2/15/15 km.
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the interceptor’s axial acceleration during the boosting stage puts the kill 
vehicle in a less favorable situation than in the case of more complicated 
boosting motors equipped with TVC. In this section, we examine the per-
formance of the interceptor having the gimbaled TVC and analyze the 
efficiency of the guidance laws applied to this type of boosting motors.

As mentioned earlier, in contrast to the PN and APN guidance, the 
tested guidance laws have its axial component, which can be easily real-
ized in the case of TVC. Although the chosen boosting motor is more com-
plicated than the one considered earlier, it is still simpler than the boosting 
motor used in the Lambert guidance, which should have the ability to cut 
off its engine. To “compensate” a more complex construction of the TVC 
motor, we will consider a less powerful boosting motor than in the previ-
ous sections. Moreover, the simplest possible variant of the TVC boosting 
motor was chosen. The controlled interceptor’s acceleration is realized by 
positioning a moveable nozzle. Usually, the total TVC nozzle slew angle is 
limited to about 10°–12°. To simplify the simulation model, we present the 
boosting motor’s acceleration profile by the analytical expressions (11.14) 
and (11.15). For this profile, a 12-g lateral acceleration limit corresponds 
to a 14° total TVC nozzle slew angle. However, the chosen acceleration 
profile has the initial acceleration equal only to a 5-g, which is “compen-
sated “ by a 50-g value at the end of each stage. The acceleration profile 
used earlier and additional angular limits restrict the lateral acceleration 
more than in the previously considered boosting motor. In the case of more 
sophisticated TVC motors, we can expect significantly better results.

To apply the guidance algorithm (11.10)–(11.12), the following changes 
were brought into the developed earlier interceptor’s model:

	 i.	The controlled thrust acceleration starts immediately at t = 75 s 
(i.e., without a 3 s delay) as it was before.

	 ii.	The boosting motor has the same acceleration profile [see equa-
tions (11.14) and (11.15)] and lateral acceleration limit as the earlier 
considered boosting motor; but because of its movable nozzle the 
lateral acceleration limit is presented as:

	 LIM thrust= ⋅min( , . )12 9 81 	 (11.21)

	 and if acN(t) ≥ LIM then:

	 a t LIM
a t

a t
scNs

cNs

cN

( )
( )
( )

( , , )= = 1 2 3 	 (11.22)

	 and

	 a t thrust LIM a t a t e sL Ls L Ms( ) , ( ) ( ) ( , , )= − = =2 2 1 2 3 	(11.23)
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324	 Guidance of Unmanned Aerial Vehicles

	 iii.	The interceptor’s total commanded acceleration acs consists of the 
normal acNs and axial aLs components:

	 acs(t) = acNs(t) + aLs(t)    (s = 1, 2, 3)	  (11.24)

and instead of equation (11.13) we have:

	 a t a t grav sMs cs s( ) ( ) ( , , )= + = 1 2 3 	 (11.25)

The simulation results relates to the basic model of the kill vehicle, i.e., 
to the KV without axial control (see Table 11.13 that contains the data 
related to the most representative points of the operational area in Figure 
11.21). Figure 11.25 presents the operational area (dotted line shows its 
approximate boundary) for the case of the considered boosting motor and 
the kill vehicle without an additional axial thruster (i.e., the axial compo-
nent of the guidance law is not used) both controlled by the guidance law 
(11.10)–(11.12) [see also equation (11.19)].

The obtained operational area is compared with the operational area 
obtained earlier for the more powerful boosting motor without axial con-
trol and the kill vehicle with (dash-double dotted line) and without (dash-
dotted line) axial control and the guidance law (11.19) presented also in 
Figure 11.21. Since the tested guidance law, even without using its target 
acceleration term, enabled us to obtain better results than the traditional 
widely used guidance laws, which require information about the target 
acceleration and its practical realization is simpler than the guidance laws 
containing the target acceleration related terms, the larger operational area 
obtained for the generalized guidance law is not shown in Figure 11.25. The 
comparison of the presented operational areas enables us to conclude that 
the use of the guidance law (11.10)–(11.12) in the TVC boosting motors is 
very effective. The operational area of the considered TVC boosting motor, 
whose power is less than in the case of the boosting motor considered in 
the previous sections, is comparable with the operational area obtained for 
the more sophisticated kill vehicle with axial control.

It is obvious that the combination of these two variants, i.e., both the KV 
and the boosting motor use the considered guidance law with its axial com-
ponent, would produce a larger operational area than each separate variant. 
Moreover, better results can be obtained if the restriction (11.21) would be 
alleviated. This can be done by choosing better acceleration profile of the 
boosting motor.

In Figure 11.25, we indicated several standoff distances (see symbols 
“•”) that are far enough from the denoted operational area. For simplicity, 
they are not included in this area because other positions, not far from the 
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TABLE 11.13
Simulation Results. Standoff Distances for the TVC Boosting Motor

Ground Range 
Between Target 
and Missile 
Launch Sites (km)

Interceptor 
Position at

t = 78 s
(km)

Interceptor Elevation 
and Azimuth Reference 

Angles at t = 75 s
(degree/rad)

Time of 
Intercept 

Tint (s)
(Miss (m))

RTMg = 791.7 RM1 = –552.8
RM2 = 566.8
RM3 = 15

13.4/0.2339
134.6/2.35

186.52
(0.18)

730 RM1 = –590
RM2 = 430
RM3 = 15

8/0.14
106.2/1.85

185.75
(0.043)

698.4 RM1 = –610
RM2 = 340
RM3 = 15

8/0.14
90.4/1.7

184.21
(0.053)

636.9 RM1 = –590
RM2 = 240
RM3 = 15

8/0.14
74.51/1.3

186.03
(0.035)

574.9 RM1 = –560
RM2 = 130
RM3 = 15 

8/0.14
63/1.1

185.87
(0.2)

786 RM1 = –470
RM2 = 630
RM3 = 15

13.75/0.24
146.1/2.55

186.32
(0.048)

508 RM1 = –500
RM2 = 90
RM3 = 15

0/0.
55/0.96

182.21
(0.28)

659.2 RM1 = –110
RM2 = 650
RM3 = 15

0/0.
171.9/3.

