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Preface
An analytical approach is used to establish structural properties of curved shock 
waves. Special care is given to assumptions, implementation requirements, and the 
frequent use of illustrative examples. These provide partial verification of the pre-
ceding analysis. This book is a research monograph and textbook with problems 
for which a Solutions Manual is available. The text is at the graduate level, in part, 
because some of the mathematical techniques utilized are new to shock waves and 
compressible flow in general.

The principle contribution is a new theory for the tangential and normal derivatives 
of flow properties, such as the pressure and velocity components, just downstream 
of an infinitesimally thin shock wave. A steady, two-dimensional or axisymmetric 
shock with a uniform freestream is initially treated. The text concludes with the 
general case where the upstream flow is nonuniform and the unsteady shock is three-
dimensional. In this case, formulation of the shock-based Euler equations required 
the introduction of the mathematical techniques mentioned above. Consistently, ini-
tial data, such as the shape of the shock and upstream flow conditions, is prescribed 
in a Cartesian coordinate system, as would be the case for computational fluid 
dynamics (CFD) or experimental data. These data are systemically transformed to 
provide shock-based derivative results. Numerous applications are discussed. These 
include derivatives along characteristics, wave reflection from the downstream sur-
face of a shock, intrinsic coordinate derivatives useful for curved shock theory, and 
so forth. A number of illustrative examples are also provided. The final one is for a 
curved, unsteady shock that is based on a single Mach reflection shock experiment.

Aside from derivatives, there is an extensive treatment of shock-generated vortic-
ity. A novel analysis of triple points is also included. Both analyses are accompanied 
with a wide-ranging parametric study.
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1

1 Introduction

The most distinctive feature of a supersonic flow is shock waves. They were discovered 
theoretically by Rankin, in 1870, and Hugoniot, in 1877. Ernst Mach was the first 
to demonstrate their existence by publishing in the 1880s schlieren photographs of 
a bullet in supersonic flight. Van Dyke (1982) provides an enlargement of one of 
these photographs. This remarkable picture shows a detached bow shock, a shoulder-
based expansion wave, a recompression shock, and a turbulent wake. Nevertheless, 
shock wave theory developed slowly until World War II. At the time of the war, 
only the basic fundamentals were known; this material is usually covered in an 
undergraduate compressible flow course. After the war, the pace of discovery quick-
ened, spurred on by interest in supersonic flight, nuclear explosions, and the reentry 
physics of long-range missiles.

A range of shock wave topics have been under investigation. These range from 
the internal structure of a shock to shock wave reflection, refraction, diffraction, and 
interference (see Emanuel 1986, Chapter 19). Shock waves occur in both steady and 
unsteady flows. They may be associated with a wide variety of physical phenomena 
(e.g., chemical reactions that change the shock into a detonation wave). Interaction 
phenomena are also important, especially shock wave boundary-layer interaction.

A selective treatment of analytical shock wave topics is provided. Computational 
and experimental topics are not considered, as the author has no expertise in these 
areas. More comprehensive treatments can be found (e.g., in Ben-Dor 2007; Ben-Dor 
et al. 2001; Glass and Sislian 1994). Much of the monograph is devoted to establish-
ing and applying the tangential and normal derivatives of various flow properties, 
just downstream of a shock. The “just downstream” proviso holds throughout the 
manuscript. In this regard, a cohesive and systematic presentation is provided of 
these derivatives for a curved shock.

Aside from derivatives, shock-generated vorticity and triple points are promi-
nently treated. Analytical applications, for example, include the determination if a 
reflected wave from the downstream side of a shock is expansive or compressive. 
Many other analytically oriented topics are discussed. The primary function of this 
monograph, hopefully, is to provide an analytical understanding of shock waves.

The first publication to systematically deal with the derivatives of flow variables 
on the downstream side of a curved, two-dimensional shock is by Thomas (1947). 
This work was extended by Kanwal (1958b) to a three-dimensional shock. Neither 
author considers normal derivatives, and both utilize a succinct tensor presentation. 
In their treatment of the inverse problem for a blunt body flow, Hayes and Probstein 
(1959) solve for the relevant normal derivatives just downstream of a spherical-shaped 
(axisymmetric) shock.

The dominant part of this monograph presents the author’s analysis for the tangen-
tial and normal derivatives just downstream of a curved shock. Much of the analysis is 

© 2013 by Taylor & Francis Group, LLC



2 Shock Wave Dynamics: Derivatives and Related Topics

for a two-dimensional or axisymmetric shock. But Chapter 7, a triple-point analysis, 
and Chapter 9, a derivative analysis, allow for a nonuniform upstream flow and for a 
three-dimensional shock. Throughout the analysis, the strength of the shock is arbi-
trary (e.g., the treatment holds for very weak shock waves).

Analytical treatments of the jump conditions, tangential and normal derivatives 
of common flow properties, such as the pressure, density, and velocity components, 
are useful in a variety of ways. The resulting equations, including for the vorticity, 
can be used to check computational fluid dynamics (CFD) solutions (an early inten-
tion), and assist in the further development of curved shock theory that has been 
recently accomplished (see Molder 2012). As pointed out by Hornung (2010), it can 
be used to treat detonation-type flows. It may be of some use in the further develop-
ment of shock-capturing CFD schemes.

The discussion presumes familiarity with the basic concepts of a shock wave, 
including the equations for an oblique shock in a steady flow of a perfect gas. 
Familiarity with, for example, the theory of characteristics, is also desirable. This 
text is an extension of Chapter 6 in Emanuel (2001), which is the basis for Chapters 
2 through 4. A number of chapters and appendices in this reference also provide 
background material relevant to our discussion. This is evident by the occasional 
reference to this book.

The standard jump conditions across an oblique shock are algebraic equations 
that are independent of time and any coordinate system. At a given point on the 
shock, they thus hold in an unsteady, three-dimensional flow, where the upstream 
flow may be nonuniform. However, this generality is limited; it only holds at an 
instant of time (i.e., a snapshot) when adequate shock data are available. Because 
a flow field solution is not considered, independent shock data would similarly be 
required at a different time. If the jump conditions utilize a particular gas model, 
such as a calorically imperfect gas, the generalized jump equations still apply. “At a 
given point on the shock” means the analysis is a local one. Central to the analysis 
is the use of a flow plane (Kaneshige and Hornung 1999), which is defined by the 
upstream velocity and by a normal vector to the shock’s surface, both at the point of 
interest on a shock. The change in the fluid’s momentum, across the shock, is con-
fined to the flow plane.

The jump conditions and tangential derivatives thereby hold under the general 
conditions mentioned above. This is not the case, however, for the normal derivatives. 
These cannot be obtained by simply differentiating the jump conditions in a direction 
normal to the shock, because these relations only hold on the shock’s surface. Instead, 
the normal derivatives require the use of the Euler equations in a shock-based coordi-
nate system. Normal derivative results are therefore more restrictive.

The tangential derivatives are readily obtained when the shock is steady and the 
upstream flow is uniform. If the upstream flow is nonuniform, these derivatives are 
altered. If a curved shock is moving into a uniform freestream, the tangential deriva-
tives must account for the upstream variation, along the shock of the shock’s velocity. 
(This point is illustrated in Section 9.10.)

If the freestream or upstream flow is uniform and the overall flow is steady, 
the flow is automatically homenergetic (constant stagnation enthalpy). A nonuni-
form freestream, in a steady flow, may be homenergetic or not. (A nonuniform, 
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3Introduction

homenergetic flow example is discussed in Section 8.7.) The assumption of a homen-
ergetic flow is not always a severe restriction. This is because of the substitution 
principle (Emanuel 2001, Chapter 8). This principle holds for the steady, three-
dimensional Euler equations for a perfect gas. The principle keeps invariant the 
geometry, including that of the streamlines and of any shocks. Also invariant are the 
pressure and Mach number. A flow field, however, can go from being homenergetic 
to isoenergetic, where the stagnation enthalpy, which is constant along a streamline, 
can now vary from streamline to streamline. For instance, a conventional uniform 
freestream can become a rotational, isoenergetic, parallel flow. The homenergetic 
assumption is often assumed or is analytically convenient, but can sometimes be 
removed by invoking the substitution principle.

The next chapter derives general shock jump conditions that hold for an unsteady, 
three-dimensional flow without assuming a perfect gas or a uniform upstream flow. 
As an illustration, this chapter concludes with an analysis of an unsteady, normal 
shock. The third chapter derives shock-based basis vectors, scale factors, and orthog-
onal, curvilinear coordinates for a generic two-dimensional or axisymmetric shock. 
Chapter 4 applies the foregoing material to obtain the jump conditions, tangential 
derivatives along the shock in the flow plane, and the normal derivatives in the down-
stream direction. Results, with a uniform notation used throughout the rest of the 
text, are summarized in an appendix.

Much of the analysis in Chapters 2 through 4 comes from Chapter 6 of Emanuel 
(2001). In turn, this material stems from Emanuel and Liu (1988). Subsequent mate-
rial, however, is new.

A wide variety of analytical applications of the material in Chapter 4 are dis-
cussed in the fifth chapter: for instance, conditions when the shock is normal to 
the freestream, the Crocco and Thomas points, derivatives along Mach lines and 
along intrinsic coordinates, flows with convex or concave shocks, and so forth. 
Typically, results are exact, explicit, algebraic, and readily computer programmable. 
Shock-generated vorticity and its substantial derivative are the topic of Chapter 6. 
The chapter concludes with a parametric study of the vorticity and its substantial 
derivative for a variety of freestream Mach numbers for generic, two-dimensional, 
or axisymmetric shocks. A side benefit illustrates the three-dimensional relief effect 
associated with an axisymmetric flow. A second break is made in Chapter 7 from 
the emphasis on derivatives. Instead, a novel treatment of a triple-point is provided. 
These occur with a lambda shock wave system, which is a relatively common flow 
configuration. Chapter 8 generalizes the Chapter 4 analysis of a two-dimensional or 
axisymmetric shock when the upstream flow is nonuniform. A simple model illus-
trates the analysis.

The last chapter provides a general derivative formulation that often uses an opera-
tor approach to simplify derivative evaluations. In the second section, a shock-based, 
orthogonal basis system is introduced. The analysis in this section holds for a three-
dimensional, unsteady shock, the gas need not be perfect, and the upstream flow may 
be nonuniform, including being rotational and nonhomenergetic. The third section 
introduces a steady, elliptic paraboloid shock, with a uniform freestream (for ana-
lytical simplicity) that is used to illustrate the analysis in Sections 9.4 through 9.8, 
where the shock is steady. In the limit of the elliptic paraboloid shock becoming 
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4 Shock Wave Dynamics: Derivatives and Related Topics

two-dimensional or axisymmetric, results are obtained that are compared with earlier 
material, thereby partially validating the more general analysis. (This “bootstrap” 
approach was essential for the development of the normal derivative analysis in 
Section 9.7.) The next section evaluates the curvatures of the shock in the flow plane 
and in a plane normal to the shock and the flow plane. The fifth section evaluates the 
vorticity on the downstream side of the shock, but the flow is now assumed to be a 
perfect gas and is also homenergetic. The perfect gas assumption is utilized in the rest 
of the chapter, but not the homenergetic assumption. Section 9.6 obtains the jump con-
ditions and the tangential derivatives in the two orthogonal planes mentioned above. 
An approach similar to that in Chapter 3 failed to produce a global, shock-based coor-
dinate system. As in Chapter 4, this system was to be used with the Euler equations to 
obtain the normal derivatives. Appendix K shows, by means of several examples, that 
the desired coordinate system does not exist for a three-dimensional shock.

Instead, in Section 9.7, a new technique is provided for formulating the steady 
Euler equations in a curvilinear, shock-based coordinate system. These equations 
then provide the general relations for the normal derivatives. This method can be 
viewed as a local analysis in contrast to unsuccessful global approaches. Results 
are summarized in three appendices, where the last one is for an elliptic paraboloid 
shock. Section 9.8 discusses a few analytical applications, such as normal derivatives 
when the shock is normal to its upstream velocity. Also provided is a discussion of a 
general intrinsic coordinate basis.

Section 9.9 provides the analysis for the case where the upstream flow is non-
uniform and the unsteady shock is three-dimensional. The approach is an extension 
of that in Section 9.7.  The final section applies the unsteady theory to a curved, 
reflected shock that is part of a single Mach reflection pattern. The data used stem 
from a shock tube experiment.

Following the chapter, presented in the following order, are the appendices, prob-
lems, and references. Some of the problems are an integral part of the analysis and 
are referred to in the text. There are many appendices—the first is a selective nomen-
clature for the more frequently encountered symbols. Some of these appendices are 
of a summary nature designed to make the analysis more reader- and user-friendly.
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5

2 General Jump Conditions

2.1  Basis Vector System and Shock Velocity

Only the fundamental assumption of a continuum flow with an infinitesimally thin 
shock is pertinent to this section. A fixed Cartesian coordinate system xi and its 
corresponding orthonormal basis |̂ i are introduced. The shock wave surface, which 
may be in motion, is represented by

	 F = F(xi,t) = 0	 (2.1)

Conditions just upstream and just downstream of the surface are denoted with sub-
scripts 1 and 2, respectively. In a more conventional treatment, the upstream flow is 
uniform and steady, and the “just upstream” qualification is unnecessary. The veloc-
ity, in a laboratory frame, just upstream and downstream of the shock, is written as

	 V V x t j( , ) |̂ , 1,2j j i k i,

��
= = 	 (2.2)

where xk and t satisfy Equation (2.1), and i is summed over. The arbitrary sign of F 
is chosen so that

	 V F
��

1 0⋅∇ ≥ 	 (2.3)

for some region of the shock’s surface. For this region, the flow is primarily in the 
downstream direction.

A unit vector n̂ is defined as

	 = = ∇
∇

n n x t
F

F
ˆ ˆ( , )

| |
i 	 (2.4)

which is normal to the shock and, in view of Equation (2.3), is oriented in the down-
stream direction. The shock wave’s velocity, 

��
V s, is introduced that is normal to its 

surface. As will become evident, a tangential shock wave velocity component is not 
defined. This normal velocity is obtained by setting the substantial derivative of the 
surface equal to zero

	

��F
t

V F 0s
∂
∂

+ ⋅∇ =

With 
��
V s proportional to n̂, we obtain

	
��
V V n

F
F
t

nˆ 1
| |

ˆs s= = −
∇

∂
∂

	 (2.5)
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6 Shock Wave Dynamics: Derivatives and Related Topics

From the viewpoint of the shock, only the velocity of the gas 
��
V j

*  relative to it is 
significant. These velocities are defined by

	
� � � �
V V V V V n jˆ, 1,2j j s j s

* = − = − = 	 (2.6)

When Vs < 0, the shock is moving into the upstream flow, and there is an increase in 
the component of 

��
V j

*  that is normal to the shock.
The vectors n̂ and 

��
V1

*  define a unique plane, called the flow plane (Kaneshige 
and Hornung 1999). Each point of the shock contains such a plane. One exception is 
when the shock is normal to 

��
V1

* , which is discussed later. Momentum considerations 
show that 

��
V 2

*  lies in this plane. Equation (2.6) then shows that the 
��
V j also lie in the 

flow plane.
A unit vector t̂  is defined that is tangent to the shock in the flow plane, as sketched 

in Figure 2.1. We have a right-handed, orthonormal basis t n bˆ, ˆ, ˆ where the binormal 
b̂ is perpendicular to n̂ and t̂ . It is given by ×t nˆ ˆ and points into the page. This basis 
moves with the shock, where t̂  and n̂ remain in the flow plane. The basis is designed 
to become the |̂ i basis by a solid-body rotation. Suppose the shock is normal to 

��
V1

*, 
then, at this point, a solid-body rotation yields

	
n t bˆ |̂ , ˆ |̂ , ˆ |̂1 2 3= = = −

where 
��
V V |̂1

*
1
*

1= .
Starting in Chapter 3, a right-handed, orthogonal coordinate system, ξi, is intro-

duced where ξ1 is tangent to t̂ , ξ2 to n̂, and ξ3 to b̂ . It is especially convenient for ξ1 
to be tangent to t̂  to expedite the normal derivative analysis in Section 4.4. (This is 
the reason for using t n bˆ, ˆ, ˆ as the orthogonal basis rather than n t bˆ,ˆ, ˆ where b̂  = |̂3.) 
Once the hi scale factors are obtained in Chapter 3, the ξ1, ξ2, ξ3 coordinates are 
replaced with s,n,b coordinates, respectively.

The flow plane definition enables us to introduce the θ and β angles. These 
are conventionally used with a steady, planar, oblique shock wave and a uniform 
upstream flow. Figure 2.1 is a sketch for a convex shock, relative to the freestream, 
and shows θ as the acute angle between 

��
V1

*
 and 

��
V 2

*
 and β as the acute angle between ��

V1
* and the shock. Both angles are in the first quadrant. In Sections 5.1 and 5.5, 

V2V1 θ
β

t̂

n, nˆ

**

s
Shock
wave

Figure 2.1  Section through a shock that contains both V
��

1
*
 and n̂ vectors (i.e., the flow 

plane). The b̂  vector is normal to the plane of the page and points into the page.
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7General Jump Conditions

a concave shock, relative to the freestream, is discussed. In the concave case, θ is 
negative and in the fourth quadrant, while β is in the second quadrant. In gen-
eral, their values may change from point to point, or with time at a given point, 
on the shock’s surface. When the shock is normal to 

��
V1

*
, θ and β are 0° and 90°, 

respectively.
Although F and 

��
V1

*  are presumed known in terms of a Cartesian coordinate sys-
tem, the t n bˆ, ˆ, ˆ system is far more convenient for the analysis. For instance, from 
Figure 2.1, we obtain

	
��

= β + βV V n t(sin ˆ cos ˆ)1
*

1
* 	 (2.7a)

	
��

= β − θ + β − θV V n t[(sin( ) ˆ cos( )ˆ]2
*

2
* 	 (2.7b)

while Equations (2.6) yield

	
��

= β + + βV V V n V t( sin ) ˆ cos ˆ
s1 1

*
1
*

	 (2.8a)

	
��

= β − θ + + β − θV V V n V t[ sin( ) ] ˆ cos( )ˆ
s2 2

*
2
* 	 (2.8b)

Alternatively, an explicit form for 
��
V1

* is

	
�� ��
V V V n V

F
t

F
F

ˆ |̂
| |

s i i1
*

1 1, 2= − = + ∂
∂

∇
∇

	 (2.9)

where the quantities on the rightmost side are known functions of xi and t. We there-
fore view 

��
V1

*
 as a known velocity.