186.25
(0.053)

519.7 RM1 = –510
RM2 = 100
RM3 = 15

0/0.
54.77/0.956

183.32
(0.19)

551.7 RM1 = –44
RM2 = 550
RM3 = 15

5.7/0.1
213.7/3.75

186.34
(0.003)

402 RM1 = –40
RM2 = 400
RM3 = 15

5.15/0.09
223.4  /3.9

174.58
(0.001)

(Continued)
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326	 Guidance of Unmanned Aerial Vehicles

indicated ones, do not give the intercept. This is explained by the lateral 
acceleration limit (11.21), which depends on thrust(t). For the indicated 
positions, the lateral acceleration components influence significantly the 
interceptor’s flight, and more remote positions from the indicated opera-
tional area boundary correspond to a more “lucky” time in thrust(t), when 
the lateral acceleration limit is larger. That is why a more complicated 
TVC motor with a higher limit (11.21) can increase the operational area 
significantly, especially the minor radius (assuming its form is similar to 
ellipse) in Figure 11.25.

The axial component of the considered guidance controlling the accel-
eration of the TVC boosting motor enables the interceptor to implement 
parallel navigation more accurately (i.e., to navigate better the kill vehicle), 
so that its maximal cumulative velocity should be less than in the case 
when the axial component is not controlled. On the other hand, since for 
the considered less powerful boosting motor the burnout velocity is less 
than 3.5 km/s, it is natural to expect that the KV’s maximal cumulative 
velocity can be higher than in the considered earlier case of a more power-
ful boosting motor.

Figure 11.26 shows the cumulative velocity change for the guidance law 
(11.19) and TVC boosting motor for the standoff positions RM1 = –552.8 km, 
RM2 = 566.8 km, RM3 = 15 km (solid line; see row 1 in Table 11.13) and 
RM1 = –110  km, RM2 = 550 km, RM3 = 15 km (dashed line; see row 8 in 
Table 11.13).

As explained before, some standoff positions were excluded from the 
operational area presented in Figure 11.25 (for simplicity, to make its 
shape look similar to the previously obtained areas), so that instead of 
RM2 = 650 km in row 8 we chose the position with RM2 = 550 km belong-
ing to the operational area; this position coincides with the boundary 

TABLE 11.13  (Continued)
Simulation Results. Standoff Distances for the TVC Boosting Motor

Ground Range 
Between Target 
and Missile 
Launch Sites (km)

Interceptor 
Position at

t = 78 s
(km)

Interceptor Elevation 
and Azimuth Reference 

Angles at t = 75 s
(degree/rad)

Time of 
Intercept 

Tint (s)
(Miss (m))

601.4 RM1 = –600
RM2 = 40
RM3 = 15

8/0.14
72.19/1.26

186.35
(0.13)

224 RM1 = –220
RM2 = 42
RM3 = 15

5.44/0.095
14.78/0.258

157.48
(0.2)
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FIGURE 11.25  Comparison of the operational areas for two types of boost-
ing motors (solid line: a projection of the target trajectory; (#): the target posi-
tion at t = 75 s; (*, + , •): standoff distances corresponding to various guidance 
algorithms.
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FIGURE 11.26  Cumulative velocity change for the guidance law (11.19) 
and TVC boosting motor; the standoff positions RM1 = –552.8/–110 km, 
RM2 = 566.8/550 km, RM3 = 15/15 km.
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328	 Guidance of Unmanned Aerial Vehicles

position of the operational area for the KV with axial control. For the cho-
sen standoff distances the burnout velocity is about 3 km/s. Comparing the 
ΔV change in Figure 11.26 with the corresponding ΔV change in Figure 
11.23 (solid lines) for the KV with an additional axial thruster, we can 
assume that the TVC boosting motor would require less powerful kill vehi-
cles than in the case of the boosting motor without axial control and the 
KV with axial control. It is obvious that a more powerful and more sophis-
ticated TVC boosting motor would require a less powerful kill vehicle with 
smaller max ΔV. As indicated, the KV’s weight restriction cannot be con-
sidered separately from the boosting motor’s weight restriction, i.e., there 
exists the general interceptor’s weight optimization problem.

The above simulations for the basic model considered in the previous 
section were repeated under the assumption of state-estimate uncertainties 
for the different sensors related to the target-tracking problem. The results 
of simulation show that the boundary standoff distances for the stochastic 
case are about 8%–10% less than for the deterministic case.

11.7  COMPARATIVE ANALYSIS WITH LAMBERT GUIDANCE

In recent years significant efforts were directed toward examining the 
possibility of using Lambert guidance to control the interceptor’s motion 
during its boost phase (see, e.g., [1,3,4]). As indicated in Chapter 9, the 
mathematically rigorous Lambert problem requires the known initial and 
final points and the time of flight tF and its use is reasonable for offensive 
missiles, in which the boost phase brings them on a gravity field trajec-
tory, which can be calculated in advance.

In the case of boost-phase intercept systems, the interceptor is a defen-
sive missile. In this case, the time of flight and the final intercept point are 
unknown. As a result, an attempt to reformulate a rigorous mathematical 
problem to solve the boost-phase intercept problem brings more questions 
rather than gives a definite positive answer.

Many modern guidance schemes use a combination of guidance laws. For 
example, SM missiles use the Kappa guidance law early in flight and then 
switch to proportional navigation for the terminal phase. This approach is 
often motivated by the dominance of certain forces over others during vari-
ous phases of the flight. For instance, the Space Shuttle is guided around a 
precalculated trajectory early in flight, when aerodynamic forces are large, 
and then switches to a linear tangent law after aerodynamic terms can 
be safely neglected. Intercontinental ballistic missile guidance is similar, 
using a simple law based on a precalculated trajectory during early flight 
and switching to Lambert guidance after departing the atmosphere [1].

The approach recommended in [1] for the ballistic missile interceptor 
guidance problem and surface-based interceptors based on the solution of 
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the optimal problem used at the initial stage of the interceptor’s flight and 
then Lambert guidance cannot be considered as a real design tool since too 
many important factors are ignored. The minimal time of intercept is the 
most important factor for the boost-phase intercept system. But a gravity 
field free trajectory takes more time than a forced trajectory. Since Lambert 
guidance deals with such trajectories, the operational area obtained based 
on Lambert guidance should be smaller than the operational area even for 
the properly applied APN guidance law.

Despite this obvious fact, in the last years significant efforts were 
directed toward examining the possibility of using Lambert guidance to 
control the interceptor’s motion during the boost stage. Assuming that air-
borne boost-phase interceptors launched by UAVs flying at about 15 km 
altitudes have the capability of acquiring and tracking the target in both 
angle and range out to approximately 1,200 km so that a predicted intercept 
point (PIP) can be generated with sufficient accuracy, the approach was 
developed to use Lambert guidance on the initial stage of the interceptor’s 
flight. When the track position, velocity, and acceleration are determined 
with sufficient accuracy, a prediction (PIP) is made of the target’s position 
at the desired intercept time tF.