The binormal basis vector is obtained by taking the cross product of 
��
V1

*
 with n̂:

	
��

= − ×
β

b
n V

V
ˆ ˆ

cos
1
*

1
*

	 (2.10a)

where the denominator converts 
��

×n Vˆ 1
*
 into a unit vector. The t̂  vector is given by

	 t b n
V

V
nˆ ˆ ˆ 1

cos
sin ˆ1

*

1
*

��
= − × =

β
− β







	 (2.10b)

which reduces to an identity with the use of Equation (2.7a). With the aid of Equations 
(2.4) and (2.7a), β is given by

	
��

β = ⋅ ∇
∇

V F

V F
sin

| |
1
*

1
*

	 (2.11)

A relation for θ is discussed in Section 2.3, “Explicit Solution.”
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8 Shock Wave Dynamics: Derivatives and Related Topics

Parameters b̂, t̂ , and n̂ have been evaluated in terms of 
��
V1

*. It is also useful to 
obtain these parameters in terms of 

��
V1. We write b̂ as

	

�� �� ��
��)(

= − ×
β

= −
× −

β
= − ×

β
= − ∇ ×b

n V

V

n V V n

V

n V

V I
F Vˆ ˆ

cos

ˆ ˆ

cos

ˆ

cos
1s1

*

1
*

1

1
*

1

1
* 1 	 (2.12)

where

	
��

I V F V F V F| | cos [ | | ( ) ]1
*

1
*2 2

1
* 2 1/2= ∇ β = ∇ − ⋅∇

in view of Equation (2.11). With the derivative notation

	
= ∂

∂
= ∂

∂
F

F

t
, F

F

x
t x

i
i

and Equation (2.9), we obtain

	
= +

∇
V V

F F

F| |
i i

t x
1,
*

1, 2
i

	
�� ��

⋅ ∇ = ⋅ ∇ +V F V F Ft1
*

1

Hence, I becomes

�� �� ��

��

I V
F

F
V F

F

F
F V F F V F F

V F V F

2
| | | |

| | 2

| |

t t
t t1

2
2 1

2

2
2

1
2

1
2

1/2

1
2 2

1
2 1/2

( )

( )

= +
∇

⋅∇ +
∇







∇ − ⋅∇ − ⋅∇ −













= ∇ − ⋅∇





	 (2.13)

By comparison with the first I equation, we observe that V1
* , 

��
V1

*
 can be replaced with

V1 , 
��
V1. Finally, note that t̂  can be written as

	
�� �� ��

t b n
I F

F V F
I F

F V V F Fˆ ˆ ˆ 1
| |

1
| |

| |1
2

1 1( ) ( )= − × = −
∇

∇ × × ∇ = −
∇

∇ − ⋅∇ ∇  	 (2.14)

Consequently, the t n bˆ, ˆ, ˆ basis and β can be defined using either V1
*��
 or V1

��
.

2.2 C onservation Equations

The same principles that yield the governing Euler equations are applied to a differ-
ential volume element that contains a piece of the shock. Application of these prin-
ciples then results in the jump conditions, whereby flow conditions on the two sides 
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9General Jump Conditions

of the shock are initially symmetrically related. For these equations, the substantial 
derivative is required:

	 DF

Dt

F

t
V F j, 1,2

j
j

��



 = ∂

∂
+ ∇ =⋅ 	 (2.15)

where the velocity is for a fluid particle in a laboratory frame.
Conservation of the flux of mass across the shock, in a laboratory frame, is 

given by

	
DF

Dt

DF

Dt1 2

ρ



 = ρ



 	 (2.16)

where ρ is the density. This relation can be understood by writing the upstream 
side as

	

DF

Dt

F

t
V F F

F

F

t
n V

1
| |

ˆ
1

1 1 1 1

�� ��
ρ



 = ρ ∂

∂
+ ⋅∇



 = ρ ∇

∇
∂
∂

+ ⋅





with a similar result for the downstream side. Mass flux conservation now becomes

	

�� ��ρ
∇

∂
∂

+ ρ ⋅ = ρ
∇

∂
∂

+ ρ ⋅
F

F

t
n V

F

F

t
n V

| |
ˆ

| |
ˆ1

1 1
2

2 2

The two n̂ terms represent the mass flux across the shock, as if it were steady, while 
the two ∂F/∂t terms provide the contribution from a moving shock. Recall that 
|∇F|−1(∂F/∂t) also appeared in Equation (2.5), where it represents the normal compo-
nent of the velocity of a moving shock.

In a similar manner, equations are written that represent, across the shock, the 
normal component of momentum, the tangential momentum component, and the 
energy. We thereby obtain

	 p F
DF

Dt
p F

DF

Dt
| | | |2

2

1

2
2

2

∇ +ρ













 = ∇ +ρ













 	 (2.17)

	 V t
DF

Dt
V t

DF

Dt
ˆ ˆ

1 2

�� ��
ρ ⋅



 = ρ ⋅



 	 (2.18)

	 h F
DF

Dt
h F

DF

Dt
| |

1
2

| |
1
2

2
2

1

2
2

2

∇ + 













 = ∇ + 













 	 (2.19)

where p and h are the pressure and enthalpy. Equations (2.16) through (2.19) are the 
symmetrical jump conditions in a general form. (In addition, the second law requires 
the entropy condition, S2 ≥ S1. We do not list it, because it is not directly utilized 
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10 Shock Wave Dynamics: Derivatives and Related Topics

in the subsequent analysis.) This form is not a convenient one. Explicit equations 
for the unknowns p2, ρ2, h2, and V2

* are desired.
With the aid of Equations (2.4) through (2.6), the substantial derivatives that 

appear in the jump conditions now become

	

DF

Dt

F

t
V V n F

F

t
V F

F

F

t

F F

F
V F jˆ 1

| | | |
, 1,2

j
j s j j
* * *( )



 = ∂

∂
+ + ⋅∇ = ∂

∂
+ ⋅∇ −

∇
∂
∂

∇ ⋅∇
∇

= ⋅∇ =
�� �� ��

Hence, the conditions simplify to

	
�� ��
V n V nˆ ˆ*

1

*

2
⋅ ⋅( ) ( )ρ = ρ 	 (2.20a)

	
�� ��

p V n p V nˆ ˆ* 2

1

* 2

2
( ) ( )+ ρ ⋅





= + ρ ⋅





	 (2.20b)

	
�� ��) )( (⋅ = ⋅V t V tˆ ˆ*

1
*

2 	 (2.20c)

	 h V n h V n
1
2

ˆ 1
2

ˆ* 2

1

* 2

2

�� ��( ) ( )+ ⋅





= + ⋅





	 (2.20d)

These are still symmetrical jump conditions, but now in a frame fixed to the shock. 
They have a more familiar appearance as compared to the preceding laboratory 
frame version. We could have started with these relations in preference to Equations 
(2.16) through (2.19).

2.3 E xplicit Solution

In order to evaluate the dot products that appear in the equations in Equation (2.20), 
Equation (2.7) is utilized, with the result

	
��

⋅ = βV t Vˆ cos1
*

1
* 	 (2.21a)

	
��

⋅ = βV n Vˆ sin1
*

1
* 	 (2.21b)

	
�� )(⋅ = β − θV t Vˆ cos2

*
2
* 	 (2.21c)

	
�� )(⋅ = β − θV n Vˆ sin2

*
2
* 	 (2.21d)

Equation (2.20c) for the velocity tangency condition yields

	
)(= β

β − θ
V V

cos
cos

2
*

1
* 	 (2.22)
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11General Jump Conditions

This relation cannot be used for a normal shock, because the ratio of cosines is inde-
terminant. (The normal shock formulation is discussed in the subsequent illustrative 
example.)

Conservation of mass flux, Equation (2.20a) yields

	 )(ρ β = ρ β − θV Vsin sin1 1
*

2 2
*

In combination with Equation (2.22), this becomes

	 )(ρ = ρ β
β − θ

tan
tan

2 1 	 (2.23)

Equation (2.20b) produces

	

p p V V

p V

p V

sin sin

sin
sin cos sin

cos

sin sin

cos

2 1
*2

1
2 *2

2
2

1
*2

1

2

1
*2

1

( )

( )

( ) ( ) ( )

( )
( )

( )

= + ρ β − ρ β − θ

= + ρ β −
β β β − θ

β − θ










= + ρ
β β
β − θ

	 (2.24)

where Equations (2.22) and (2.23) are used. The energy equation now becomes

	

h h V V

h V

h V

1
2

sin
1
2

sin

1
2

sin
cos sin

cos

1
2

sin 2 sin

cos

2 1 1
*2 2

2
*2 2

1 1
*2 2

2 2

2

1 1
*2

2

( )

( )
( )

( )
( )

= + β − β − θ

= + β −
β β − θ

β − θ










= +
β − θ θ

β − θ
	 (2.25)

Downstream variables V2
* , ρ2, p2, and h2 are explicitly provided by these 

equations. The equations hold for unsteady, three-dimensional shocks and do not 
assume a perfect gas; note the absence of the ratio of specific heats. Variables are 
not normalized, because their upstream counterparts are functions of position 
on the shock surface and of time. The downstream velocity 

��
V 2 is then provided 

by Equation (2.8b). The parameters on the right sides consist of β, θ, ρ1, p1, h1, 
and V1

*. Except for θ, these quantities are presumed known, where β is given by 
Equation (2.11).
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12 Shock Wave Dynamics: Derivatives and Related Topics

To evaluate θ, a thermodynamic state equation involving ρ, p, and h needs to be 
introduced. Because the enthalpy is present in only one jump condition, the most 
convenient form for this relation is

	 h = h(p,ρ)	 (2.26)

Equation (2.25) thus becomes

	 ) )( ( )
)

(
(ρ = ρ +

θ β − θ
β − θ

h p h p V, ,
1
2

sin sin 2

cos
2 2 1 1 1

*2
2 	 (2.27)

Equations (2.23) and (2.24) can now be used to eliminate ρ2 and p2 from h(p2,ρ2). 
The result would be an implicit equation for θ. Alternate approaches for treating real 
gas shock wave phenomena are provided by Vincenti and Kruger (1965), Zel’dovich 
and Raizer (1966), and Zucrow and Hoffman (1976).

For a perfect gas, Problem 1 shows that Equation (2.27) reduces to the conven-
tional oblique shock equation:

	
M

M
tan cot

sin 1

1 1 / 2 sin

1
2 2

2
1
2{ }( )

θ = β β −
+ γ +  − β

	 (2.28)

where the upstream Mach number is

	 )(
=

γ ρ
M

V

p /
1

1
*

1 1
1/2

In this case, the equation for θ is explicit. An explicit result for β is provided by 
Appendix B, where Equation (2.28) is inverted. Problem 2 develops the van der 
Waals state equation counterpart to Equation (2.28).

The above analysis holds for both convex and concave shocks. Note that the ratio 
factor in Equation (2.28) is nonnegative. The previous angle convention, for both 
types of shocks, is such that the product, tanθtanβ, is nonnegative, regardless of the 
shock’s orientation.

2.4 I llustrative Example

A shock wave may be unsteady for any of several reasons, such as an unsteady upstream 
flow. A weak source of unsteadiness would stem from a turbulent boundary layer, as 
sketched in Figure 2.2. Disturbances generated by the boundary layer travel along 
Mach waves until these waves impinge on the shock. As indicated in the figure, the 
Mach waves from both the upstream and downstream walls travel toward the shock.

If a shock is sufficiently intense, the flow downstream of it is subsonic. In this 
circumstance, disturbances can propagate in an upstream direction, thereby causing 
the shock to become unsteady. This mechanism is involved with the buzz phenomenon 
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13General Jump Conditions

of a jet engine inlet in supersonic flight. For instance, consider an axisymmetric, super-
sonic inlet with a single centrally located cone. During buzz, which typically occurs 
with a frequency of about 10 to 20 Hz (Sterbenz and Evvard, 1955), there is a single, 
detached, nearly normal shock when the shock is in its most upstream position. When 
in its preferred downstream position, it is a multiple system of oblique shock waves, 
where the upstream-most shock is conical and is attached to the apex of the cone.

To illustrate the theory, a sinusoidal oscillation

	 F = x – bsin(2π κt) = 0 

of a normal shock is examined, where the amplitude b and frequency κ are constants. 
The upstream supersonic velocity (see Figure 2.3)

	
��
V V |̂1 1 1= 	 (2.29)

is taken as steady and uniform.
For this flow, note that n̂ = |̂1,

	
��

⋅ ∇ = >V F V 01 1

in accordance with Equation (2.3), and t̂  and b̂ are unnecessary. The shock velocity is

	
��

= = −
∇

∂
∂

= π κ πκV V
n
F

F
t

b t|̂
ˆ

| |
2 cos(2 ) |̂s s 1 1

Mach
waves

M1

Shock
Turbulent
boundary
layer

Figure 2.2  Oblique shock caused by a sharp wall turn. The Mach waves emanate from 
a turbulent layer.

V1

I1

Shock

2

–b b
x

0

Figure 2.3  An unsteady normal shock.
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14 Shock Wave Dynamics: Derivatives and Related Topics

When the shock is moving to the right, Vs > 0 and M2 exceeds the value

	 M
M

M
V

1 1 / 2

1 / 2
, 0s2

1
2

1
2

1/2( )
( )=

+ γ −
γ − γ −









 = 	 (2.30)

it would have if the shock were steady. (See Equations 2.34 for Mach number defini-
tions.) Thus, when Vs > 0, the shock is weaker than if it were stationary. However, 
M2 − Ms cannot exceed unity, because the shock’s motion is caused by a disturbance 
in the downstream flow, which is subsonic relative to the shock.

When the shock is moving to the left, Vs < 0, it is stronger than its stationary value, 
and M2 < M2. Furthermore, M2 may be negative if Vs is sufficiently negative. The M1, 
M2, and M2 Mach numbers are with respect to a laboratory frame, not a shock-fixed 
frame.

For a normal shock θ = 0°, β = 90°, and Equations (2.22) through (2.25) are inde-
terminate. This difficulty is avoided by using the initial equations for ρ2, p2, and h2. 
For example, ρ2 is given by

	 ρ = ρ −
−

V V

V V
s

s
2 1

1

2
	 (2.31a)

Similarly, p2 and h2 are given by

	 p2 = p1 + ρ1(V1 − Vs)(V1 − V2)	 (2.31b)

	
) )( (= + − = + − +h h V V h V V V V

1
2

1
2

1
2

2 1 1
*2

2
*2

1 1
*

2
*

1
*

2
*

	 ))((= + − + −h V V V V V
1
2

2 s1 1 2 1 2 	 (2.31c)

To proceed with the analysis, a perfect gas is now assumed and the enthalpy equa-
tion becomes

	 ))((
ρ

=
ρ

+ γ −
γ

− + −p p
V V V V V

1
2

2 s
2

2

1

1
1 2 1 2 	 (2.32a)

From Equations (2.31a) and (2.31b), we have

	 ))((
ρ

=
ρ

−
−

+ − −p p V V

V V
V V V Vs

s
s

2

2

1

1

2

1
1 2 2 	 (2.32b)

After eliminating p2/ρ2, an explicit solution for V2 is obtained:

	 = γ −
γ +

+ γ
γ +

ρ
−

+
γ +

V V
p

V V
V

1
1

2
1

/ 2
1s

s2 1
1 1

1
	 (2.33)
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15General Jump Conditions

Thus, V2 equals a constant term, a Vs term that is proportional to cos(2πκt), and a 
term with this cosine in a denominator, which dominates when the denominator is 
small.

As usual with a perfect gas, it is convenient to introduce the Mach numbers:

	 )(
= =

γ ρ
M

V

a

V

p /
1

1

1

1

1 1
1/2 	 (2.34a)

	 )(
= =

γ ρ
M

V

a

V

p /
2

2

2

2

2 2
1/2 	 (2.34b)

	 M
V
a p

b t2 cos(2 )s
s

1

1

1

1/2

= = π ρ
γ







κ πκ 	 (2.34c)

where Ms, the shock wave Mach number, is negative whenever Vs is negative. In order 
to obtain explicit results, a relation is needed between the upstream and downstream 
sound speeds. Multiply Equation (2.32a) with γ to obtain

	
))((= + γ − − + −a a V V V V V

1
2

2 s2
2

1
2

1 2 1 2

With the aid of Equation (2.33), V2 is eliminated with the result

	

a

a

M M M M

M M
1

2 1

1

1 1s s

s

2
2

1
2 2

1
2

1
2

1
2

( )
( )

( ) ( )
( )

= +
γ −

γ +

− −  γ − + 
−

or

	
a

a

M M M M

M M

2
1

1
2

1
1

2
s s

s

2

1

1
2

1/2

1
2

1/2

1( )
( ) ( )

( )=
γ +

γ − − γ −





+ γ − −





−
	 (2.35)

This is the usual jump condition formula for the speed of sound ratio with M1 
replaced by M1 − Ms.

Equation (2.33) is now written as

	
= γ −

γ +
+

γ + −
+

γ +
a M a M

a

M M
a M

1
1

2
1

2
1s

s2 2 1 1
1

1
1

or

	 M
M M M M

M M

a

a

2
1

1
1

2
s s

s
2

1 1

1

1

2

( )
=

γ +

+ − γ − +





−
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16 Shock Wave Dynamics: Derivatives and Related Topics

Equation (2.35) is utilized to eliminate a1/a2, with the result

	 M
M M M M

M M M M

1
1

2

1
1

2
1

2

s s

s s

2

1 1

1
2

1/2

1
2

1/2

( )

( ) ( )
=

+ − γ − +





+ γ − −





γ − − γ −





	 (2.36)

which reduces to Equation (2.30) when Ms = 0. This relation provides the time 
dependence of M2 through Ms, which is given by Equation (2.34c). While the shock 
speed and Ms are simple sinusoids, the variation of M2, w2, p2, …, are not as simple.