This part of the guidance algorithm is a source of a significant error, 
which can be even fatal and the reason of inability of the interceptor to hit 
the target. First of all, it is not clear how to choose the desired intercept 
time. Various missiles have different burnout times. Usually, in simula-
tions operating with known target trajectories the desired intercept time is 
chosen about 10 s less than the burnout time. But it is not clear how to act in 
real situations if the type of a missile and its characteristics are unknown. 
Usually, the predicted intercept point is determined by the Taylor series for-
mula accompanied with the remark that although the Taylor series method 
is crude, its main virtue is that it does not require a priori information (i.e., 
knowledge of target type and target intentions) to make a prediction of the 
intercept point. This is a weak argument.

The problem of using a three-term Taylor series is that functions describ-
ing the acceleration profile of multistage ballistic missiles are not con-
tinuous and formally the Taylor series method cannot be applied to such 
functions; only an infinitely differentiable function can be expanded as a 
Taylor’s series. Moreover, some ballistic missiles have similar first-stage 
profiles or their initial part, based on which the initial PIP is determined, 
although their range and number of stages can be different, and a wrongly 
determined tF would bring a huge initial error. Knowledge, even approxi-
mately, of the acceleration profiles of existing ICBM and IRBM missiles 
and the approximate desirable time of intercept would enable one to evalu-
ate better the PIP based on measurements of the target motion during the 
boost stage.
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Figure 11.20 shows two possible trajectories to intercept the target. But 
if the intercept time tF is evaluated based only on the target’s known accel-
eration profile (the burnout time) it is not clear how such an approach can 
choose the appropriate interceptor’s trajectory.

In addition, the target’s position, velocity, and especially acceleration 
are determined with mistakes that also contribute to the PIP error.

It is not a surprise that simulations show the initial PIP error about 
100 km even when the time of intercept has an error only about 5%. Since 
the PIP estimate is constantly changing, the interceptor thrust vector must 
be steered in order for the interceptor to hit the latest and most refined 
estimate of the PIP [see equation (9.86)]. When the interceptor burns out, 
the PIP will still be in considerable error. That is why the KV should be 
guided to hit the target. The described approach to design the airborne 
boost-phase interceptors assumes Lambert guidance to be used when the 
control authority of the interceptor is in the axial direction and augmented 
proportional navigation (APN) to be used when the control authority of the 
interceptor is in the lateral direction, i.e., Lambert guidance is used while 
the interceptor is thrusting and APN is used by the KV during the terminal 
phase of the interceptor’s flight.

Simulations show that maximal potential down range from the target 
launch site of 5 km/s two-stage potential airborne interceptors with 20 s burn 
time and around 170 s time of intercept is about 700 km, under the unreal-
istic condition that the predicted intercept point (PIP) is known perfectly. It 
is considerably smaller when the PIP is determined approximately based on 
the three-term Taylor series method.

The simulation results of the previous section show that maximal poten-
tial downrange from the target launch site of less powerful 3.5 km/s stage 
potential airborne interceptors with a 20 s burn time and around 187 s time 
of intercept is also about 700 km (see dash-dotted line of Figure 11.21). We 
can conclude that the considered basic model in the previous sections, the 
KV without axial control and a significantly simpler boosting motor than 
required by Lambert guidance, can produce much better results (larger 
operational area) by applying the guidance laws discussed in this book. 
The use of a more sophisticated kill vehicle with the axial control or/and 
a more complicated boosting motor (which, nevertheless, is simpler than 
the TVC motor for Lambert guidance) can bring an additional, up to 20%, 
increase of the operational area (see Figure 11.21 and Figure 11.25).

What is the most important, the discussed guidance laws that implement 
parallel navigation and were obtained based on the Lyapunov approach, 
do not require information about the predicted intercept point. A com-
plicated Kappa guidance algorithm, based on the calculations of the pre-
dicted intercept point and used for SM missiles, can be justified since it 
deals with targets moving slower and having usually smoother trajectories 
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than boosting maneuvering targets. Parallel navigation does not require 
continuous determination of the predicted intercept point. Predators do 
not determine the future intercept point. They start their motion based 
on experience, which includes comparative analysis of their own inner 
resources and the resources of their victims.

It is also of importance that the recommended realizations of the tested 
guidance laws do not use information about the target acceleration. The 
proposed guidance laws, which are algorithmically very simple, can be 
implemented in both interceptor’s components—the kill vehicle and the 
boosting motor, which will be less complicated than in the case of Lambert 
guidance. This would significantly simplify the interceptor’s design.

This chapter shows how to use in practice the theoretical results pre-
sented in the book. The proposed methodology can be used at the initial 
design stage. The formulation of specific features of the problem under 
consideration, the choosing of parameters of the offered guidance laws 
based on simulations using the planar model of engagement, and then a 
more detailed evaluation of the efficiency of the developed guidance laws 
by using the three-dimensional simulation model are necessary logical 
steps to select proper guidance laws and the interceptor’s components 
that can realize these laws. The main parameters of the interceptor and 
its kill vehicle should be evaluated for each variant of the tested guidance 
laws (with and without axial control and for different types of boosting 
motors). The positive effect of the axial acceleration component has been 
established. However, the simulation results would contain highly reliable 
information to make a proper design decision only if they are obtained for 
a properly chosen boosting motor.

As indicated earlier, the interceptor’s weight problem should be for-
mulated properly. It cannot be formulated and solved separately for the 
kill vehicle and boosting motor. It is important to build a proper model of 
this multicriterial problem and apply proper computational algorithms. Its 
solution would justify the chosen parameters of the kill vehicle and boost-
ing motor or would indicate the changes needed, whose implementation 
should be accompanied with additional simulations. Only after that 6-DOF 
simulation models should be created and tested. The KV’s high velocity 
increases the requirements to the quality of information about the target. 
Informational time-delay of the kill vehicle’s IR sensors can be a factor 
decreasing the interceptor’s performance. It is of importance to examine 
the influence of the time-delay, and if it decreases the operational area con-
siderably, the modified guidance algorithms should be tested [5].