From the denominator of Equation (2.36), a real solution for M2 requires

	
)( − > γ −

γ
M M

1
2

s1
2

Since M1 – Ms can be written as

	
M M M

b

V
t1 2 cos 2s1 1

1
( )− = − π κ





πκ










the left side of the inequality is a minimum when the cosine is unity. As a conse-
quence, the inequality can be written as

	

b

V M
1 2

1
2

1

1

2

1
2− π κ





> γ −
γ

The right side is always well below unity, and small values for bκ/V1 readily satisfy 
the inequality. Nevertheless, there is a range of values for 2π(bκ/V1), centered about 
unity, for which a real solution is not obtained, and the postulated sinusoidal shock 
motion cannot occur. The V1 − Vs denominator in Equation (2.33), which is propor-
tional to M1 − Ms, is therefore limited in how small it can become.
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17

3 Two-Dimensional 
or Axisymmetric 
Formulation

3.1  Basis Vectors

We assume a steady, two-dimensional (σ = 0) or axisymmetric (σ = 1) flow of a 
perfect gas that contains a shock wave. In addition, no sweep or swirl and a uniform 
upstream flow are assumed. A Cartesian coordinate system initially is utilized, as 
sketched in Figure 3.1, where x1 is aligned with the uniform freestream velocity. It is 
convenient to introduce a transverse radial position vector:

	 R x x|̂ |̂2 2 3 3

��
= + σ 	 (3.1a)

where

	 R x x
R
x

x
R

R
x

x
R

, ,2
2

3
2 1/2

2

2

3

3( )= + σ ∂
∂

= ∂
∂

= σ
	 (3.1b)

and its normalized form is

	
��
R
R

x
R

x
R

ˆ |̂ |̂R
2

2
3

3ε = = + σ  	 (3.1c)

The constant freestream velocity is given by Equation (2.29).
For the derivative analysis, a known shock shape is presumed. Of course, from 

a computational fluid dynamics (CFD) point of view, the shock’s location is gener-
ally not known but must be found. For our purposes, however, the assumption is 
warranted, and the resulting jump and derivative relations hold, whether or not the 
shock’s location is actually known.

The shape of the two-dimensional or axisymmetric shock is written as

	 F = f(x1) − R = 0	 (3.2)

The gradient of F and its magnitude are

	 F
df
dx

x
R

x
R

f|̂ |̂ |̂ |̂ ˆ R
1

1
2

2
3

3 1∇ = − − σ = ′ −ε 	 (3.3a)
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18 Shock Wave Dynamics: Derivatives and Related Topics

	 F f
x
R

x
R

f| | 12 2
2

2
3
2

2

1/2

2 1/2( )∇ = ′ + + σ





= + ′ 	 (3.3b)

where f ′  =  (df/dx1). Equation (3.2) is an idealized shock shape in that other 
disturbances, such as a downstream wave that overtakes part of the shock, are not 
considered. If such an interaction occurs, then Equation (3.2) still holds for the 
undisturbed part of the shock.

As noted earlier, the normal vector is

	 n
F
F

f

f
ˆ

| |
|̂ ˆ

1

R1

2 1/2( )
= ∇

∇
= ′ −ε

+ ′
	 (3.4)

Its dot product with |̂1 yields the β angle:

	 n=
f

f
|̂ ˆ sin

1
1

2 1/2( )
⋅ β = ′

+ ′
	 (3.5a)

We thus have

	
f

fcos
1

1
, tan

2 1/2( )
β =

+ ′
β = ′ 	 (3.5b,c)

where the tanβ result is evident from Equation (3.2). Write b
�

 as

	 b n V
V

f
ˆ

1
|̂ ˆ R1

1

2 1/2 1

� ��

( )
= − × = −

+ ′
× ε

V1

v–

R

ζ+ ζ–

ζ0, 

x2

x1

Shock

Streamline

µ

u
µ

Figure 3.1  Streamline (ζ 0), left-running (ζ +), and right-running (ζ −) characteristic directions 
on the downstream side of a shock.
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19Two-Dimensional or Axisymmetric Formulation

where

	 x
R

x
R R

x x|̂ ˆ |̂ |̂ |̂ |̂
1

|̂ |̂R1
2

1 2
3

1 3 3 2 2 3( )× ε = × + σ × = − σ −

This yields

	 b
V

R f
x x

1
|̂ |̂1

2 1/2 3 2 2 3

� ( )( )
=

+ ′
σ −

and its normalized value

	 b
R

x xˆ 1
|̂ |̂3 2 2 3( )= σ − 	 (3.6)

Equation (2.10b) then yields

	 t
f

fˆ 1

1
|̂ ˆ R

2 1/2 1( )( )
=

+ ′
+ ′ε 	 (3.7)

In order to evaluate quantities such as ∇ ⋅V
��

 or ∇ × V
��

, a curvilinear, orthogonal 

coordinate system ξi is introduced, where ξ1 is tangent to t̂ , ξ3 is tangent to b̂, and ξ2 
is tangent to n̂. Thus, ξ1 and ξ3 are shock surface coordinates, while ξ1 and ξ2 are in 
the flow plane. The velocity and gradient operator are

	 V ut vnˆ ˆ
��

= +  	 (3.8)

	 e
h

e
h

e
h

ˆ ˆ ˆ1

1 1

2

2 2

3

3 3

∇ = ∂
∂ξ

+ ∂
∂ξ

+ ∂
∂ξ

	 (3.9)

where the hi are scale factors, and

	 e t e n e bˆ , ˆ , ˆ ˆ
1 2 3

� �= = = 	 (3.10)

Although V
��

 has no b̂  component and any scalar has

	 0
3

∂ϕ
∂ξ

=

it is necessary to retain the b̂  term in the del operator, because ∂b̂/∂ξ3 is not zero in 
an axisymmetric flow.
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20 Shock Wave Dynamics: Derivatives and Related Topics

3.2 S hock-Based Curvilinear Coordinates

The task of developing the transformation

	 ξj = ξj(xi)	 (3.11)

is not trivial. For ξ2, however, a simple choice is

	 ξ2 = F = f(x1) – R	 (3.12)

where ξ2 is zero on the shock’s surface and, by Equation (2.3), is positive down-
stream of it.

In a shock produced vorticity analysis by Hayes (1957), a unit vector is introduced 
that is the gradient of the normal coordinate

	 n = ∇ξ2

which results in the identity

	 ∇ × n = 0

In our formulation, this approach cannot be utilized. It is inconsistent with 
Equations (2.4) and (3.12) unless |∇F| = 1. This is not possible, in view of Equation 
(3.3b), because f ′ ≠ 0. Both approaches are correct and can be shown to yield the 
same equation for n̂. The approach used here, however, results in a simpler equation 
for ξ2. Hayes’ approach requires normalizing ξ2.

For an arbitrary point, the two coordinate systems yield

	 dr
r

d e d dx|̂
j

j j j i i
�

�
�= ∂

∂ξ
ξ = ξ = 	 (3.13)

In accord with Equation (3.10), the e j

�
 basis is given by

	 e h t e h n e h bˆ, ˆ, ˆ
1 1 2 2 3 3

� � �= = = 	 (3.14)

Conventional tensor notation would write ξj as ξj, because ej
�

 is the basis for the ξj. In 
the interest of notational simplicity, this has not been done.

The direction cosines between the two bases are

	 = ⋅a e|̂ ˆij i j
	 (3.15)
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21Two-Dimensional or Axisymmetric Formulation

which can be written as an array

	

a
f

a
f

f
a

a
x f

R f
a

x

R f
a

x
R

a
x f

R f
a

x

R f
a

x
R

1

1 1
0

1 1

1 1

11
2 1/2 12

2 1/2 13

21
2

2 1/2 22
2

2 1/2 23
3

31
3

2 1/2 32
3

2 1/2 33
2

( ) ( )

( ) ( )

( ) ( )

=
+ ′

= ′
+ ′

=

= ′
+ ′

= −
+ ′

= σ

= σ ′
+ ′

= − σ
+ ′

= −

	 (3.16)

They are functions of the Cartesian coordinates and f ′ = df/dx1. The determinant 
of the aij is +1, which is the expected result for two orthonormal, right-handed bases.

The rightmost of Equation (3.13) is multiplied with ej
�⋅ , with the result

	 d
a

h
dx ,j

ij

j
iξ =   (no j sum)

This is compared with

	 d
x

dxj
j

i
iξ = ∂ξ

∂

to obtain

	
x

a

h
,j

i

ij

j

∂ξ
∂

=   (no j sum)	 (3.17)

This relation is a key result and the reason for the aij equations. It is used to obtain 
the hj and ξj.

Equation (3.12) yields for ξ2

	
x

df
dx

f2

1 1

∂ξ
∂

= = ′

while Equation (3.17) results in

	 x
a
h

f

h f1

2

1

12

2 2
2 1/2( )

∂ξ
∂

= = ′
+ ′

We thus have

	 h
f

1

1
2

2 1/2( )
=

+ ′
	 (3.18)
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22 Shock Wave Dynamics: Derivatives and Related Topics

Thus, only j = 1 and 3 need further consideration. Integration of Equation (3.17) 
for these two hj values then yields an explicit form for the transformation equations. 
This integration, however, first requires evaluating h1 and h3 in terms of the xi.

3.3 S cale Factors

The scale factors are not arbitrary. They are established by the requirement that 
Equation (3.17) be integrable. This is assured if the change in the order of the 
differentiation compatibility condition (Stoker, 1969)

	
x x x x

,j

k m

j

m k

2 2∂ ξ
∂ ∂

= ∂ ξ
∂ ∂

  j = 1,2,3, m ≠ k	 (3.19)

is satisfied. (This condition is not always satisfied as demonstrated in Appendix K.) 
Since ξ2 is given by Equation (3.12), it satisfies the compatibility condition and only 
j = 1, 3 need be considered. For each j, this equation represents three equations. In 
combination with Equation (3.17), these become

	
a

q

x
a

q

x

a

x

a

x
mj

j

k
kj

j

m

mj

k

kj

m

∂
∂

− ∂
∂

= ∂
∂

− ∂
∂

where qj = nhj� . When written out, we have

	 a
q

x
a

q

x

a

x

a

x
j

j
j

j j j
2

1
1

2

2

1

1

2

∂
∂

− ∂
∂

= ∂
∂

− ∂
∂

 	 (3.20a)

	 a
q

x
a

q

x

a

x

a

x
j

j
j

j j j
3

1
1

3

3

1

1

3

∂
∂

− ∂
∂

= ∂
∂

− ∂
∂

 	 (3.20b)

	 a
q

x
a

q

x

a

x

a

x
j

j
j

j j j
3

2
2

3

3

2

2

3

∂
∂

− ∂
∂

= ∂
∂

− ∂
∂

 	 (3.20c)

for j = 1 and 3. With ∂qj/∂xi as unknowns, the value of the determinant of the left 
side is zero. Hence, elimination of the qj derivatives results in a condition on the 
aij coefficients:

	 a
x

a

a
a

x

a

a
a

x

a

a
0,j

j

j
j

j

j
j

j

j
2
2

1

3

2
3
2

2

1

3
1
2

3

2

1

∂
∂







+ ∂
∂







+ ∂
∂







=   j = 1,3	 (3.21)

for the existence of a solution of Equation (3.20). This equation can be shown to 
hold for all j, including j = 2 (see Problem 3). Thus, a solution of Equation (3.20) 
exists for the hj scale factors of a two-dimensional or axisymmetric shock.

Each of the equations in Equation (3.20) is a separate equation for qj and is solved 
independently of the other two. (The system of equations is overdetermined.) Each of 
these solutions involves an arbitrary function of integration. There are no boundary 
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23Two-Dimensional or Axisymmetric Formulation

or initial conditions that can be used to evaluate these functions of integration. 
Instead, they are chosen in order that the resulting qj is a solution of all three of 
the equations in Equation (3.20). Superscripts a, b, and c, respectively, are used to 
denote the solutions of these equations. They are first-order partial differential equa-
tions (PDEs) and their general solution is obtained by the method-of-characteristics 
(MOC) in Appendix C. With this approach, we obtain from Equation (3.20a) the 
characteristic equations (Equation C.8 in Appendix C):

	 dx
a

dx
a

dx dq
a

x

a

x
0j j

j
a

j j

1

2

2

1

3
( )

2

1

1

2

= − = = ∂
∂

− ∂
∂

	 (3.22)

For a fixed j, let u x( )jk
a

i
( ) , k = 1,2,3, denote the functional form of the unique solutions 

to these three first-order ordinary differential equations (ODEs), where u cjk
a

jk
a( ) ( )=  and 

cjk
a( ) are the integration constants (Equation C.7). To avoid an infinity, the dx3 term 

is made indeterminant by setting x3 equal to a constant. The solutions of the two 
leftmost ODEs are written as

	 u x c , u cj
a

j
a

j
a

j
a

1
( )

3 1
( )

2
( )

2
( )= = = 	 (3.23a,b)

The relation uj
a
2

( ) = cj
a
2

( ) is the functional form for the solution of the leftmost of 
Equation (3.22); x3 is held fixed in a1j and a2j when obtaining this solution. There are 
two equivalent possibilities for qj

a( ); for purposes of brevity only one is presented. 
The functional form for the solution of the dx1, dqj

a( ) equation is written as

	 u x q q
a

x

a

x
dx
a

c,j
a

i j
a

j
a j j

j
j
a

3
( ) ( ) ( ) 2

1

1

2

1

2
3

( )∫( ) = − ∂
∂

− ∂
∂







= 	 (3.23c)

where, if necessary, x2 and x3 are replaced in the integrand with the aid of Equation 
(3.23a,b). After the integration is performed, the constants cjk

a( ), k = 1,2 are then 
replaced by x3, which equals uj

a
1

( ), and by uj
a
2

( ).
Although theoretically equivalent, the quadrature that results from using dx2,

dqj
a( ) may be simpler or more complicated than the one stemming from dx1, dqj

a( ). 
In either case, the general solution of Equation (3.20a) is rewritten as

	 u ng u ,uj
a

j
a

j
a

j
a

3
( ) ( )

1
( )

2
( )� ( )=

in accordance with Equation (C.9), where gj
a( ) is an arbitrary function of its two argu-

ments. Equation (3.23c) with qj
a( ) = nhj

a( )�  and uj
a
3

( ) replaced with ngj
a( )�  then yields

	
nh

a

x

a

x
dx
a

ng x ,u xj
a j j

j
j
a

j
a

i
( ) 2

1

1

2

1

2

( )
3 2

( )� �∫ ( )= ∂
∂

− ∂
∂







+  
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24 Shock Wave Dynamics: Derivatives and Related Topics

or finally

	 h g x ,u
a

x

a

x

dx

a
expj

a
j
a

j
a j j

j

( ) ( )
3 2

( ) 2

1

1

2

1

2
∫( )=

∂
∂

−
∂
∂















 	 (3.24a)

The same procedure, when applied to Equation (3.20b,c), results in

	 h g x ,u
a

x

a

x

dx

a
expj

b
j
b

j
b j j

j

( ) ( )
2 2

( ) 3

1

1

3

1

3
∫( )=

∂
∂

−
∂
∂















 	  (3.24b)

	 h g x ,u
a

x

a

x

dx

a
expj

c
j
c

j
c j j

j

( ) ( )
1 2

( ) 3

2

2

3

3

2
∫( )= −

∂
∂

−
∂
∂















 	  (3.24c)

where uj
b
2

( ) and uj
c
2

( ) are solutions of

	
dx
a

dx
a

,
dx
a

dx
aj j j j

1

3

3

1

2

3

3

2

= − = −

respectively. The various gj coefficients are chosen by inspection so that

	 h h h h ,j j
a

j
b

j
c( ) ( ) ( )= = =   j = 1,3	 (3.25)

In view of this constraint, the gj selection must satisfy

	

g
a

x

a

x

dx

a
g

a

x

a

x

dx

a

g
a

x

a

x

dx

a

exp exp

exp

j
a j j

j
j
b j j

j

j
c j j

j

( ) 2

1

1

2

1

2

( ) 3

1

1

3

1

3

( ) 3

2

2

3

3

2

∫ ∫

∫

∂
∂

−
∂
∂















 =

∂
∂

−
∂
∂

















= −
∂
∂

−
∂
∂

















3.4 �A pplication to a Two-Dimensional 
or Axisymmetric Shock

Equation (3.20a) is developed for j = 1:

	 a
q
x

a
q
x

a
x

a
x

a a

21
1
( )

1
11

1
( )

2

21

1

11

2

∂
∂

− ∂
∂

= ∂
∂

− ∂
∂

	 (3.26a)
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25Two-Dimensional or Axisymmetric Formulation

where

	

a
x

a
x

x
R

d
dx

f

f

x f

R f

0

1 1

11

2

21

1

2

1
2 1/2

2

2 3/2( ) ( )

∂
∂

=

∂
∂

= ′
+ ′













= ′′
+ ′

Equation (3.26a) simplifies to

	
x
R

f
q
x

q
x

x
R

f

f1
0

a a
2 1

( )

1

1
( )

2

2
2( )′ ∂

∂
− ∂

∂
− ′′

+ ′
= 	 (3.26b)

The characteristic equations are

	 R
x

dx
f

dx
dx R

x
f

f
dq

0
1 a

2

1
2

3

2

2

1
( )

′
= − = = + ′

′′

which yield

	 x3 = c1

	

dx
f

x dx

x c

dq
dx f f

df
dx

0

1

1
0

a

1 2 2

2
2

1
2 1/2

1
( )

1
2

1

( )

( )

′
+

+ σ
=

−
′ + ′

′ =

The second of these equations has the integral

	
x dx

x c
x c x x R2 2

2
2

1
2 1/2 2

2
1
2 1/2

2
2

3
2 1/2∫ ( ) ( ) ( )

+ σ
= + σ = + σ =

with the result

	 R
dx
f

c1
2∫+

′
=

The third characteristic equation has the integral

	
df

f f
n

f

f1 1
2 2 1/2�∫ ( ) ( )

′
′ + ′

= ′
+ ′
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26 Shock Wave Dynamics: Derivatives and Related Topics

and

	 q n
f

f
c

1
a

1
( )

2 1/2 3�
( )

− ′
+ ′

=

where the integration constants, ck, equal u k
a

1
( ). We thus obtain

	 q nh n
f

f
ng x R

dx
f1

,a a a
1
( )

1
( )

2 1/2 1
( )

3
1� � � ∫( )

= = ′
+ ′

+ +
′







or

	 h
f

f
g x R

dx
f1

,a a
1
( )

2 1/2 1
( )

3
1∫( )

= ′
+ ′

+
′







where g a
1
( ) is an arbitrary function of its two arguments.

The same process for Equations (3.20b) and (3.20c) yields

	 h
f

f
g x R

dx
f1

,b b
1
( )

2 1/2 1
( )

2
1∫( )

= ′
+ ′

+
′







	
h g x ,Rc c

1
( )

1
( )

1( )=

A simple choice is

	 g g g
f

f
1, 1,

1
a b c

1
( )

1
( )

1
( )

2 1/2( )
= = = ′

+ ′

because f ′ is a function only of x1. Consequently, h1 is

	 h
f

f1
1

2 1/2( )
= ′

+ ′
	 (3.27)

Equation (3.20a,b) for j = 3 yields

	 q q g x ,xa b
3
( )

3
( )

3 2 3( )= =
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27Two-Dimensional or Axisymmetric Formulation

while Equation (3.20c) reduces to

	
x
R

q
x

x
R

q
x R

c c
2 3

( )

2

3 3
( )

3

∂
∂

+ σ ∂
∂

= σ

For σ = 0, it is evident that h3 = 1. When σ = 1, it is simpler to forego the MOC and 
simply assume

	 q c
3
( )  = g(R)

By substituting this into the above PDE, we readily obtain

	 �q nR, 1c
3
( ) = σ =

The scale factors now summarize as

	 h
f

f
h

f
h R

1
,

1

1
,1

2 1/2 2
2 1/2 3( ) ( )

= ′
+ ′

=
+ ′

= σ 	 (3.28)

3.5 T ransformation Equations

Our next task is to use Equation (3.17) to obtain the transformation equations. 
For j = 1, we write

	
x

a
h f

11

1

11

1

∂ξ
∂

= =
′

which integrates to

	 x x
dx
f

,1 1 2 3
1∫( )ξ = ϕ +
′

where φ1 is a function of integration. To evaluate this function, we use

	
x x

x
a
h

x
R

1

2

1

2

1

2

21

1

2

∂ξ
∂

= ∂ϕ
∂

∂ξ
∂

= =
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28 Shock Wave Dynamics: Derivatives and Related Topics

or

	
x

x
R

x
x dx

x x

1

2

2

1 2 3
2 2

2
2

3
2 1/2∫ ( )( )

∂ϕ
∂

=

ϕ = ϕ +
+ σ

In the integrand, x3 is held constant, and φ2 is a second function of integration. 
Evaluation of the integral yields

	 x x R1 2 2
2

3
2 1/2

2( )ϕ = ϕ + + σ = ϕ +

To evaluate φ2, we utilize

	
x

d
dx

x
R

a
h

x
R

1

3

2

3

3 32

3

3∂ξ
∂

= ϕ + σ = = σ

As a consequence, φ2 is given by

	
d
dx

02

3

ϕ =

or

	 02ϕ =

Thus, the ξ1 transformation equation is

	 R
dx
f

x

1
1

0

1

∫ξ = +
′

For ξ3, we use

	
∂ξ
∂

= = σx
a
h

a
Ri

i i3 3

3

3

or

	
x x

x
R x

x
R

0, ,3

1

3

2

3
2

3

3

2
1

∂ξ
∂

= ∂ξ
∂

= σ ∂ξ
∂

= − +σ
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29Two-Dimensional or Axisymmetric Formulation

When σ = 0, with R = x2, this system provides

	 x , 03 3ξ = − σ =

as expected. When σ = 1, direct integration yields

	
x
x

tan , 13
1 2

3

ξ = 





σ =−

This result is readily checked by differentiation.
With the aid of Equation (3.12), the transformation equations are

	 R+
dx
f '

f R x
x
x

, , ( 1) tan
x

1
1

0
2 3 3

1 2

3

1

∫ξ = ξ = − ξ = σ − + σ 





− 	 (3.29)

The scale factor and transformation equations are an explicit result for any 
differentiable two-dimensional or axisymmetric shock. They provide a global 
orthogonal coordinate system where ξ2 = 0 on the surface with ξ1 and ξ3 as surface 
coordinates. As various checks, one can show that the equations in Equation (3.20) 
are satisfied for j = 1, 2, 3, the êi orthonormal basis is tangent to the ξi, and the arc 
length is

	 ds h d dx dx dxj j
2 2 2

1
2

2
2

3
2( ) ( )( ) ( ) ( )= ξ = + + 	 (3.30)

Problems 4 and 5 further illustrate the application of the foregoing analysis.

3.6  Basis Derivatives

It is simpler to use (Appendix D)

	
e

h
h

h

h
e

ˆ
ˆj

i

ik

j

i

j

ij

k

j

k
k

k j

∑∂
∂ξ

= δ ∂
∂ξ

− δ ∂
∂ξ





≠

	 (3.31)

for orthogonal coordinates rather than the more general Christoffel symbol for the 
ê j  derivatives. For this, the hi must be functions of ξj rather than functions of xj. 
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30 Shock Wave Dynamics: Derivatives and Related Topics

This  is neatly accomplished with Jacobian theory (Emanuel  2001, Appendix B). 
The following two arrays of derivatives with respect to the xi are utilized:

	

h
x

f

f
,

h
x

h
x

h
x

f f

f

h
x

h
x

h
x

h
x

x
R

,
h
x

x
R

1
0, 0

1
, 0, 0

0,

1

1
2 3/2

1

2

1

3

2

1
2 3/2

2

2

2

3

3

1

3

2

2 3

3

3

( )

( )

∂
∂

= ′′
+ ′

∂
∂

= ∂
∂

=

∂
∂

= − ′ ′′
+ ′

∂
∂

= ∂
∂

=

∂
∂

= ∂
∂

= σ ∂
∂

= σ

	 (3.32)

and

	

x f x
x
R x

x
R

x
f

x
x
R x

x
R

x x
x

R
,

x
x
R

1
, ,

, ,

0,

1

1

1

2

2 1

3

3

2

1

2

2

2 2

3

3

3

1

3

2

3
2

3

3

2
2

∂ξ
∂

=
′

∂ξ
∂

= ∂ξ
∂

= σ

∂ξ
∂

= ′ ∂ξ
∂

= − ∂ξ
∂

= − σ

∂ξ
∂

= ∂ξ
∂

= σ ∂ξ
∂

= − 





σ

	 (3.33)

The Jacobian of the transformation reduces to

	 J
x x x

f
f R

, ,

, ,
1 11 2 3

1 2 3

2( )
( )=

∂ ξ ξ ξ
∂

= + ′
′ σ 	 (3.34)

As an illustration, the ∂h1/∂ξ1 derivative is given by

	
h h

h

x x x

x x x

, ,

, ,

, ,

, ,
, ,

, ,

1

1

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

1 2 3

( )
( )

( )

( )
( )

( )

∂
∂ξ

=
∂ ξ ξ
∂ ξ ξ ξ

=

∂ ξ ξ
∂
∂ ξ ξ ξ
∂

	 J

h
x

x x x

x x x

J
h
x x x x x

f f

f

1

0 0

1

1
,

1

1

2

1

2

2

2

3

3

1

3

2

3

3

1

1

2

2

3

3

2

3

3

2
2 5/2( )

=

∂
∂
∂ξ
∂

∂ξ
∂

∂ξ
∂

∂ξ
∂

∂ξ
∂

∂ξ
∂

= ∂
∂

∂ξ
∂

∂ξ
∂

− ∂ξ
∂

∂ξ
∂







= ′ ′′
+ ′
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31Two-Dimensional or Axisymmetric Formulation

The hi derivates used in Equation (3.31) are then

	

h f f

f

h f f

f

h

h f f

f

h f f

f

h

h f

f

h

f

h

1
,

1
, 0

1
,

1
, 0

1
,

1
, 0

1

1
2 5/2

1

2
2 5/2

1

3

2

1

2

2 5/2
2

2

2

2 5/2
2

3

3

1

2

2
3

2
2

3

3

( ) ( )

( ) ( )

( ) ( )

∂
∂ξ

= ′ ′′
+ ′

∂
∂ξ

= ′ ′′
+ ′

∂
∂ξ

=

∂
∂ξ

= − ′ ′′
+ ′

∂
∂ξ

= − ′ ′′
+ ′

∂
∂ξ

=

∂
∂ξ

= σ ′
+ ′

∂
∂ξ

= −
σ

+ ′
∂
∂ξ

=

	 (3.35)

Equations (3.28), (3.31), and (3.35) now yield

	

e f f

f
e ,

e f f

f
e

e f

f
e

e f f

f
e

e f f

f
e

e

f
e

e e e
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f e e
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ˆ

ˆ

1
ˆ ,

ˆ

1
ˆ

ˆ

1
ˆ ,

ˆ

1
ˆ ,

ˆ

1
ˆ

ˆ
0,

ˆ
0,

ˆ

1
ˆ ˆ

3

3

1

1
2 2 2

1

2
2 2 2

1

3
2 1/2

2

1
2 2 1

2

2
2 2 2

2

3
2 1/2

3

1

3

2

3

3
2 1/2 1 2

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

∂
∂ξ

= − ′ ′′
+ ′

∂
∂ξ

= − ′ ′′
+ ′

∂
∂ξ

= σ ′
+ ′

∂
∂ξ

= ′ ′′
+ ′

∂
∂ξ

= ′ ′′
+ ′

∂
∂ξ

= − σ
+ ′

∂
∂ξ

= ∂
∂ξ

= ∂
∂ξ

= − σ
+ ′

′ −

	(3.36)

For the subsequent analysis, it is analytically convenient to utilize the t, n, bˆ ˆ ˆ 
basis, the s, n, b coordinates, and β. Equation (3.9) and

	 s h n h b h, ,1 1 2 2 3 3∂ = ∂ξ ∂ = ∂ξ ∂ = ∂ξ 	 (3.37)

are utilized. To replace f ′ and f ″, we use

	 f ftan , 1
1

cos
2 1/2( )′ = β + ′ =

β
	 (3.38a,b)

and

	 s
dR
dx

dx f dx= + 

















= + ′( )1 1
1

2 1 2

1
2 1 2

/
/

11
1

000

111

= ∫∫∫ dx
xxx

cosβ
	 (3.39)

or

	 ds
dx

1
cos1

=
β

	 (3.40)
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32 Shock Wave Dynamics: Derivatives and Related Topics

It is convenient to introduce

	
d
ds

d
dx

dx
ds

d
dx

cos
1

1

1

′β = β = β = β β  	 (3.41)

where –β′ is the flow plane’s curvature of the shock, as suggested by Figure 2.1. Note 
that the primes on f and β are with respect to x1 and s, respectively. From Equation 
(3.38a), we have

	 f
d f
dx

d

dx
d
dx

tan 1
cos

2

1
2

1
2

1

( )′′ = =
β

=
β

β

Eliminate dβ/dx1 from this equation and Equation (3.41), with the result

	 f
cos3′′ = ′β

β
	 (3.42)

Equations (3.38a) and (3.42) are used to replace f ′ and f ″.
With the foregoing, Equation (3.36) becomes

	

t
s

n
t
n

n
t
b R

b

n
s

t
n
n

t
n
b R

b

b
s

b
n

b
b R

t n

ˆ
ˆ ,

ˆ
tan ˆ ,

ˆ sin ˆ

ˆ ˆ ,
ˆ

tan ˆ ,
ˆ cos ˆ

ˆ
0,

ˆ
0 ,

ˆ
sin ˆ cos ˆ( )

∂
∂

= − ′β ∂
∂

= − ′β β ∂
∂

= σ β

∂
∂

= ′β ∂
∂

= ′β β ∂
∂

= − σ β

∂
∂

= ∂
∂

= ∂
∂

= σ − β + β

	 (3.43)

where R is still given by Equation (3.1b). As expected, derivatives with respect to 
b are zero in a two-dimensional flow. The gradient operator, Equation (3.9), now 
becomes

	 t
s

n
n

b
b

ˆ ˆ ˆ∇ = ∂
∂

+ ∂
∂

+ ∂
∂

	 (3.44)
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33

4 Derivatives for a 
Two-Dimensional or 
Axisymmetric Shock with 
a Uniform Freestream

4.1 P reliminary Remarks

In the next section, a concise notation is introduced that is used throughout the rest 
of the manuscript. It is especially convenient for shock wave studies. All equations 
are dimensional, where the shock shape, Equation (3.2), γ, the upstream pressure, p1, 
density, ρ1, and flow speed, V1, or M1, are presumed to be known. These parameters 
are sufficient for nondimensionalizing the equations. Thus, results, summarized in 
Appendix E, are in terms of these quantities. The appendix should be useful for the 
development of computational algorithms.

In the tangential and normal derivative equations, the quantities

	 1/β′, s, n, y(= R)

have dimensions of length. Because they appear homogeneously in the equations, 
they may be dimensional or nondimensional. In fact, the steady Euler equations, 
in any coordinate system, are homogeneous with respect to an inverse length. 
Because the jump conditions are independent of length, a normalizing length is 
arbitrary.

As noted in Chapter 1, the jump conditions hold for an unsteady, three-dimensional 
shock. Both tangential and normal derivatives are in the flow plane, as is the shock’s 
curvature, −β′. On the other hand, the normal derivatives stem from a derivation that 
requires the steady Euler equations. In these equations, continuity contains the dimen-
sionality parameter, σ. The normal derivatives are therefore constrained to a steady, 
two-dimensional or axisymmetric shock.

4.2  Jump Conditions

Equations (2.22) through (2.25) become

	 ( )= β
β − θ

V V
cos

cos
2 1 	 (4.1a)
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34 Shock Wave Dynamics: Derivatives and Related Topics

	
tan

tan
2 1 ( )ρ = ρ β

β − θ 	 (4.1b)

	 ( ) ( )= + ρ
β θ
β − θ

p p V
sin sin

cos
2 1

2

1
	 (4.1c)

	
( )

( )= +
θ β − θ

β − θ
h h V

1
2

sin sin 2

cos
2 1 1

2
2 	 (4.1d)

for the jump conditions.
The perfect gas assumption and Mach numbers provided by Equations (2.34a,b) 

are introduced. The notation is simplified by defining

	 ( )= = βm M w M, sin1
2

1
2

	 (4.2)

	 = + γ − = γ − γ − = − = γ + β β
= +X w Y w Z w A

m

X
B A1

1
2

,
1

2
, 1,

1
2

sin cos
, 1 2

Note that M1sinβ is the normal component of M1.
For the analysis, it is convenient to use velocity components u and v that are 

tangential and normal to the shock, respectively, as sketched in Figure 3.1. These 
components are related to V1 and V2 by means of (see Figure 2.1 for β and θ)

	 u1 = u2 = V1cosβ = V2cos(β − θ)	 (4.3a)

	 v1 = V1sinβ,	 v2 = V2sin(β − θ) 	 (4.3b)

Equation (4.1), in combination with perfect gas thermodynamic state equations, then 
yield the jump conditions in terms of u and v. These equations are summarized in 
Appendix E.1 in Appendix E, which shows several Mach number functions, because 
these appear in later equations. Equations for tanθ, sinθ, sin(β − θ), and cos(β − θ) 
are also listed. The equation for tanθ easily reduces to Equation (2.28), while sinθ is 
the subject of Problem 6.

The equations in Appendix E.1 are arrived at by replacing the normal component 
of the Mach numbers, M1n and M2n, with

	 M1n = M1sinβ,	 M2n = M2sin(β − θ)	 (4.4)

in the standard equations for a normal shock. The results appear different because 
sin(β − θ) has been systematically eliminated. For instance, the usual equation for 
M2 can be written as

	
( ) ( )=
β − θ

+ γ − β

γ β − γ − =
β − θ

M
M

M

X
Y

1
sin

1
1

2
sin

sin
1

2

1
sin

2
2

2

1
2 2

1
2 2

2

With the sin(β − θ) relation in the appendix, the listed M2
2 equation is obtained.

© 2013 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

0:
35

 1
0 

M
ay

 2
01

6 



35Derivatives for a Two-Dimensional or Axisymmetric Shock

4.3 T angential Derivatives

The equations in Appendix E.1 are differentiated with respect to the arc length, s, 
along the shock in the flow plane. The resulting derivatives are proportional to β′, 
where

	
d
ds

f

f1 2 3/2( )′β = β = ′′
+ ′

	 (4.5)

and –β′ is the shock’s curvature in the flow plane. As previously noted, this curvature 
is positive when the shock is convex relative to the upstream flow and β′ is negative. 
It is useful for the latter discussion to include the derivative of the Mach angle μ:

	 µ = −

M
sin

11
	 (4.6)

and the included angle θ between 
��
V1 and 

��
V 2 .