The desire to create only one class of interceptors able to defeat vari-
ous types of ICBMs and IRBMs combines the boost-phase intercept prob-
lem with the ascent phase intercept problem. The discussed guidance laws 
should be tested for various types of targets assuming the possibility to hit 
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332	 Guidance of Unmanned Aerial Vehicles

them (mostly IRBMs) in the ascent phase. The solution for this problem 
is similar to the above-considered problem and is important for the inte-
grated design of boost (ascent)-phase interceptors.
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Appendix A

A.1  LYAPUNOV METHOD

Control theory, whether it is presented in a classical or modern form, leans 
on the only and solid foundation—the Lyapunov theory of stability of 
motion.

Although the Lyapunov theory is the most effective for analysis of sta-
bility of processes described by nonlinear differential equations, we will 
apply the Lyapunov method to analysis of stability of linear differential 
equations, which are used mostly in this book. Intuitively, the stability of a 
motion means that under slightly altered initial conditions at t0 the altera-
tion in the motion will remain slight for all t > t0.

More precisely, the solution x0(t) of the differential equation:

	 x Ax x x= =, ( ) ( )t0 0 	 (A1)

is said to be stable (or the system described by the differential equation 
(A1) is stable about the equilibrium point x0 = 0), if for every ε > 0 there 
exists such δ(ε,t0) > 0 that for every solution x(t) and for all t ≥ 0 we have
x x( ) ( )t t− <0

2 ε  provided x x( ) ( )0 00
2− < δ, where x xi

2 2= ∑ . (In 
the case of linear differential equations with constant coefficients δ does 
not depend on t0.)

The system (A1) is said to be asymptotically stable, if it is stable and
lim ( )
t

t
→∞

→x 0.
Stability and asymptotic stability are determined based on the Lyapunov 

method, which assumes the utilizations of the so-called positive definite 
and positive semidefinite functions V(x) ≥ 0. The positive definite V(x) is 
positive for all x ≠ 0. The negative definite function has the opposite sign.

Theorem: The system (A1) is asymptotically stable, if there exists such 
positive definite function V(x) (V(0) = 0) that its derivative along (A1) is 
negative definite.

The derivative of V(x) along (A1) equals:

	
dV

dt

V

x

T

= ∂
∂

Ax 	 (A2)
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By choosing V(x) = xTWx, where W is a symmetric positive definite matrix, 
instead of (A2) we have xT(WA + ATW)x, so that the asymptotic stability 
condition is:

	 WA A W R+ = − <T 0 	 (A3)

i.e., the matrix (A3) must be negative definite [2].
The physical interpretation of the above theorem is the following: V(x) 

is bowl shaped. The condition (A3) implies that V(x(t)) decreases mono-
tonically with time along any trajectory of (A1). Hence V(x(t)) will even-
tually approach zero as t → ∞ Since V(x) is positive definite, we have 
V(0) = 0 only at x = 0. Hence, if we can find positive definite matrices W 
and R that are related by (A3), then every trajectory of (A1) will approach 
zero as t → ∞ The function V(x) is called a Lyapunov function of the 
system (A1).

There exist various modifications of the Lyapunov method, various 
definitions of stability for special types of dynamic systems [3,4]. Here we 
discuss the possible application of the Lyapunov method to the stability 
analysis of systems operation on a finite interval [0, tF]. By introducing:

	 τ =
−
1

t tF

	 (A4)

the interval [0, tF] with respect to t is transformed into the interval 
[1/tF, ∞] with respect to τ. Taking into account d/dt = τ2d/dt, the (A1) 
can be presented as:

	
d

d

x
Ax

τ τ
= 1

2
	 (A5)

If V(x) is the Lyapunov function with respect to equation (A5), the solution 
of equation (A5) is stable on τ-interval. Since the transformation (A4) does 
not change the sign of

	
dV

d

dV

dtτ τ
= 1

2

the solution of equation (A5) is stable also on t-interval, i.e., for each stable 
trajectory on τ-interval there exist a stable trajectory on the finite interval, 
in a sense that V(x) will decrease, when t → tF. However, because for 
τ → ∞ dV/dτ is always zero, the decrease of x cannot be asymptotic.
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A.2  BELLMAN-LYAPUNOV APPROACH

Let us consider a dynamic system described by the following equation:

	 x Ax Bu x x= + =, ( ) ( )t0 0 	 (A6)

where x is an m-dimensional state vector, u is an n-dimensional control 
vector, A and B are matrices of appropriate dimensions.

We will determine the control law u that minimizes the cost 
functional:

	 I t C t t t t dtF F
t

tF

= + +∫1
2 0

2

0

x x x Rx uT T( ) ( ) ( ( ) ( ) ( ) )




 	 (A7)

where C0 and R are symmetric positive semidefinite matrices.
To find the optimal control we will use the dynamic programming 

approach [1]. The derivation of the Bellman functional equation is given 
according to the optimality principle: every tail of the optimal trajectory is 
the optimal trajectory.

Let the optimal functional value be:

	 ϕ( ( ), ) min
( )

x t t I
u t

0 0 = 	 (A8)

Then in accordance with the optimality principle, it can be written:

	

ϕ( ( ), ) min ( ) ( ) ( ) (
( )

x x x t x RxT Tt t t C t
u t

F F0 0 0

1
2

= + tt t dt

t R t t dt

t

t

t

) ( )

( ) ( ) ( )

+( ){
+ +( )

+

∫ u

x x uT

2

2

0

0 δ

00

1
2 0

+δ

t

u t
F F

F

t C t t t

∫ }
= + +min ( ) ( ) ( ) ( )

( )
x x x RxT T uu

x

( )

( ( ), )

t dt

t t

t

t
2

0 0

0

0 ( )



{

+ + + }

+

∫
δ

ϕ δ δ

	

(A9)

Suppose that δ is small enough and that there exist partial derivatives of 
φ(x) for x ∈ [x(t0), x(t0 + δ)]. Then expanding φ(x(t0 + δ), (t0 + δ)) into the 
Taylor series in the vicinity of x(t0), after appropriate transformations we 
obtain:
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ϕ δ( ( ), ) min ( ( ) ( ) ( ) )
( )

x x Rx uTt t t t t
u t

0 0 0 0 0
21

2
= + ++{
+ ∂

∂
+ ∂

∂
+ =

ϕ

ϕ δ ϕ

( ( ), )

( ( ) ( ))

x

Ax Bu

t t

t x
t t

T

x x

0 0

0
uu u

O
=

+ }
0

δ δ( ) 	 (A10)

where

	
∂
∂

= ∂
∂

∂
∂







ϕ ϕ ϕT

mx x x1

,...,

is a row vector, and it is assumed that lim ( )
δ

δ δ
→

=
0

0O / .
Tending δ to zero and taking into account that, in accordance with the 

optimality principle, the strategy must be optimal regardless of the state in 
which the system is at the actual instant, i.e., x(t0) and u(t0) can be treated as 
the current values of the vectors x(t) and u(t), we obtain the required func-
tional equation as follows:

	 min ( ( ) ( ) ( ) ) ( (
( )u t

T

t R t t
t x

t
1
2

2
x x u AxT + + ∂

∂
+ ∂

∂
ϕ ϕ

)) ( ))+{ } =Bu t 0 	(A11)

For the existence of the minimum of the expression in brace brackets, its 
derivative with respect to u(t) (d du/ { }) must be equal zero, i.e.,

	 u B( )t
x

T= − ∂
∂
ϕ

	 (A12)

Substituting equation (A12) in equation (A11), we obtain:

	
1
2

1
2

x x Ax BBT ( ) ( ) ( )t R t
t x

t
x x

T T
T+ ∂

∂
+ ∂

∂
− ∂

∂
∂
∂

ϕ ϕ ϕ ϕ
uu( )t = 0 	 (A13)

The solution of the considered problem reduces to finding the function 
φ(x) satisfying the Bellman functional equation (A13) [or the equivalent 
equation (A11)].

The solution will be sought in the form:

	 ϕ( ) ( ) ( ) ( )x x W xT= 1
2

t t t 	 (A14)

Its substitution in equations (A12) and (A13) gives:
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	 u B W x( ) ( ) ( )t t tT= − 	 (A15)

and

	 W A W WA WBB W+ + − + =T T R 0 	 (A16)

This is the so-called Riccati differential equation. Comparing equations 
(A7) and (A14) for t = tF, we conclude that W(tF) = C0. For the quadratic 
integral criterion with the infinite upper limit [see equation (A7)], W is 
a constant matrix and instead of equation (A16) we have the so-called 
algebraic Riccati equation, which corresponds to the stationary solution of 
equation (A16) [5]:

	 A W WA WBB W RT T+ − + = 0 	 (A17)

Comparing equation (A17) with equation (A3), we can see that equation 
(A17) is the Lyapunov equation (A3) for the closed-loop system with con-
trol (A15), and W is the Lyapunov function for this system.

The above-detailed analysis was focused on establishing the linkage 
between the Lyapunov method, which is used in this book to design new 
guidance laws, and the optimal approach, more precisely, a class of opti-
mal systems based on minimization of the integral quadratic cost func-
tional. The discrete analog of Riccati equations, applied to the optimal 
filtering problem, is given in Chapter 9. The Lyapunov-Bellman approach, 
in accordance with the above-described optimality principle, was consid-
ered in Chapter 3 [see equations (3.17)–(3.49)].

In conclusion, we will obtain the expression for the optimal PN (propor-
tional navigation) guidance law (2.56) given in Chapter 2. For equations 
(2.54) and (2.55) the matrices in (A6) and (A7) are:

	 A B C R=








 =









 =









 =

0 1

0 0

0

1

0

0 0
00, ,

C
	 (A18)

so that equation (A16) can be presented as:

	

 

 

w w

w w

w

w w

11 12

12 22

11

12

0

0

0 0











+








 +

111 12

12
2

12 22

12 22 22
2

1

0
w

w w w

w w w

w









 −









 =

22 22 110( ) ( ) , ( )t w t w t CF F F= = =
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The solution of the nonlinear matrix Riccati equation presents significant 
difficulties, even for this relatively simple problem. It is easy to check that

	w t
C t t

w t
t t

C t tF

F

F
11 3 12

3
3

3
3

( )
( )

, ( )
( )

(
=

+ −
= −

+ −/ / ))
, ( )

( )
( )3 22

2

3

3
3

w t
t t

C t t
F

F

= −
+ −/

satisfy the obtained Riccati equation, so that the expression of the optimal 
control u(t) = – aM(t) = – w12x1 – w22x2 coincides with equation (2.56).
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Appendix B

B.1  Laplace Transform

For a function f(t) defined on 0 ≤ t ≤ ∞, its Laplace transform, denoted as 
F(s), is obtained by the following integral:

	 L f t F s f t e dtst{ ( )} ( ) ( )≡ = −
∞

∫0

where s is real and L is called the Laplace transform operator.
The Laplace transform exists and is defined for s > σ if f(t) is a function 

piecewise continuous on [0, K] (for every K > 0) and does not grow asymp-
totically faster than Meσt, i.e., f t Me t( ) ≤ σ .

In actual physical systems the Laplace transform is often interpreted 
as a transformation from the time-domain point of view, in which inputs 
and outputs are understood as functions of time, to the frequency-domain 
point of view, where the same inputs and outputs are seen as functions of 
complex variable. There is a unique “mapping” between functions in the 
“t-domain” and the corresponding functions in the “s-domain.”

The inverse Laplace transform is determined as:

	 L F s f t
i

F s e dsst

i

i
−

+ ∞

+ ∞

= = ∫1 1
2

{ ( )} ( ) ( )
π σ

σ

Conditions for the existence of the inverse Laplace transform are:

	 i.	lim F(s) = 0, s → ∞;
	 ii.	lim sF(s), s → ∞, is finite.

Usually, the Laplace transform is used for the solution of linear differential 
equations with constant coefficients, and we deal with rational functions 
of the complex variable s with real-valued coefficients (i.e., with single-
valued functions).
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B.2  PROOF OF THEOREM

The integral (5.13) and the related expression (5.53) for P(tF, s) present 
multiple-valued functions. We will show that P(tF, s) is the Laplace trans-
form of P(tF, t), which is bounded and is tending to 0, if the condition (5.64) 
is satisfied.