To illustrate how Appendix E.2 is obtained, the derivative of the stagnation pres-
sure is obtained, starting with po,2 in Appendix E.1:

p
p
s

M
Y
s

Y M
M
s

M m

Y

M
m w

m

X Y

M m
w

wX

M
Z

1 2
1

1
1

2

1
1

1
2

1
2

2
1

1
1

2
2 sin cos

2 1
1

2

1

2
1

1
2

1
sin cos

2
1

1
1

2
sin cos 2

1

 
2

1
1    

1
2

   
 

X tan

o

2
2

1 2
2
2

/ 1

/ 1 1 2

2

2
2

/ 1

2
2

2

2
2 2

2
2

/ 1 2

2
2

/ 1 2

( )

( )

( )

( )

∂
∂





 =

γ +
+ γ −





∂
∂







+ γ
γ −

+ γ −





γ − ∂
∂













=
γ +

+ γ −



 γ ′β β β









− γ

+ γ −
γ +

+ γ −



 + γ

′β β β








= γ
γ +

+ γ −



 ′β β β −

+ γ






= − γ
γ +

+ γ −





′β
β

( )

( )

( )

( )

( )

γ γ−

γ γ− −

γ γ−

γ γ−

γ γ−

	 (4.7)

Observe that (∂M 2/∂s)2 is used in the derivation, but it is inconvenient to replace the 
factor containing M2

2.
Although σ does not appear in Appendices E.1 and E.2, all results hold for an 

axisymmetric shock. Except for (∂u/∂s)2 and (∂θ/∂s)2, the listed derivatives are 
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36 Shock Wave Dynamics: Derivatives and Related Topics

proportional to cosβ, which means they are zero when the shock is normal to the 
freestream velocity.

4.4 N ormal Derivatives

The steady Euler equations are needed in a scalar form and with orthogonal coor-
dinates, where one coordinate is along the shock in the flow plane and the other 
is normal to it. Emanuel (1986, Section 13.3) derives these equations in this form, 
and Table  4.1 provides the change to our notation. The minus sign that appears 
with ∂n and v stems from the downstream orientation of the n coordinate. Note the 
replacement of x2 with y, which also replaces the R of Equations (3.2) and (3.12). 
The angle θ in Emanuel (1986) is the angle of the ξ1 coordinate with respect to the 
x1-axis. When the coordinate system is rotated to align it with the shock, ξ1 becomes 
the s coordinate, and θ becomes β. (Remember that 

��
V1 is parallel to x1.) The version 

of the Euler equations, given shortly, applies only to the flow field just downstream 
of a shock.

The analysis in the above reference is for an arbitrary point in a steady, two-
dimensional or axisymmetric flow. Here, the equations are written for a point just 
downstream of a shock. Consequently, κ1 is the longitudinal curvature of the shock. The 
κo curvature is for the n-coordinate in the flow plane. The above reference shows that

	 κ = − ∂θ
∂

κ = ∂θ
∂s n

,s o 	 (4.8)

where on the shock surface, θ now becomes β, and β is a function only of s. We thus 
obtain

	 κ = − β = − ′β κ =d
ds

, 0s o 	 (4.9a,b)

In general, κo is not zero. It is zero here because the analysis is restricted to a 
surface where n is a constant, which is in accord with Hayes (1957). The κo param-
eter appears in continuity and the two flow plane scalar momentum equations in 

Table 4.1
Transformation to the Current Notation

Emanuel (1986) Present Notation

h1∂ξ1 ∂s

h2∂ξ2 −∂n

x2 y

v1 u

v2 −v

κ1 −β′
κ2 0

θ β
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37Derivatives for a Two-Dimensional or Axisymmetric Shock

Emanuel (1986). These three terms containing κo have been deleted from Equation 
(4.10). Problem 7, for the s and n momentum equations, demonstrates that the 
deletion is required for consistency with the formulas for (∂p/∂s)2 and (∂p/∂n)2 in 
Appendix E.

A consequence of the normal derivative analysis is that the streamline derivative 
of the entropy, S, or stagnation pressure, po, should be zero. This streamline deriva-
tive, developed in Section 5.2, directly depends on the s and n derivatives. If there is 
an error in the normal derivative analysis, then the streamline derivatives of po and S 
would not be identically zero. Problem 8 shows this is not the case.

Problem 7 also demonstrates the κo being zero is actually a consequence, for 
a surface evaluation, that ∂ t̂ /∂n, ∂n̂ /∂n, and ∂ b̂ /∂n are zero. The first two deriva-
tives are proportional to tanβ, where the tanβ in ∂n̂ /∂n results in an infinity for 
(∂p/∂s)2 at a normal shock, whereas the tanβ in ∂t̂ /∂n does not (Problem 7). The 
zero for ∂b̂/∂n stems directly from Equation (3.43).

For notational simplicity, the subscript 2 is suppressed that should appear on all 
variables and derivatives. This suppression, except for purposes of clarity, is used in 
the balance of this monograph. The Euler equations are written as

	

u

s

v

n
v

y
u v

u
u
s

v
u
n

uv
p
s

u
v
s

v
v
n

u
p
n

u
s

v
n

p
u v

sin cos 0

1
0

1
0

1
 

1
2

   0

2

2 2( )

( )( ) ( )∂ ρ
∂

+
∂ ρ

∂
+ ′β ρ + σρ β− β =

∂
∂

+ ∂
∂

+ ′β +
ρ

∂
∂

=

∂
∂

+ ∂
∂

− β′ +
ρ

∂
∂

=

∂
∂

+ ∂
∂







γ
γ − ρ

+ +








 =

	 (4.10)

The values of the u, v, p, and ρ variables and their s derivatives are known from 
Appendices E.1 and E.2. For instance, for the ∂(ρu)/∂s term in continuity, we use

	

u

s

u

s
u

s

w

X
V

V
m

X

V
X

wX m

V
X

m w w

1
2

sin

cos 1
sin cos

1
sin 1

2
cos

1
sin 3

2
1

4

1 1

1 1 2

1 2
2

1 2
2

( )

( )

( )

( )

( )( )

( )( )

∂ ρ
∂

= ρ ∂
∂

+ ∂ρ
∂

= γ + ρ



 − β′ β

+ β γ + ρ
β′ β β





= γ + ρ
β′ β

− + β





= γ + ρ
β′ β

− − γ −




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38 Shock Wave Dynamics: Derivatives and Related Topics

The equations in Equation (4.10) are four, linear, inhomogeneous, algebraic equa-
tions for ∂u/∂n, ∂v/∂n, ∂p/∂n, and ∂ρ/∂n. The solution of these equations, obtained 
with the assistance of the MACSYMA code (Rand, 1984), is given in Appendix E.3. 
The gi, which appear in these equations, are functions only of γ and w; they are 
listed in Appendix E.4. The equations in Equation (4.10) provide the first four deriva-
tives in Appendix E.3. For convenience, several others have been included. In con-
trast to the tangential derivatives, most normal derivatives contain a σ term. This 
stems from the σ term in continuity.

Subsequent to the above analysis, it was realized that a simpler approach is pos-
sible, because the flow is homenergetic—that is,

	 = γ
γ − ρ

+ + =h
p

u v
1

1
2

1
2

o
2 2  constant

This readily yields

	
ρ

∂
∂

=
ρ

∂ρ
∂

− γ −
γ

∂
∂

+ ∂
∂







p
n

p
n

u
u
n

v
v
n

1 1
2

	 (4.11a)

and a similar result for the tangential pressure derivative. Thus, the energy equation 
and the pressure gradients in Equation (4.10) can be eliminated. After this replace-
ment, the tangential momentum equation contains only one normal derivative term. 
It provides an explicit solution for ∂u/∂n:

	
u

n

u

v

u

s

v

s
u

p

v s

1
2

∂
∂

= −
γ

∂
∂

+ γ −
γ

∂
∂

− β′ −
ρ

∂ρ
∂ 	 (4.11b)

Continuity and the normal momentum equation are the remaining two linear 
equations

	 v

n
v

n

u

s
u

s
v

y
u vsin cos( )ρ ∂

∂
+ ∂ρ

∂
= −ρ ∂

∂
− ∂ρ

∂
− ρ β′ − σρ β − β 	 (4.11c)

	
v v

n

p

n
u

v

s
u

u

n
u

1
2

2

γ
∂
∂

+
ρ

∂ρ
∂

= − ∂
∂

+ γ −
γ

∂
∂

+ β′ 	 (4.11d)

that determine ∂v/∂n and ∂ρ/∂n. Analytically, Equation (4.11b) is first solved, then 
Equation (4.11c,d), and finally Equation (4.11a). The analytical solution has been per-
formed by the author; it checks the one in Appendix E.3 by MACSYMA.

Several normal derivatives become infinite when Z = 0 or w = 1. These denomi-
nator Zs invariably appear as β′/Z, and the infinity is removed by setting β′ equal to 
zero. In the w → 1 limit, the shock thus becomes a Mach wave with zero longitudinal 
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39Derivatives for a Two-Dimensional or Axisymmetric Shock

curvature. Another limit is the hypersonic one. If the shock wave is normal, or nearly 
normal, to the upstream flow, the rightmost terms in Appendix E.4 dominate, and the 
X, Y, and Z factors simplify in an obvious manner. Another hypersonic limit is for 
slender bodies, when w is of order unity, and the gi, X, Y, and Z factors do not sim-
plify. Nevertheless, the equations do simplify because of the presence of m, which 
approaches infinity.
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5 Derivative Applications

5.1 �N ormal Derivatives When the Shock 
Is Normal to the Upstream Velocity

As evident from Appendix E, the normal derivatives are more involved than the 
tangential ones. There is a major simplification of the normal derivates, however, 
when the shock is normal to the upstream velocity, as occurs at the nose of a detached 
shock.

Although the shock is normal to the freestream, it may be convex or concave. 
Both configurations are discussed in Section 5.5, while Section 9.4 briefly discusses 
a shock with a saddle point. (A saddle point may occur if the body that generates a 
detached shock has two “noses” closely spaced. Think of two adjacent knuckles on 
a fist.) For the subsequent normal shock analysis, it is nevertheless convenient to first 
introduce some curvature concepts.

A two-dimensional parabolic or hyperbolic shock becomes a paraboloid or hyper-
boloid shock when axisymmetric. A convex hyperbola and hyperboloid shock are 
extensively discussed in Section 6.4. In general, much of the discussion has been 
oriented toward a detached, convex bow shock. In Section 5.5, however, a shock that 
is concave to a uniform upstream flow is considered.

The shock curvatures are defined as

	 κ = − ′β κ =
σ β

y
,

cos
s t 	 (5.1a,b)

where κt (t for transverse) is in a plane normal to the flow plane and the shock. 
It is zero when the shock is two-dimensional. The two curvatures are positive for 
an axisymmetric convex shock and negative when the shock is axisymmetric and 
concave. The concave result for κt stems from cosβ being negative (β is in the sec-
ond quadrant) for a concave shock. It is useful that the curvatures have the same 
sign, because an axisymmetric shock, where it is normal to the freestream velocity, 
has κs = κt.

When an axisymmetric shock is a normal shock, the cosβ/y ratio is indeterminate, 
but it is evaluated by L’Hospital’s rule as

	 lim
y

d

ds
dy

ds
R

cos
cos

sin
1

1
s

s
0

β =

β

= − β′ β = −β′ =→ 	 (5.2)

where Rs is the radius of curvature of the nose of the shock. Remember, for a convex 
or concave axisymmetric shock, the two radii of curvatures are equal. We thus have
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R y R

90 , 0 ,
1

,
cos 1

s s

β = ° θ= ° β′ = − β = 	 (5.3)

where Rs is positive for a convex shock and negative for a concave shock. The two 
nonzero tangential derivatives in Appendix E.2 become

	

u

s s

Z

X
,

2 2

( )∂
∂





 = −β′ ∂θ

∂




 = −β′

Because u2 and θ2 are zero for a normal shock, we see that their values positively 
increase from zero for a convex shock but negatively increase for a concave shock. 
The latter case is understood by noting that V 2

��
 slopes toward the symmetry axis.

As derived in Problem 10, the simplified results (with w = m) are

	 mg3 + g4 = −X2Z	 (5.4a)

	 mg5 + g6 = − 4
1γ +

 XYZ	 (5.4b)

	 (γ + 1)g2 − 2m(1 + 3m) = 4
1γ +

 YZ	 (5.4c)

	
V

v
n

Y
m R

1 2
1

1

s1 2

2
∂
∂





 = −

γ +






+ σ 	 (5.5a)

	
p

p
n

Y
R

1 4

1

1

s1 2
2( )

∂
∂





 = γ

γ +
+ σ 	 (5.5b)

	
n

m
X R

1 1

s1 2ρ
∂ρ
∂





 = 





+ σ 	 (5.5c)

	
T

T
n

XY
m R

1 8 1

1

1

s1 2
3

( )
( )

∂
∂





 =

γ −
γ +

+ σ 	 (5.5d)

where T is temperature, and (∂u/∂n)2 and (∂po/∂n)2 are zero. The above derivatives 
only depend on γ, M1

2, and (1 + σ)/Rs. Because of the Rs sign convention, the flow is 
thus compressive (expansive) for a convex (concave) shock. Their magnitude varies 
inversely with Rs and doubles for an axisymmetric shock. The derivatives are zero 
for a normal shock without curvature, as expected. The v derivative can be used to 
obtain an estimate of the shock stand-off distance (Problem 20) for a detached con-
vex shock, which is provided in the “Generic Shock Shape” section of Chapter 6. The 
top three gi equations are readily checked using prescribed γ and w(=m) values with 
the equations in Appendix E.4.
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43Derivative Applications

By way of contrast, Problems 11 and 12 deal with two unsteady, normal shock 
flows where the above analysis does not apply.

Lin and Rubinov (1948), using curved shock theory, appear to demonstrate that a 
normal shock, at its foot, cannot be attached to a concave (convex) wall, unless M1 
exceeds (is below) a critical value:

	
M

1
2

1 2 5c
2 2

1/2{ }( )= γ + + γ + γ +





which is 1.662 when γ = 1.4. This assertion is now examined under a steady flow 
assumption, and the shock may be three-dimensional but with a uniform freestream. 
With a uniform freestream, the upstream streamline curvature, ∂θ ∂s/ � , is obvi-
ously zero, where s� is distance along a streamline. This curvature is proportional 
to the streamline’s normal pressure gradient, ∂ ∂p n/ � . (In an unsteady flow, there is 
an additional acceleration term.) Hence, downstream of a normal shock, using the 
normal momentum equation, one can show that the streamline’s curvature is also 
zero. When a normal shock is attached to a wall, the wall must have zero longitudi-
nal curvature at the attachment point. Thus, an attached, normal shock on a curved 
wall is unstable, regardless of the value of the upstream supersonic Mach number. 
This instability implication of Lin and Rubinov’s analysis tends to be borne out by 
a number of photographs in Van Dyke’s (1982) album. The critical Mach number 
assertion, however, is not valid.

Photographs in the album show shocks that are normal to a longitudinally flat sur-
face, such as a projectile’s cylindrical surface. There is one photograph (number 250) 
that shows a normal shock over a curved surface. The foot of the shock, however, 
is actually on the top of a thickened, or separated, turbulent boundary layer whose 
upper surface is flat.

5.2 I ntrinsic Coordinate Derivatives

We start with a solid-body rotation of the x,y coordinates, as shown in Figure 5.1. 
This rotation is readily given by

y´

x´

x

y

φ

φ

Figure 5.1  Solid-body rotation.
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44 Shock Wave Dynamics: Derivatives and Related Topics

	 x′ = x cosφ + y sinφ	 (5.6a)

	 y′= −x sinφ + y cosφ	 (5.6b)

or by its inversion

	 x = x′ cosφ − y′ sinφ	 (5.7a)

	 y = x′ sinφ + y′ cosφ	 (5.7b)

Intrinsic coordinates (see Figure 5.2) are introduced, where s� is along a stream-
line in the positive velocity direction, and n�  is normal to the streamline in the oscu-
lating plane (i.e., the plane that contains V

��
 and V

��
 ± d V

��
 for a fixed streamline). (For 

a two-dimensional or axisymmetric shock, the flow and osculating planes coincide.) 
The n�  coordinate, by its conventional definition, is positive (as shown in Figure 5.2) 
when in the direction of the radius of curvature vector of the streamline. For an 
orthonormal, right-handed, intrinsic coordinate system, n t b, ,� � �, the coordinate b�  is 
normal to the osculating plane and is positive in the direction normal to, and into, 
the plane of the Figure 5.2 page. Intrinsic coordinates can be used at any point in the 
flow field; we apply them only to state 2.

Although the s,n and s n,� �  coordinates are curvilinear, a local transformation is 
utilized in which coordinates are straight. Our objective is to obtain various partial 
derivatives of the two coordinate systems in terms of β and θ. For this, Equations 
(5.7a,b) are used to rotate the n,s coordinates into the s�, n� coordinates, respectively. 
To do this, use the replacement

	 x → n,	 y → s,	 x′ → s�,	 y′ → n� ,	 φ → 90 – (β − θ)

where x is along V1

��
. This yields

	 n = s�  sin(β − θ) − n�  cos(β − θ)	 (5.8a)

	 s = s� cos(β − θ) + n�  sin(β − θ)	 (5.8b)

where φ is the angle between x and x′ (i.e., between n̂ and V 2

��
). In what follows, the 

state 2 subscript is not shown, except for purposes of clarity. Also note that the fixed 
coordinate is usually not indicated:

x

y

θ

s~
n~

V

Figure 5.2  Intrinsic coordinates in the osculating plane, b�  is into the page.
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45Derivative Applications

	 s s n n s s n n
,   , ,

n s n s

∂
∂

= ∂
∂







∂
∂

= ∂
∂







∂
∂

= ∂
∂







∂
∂

= ∂
∂





� � � �� �

and that the rotation angle φ (= 90 + θ − β) is also fixed. Hence, we obtain from the 
equations in Equation (5.8)

	
s
n

s
s

n
n

n
s

sin , cos , cos , sin( ) ( ) ( ) ( )∂
∂

= β − θ ∂
∂

= β − θ ∂
∂

= − β − θ ∂
∂

= β − θ
� � � �

	(5.9)

The inverse derivatives, such as ( n s/∂ ∂� )n, can be obtained from the equations in 
Equation (5.6). The intrinsic coordinate derivatives, s( ) /

n( )∂ ∂�
�  and n( ) /

s( )∂ ∂ �
� , are 

constructed from the s and n derivatives listed in Appendix E using the chain rule

	 s
s
s s

n
s n n

s
s s

n
n n

            ,            
n n n n s s n n s s

∂
∂

= ∂
∂

∂
∂

+ ∂
∂

∂
∂

∂
∂

= ∂
∂

∂
∂

+ ∂
∂

∂
∂� � � � � �� � � � � �  

With the equations in Equation (5.9) and Appendix E.1, this becomes

	
s s n B

A
s n

 cos      sin      
1

   
2

1/2( ) ( )∂
∂





 = β − θ ∂

∂
+ β − θ ∂

∂
= ∂

∂
+ ∂

∂




�

	 (5.10a)

	
n s n B s

A
n

 sin      cos      
1

     
2

1/2( ) ( )∂
∂





 = β − θ ∂

∂
− β − θ ∂

∂
= ∂

∂
− ∂

∂




�

	 (5.10b)

Downstream of a steady shock, the stagnation pressure should be constant along a 
streamline. As a check on the theory, the streamline derivative (∂po/∂s�)2 is readily 
shown to be zero. Problem 8 is another independent check on the theory. The inverse 
of the above equations

	
s B

A
s n

  
1

   
2

1/2

∂
∂





 = ∂

∂
+ ∂

∂




� �

	 (5.11a)

	
n B s

A
n

   
1

     
2

1/2 � �
∂

∂




 = ∂

∂
− ∂

∂






	 (5.11b)

is required later. Equations (5.10) and (5.11) are identical except for an interchange 
of s,n with s n,� � .