The function P(tF, s) is a multiple-valued function that has infinitely many 
branches, which are obtained, if we fix a branch of each factor in (5.34). 
By denoting the last complex exponent factor as x ep p x pi x k= + +ln (arg )2π , it 
can be presented as x e kp p k i

0
2 0 1 2π , , , ,...,=  where x p

0  corresponds to k = 0 
(see (5.38)–(5.41) given for k = 0 and s = iω). It follows from (5.34) that 
for real s ln x = 0, so that, since p is pure imaginary, x ep p x k= +1 2(arg )π , 
k = 0, 1, 2,…, where

	 p
N D Cj j j j j

j
1 22 1

=
−
−

ω ζ ω
ζ

( )

i.e., values of xp are real for real s.
By fixing branches of all other factors of (5.34) in such a way that they 

are real for real s and taking an arbitrary k branch of the last factor, we 
obtain infinitely many branches Pk(tF, s), k = 0,1,2…, real for s > 0. Evidently, 
P t s P t s ek F F

p k( , ) ( , )= 2 1π , so it suffices to consider only P(tF, s).
The function P(tF, s) defined by (5.34) is analytic in the region 

Cv = {s : Res > – σ}, where σ = min(1/τk, ζjωj), k = 1,…, l; j = 1,…, m. It 
is analytic in the right-half plane (Res ≥ 0), real-valued for real s and

	 P t s O
s

P t s O
s

sF F( , ) , ( , ) ,=






′ =






→+
1 1

1α α ∞∞, s Cv∈ 	 (B1)

for some α > 0.
Define for t > 0 and 0 < γ < σ:

	

y t
i

P t s e ds
iF

t s

i

i

F
0

1
2

1
2

( ) ( , ) lim= =
− ∞

+ ∞

→∞∫π πγ

γ

α

11

1

t
P t s e

t
P t s e ds

F
ts

ia
ia

F
ts

ia

( , )

( , )

γ
γ

γ

γ

−
+

−

(
− ′

++

∫ 


ia

	 (B2)
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y0(t) can be rewritten in the form:

	 y t P t iz e dziz t
0

11
2

( ) ( , ) ( )= + +

−∞

∞

∫π
γ 	 (B3)

Since P(tF, s)ets is real for real s, then, by the symmetry principle, the num-
bers P(tF, γ + iz)(1±iz)t are complex conjugates. Therefore, the imaginary part 
of the integrand of (B3) is an odd function of z. Hence, the integral does 
not change, if one replaces the integrand with its real part, so that y0(t) is 
real-valued.

It follows from (B1) and (B2) that y0(t) tends to 0 as t → ∞. Based on 
established relationships between the considered branches P(tF, s), we can 
conclude that each of these branches is the Laplace transform of a 
real-valued function yk(t) tending to 0 as t → ∞ and y t y t ek

p k( ) ( )= 0
2 1π , 

k = 0, 1, 2…, and y0(t) is absolutely integrable on [0, ∞).
We used the principal branch, k = 0, because it satisfies the zero con-

dition for the lower limit of integration of equation (5.13) [see equations 
(5.35)–(5.37), (5.39), and (5.40)].

The above consideration corresponds to the case when N > 2 is an 
integer. If N is not an integer, the factor sN–2 of equation (5.34) is a 
multiple-valued function. In this case, the exponent sN–2 is not well defined 
in the neighborhood of zero, so that instead of Cv = {s : Res > – σ} we have 
Cv = {s : Res > – σ/{s : – σ < s ≤ 0}} and the contour of integration in (B2) 
should be replaced with the contour consisting of four intervals, i.e.,

	 y t
i i

i

0

0

0

1
2

( ) = 



− − ∞

−

−

−

+

−

−

− + ∞

∫ ∫ ∫ ∫π γ

γ

γ

γ

γ

γ

+ + +  P s t e dsF
ts( , ) 	 (B4)

It follows from equations (B1) and (B2) that y0(t) tends to 0 as t → ∞ (see 
also [1]).
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Appendix C

C.1  AERODYNAMIC REGRESSION MODELS

For a chosen range of altitudes and Mach numbers, Missile Datcom pro-
vides tabulated data about the lift, drag, axial, and normal force coeffi-
cients as a function of trim angles of attack, i.e., for each pair ij of the Mach 
number and altitude values (Mach(i), Alt(j)) we have a table with lines 
containing coefficients CLk, CDk, CNk, and Cak corresponding to a certain 
angle of attack αTk (k = 1, 2,…,mij), where mij indicates that the trim angles 
of attack are bounded and depend upon Mach(i) and Alt(j).

To present, for example, the relationship between αT and CN by the 
second-order polynomial αT = k10 + k11CN + k12CN

2 , we should substitute 
αTk and CNk in this equation. As a result, we obtain mij > 3 linear equations 
that should be solved with respect to unknown coefficients k10, k11, and k12 
(i.e., we should solve the system of linear equations):

	 Ck = α	 (C1)

where k = (k10, k11, k12) is an unknown vector; αα = (α αT Tmij1,..., ) is the vec-
tor of trim angles (in obvious cases, here and earlier in the book we do not 
specify whether it is a row or column vector); C is the mijx3 matrix of the 
following form [2]:

	 C =

1

1

1

1 1
2

2 2
2

2

C C

C C

C C

N N

N N

Nm Nmij ij

... .... ... 	 (C2)

In various problems with finding the functional relationship based on 
experimental data, we have overdetermined systems of linear equation, 
similar to equations (C1) and (C2).

The unknown coefficients k10, k11, and k12 are determined by minimiz-
ing the sum of squares of the deviations of the data from the regression 
model (i.e., min

k
αα − Ck

2
). The optimal solution is presented as [1]:

	 k C C C C CT= =+ + −αα, ( )T 1 	 (C3)
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where the so-called pseudoinverse matrix C+ is written, assuming that the 
columns of C are linearly independent. The more general expression of 
C+ is given in [1].

Using Matlab, the least square solution can be found with the backslash 
operator (i.e., k = α\C).
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Appendix D

D.1 Runge-Kutta Method

Most of the differential equations of this book have no closed-form ana-
lytical solutions, so that numerical integration techniques should be used 
to solve or simulate these equations. We will describe the Runge-Kutta 
method, which is simple, accurate, and widely used in practice.

For a differential equation of the form:

	 y f y t= ( , ) 	 (D1)

we will describe the Runge-Kutta numerical integration procedure.
The fourth-order Runge-Kutta method is one of the standard algorithms 

to solve differential equations. Before we give the algorithm of the fourth-
order Runge-Kutta method, we will derive the second-order Runge-Kutta 
method, which is also used in many applications.