5.3 D erivatives along Characteristics

To further illustrate the theory, the differential operators along characteristics, or 
Mach lines, are developed (see Figures 3.1 and 5.3). Streamlines are denoted as ζo 
and have an angle θ relative to the x1-axis, while the left-running (ζ+) Mach lines 
have an angle μ + θ and the right-running (ζ−) lines have a positive angle μ − θ, 
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46 Shock Wave Dynamics: Derivatives and Related Topics

both with respect to the x1-axis. The left- and right-running characteristic terminol-
ogy stems from an observer facing in the downstream direction. A right-running 
characteristic, ζ−, has the direction of an outstretched right arm. The same applies 
to the left-running characteristic, ζ+, being aligned with an outstretched left arm. 
Because of the shock, for analytical convenience, the direction of ζ+ is reversed 
in the figure. Streamlines are also denoted as s�. Their derivative is provided by 
Equation (5.10a). Essential Mach lines have angles ±μ with respect to a streamline. 
For convenience, angles are positive in the direction of the arrows in the figure. The 
variables ζo and ζ± represent arc lengths in their respective directions.

A small disturbance, starting at a point downstream of the shock, can propagate in 
the downstream direction along the left-running characteristics in the −ζ+ direction 
(i.e., toward the shock wave, see Figure 5.3). The interaction between the incident 
wave and the shock wave has several effects on the flow. The disturbance alters the 
shock’s slope thereby generating shock-produced vorticity. This vorticity is trans-
ported downstream along streamlines and is referred to as a vortical layer. The dis-
turbance also reflects from the shock along right-running (ζ−) characteristics, which 
is the topic of the next section.

For the Mach line directions, the sines and cosines of μ + β − θ and μ − β + θ are 
required. These are the angles that the ζ− and ζ+ characteristics have with respect to 
the shock (see Figure 5.3). As an example, one of the sines is evaluated:

	

M B
M A

Y
X

A M

B

sin sin cos cos sin
1

1

1

2
1/2 2

2 1/2

1/2
2
2 1/2

( )

( )

( ) ( ) ( )µ + β − θ = β − θ µ + β − θ µ = − +





= 





+ −

where it is not convenient to eliminate M 12
2 1/2( )− . Note that M2 must equal or exceed 

unity for a real-valued result. The analysis, therefore, does not apply to any part of the 
shock where the state 2 flow is subsonic. In a similar manner, we obtain

V1

ζ+ ζ–

ζ0

x1

Shockµ– β+θ

µ+ β–θ

µ+θ

µ–θ

µ

µ
θ β

Figure 5.3  Angles for ζo and ζ± relative to x1 and the shock.

© 2013 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

0:
36

 1
0 

M
ay

 2
01

6 



47Derivative Applications

	

Y
X

A M

B

Y
X

A M

B

Y
X

A M

B

cos
1 1

sin
1

cos
1 1

1/2
2
2 1/2

1/2
2
2 1/2

1/2 2 1/2

( )

( )

( )

( )

( )

( )

µ + β − θ = 





− −

µ − β + θ = 





− −

µ − β + θ = 





− +

As with the equations in Equation (5.9), the right-running characteristic direction 
utilizes

	

s n
cos , sin

2 2

( ) ( )∂
∂ζ







= µ+ β − θ ∂
∂ζ







= µ+ β − θ
− −

with the result

	

s
s

n
n

Y
X B

A M
s

M A
n

1
1 1 1

2 2

1/2

2
2 1/2

2
2
2 1/2

2

( ) ( )

∂
∂ζ







= ∂
∂ζ

∂
∂

+ ∂
∂ζ

∂
∂







= 



 − −





∂
∂





 + − +





∂
∂















− − −

	 (5.12a)

The left-running characteristic direction is given by

	

s
s

n
n s n

Y
X B

A M
s

M A
n

cos sin

1
1 1 1

2 2 2 2

1/2

2
2 1/2

2
2
2 1/2

2

( ) ( )

( ) ( )∂
∂ζ







= ∂
∂ζ

∂
∂

+ ∂
∂ζ

∂
∂







= − µ − β + θ ∂
∂





 + µ − β + θ ∂

∂






= −



 − +





∂
∂





 + − −





∂
∂















+ + +

� (5.12b)

Equation (5.12) provides exact, explicit relations for the two derivatives in the flow 
plane. The comparable streamline derivative is provided by Equation (5.10a), which 
is appreciably simpler than the above relations.

When state 2 is sonic, the above equations reduce to

	 B s
A

n
   

1
     

2 2
1/2

∂
∂ζ







= ∂
∂ζ







= − ∂
∂

+ ∂
∂





− +

which is the negative of ∂( )/∂n�  given by Equation (5.10b). By definition, the deriva-
tives are positive along their respective characteristics, but here point in opposite 
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48 Shock Wave Dynamics: Derivatives and Related Topics

directions. For a sonic point on a convex shock, the right-running characteristic 
points into a subsonic flow and has zero length. The left-running characteristic 
points upstream, into the shock, and also has zero length. A zero length is equivalent 
to zero strength.

5.4 W ave Reflection from a Shock Wave

As mentioned, left-running Mach lines reflect, in part, from the downstream side of 
a convex shock as a wave consisting of right-running Mach lines. The reflected wave 
is an expansion wave if its Mach lines diverge from each other. If they converge, 
the wave is compressive. Moreover, converging Mach lines that attempt to overlap 
form a weak shock wave where the overlap would occur. Thus, an internal shock 
can form in a supersonic flow containing converging Mach lines of the same family. 
In this situation, flow conditions upstream of the internal shock are nonuniform. This 
process results in the downstream shock system that appears in a jet emanating from 
an underexpanded nozzle (Emanuel 1986, Section 19.4).

If the incident wave is compressive, its interaction will strengthen the shock caus-
ing β′ to be less negative. An inflection point on the shock (Wilson 1967) would 
occur if the compression is strong enough to cause β′ to become positive. This can 
occur, for example, if a slightly convex wedge or spike, with an attached shock, has 
a concave change in shape. If the incident wave is expansive, it weakens the shock. 
In either case, there are two reflected waves, the one with right-running Mach lines 
and a vortical, streamline layer due to the induced change in the shock’s curva-
ture. The strength of both reflected waves depends on the change of shock curvature 
caused by the incident wave.

The family of right-running ζ− characteristics is referred to as a C− wave. The 
slope of these characteristics, just downstream of the shock, is μ − θ relative to the 
x1-axis, as previously mentioned. By traveling along a convex shock, in the down-
stream direction, the wave is seen to be compressive (expansive) if the positive 
angle, μ − θ, increases (decreases). (When μ − θ increases, Figure 5.3 shows that 
the ζ− characteristics are converging.) Thus, the C+ wave reflects from a shock as a 
compression if

	

d

ds

d

d
0 or 0

( ) ( )µ− θ
>

µ− θ
β

<

where the second form is analytically more convenient.
It is difficult to derive an equation for d(μ − θ)/dβ without the assistance of the 

theory in Chapter 4. With this theory, the derivation is straightforward; start with 
Equation (4.6) to obtain

	
d
dM M M

1

12 1/2( )
µ = −

−
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49Derivative Applications

Consequently, write the derivative of interest as

	 ( )
( )µ − θ

β
=

µ − θ

β = −
′β −

+ θ











d

d

d
dM

dM
ds

d
ds

d
ds

M M

dM
ds

d
ds

1 1

2 12 2 1/2

2

	 (5.13a)

With the assistance of Appendix E, this becomes

	

d

d X B

m w A

Y
X
Y

B

m w w w
1

1
2

1
1

2
1

1

1
2

1 1 22

2

1/2
2

( )( ) ( )µ − θ
β

=

γ +



 + γ −



 + γ

−





− γ + + − + + γ



















		
		  (5.13b)

This is an exact result that is independent of whether or not the flow is two-
dimensional or axisymmetric. It is also independent of the local shock wave curva-
ture, −β′, because this parameter cancels. Although complicated, the right side only 
depends on γ, M1, and β; hence, the influence of the incident wave is limited to its 
effect on the wave angle β. Moreover, the larger the magnitude of the derivative, the 
stronger is the reflected expansion or compression. In arriving at the above result, it 
is useful to note that (see Problem 6)

	 X B w Z mw m w w w1
1

2
1 1

1
4

1 22
2

2( ) ( )= − + γ + γ +



 = γ + + γ +



 + − − γ 	 (5.13c)

For a detached shock, the flow between the shock and body in the nose region 
is subsonic. This region is bordered by a curved sonic line that intersects the 
shock where its slope is β*. The above convex shock analysis, of course, only 
holds when β is less than β*. At β*, Equation (5.13a) shows that d(μ−θ)/dβ is infi-
nite, because M2 equals unity. A relation for β* is obtained by setting M2 = 1 (see 
Appendix E.1):

	
( ) ( )γ + + + γ − − γ =mw w w1 2 3 2 ( ) 0* * * 2

This relation becomes

	
( )( ) ( )γ β − γ − + γ +  β − =M M Msin

1
2

3 1 sin 1 01
* 4

1
2

1
* 2

which is a quadratic equation for (M1 sinβ*)2, with the result

	 ( )β = γ +
γ

− − γ
γ +

+ −
− γ

γ +
+ γ +

γ +




















M
M M Msin

1
4

3
1

2 3

1
9
1

2 *

1
2 1

2
1
4

1
2

1/2

	 (5.14)

© 2013 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

0:
36

 1
0 

M
ay

 2
01

6 



50 Shock Wave Dynamics: Derivatives and Related Topics

With γ = 1.4 and 1.59 ≤ M1 ≤ ∞, β* is confined to the narrow 61.70° to 67.79° range, 
where the second value occurs when M1 is infinite.

As is often the case, the incoming wave is an expansion, thereby weakening the 
shock. In a blunt body flow, the C+ wave originates on the sonic line. In any case, 
detailed calculations (see Problem 15) with γ = 1.4 show that the reflected wave is 
expansive, for all β values, when M1 < 1.59. For larger M1 values, there is a range of 
β values:

	

M

M

M

M

39 , 1.59

39 , 2 4

38 , 6

38 , 8

1 1

1

1

1

µ ≤ β ≤ ° =

°− ≤ ≤

°+ =

°+ =

for which the reflected wave is compressive, where μ1 is the state 1 Mach angle. 
The compressive β region starts at M1 = 1.59, where μ1(1.59) = 39.0°. As evident, 
the upper limit for β, where d(μ − θ)/dβ = 0, decreases quite slowly with M1. On the 
other hand, μ1 rapidly decreases, thereby increasing the range of relatively small 
β values for which the reflected wave is compressive. For instance, when M1 = 4, 
the reflected wave is compressive when β is between 14.48° and 38°+. For larger β 
values, the reflected wave is expansive. (This expansive wave can then interact with 
the boundary layer on the surface of the vehicle.) Consequently, for a freestream 
Mach number in excess of 1.59, both types of reflection processes are present, as 
sketched in Figure 5.4. Note that the compressive reflection occurs downstream, 
where the shock is weak. On the other hand, at the sonic point, where d(μ − θ)/dβ 
is infinite, the reflected right-running wave is expansive, but, initially, is of zero 
strength.

Hypersonic small disturbance theory is now briefly discussed. In this theory, we 
have the limit

	
M K M O, sin 1( )→ ∞ = β =∞ β ∞

V1

M = 1

µ1

Compressive
reflection

Expansive
reflection

Figure 5.4  Expansive and compressive regions downstream of a shock when γ = 1.4 and 
M1 > 1.59.
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51Derivative Applications

with

	
X K Y K1

1
2

,
1

2
2 2= + γ − = γ − γ −
β β

Equation (5.13b) yields, to leading order,

	

d

d

K

K X Y

K

K
1
1

1 2
1

14

2 1/2 1/2

2

2

( )µ − θ
β

= γ −
γ +

+ γ
−

γ +
+β

β

β

β

For instance, at a point on the shock where Kβ is unity, this becomes

	

d

d

2 3

1
( )( )µ − θ

β
= −

− γ
γ +

and the reflected wave, at this location, is compressive.

5.5  Flows with a Conical Shock Wave

As we know, the tangential and normal derivatives are zero downstream of a straight 
shock that is attached to a wedge. For a cone at zero incidence with an attached conical 
shock, the tangential derivatives are again zero while the normal derivatives greatly 
simplify (see Problem 16). The shock has β′ equal to zero and σ equal to unity. This 
flow, known as Taylor-Maccoll flow, is discussed in Section 9.6 of Emanuel (2001), 
where it is shown that the Euler equations of motion reduce to two coupled first-order 
ordinary differential equations (ODEs) whose independent variable is the angle η 
(see Figure 9.27 in Emanuel 2001). (In this and the next few paragraphs, the discus-
sion describes material in Chapter 9 of the above reference.) Chapter 9 is devoted to 
calorically imperfect gas flows where Taylor-Maccoll flow is one example. Section 
9.6, however, contains a short subsection with the perfect gas formulation. (Problems 
16 and 17 also deal with Taylor-Maccoll flow of a perfect gas.)

In Taylor-Maccoll flow, the flow is irrotational, homentropic, and depends on 
a single angular variable. It is the axisymmetric counterpart to a Prandtl-Meyer 
expansion or compression. It differs from a Prandtl-Meyer flow in that it also applies 
when the downstream flow is subsonic. As will be shown, the flow about a conical 
body is compressive. Later in the discussion, an expansive Taylor-Maccoll flow is 
encountered.

In Figure  9.27, θb is the cone’s half angle, the radial coordinate r is replaced 
with y, and the u and v velocity components are defined differently. The flow just 
downstream of the shock is usually supersonic but can also be subsonic. Between 
the shock and body the flow may be entirely supersonic, subsonic, or mixed. When 
mixed, there is a sonic conical surface. Disturbances propagate (and attenuate) in the 
upstream direction when some, or all, of the flow is subsonic. There would be a dis-
turbance (e.g., caused by the shoulder where the base of a cone is attached to a sting 
support). When some of the flow is subsonic, the Taylor-Maccoll solution asymptoti-
cally holds as the cone’s apex is approached.
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52 Shock Wave Dynamics: Derivatives and Related Topics

The θb,β variation, for several M1 values with γ = 1.4, is shown in Figure 9.28b, 
where the perfect gas solution is the solid δ = 0 curves. The corresponding wedge 
result is shown in Figure 9.28a. In both cases, the attached, weak solution shock 
is to the left of the maximum of the curves. Note that the θb value for detachment 
substantially exceeds its wedge counterpart. Because β* (given by Equation 5.14) is 
independent of dimensionality, the θb range of values, between where M2 = 1 and 
detachment occurs, is appreciably larger than in the planar case. This feature is evi-
dent in Figure 4 of NACA 1135 (Ames Research Staff, 1953).

From Problem 16 and Equation (5.25), given later, we obtain

	
p

p
n

Y
y

1 2
1

cos

1 2

2
∂
∂





 =

γ +






γ β 	 (5.15a)

	 M
n

m w

XY y
1

1
1

2 cos2

2

( )∂
∂







= − γ +
+ γ −



 β 	 (5.15b)

	
s

A
B

Y
X y

2
1

cos

2
3/2�

∂θ
∂





 =

γ +
β 	 (5.15c)

With β in the first quadrant, the right sides of Equation (5.15a,c) are positive, while 
that of Equation (5.15b) is negative. The flow is thus compressive even when M2 is 
subsonic. The streamline angle θ gradually increases from θ2 to θb. Because of the 
singularity at the cone’s apex, when y = 0, θ = θb on the cone’s surface.

There is a second type of conical flow that is associated with what is conveniently 
referred to as an inverted cone. The author is grateful to S. Molder for his enlighten-
ing comments on this topic (see Molder 1967). A sketch of the configuration is shown 
in Figure 5.5, where the body is part of a hollow cylinder. At the surface’s tip, the 
radius is yt and the internal wall angle is θbt (b for body, t for tip). In the lower half 
of the figure, straight rays (actually conical surfaces) are sketched. Along a ray, the 
Taylor-Maccoll solution is constant for M, p, θ, …. The downstream-most ray has 
θ = 0° where the velocity is parallel to the x-coordinate. The 1, 2, and 3 designation 
applies to the upstream flow, the flow just downstream of the shock, and the parallel 
flow downstream of the θ = 0° ray.

M1

yty3
y2

x

Shock

θbt

Figure 5.5  An inverted conical shock.
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53Derivative Applications

The solution in the upper region, marked with a 2, is identical to that in the lower 
region, except that θ2 and s( / )2�∂θ ∂  change sign. (The same sign change occurs with 
a Taylor-Maccoll flow.) In the upper region, θ2 is negative, s( / )2�∂θ ∂  is positive, and 
β is in the second quadrant. From Equation (5.15a,b), we see that (∂p/∂n)2 is negative, 
due to the cosβ factor, and (∂M2/∂n)2 is positive. In contrast to the earlier compres-
sive conical flow, this flow is expansive. Because of the A factor in Equation (5.15c), 
the sign of s( / )2�∂θ ∂  is determined by sinβ, not cos2β, and this derivative is positive 
in the upper region. In the upper region, the wall slope, determined by θ, gradually 
increases from a negative θbt value to zero.