We start with the original differential equation and integrate it 
formally:

	 y f t y dt f t y dt y f t yn

t

n
t

tn

n

n

+ = + =∫ ∫
+

1
0

1

( , ) ( , ) ( , )+ ddt
t

t

n

n+

∫
1

	 (D2)

where yn = y(tn).
Various computational procedures depend on how the integral at the 

right side of equation (D2) is calculated. By changing this integral to hy t( ), 
we obtain the Euler formula, which has accuracy O(h2):

	 y y hy O h y hf t y O hn n n n n n+ = + + = + +1
2 2 ( ) ( , ) ( ) 	 (D3)

where h = tn + 1–tn is the integration interval.
Integrating equation (D2) using the trapezoid formula we obtain:

	 y y h f t y f t y O hn n n n n n+ + += + + +1 1 1
30 5. ( ( , ) ( , )) ( ) 	 (D4)

so that, based on equation (D3), we have:

	 y y h f t y f t y O h yn n n n n n+ + += + + +1 1 1
30 5. ( ( , ) ( , )) ( ), nn n n ny hf t y+ = +1 ( , ) 	

(D5)
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Integrating equation (D2) using the rectangle formula we obtain:

	 y y hf t h y t h O hn n n n+ = + + + +1
30 5 0 5( . , ( . )) ( ) 	 (D6)

where

	 y t h y hf t yn n n n( . ) . ( , )+ = +0 5 0 5

Instead of two components presented in the second-order Runge-Kutta 
method, the fourth-order formula requires knowledge of four terms:

	

k f t y

k f t h y k

k f t

n n

n n

n

1

2 1

3

0 5 0 5

0

=

= + +

= +

( , )

( . , . )

( .55 0 5 2

4 3

h y k

k f t h y hk

n

n n

, . )

( , )

+

= + +

	 (D7)

and

	 y y
h

k k k k O hn n+ = + + + + +1 1 2 3 4
5

6
2 2( ) ( ) 	 (D8)

We demonstrate the fourth-order Runge-Kutta method by considering the 
system of differential equation (9.100). According to equations (D7) and 
(D8) we have:
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	 k2 1
2

2
2

3
2= ( , , )k k ki i i

T

	 x x hkjin jin ji
2 20 5= + .
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2 2( ) 	 (D9)
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Glossary

Active homing guidance: A system of homing guidance wherein both the 
source for illuminating the target and the receiver for detecting the 
energy reflected from the target as the result of the illumination 
are carried within the missile.

Actuator: A mechanism that furnishes the force required to displace a 
control surface or other control element.

Aegis: A computerized combat system used on U.S. Navy ships capable 
of simultaneous operation against surface, underwater, and air 
threats.

Aerodynamic missile: A missile that uses aerodynamic forces to main-
tain its flight path. See also ballistic missile; guided missile.

Aileron: A control surface usually on the trailing edge of the wings used 
to control roll.

Air-based system: An antimissile system weapon fired from an aircraft.
Aircraft: A vehicle that can travel through the air.
Airfoil: A part or surface, such as a wing, canard, or tail whose shape and 

orientation control stability, direction, and lift.
Air-launched ballistic missile: A ballistic missile launched from an air-

borne vehicle.
Altitude: The vertical distance of a level, a point, or an object considered 

as a point, measured from mean sea level.
Angle of attack: The angle between the missile longitudinal x-axis and 

the projection of the missile velocity vector on the xz plane.
Aspect angle: The angle between the longitudinal axis of the target (pro-

jected rearward) and the line-of-sight to the interceptor measured 
from the tail of the target.

Attitude: The position of a body as determined by the orientation of its 
axes with respect to some frame of reference. If not otherwise 
specified, this frame of reference is fixed to the Earth.

Autopilot: A mechanical, electrical, or hydraulic system used to guide a 
vehicle without assistance from a human being.

Azimuth: In astronomy, the horizontal angular distance from a reference 
direction, usually the northern point of the horizon, to the point 
where a vertical circle, passing through a celestial body, intersects 
the horizon, usually measured clockwise.

Azimuth angle: An angle measured clockwise in the horizontal plane 
between a reference direction and any other line.
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Ballistic missile: A missile that, after an initial burst of power, coasts 
toward its target without any significant lift from its surface to 
alter the course of flight. Part or most of the missile’s trajectory is 
not subject to propulsion or control.

Ballistic trajectory: The trajectory traced after the propulsive force is ter-
minated and the body is acted upon only by gravity and aerody-
namic drag.

Booster: An auxiliary or initial propulsion system that travels with a missile 
and may or may not separate from the parent craft when its impulse 
has been delivered. A booster system may contain, or consist of, one 
or more units.

Boost phase: The first phase of a missile’s trajectory as the missile flies 
with its booster still burning. When a part of the boost phase can 
be controlled, the terms controlled and uncontrolled boost stages 
are used; often the boost phase is identified only with the uncon-
trolled boost stage, i.e., it is a part of missile flight between initial 
firing and the time when the missile reached a velocity at which it 
can be controlled.

Canard: A small surface forward on the body used as an aerodynamic 
control.

Closing velocity: The negative derivative of the range.
Control surface: Any moveable surface on an aircraft that controls its 

motion about one of the three principal axes. Ailerons, elevators, 
and the rudder are examples of control surfaces.

Countermeasures: Measures taken by an attacker to deceive a missile 
defense system (jammers, decoys, and chaff).

Doppler effect: The phenomenon evidenced by the change in the observed 
frequency of the reflected wave caused by a time rate of change in 
the effective length of the path of travel between the source and 
the point of observation.

Doppler radar: A radar system that differentiates between fixed and mov-
ing targets by detecting the apparent change in frequency of the 
reflected wave due to motion of the target or the observer.

Drag: Force of aerodynamic resistance most influenced by the viscosity of 
the medium in which the missile is traveling. Drag acts along the 
velocity vector and impedes the missile’s motion.

Early-warning radar: A surveillance radar that provides detection and 
tracking of approaching missiles or aircraft.

Elevation: The vertical distance of a point or level on or affixed to the 
surface of the Earth measured from mean sea level. See also 
altitude.

Elevation angle: An angle measured clockwise in the vertical plane 
between a reference direction and any other line.
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Endoatmospheric: Less than one hundred kilometers above the Earth’s 
surface.

Engagement: In air defense, an attack with guns or air-to-air missiles 
by an interceptor aircraft, or the launch of an air defense mis-
sile by air defense artillery and the missile’s subsequent travel 
to intercept.

Exoatmospheric: One hundred or more kilometers above the Earth’s 
surface.

Fin: A fixed or movable airfoil used to stabilize and control a missile in 
flight.

Guidance: A dynamic process of directing an object toward a given point 
that may be stationary or moving.

Guided missile: An unmanned vehicle moving above the surface of the 
Earth whose trajectory or flight path is capable of being altered by 
an external or internal mechanism. See also aerodynamic missile; 
ballistic missile.