It is not intuitive that the flow downstream of an inverted conical shock is expan-
sive because the cross-sectional area, from region 1 to 3, goes through a contraction. 
For instance, with isentropic, supersonic nozzle flow there would be an area increase. 
The flow under discussion, however, is not isentropic or one-dimensional.

The length ratio, yt/y3, is determined by a combination of the conservation of mass 
flow rate and the Taylor-Maccoll equations. We start by noting that

	 To1 = To2 = To3,	 po2 = po3,	 ρo2 = ρo3

where the oh subscript denotes a stagnation value. For a uniform flow at states 
1 and 3, the mass flow rate is written as

	

m AV RT A
M

M1
1

2

o o
1/2

2
1 / 2 1

( )= ρ = ρ γ
+ γ −





( ) ( )γ+ γ− 
�

where A is the cross-sectional area. With several gas dynamic relations and =m m1 3� � , 
we obtain

	 y
y

M

M

M
M

M

M

1
2 1

1
2

1
1

2

1
1

2

t n

n
3

2
1
2

1
2

3

1

1
2

3
2

1 / 2 1







= γ +

+ γ −
+ γ −

+ γ −

















( ) ( )γ+ γ− 

	 (5.16)

Values are prescribed for γ, M1, and β, which determine M1n, M2, θbt, p2, …. The 
unknowns in Equation (5.16) are M3 and yt/y3. The Taylor-Maccoll equations deter-
mine M3.

For purposes of simplicity and clarity, there is one inverse cone aspect that has not 
been mentioned. The flow configuration in Figure 5.5 has a central Mach disk instead 
of a focal point (Ferri, 1954). The reason is that the velocity, V 2

��
, points toward the 

symmetry axis. Consequently, there is either a Mach disk or a second conical shock, 
whose apex is at the origin, that would turn the flow parallel to the x-axis. For the 
Mach disk case, there is a triple point (actually circular line) where the Mach disk 
and incident and reflected shocks meet. Triple points are the subject of Chapter 7. 
The upstream flow with a second conical shock somewhat resembles the flow in 
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54 Shock Wave Dynamics: Derivatives and Related Topics

a Busemann diffuser (Molder, 1967). With a Busemann diffuser, the upstream shock 
becomes a Mach cone and the flow is compressive, not expansive. Both flows use the 
Taylor-Maccoll equations, but the rays are oppositely oriented such that the converg-
ing walls have curvatures of the opposite sign. The author is unaware if this double 
conical shock flow has been experimentally observed.

5.6 S pecial States

A number of special state 2 points are discussed. The first four hold generally; 
the flow may be unsteady and three-dimensional. The last two are the Crocco and 
Thomas points. They require the use of normal derivatives and are thus more con-
strained. The presence of these various points, or states, generally requires a shock 
with, at least, a finite longitudinal curvature. For instance, a planar or conical shock 
does not possess Crocco or Thomas points.

The first state is where the shock is normal to the freestream and is the subject of 
Section 5.1. The second state is where M2 = 1 (i.e., the sonic state, whose β* value is 
given by Equation 5.14).

For a perfect gas, the β,θ angles, in the flow plane, are related by Equation (2.28), 
where θ has a maximum value when β has its detachment value, βd, given later 
by Equation (7.10). The corresponding θd value can be obtained by substituting βd 
into Equation (2.28). At detachment, the derivative, (dθ/dβ)d, is zero. From Equation 
(8.18), with M1s = 0, (dθ/dβ)d = 0 yields

	
m w w w

1
2

  1    1   2        02( )γ + + + − − γ =

which simplifies to Equation (7.10). Recall that β,θ are measured relative to the 
upstream velocity V1

��
. When this velocity is not uniform, the detachment condi-

tion still occurs when θ has a maximum value, (∂θ/∂s) = 0, as discussed below in 
Equation (8.18).

The fourth special state is where the vorticity, ω2, has an extremum value. With 
a uniform freestream, this location is implicitly given by Equation (6.33). When the 
shock is convex, this extremum value is a maximum.

The Crocco point is defined by

	
s

0
2

�
∂θ
∂





 = 	 (5.17)

where the equation for (∂θ/∂s�)2 is given in Problem 14, or by Equation (5.25), for a 
two-dimensional or axisymmetric shock. As discussed in the problem, the Crocco 
point, for a two-dimensional shock, is given by a cubic equation in sin2βcp. The 
derivative, ∂θ/∂s�, pertains to the curvature of a streamline in the osculating plane. 
(For a two-dimensional or axisymmetric shock, the flow and osculating planes 
coincide.) When (∂θ/∂s�)2 is positive, the streamline, just downstream of the shock, 
curves upward; when negative, it curves downward. In the two-dimensional case, 
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55Derivative Applications

Problem 14 demonstrates the closeness of the β*, βcp, and βd values. Since βcp is 
between β* and βd, the Crocco point occurs for a weak solution shock but with M2 
slightly supersonic.

Problem 14 is for selected γ and M1 values; it is not a general demonstration that 
there is a real, unique Crocco point when the shock is two-dimensional. This dem-
onstration might be done using symbolic manipulation software to show, when the 
sin2βcp cubic is written in the form

	 x3 + ax + b = 0

that its discriminant, (b/2)2 + (a/3)3, is positive.
For an axisymmetric shock, the Crocco point is given by (see Problem 14)

	 β′ = − = − βC
G

XYZ

yG
           

cos
cp

cp

cp

cp

2
	 (5.18)

If the shock is convex,

	

XYZ

y

cos
   0,  0cpβ
> β′ <

and Gcp must be positive for a Crocco point to exist. However, Gcp can be positive or 
negative. For instance, a strong solution shock yields a Gcp that is negative, and the 
shock does not have a Crocco point. Hence, whenever an axisymmetric shock is a 
strong solution shock, the state 2 streamline is straight or curves upward.

The Thomas point is defined by

	 p
s

0
2

�
∂
∂





 = 	 (5.19)

where on one side of the point the flow is compressive while on the other side it is 
expansive. The name was suggested by Molder to commemorate the contributions 
of Thomas, such as his (1947, 1948) papers. With the assistance of Equation (5.10a) 
and Appendix E, we obtain
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
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σ β 
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



	 (5.20)
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56 Shock Wave Dynamics: Derivatives and Related Topics

As with a Crocco point, the Thomas point derivative is proportional to the −β′ and 
σcosβ/y curvatures.

For simplicity, the following Thomas point remarks are limited to a smooth, 
detached, convex shock. We know that ∂p/∂s� is positive (i.e., compressive) down-
stream of a normal shock. As shown by Equation (5.5b), the positive value of (∂p/∂n)
[= ∂p/∂s�] is twice as large for an axisymmetric normal shock as compared to a two-
dimensional one. One can show that the shock far downstream, for either dimension-
ality, becomes a Mach wave, where

	 w = 1,  β = μ1, 
Z

β′  → 0,  y → ∞

In this circumstance, one can show that ∂p/∂s� goes to zero. At these two extremes, 
∂p/∂s� is positive and zero. The occurrence of a Thomas point, however, is more prob-
lematic for an axisymmetric shock because of the factor of two.

The existence of a two-dimensional Thomas point is now examined. From 
Equation (5.20), and excluding the trivial case of β′ = 0, it requires

	 mg5 + g6 = − 2 (γ + 1) Z (m sinβ cosβ)2

or

	 mg5 + g6 + 2 (γ + 1) w (w − 1) (m − w) = 0

where m ≥ w ≥ 1. This relation can be written as

	 m
g w w

g w w
    

2  1   1

2  1   1
tp

6
2 

5

( )
( )

( )
( )=

− + γ + −
+ γ + −

	 (5.21)

where tp stands for Thomas point. When γ = 1 and 1.4, the mtp ≥ w > 1 condition can 
be shown to hold, thereby demonstrating a unique Thomas point for these γ values. 
Moreover, since (mtp/w) = (sin2βtp)−1 only slightly exceeds unity, the Thomas point 
occurs for a strong solution shock. This is further confirmed by Problem 25. In con-
trast to the above generality, the possible occurrence of a Thomas point, for an axi-
symmetric shock, depends on a specific shock shape because of the presence of y in 
Equation (5.20), now written as

	
p

p

s XB
G XY

y
1

           
2

1
cos

1
1/2

2

�
∂
∂

= γ ′β +
γ +







β











where G represents the coefficient of β′ in Equation (5.20). The various factors on 
the right side are nonnegative, except for β′ and G. Since β′ is negative, G must be 
positive if ∂p/∂s� has any possibility of being zero. In view of the earlier discussion, 
G is most likely sufficiently positive, for a Thomas point, when the shock is weaker 
relative to the Thomas point condition for its two-dimensional counterpart. This 
is illustrated by Problem 24, which evaluates the location of the Thomas point for 
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57Derivative Applications

the generic shock shape given later by Equation (6.21). (See the problem statement 
for specific conditions.) When the shock is two-dimensional, the strong solution 
Thomas point is well removed from the detachment point. In the axisymmetric case, 
the point occurs where the shock is also a strong solution but now is closer to the 
detachment point. This topic is further discussed in Section 6.6.

5.7  θ Derivatives

In contrast to other variables, such as the pressure, the derivatives of θ require special 
treatment. This is because θ is defined by Equation (2.28) and only the (∂θ/s)2 derivative 
is obtained from this equation. The other derivatives require the use of the Euler equa-
tions. In Equation (2.28), θ is the included angle between V1

��
 and V 2

��
, whereas in the Euler 

equations it is the angle of V
��

 relative to an x-coordinate (see Figure 5.2). At the shock, 
this difference is accounted for by requiring that the x-coordinate be parallel to V1

��
.

The four derivatives

	
s s s s n n n n

    ,     ,     ,    
n n s s2 2 2 2

� � � �� �
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∂
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



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
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





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∂





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


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



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∂
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



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








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∂

= ∂θ
∂





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









are evaluated in the order listed. The equation for (∂θ/∂s) is given in Appendix E.2, 
where X2B is provided by Equation (5.13c). As already noted, the numerator on the 
right side is zero at the detachment state. The equation for (∂θ/∂s) is defined in the 
flow plane but holds for an unsteady shock in a three-dimensional flow.

For (∂θ/∂s�), the momentum equation, transverse to a streamline,

	 V
s

p
n

         02

� �
ρ ∂θ

∂
+ ∂

∂
= 	 (5.22)

is utilized. With Equation (5.10b) and Appendix E, we have

	 p
p
n B p

p
s

A
p

p
n

1
     

1
 

1
       

1
 

1
1/2

1 1�
∂
∂

= ∂
∂

− ∂
∂







which becomes

	
p

p
n

m
X ZB

G XYZ
y

1
       

2
1

 
 sin  cos

       
cos

cp
1

2 1/2�
∂
∂

= − γ
γ +

β β ′β + σ β





	 (5.23a)

where

	 G mg g X Z    
1

4
    2cp 5 6

2( )= γ + + − 	 (5.23b)

With V2/V1 given in Appendix E.1 and

	 p
V XB

   
1

2
 

11

2 2
2ρ

= γ +
γ

	 (5.24)
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the desired derivative is

	
s

A

X ZB
G XYZ

y
   

2
1

          
cos

cp2 3/2�
∂θ
∂

= γ
γ +

β′ + σ β





	 (5.25)

which is also given in Problem 14.
For (∂θ/∂n� ), start with continuity for a two-dimensional or axisymmetric flow

	

Vy

s
Vy

n
         0

� �
( )∂ ρ

∂
+ ρ ∂θ

∂
=

σ
σ

which is rewritten as

	
n y

y

s V

V

s s
         

1
 

1
 

∂θ
∂

= − σ ∂
∂

− ∂
∂

−
ρ

∂ρ
∂� � � �

	 (5.26)

The connection between y, when measured from a point on the shock, and the s�,n�  
coordinates uses Equation (5.7b) with

	 x′→s�,	 y′→n� ,	 x→x,	 y→y,	 φ→θ

	 y = s� sinθ + n� cosθ

to obtain the result

	

y
s

   sin
�

∂
∂

= θ

Continuity therefore contains a term, σsinθ/y, that should not be confused with the 
curvature σcosβ/y term. However, with Appendix E.1, we have

	
y

Z
XB y

sin
   

cos
1/2

σ θ = σ β 	 (5.27)

From Appendix E and Equation (5.10b), we have

	

s B
A

s n

w
X ZB

mg g m w Z X Z
y

1
     

1
   

1
     

1
 

       
1

2
     

cos

1
1/2

1 1

3 1/2 3 4

2

2

�

( )( ) ( )

ρ
∂ρ
∂

=
ρ

∂ρ
∂

+
ρ

∂ρ
∂







= + +
γ +

−












′β + σ β










	 (5.28)

What actually appears in Equation (5.26) is
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s X ZB

mg g m w Z X Z
y

1
     

2
1

 
1

     
1

2
     

cos

2
2 1/2 3 4

2

2

�
( )( ) ( )

ρ
∂ρ
∂

=
γ +

+ +
γ +

−












′β + σ β











� (5.29)

For the V term in Equation (5.26), utilize

	

V
s

u v

s V
u

u
s

v
v
s

 
   

   
1

     
2

2
2

2
2 1/2

2
2

2
2

2
� � � �

( )∂
∂





 =

∂ +
∂

= ∂
∂





 + ∂

∂
















Again, with Appendix E and Equation (5.10b), we obtain

	

V
V
s XZB

g m w
Z

X

YZ
y

1
     

1
2

 
1

   
2

1
    1 3   1   

1
2

 
cos

 
2

1
   

cos

2
3/2 2

2

2

�
( )∂

∂
= γ + −

γ +
+ + γ + β













 ′β







−
γ +







σ β 




	(5.30)

The final result is obtained by combining the above with Equation (5.26):

	

n X ZB
XG BG

XB
w

Y

B y

   
1

 
1

2
   

2
1

     

 
2

1
 

1
     

1
2

     
cos

2 3/2 3 4

1/2

�
∂θ
∂

= − γ + +
γ +







β′

−
γ +

γ − γ − −





σ β
	 (5.31)

where

	 G g m w
Z

X
       

2
1

  1 3   1   
1

2
 

cos
3 2

2

( )= −
γ +

+ + γ + β





	 (5.32a)

	 G mg g m w Z           
1

2
   4 3 4

2( ) ( )= + +
γ +

− 	 (5.32b)

The final derivative, ∂θ/∂n, utilizes Equation (5.11b):

	 n B s
A

n
   

1
     1/2 � �

∂θ
∂

= ∂θ
∂

− ∂θ
∂







With the aid of Equations (5.25), (5.27), and (5.31), this results in

	
n

A

XB

G

XZB
w

y
         

2
1

     
1

2
 

cos5∂θ
∂

= β′ +
γ +

γ − γ −





σ β







 	 (5.33)
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60 Shock Wave Dynamics: Derivatives and Related Topics

where

	 G G XG BG   
2

1
     

1
2

     
2

1
 cp5 3 4=

γ +
+ γ + +

γ +
	 (5.34)

The four derivatives are given by Appendix E.2 and Equations (5.25), (5.31), and 
(5.33). They have dimensions of radians per unit length. The derivative, ∂θ/∂s, is 
proportional to β′, the others are proportional to β′ and σcosβ/y.

The derivatives are evaluated for the elliptic paraboloid shock fully discussed in 
Section 9.3. The two-dimensional parabolic and axisymmetric hyperbolic configura-
tion is used, with the parameters

	 γ = 1.4,	 M1 = 3,	 w = 4,	 r = r2 = r3 = 2,	 σ = 0, 1

and where f in Equation (3.2) is

	 f = (2 rx1)1/2

This results in

	 β = 41.81°,	 θ = 23.27°,	 M2 = 1.816

	

x x x y

y y

    
1.25,          0

1.25,          1
,    

2.236
1.581

,       
0

1.581
,    2.236 

  0.1481,
cos

    
0

0.3333
,

sin
   

0
0.2498

1 2 3=
σ =
σ =






=





=




=

′β = − σ β =




σ θ =




where the upper value after the brace is for σ = 0, and the lower value is for σ = 1, 
as shown for x1. Computational results, including ∂ρ/∂s� and ∂V/∂s�, are

	

s V
V
s

s

s

n

n

1
     

0.5278
0.4395

 ,         
1

     
0.1601
0.1333

         

    0.1137

   
0.2433
0.1634

   
0.3677
0.05631

   
0.4260
0.1053

2 2 2 2ρ
∂ρ
∂





 = −

−




∂
∂





 =





∂θ
∂

= −

∂θ
∂

= −
−





∂θ
∂

=




∂θ
∂

= −
−





� �

�

�
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61Derivative Applications

It is evident from the ρ and V derivatives that the flow is expansive at state 2, 
where the shock is a weak solution shock. There is one Thomas point, for both 
the σ = 0 and 1 cases, on the shock at a β value larger than 41.81° (see Problem 
24). When σ = 0, there is a Crocco point between the sonic and detachment states. 
Because Gcp = 199.8, one can show, for the axisymmetric case, that a Crocco point 
exists at a point on the shock downstream of where β is 41.81°.

As expected, ∂θ/∂s has a negative value for the convex shock. Since n and n� have 
opposite orientations, the signs of ∂θ/∂n and ∂θ/∂n� differ. The negative value for 
∂θ/∂s� means the streamline curves downward, away from the shock. The substan-
tial difference in ∂θ/∂n� and ∂θ/∂n between the two-dimensional and axisymmetric 
shocks is largely due to the 0.25 value of sinθ/y, which, in the relevant equations, has 
been replaced with Equation (5.27).
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6 Vorticity and Its 
Substantial Derivative

6.1 P reliminary Remarks

A systematic study is presented of the vorticity and its substantial derivative, 
both evaluated just downstream of a curved shock wave. As we know, the sub-
stantial derivative provides the rate of change of a property following a fluid par-
ticle. In  a steady flow, this becomes the rate of change of a property along a 
streamline. The substantial derivative of the vorticity determines whether or not 
its strength is increasing or decreasing in the flow region just downstream of the 
shock.