Heading: The direction in which the longitudinal axis of the aircraft is 
pointing, expressed in degrees from North.

Helicopter: A rotorcraft with one or more sets of powered blades.
Hit-to-Kill: A missile defense approach in which an interceptor rams the 

target, destroying it by force of impact.
Homing guidance: A system by which a missile steers itself toward a 

target by means of a self-contained mechanism controlled by a 
certain guidance law.

Homing phase: A part of the missile flight controlled by the missile-
contained system.

ICBM: Intercontinental ballistic missile, a land-based missile with a range 
of more than 5500 kilometers.

Illuminate: Direct radar energy at an object sufficient to obtain radar tar-
geting information.

Inertial guidance: A guidance system designed to project a missile over 
a predetermined path, wherein the path of the missile is adjusted 
after launching by devices wholly within the missile and inde-
pendent of outside information. The system measures and con-
verts accelerations experienced to distance traveled in a certain 
direction.

Inertial navigation system: A self-contained navigation system using 
inertial detectors, which automatically provides vehicle position, 
heading, and velocity. Also called INS.

Inertial reference frame: One that is not accelerating.
Infrared: Wavelengths slightly longer than those forming the color red. 

Every type of object radiates a unique infrared signature, which 
can be identified by measuring the received energy.
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Infrared imagery: Imagery produced as a result of sensing electromag-
netic radiations emitted or reflected from a given target surface in 
the infrared position of the electromagnetic spectrum (approxi-
mately 0.72 to 1000 microns).

Integrated fire control system: A system that performs the functions of 
target acquisition, tracking, data computation, and engagement 
control, primarily using electronic means and assisted by electro-
mechanical devices.

Interceptor: A kill vehicle joined with a booster that together are launched 
against an offensive missile.

Intercept point: The point to which a vehicle is guided to complete an 
interception.

Kill probability: A measure of the probability of destroying a target.
Kill vehicle: A self-contained package of sensors, thrusters, and naviga-

tion gear that, once separated from its booster, can identify a target 
and maneuver into a collision with it.

Land-based system: An antimissile system that uses locations on land to 
shoot interceptors at incoming missile.

Lift: A component of the total aerodynamic force acting on a body per-
pendicular to the undisturbed airflow relative to the body. Lift is 
directed perpendicularly up with respect to drag and is the main 
force controlling the flight of an aerodynamic missile.

Line-of-sight: The line that starts at the reference point (e.g., the missile) 
and passes through the objective of the guidance (the target).

Mach: Speed of sound at sea level (331.46 m/s) that is measured in mul-
tiples (Mach 1, Mach 2, etc.).

Mach number: The ratio of the velocity of a body to that of sound in the 
surrounding medium.

Maneuver: A movement to place a pursuer in a position of advantage over 
the enemy.

Midcourse guidance: The guidance applied to a missile between termina-
tion of the boost phase and the start of the terminal phase of flight.

Midcourse phase: Coming between the boost and terminal phase. A part 
of missile flight when the missile is guided by an external weapon 
control system. See also boost phase; terminal phase.

Miss distance: The displacement between the missile and target.
Missile: A weapon that is launched and guided toward a target.
Missile control system: A system that serves to maintain attitude stability 

and to correct deflections. See also missile guidance system.
Missile guidance system: A system that evaluates flight information, cor-

relates it with target data, determines the desired flight path of a 
missile, and communicates the necessary commands to the mis-
sile flight control system. See also missile control system.
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Navigation: A dynamic process of directing an object toward a given sta-
tionary point.

Parallel navigation: Guidance when the direction of the line-of-sight is 
kept constant, i.e., the line-of-sight rate equals zero.

Passive homing guidance: A system of homing guidance wherein the 
receiver in the missile utilizes radiation from the target.

Pitch: The movement of a missile or an aircraft about its lateral axis.
Propellant: The ejected gas from a rocket.
Proportional navigation: A method of homing guidance in which the 

missile acceleration commands are proportional to the line-of-
sight rate.

Pursuit: An offensive operation designed to catch or cut off a hostile force 
attempting to escape with the aim of destroying it.

Radar: A radio detection device that provides information on range, azi-
muth, and/or elevation of objects.

Ramjet: A jet-propulsion engine containing neither compressor nor tur-
bine that depends, for its operation, on the air compression accom-
plished by the forward motion of the engine.

Range: The distance between any given point and an object or target. In 
two-point guidance systems, the range means the distance between 
the missile and target.

Rocket: A vehicle propelled by the recoil force produced when part of its 
mass is ejected at high velocity; it does not rely on interaction with 
its environment for propulsion.

Roll: The rotary motion of a missile or an aircraft around its longitudinal 
axis.

Rotorcraft: An aircraft that derives its lift from rotating lifting surfaces 
(usually called blades).

Sea-based system: An antimissile system that operates from floating plat-
forms, whether Navy ships or specially outfitted barges.

Seeker: A device used in a moving object (especially a missile) that locates 
a target by detecting light, heat, or other radiation.

Semiactive homing guidance: A system of homing guidance wherein the 
receiver in the missile utilizes radiations from the target that has 
been illuminated by an outside source.

Sideslip angle: The angle between the missile longitudinal x-axis and the 
projection of the missile velocity vector on the xy plane.

Surface-to-air guided missile: A surface-launched guided missile for use 
against air targets.

Surface-to-surface guided missile: A surface-launched guided missile 
for use against surface targets.

Terminal guidance: The guidance applied to a guided missile between 
midcourse guidance and arrival in the vicinity of the target.
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Thrust: The instantaneous recoil force produced by a rocket.
Time-of-flight: Elapsed time from the instant a missile leaves a launcher.
Time-to-go: Calculated time to go until the end of the flight assuming that 

it will correspond to intercept.
Trajectory: The dynamic path followed by an object under the influence 

of gravity and/or other forces.
UAV: A powered aerial vehicle that does not carry a human operator, can 

fly autonomously or be piloted remotely, can be expendable or 
recoverable, and can carry a lethal or nonlethal payload.

Unmanned aerial vehicle: A space-traversing vehicle that flies without a 
human crew on board and that can be remotely controlled or fly 
autonomously.

Warhead: That part of a missile, rocket, or other munitions that contains 
either the nuclear or thermonuclear system, high explosive system, 
chemical or biological agents, or inert materials intended to inflict 
damage.

Yaw: The rotation of a missile or an aircraft about its vertical axis.
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