Results and the analytical method may be of interest to researchers studying 
vortex-shock interaction, the external effect of vorticity on a boundary layer, or a 
detonation wave with cellular structure (see Problem 18).

The equations derived for ω and Dω/Dt are exact. They are also algebraic, 
explicit, and can readily be evaluated with a computer. The vorticity equation has 
the form of a shock jump condition in which the upstream flow is uniform and 
steady. Even though the analysis is in a flow plane and the Euler equations are not 
required, the vorticity result is limited to a two-dimensional or axisymmetric flow. 
The two vorticity parameters depend on γ, M1, the slope of the shock, β, and its 
curvature, −β′. In the axisymmetric case there is also a dependence on the cosβ/y 
curvature.

Starting in Section 6.4, application is for a detached bow shock, although the 
theory also applies to an attached shock.

Additional material can be found in Emanuel (2007) and Emanuel and Hekiri 
(2007). In the first of these references, general equations are obtained for Dω/Dt 
and for Crocco’s equation in a diffusive, reacting, viscous, general gas mixture. 
Results for ω and Dω/Dt, for a generic shock shape, are provided in the second 
reference and are repeated here, but with Dω/Dt corrected. (The author gratefully 
acknowledges the assistance of Hekiri for the recomputation and for the revised 
figure.)

The first two sections respectively derive equations for ω and Dω/Dt. Subsequent 
sections provide analysis and parametric results for two generic shock shapes.

6.2  Vorticity

The curl of V
��

 is normal to the streamlines in a two-dimensional or axisymmetric 
flow and therefore is tangent to the shock. Consequently, ω

�
 is normal to the flow 

plane (i.e., it is proportional to b̂). We can now write
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	 b V ut vnˆ, ˆ ˆω = ω = +
�� ��

	 (6.1a,b)

In general, Equation (6.1a) does not hold in a three-dimensional flow. To kinemati-
cally demonstrate this in a simple way, use a Cartesian coordinate system where 
u, v, w are the x, y, z velocity components. Let u and v be functions only of x and 
y and let w be a nonzero constant (i.e., this is a two-dimensional flow with sweep) 
(Emanuel 2001, Chapter 10). A Vω ⋅

�� ��
 calculation shows that the vorticity is not 

normal to the flow plane, which is angled with respect to the x,y plane. (This sweep 
flow model is also invoked in Section 9.5.)

It is convenient to introduce Crocco’s equation:

	
V
t

V T S h                o
∂
∂

+ ω × = ∇ − ∇
��

�� ��
	 (6.2a)

where S is the entropy, and ho is the stagnation enthalpy. Under the assumptions of 
steady, homenergetic flow, this reduces to

	 V T S   ω × = ∇
� ��

	 (6.2b)

which becomes

	
T
u

S
n

T
v

S
s

,ω = ∂
∂

ω = − ∂
∂

	 (6.3a,b)

By eliminating ω, the streamline isentropic equation is obtained. The entropy of a 
perfect gas is written as

	 = +
γ − ρ





γS S

R
ln

p

1
o 	 (6.4)

where So is a constant, and R is the gas constant. The shock arc length derivative 
yields

	 S

s

R

p

p

s s1
1∂

∂
=

γ −
∂
∂

− γ
ρ

∂ρ
∂







	 (6.5a)

With the aid of Appendix E, this becomes

	
S
s

R
Z

XY tan

2∂
∂

= γ ′β
β

	 (6.5b)

At a normal shock, when β′ is not zero, (∂S/∂s)2 is infinite due to the tanβ factor.
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65Vorticity and Its Substantial Derivative

The vorticity is normalized by V1 divided by an arbitrary reference length. 
By combining Equations (6.3b) and (6.5b) and replacing the temperature with p/(ρR), 
the desired result is obtained:

	
Z
wX

2
1

cos2

2

ω = −
γ +

′β β 	 (6.6)

The vorticity and β′ have opposite signs when β is in the first quadrant. For a 
convex shock, (∂S/∂s)2 is negative, and, from Equation (6.3b), ω2 is positive. This 
conclusion is in accord with Equation (6.6) when β′ is negative and β is in the first 
quadrant. Since b̂  points into the page, a positive ω

��
2 also points into the page. 

(For a quite different type of vorticity derivation, see Kanwal 1958a.)
Note that Equation (6.6) is independent of σ and that normal derivatives are not 

utilized in its derivation. The vorticity is zero when

	 (i) w = 1	 (6.7a)

	 (ii) β = 90°	 (6.7b)

	 (iii) β′ = 0	 (6.7c)

Condition (i) corresponds to the shock becoming a Mach wave, which, by itself, 
does not generate vorticity. The second condition occurs when the shock is nor-
mal to the freestream velocity. Condition (iii) is for a straight planar or conical 
shock.

It is useful to reexamine Equation (4.9b) by rederiving the vorticity equation by 
starting with the curl of the velocity:

	

V
h h h

h t h n h b

h u h v

h h h
h h u n h h v b h h u b

h h v t

1

ˆ ˆ ˆ

0

1 ˆ ˆ ˆ

ˆ

1 2 3

1 2 3

1 2 3

1 2

1 2 3
2

3
1 3

1
2 3

2
1

1
3

3( )

( ) ( ) ( )

ω = ∇ × = ∂
∂ξ

∂
∂ξ

∂
∂ξ

= ∂
∂ξ

+ ∂
∂ξ

− ∂
∂ξ




− ∂
∂ξ




�� ��

� (6.8a)

where Equation (6.1b) is utilized. The zero scalar values in the ξ3 direction

	

h v h u
0, 02

3

1

3

( ) ( )∂
∂ξ

= ∂
∂ξ

=
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66 Shock Wave Dynamics: Derivatives and Related Topics

result in

	 u
n

v
s

u
h h

h v
h h

h
b̂

1 2

1

2 1 2

2

1

ω = − ∂
∂

− ∂
∂

+ ∂
∂ξ

− ∂
∂ξ







��
	 (6.8b)

which verifies Equation (6.1a). With the aid of Equations (3.28), (3.37), and (3.35), 
we have

	
u
n

v
s

u v btan ˆ
2

�� ( )ω = − ∂
∂

− ∂
∂

+ ′β + β





	 (6.8c)

Appendix E now yields

	
wX

Z X
2

1
cos

tan2
2 2 2( )ω = −

γ +
′β β + β 	 (6.8d)

which agrees with Equation (6.6) except for the X2tan2β term. This term stems from 
the vtanβ term in Equation (6.8c), which in turn stems from a nonzero value for the 
curvature, at the shock, of the n-coordinate in the flow plane (i.e., κo ≠ 0). One can 
show, in general, that

	 h h
h1

o
1 2

2

1

κ = ∂
∂ξ

which becomes, at the shock,

	

f f

f1
tano

2 3/2( )
κ = −

′ ′′
+ ′

= − ′β β

This also equals the negative value of 
� �⋅ ∂ ∂t n / n. The X2tan2β term is in error; 

it results in an infinite value for ω2 when the shock is normal to the freestream. From 
symmetry considerations, just downstream of the normal part of a detached shock, 
it is physically apparent that ω2 must be zero, as is the case with Equation  (6.6). 
The difficulty stems from using a correct three-dimensional formula, Equation 
(6.8a), when a surface analysis is required. This is apparent from the use of the 
entropy, Equation (6.4), which requires a shock. The error occurs once the equations 
in Equation (3.35) are introduced into Equation (6.8b), because the equations in 
Equation (3.35) do not yield κo = 0 at the shock’s surface.

Problem 7 evaluates the acceleration in the flow plane at state 2. The vtanβ 
factor also appears in part (b) of the problem and, unless deleted, results in an 
infinite acceleration for a normal shock with curvature.

There is no jump in the vorticity between its shock-generated value and a point 
in the flow infinitesimally downstream of the shock. In the next section, the jump 

© 2013 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

0:
38

 1
0 

M
ay

 2
01

6 



67Vorticity and Its Substantial Derivative

phenomenon does not occur, because the derivation, starting with Equation (6.9), 
is not limited to just the downstream side of a shock. Appendix E is not utilized until 
Equations (6.14a) and (6.15a), and there is no vtanβ term.

6.3 S ubstantial Derivative of the Vorticity

Starting with the inviscid momentum equation, in vector form, one can show that 
(Emanuel 2001, Problem 4.5)

	
��

�� �� �� ��( ) ( )ω =
ρ

∇ρ × ∇ + ω ⋅ ∇ − ∇ ⋅ ωD
Dt

1
p V V2

	 (6.9)

where V( )ω ⋅ ∇
�� ��

 is zero in a two-dimensional flow but not in an axisymmetric one. 
The ∇ρ × ∇p term is referred to as a barotropic term; it is zero when p = p(ρ). 
(Downstream of a curved shock, p = p(ρ,S).)

The dyadic is first evaluated
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	 (6.10a)

Note that

	

u
b

v
b

0, 0
∂
∂

= ∂
∂

=

and with the equations in Equation (3.43), the dyadic becomes
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
 + ∂

∂
+ ′β β
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	 (6.10b)

where R, for consistency with Appendix E, is replaced with y. Since ω
��

 is proportional 
to b̂, the relatively simple result is obtained:

	 V
y

u v bsin cos ˆ( ) ( )ω ⋅ ∇ = σ β− β ω
�� ��

	 (6.11)
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68 Shock Wave Dynamics: Derivatives and Related Topics

In a similar manner, the divergence term is

	 V
u
s

v
n

v u
y

u vtan sin cos
�� ( ) ( )∇ ⋅ = ∂

∂
+ ∂

∂
+ − β ′β + σ β − β 	 (6.12)

We thereby obtain

	 V V
u
s

v
n

v u btan ˆ�� �� �� ��( ) ( ) ( )ω ⋅ ∇ − ∇ ⋅ ω = − ∂
∂

+ ∂
∂

+ − β ′β



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ω 	 (6.13)

which, with Appendix E, becomes

	 V V
wZ

G
w y

b2sin
2

2

1
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2 2

�� �� �� ��( ) ( ) ( )
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Υ σ β










ω 	 (6.14a)

where

	 G g m w XZ
2

1
1 3

2
1

2 2 ( )= −
γ +

+ +
γ +

	 (6.14b)

The barotropic term is given by
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p
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∂
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∂

∂
∂







where the derivatives of ρ and p with respect to b are zero. This term becomes

	 p
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where

	 G w mg g mg g
1

4
1 3 4 5 6( ) ( )= + − γ + + 	 (6.15b)

The substantial derivative is finally
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69Vorticity and Its Substantial Derivative

When the shock is normal to the freestream, both ω2 and (Dω/Dt)2 are zero. 
Far downstream, where β′ goes to zero, both ω2 and (Dω/Dt)2 also go to zero. For 
a blunt-body flow with a convex shock, both parameters have one extremum value.

6.4 G eneric Shock Shape

Specific results utilize Billig’s (1967) shock wave formula. It is a convenient, 
generic approach that enables various trends to be discerned for the two body 
shapes considered. Two-dimensional and axisymmetric nondimensional results 
are compared for the same value of the arc length along the shock, measured 
from where it is a normal shock. The Billig formula is for cylinder-wedge and 
sphere-cone bodies. Experimental air data were used to generate the shock shape 
and it is shown to be accurate, at least in the freestream Mach number range of 
interest (Billig 1967):

	 2 ≤ M1 ≤ 6

In nondimensional form, the shape of the shock depends only on σ, M1, and θb, 
where θb is the half angle of the wedge or cone. The parameter space for this 
study is

	 γ = 1.4,  σ = 0,1

	 M1 = 2,4,6

	 θb = 5º,10º,15º

There are thus nine two-dimensional and nine axisymmetric cases.
Various lengths and angles are defined in Figure 6.1. An overbar (not shown in 

the figure) denotes a dimensional quantity. Lengths are normalized by the radius of 
the cylinder or sphere—that is,

	 x
x
R

y
y
R

s
s
R

n
n
R R

r
R
R

, , , , ,
b b b b b

s

b

= = = = ∆ = ∆ = 	 (6.17)

where n  is distance normal to the shock in the downstream direction, and ∆  is the 
shock stand-off distance.

Billig (1967) provides an empirical relation for the shock shape:

	
x r

y
r

1

1
tan

1

tan

2
2

2

1/2

2= − − ∆ +
+

β





−

β

∞

∞

	 (6.18)
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70 Shock Wave Dynamics: Derivatives and Related Topics

where

	
M

M

0.386 exp(4.67 / ), 0

0.143 exp(3.24 / ), 1

1
2

1
2

∆ =
σ =

σ =






	 (6.19a)

	
( )

( )
=

−  σ =

−  σ =









r
M

M

1.386exp 1.8 1 , 0

1.143exp 0.54 1 , 1

1
0.75

1
1/2

	 (6.19b)

Problem 20 provides an analytic estimate, using Appendix E, for the shock stand-off 
distance, which can then be compared with Equation (6.19a).

It is analytically convenient to introduce

	 z = 1 + Δ + x	 (6.20)

where z is zero at the location where the shock intersects the axis of symmetry. 
Equation (6.18) is inverted, with the simple result

	 y rz z2 tan2 2 1/2( )= + β∞ 	 (6.21)

where this quadratic can be shown to be a hyperbola (σ = 0) or hyperboloid (σ = 1) 
shock.

Far downstream, the shock angle β∞ is for a sharp cone or wedge with the same 
half angle, θb. If θb is zero, β∞ equals the freestream Mach angle. For a wedge, β∞ 
and θb are related by Equation (2.28) or Appendix B, which provides β∞ given θb. 
Table 6.1 tabulates results for β∞, where the axisymmetric results are provided by the 
Ames Research Staff (1953, p. 48).

M1

RbRs

y

n

s

x

Shock

β∞

θb

Figure 6.1  Body and shock wave sketch showing various lengths and the β∞ and θb angles.
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71Vorticity and Its Substantial Derivative

6.5 S lope, Curvature, Arc Length, and Sonic Point

Equation (6.21) is differentiated, to yield

	 dy
dx

r z

y

tan2

=
+ β∞ 	 (6.22)

or, for the slope,

	
r z

y
tan

tan1
2

β =
+ β





− ∞
	 (6.23)

The derivative of β

	
d
dx

y y r z

2

tan
2

2 2( )
β = −

+ + β





∞

	 (6.24)

is required for the curvature, which is

	
d
ds

d
dx

dx
ds

′β = β = β
	 (6.25)

where

	
ds
dx

dy
dx y

y r z1 1 tan
1

tan
2 1/2

2 1/2 2 2 2 1/2

( ) ( )= + 













 = + β = + + β



∞ 	 (6.26)

With the aid of Equation (6.24), the negative of the curvature becomes

	 ′
( )

β = −
+ + β



∞

r

y r z tan
3/2

2

2 2 2
	 (6.27)

Table 6.1
β∞ versus θb, in Degrees, for a Wedge (σ = 0) and a Cone (σ = 1)

θb

M1 = 2 M1 = 4 M1 = 6

σ = 0 σ = 1 σ = 0 σ = 1 σ = 0 σ = 1

5 34.302 30.15 18.021 15.0 13.160 10.6

10 39.314 31.15 22.234 17.65 17.587 14.5

15 45.344 33.9 27.063 21.9 22.672 19.0
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72 Shock Wave Dynamics: Derivatives and Related Topics

When z = 0, the following is readily obtained:

	 x y s
r

1 , 0, 0, 90 ,
1= − − ∆ = = β = ′β = −° 	 (6.28)

where r is the normalized radius of curvature of the shock at its nose. Observe that 
−β′ has its maximum value at z = 0 and decreases toward zero as z, or s, becomes 
infinite.

The arc length stems from the integration of Equation (6.26)—that is,

	 s y r z
dz
y

tan
1/2z

2 2 2

0
∫ ( )= + + β



∞ 	 (6.29a)

which is written as

	 s
r rz z

rz z
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1
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z 2 2 2 2

2 2
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∫=
β

β + + β
+ β





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∞ ∞

∞
	 (6.29b)

With the substitution

	 t z
r

z
r

t1
tan

,
tan

1
2

2 ( )= +
β

=
β

−∞

∞
	 (6.30)

the integrand has the standard form

	 s
r t

t
dt

cos tan
cos

1

t

2

2 2

2

1/2

0
∫=

β β
− β

−




∞ ∞

∞ 	 (6.29c)

Gradshteyn and Ryzhik (1980) provide the integral in terms of elliptic integrals, with 
the result

	

s
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E t
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cos tan
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2

\
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1
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2
2

2

2 2

1/2

=
β β
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
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

∞ ∞
∞ ∞
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∞

	 (6.29d)

where t is given by Equation (6.30) and

	
t

t
sin

1
cos

1
2

2 2

1/2

ϕ = −
− β







−

∞
	 (6.31)

The standard notation of Milne-Thomson (1972) is used for the first and second 
elliptic integrals, F(φ\α) and E(φ\α), respectively, instead of that in Gradshteyn 
and Ryzhik (1980).
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73Vorticity and Its Substantial Derivative

The sonic point location β* is provided by Equation (5.14) and is independent 
of σ and θb. This location, of interest when discussing results, determines the 
computational spacing, which ranges from z = 0 to z = 19z*. The spacing clusters 
points near z = 0 and include z*. To obtain z*, solve Equation (6.23) for z, replace y 
with Equation (6.21), and set β = β*, with the result

	
( )

=
β

β
β − β

−










∞ ∞

z
r

tan
tan

tan tan
1*

2

*

2 * 2 1/2 	 (6.32)

6.6 R esults

In accord with Equation (6.6), ω depends linearly on β′ and not directly on σ. (Again, 
for notational convenience, the subscript 2 is suppressed.) It does, however, indirectly 
depend on σ through β∞, Δ, and r. By differentiating Equation (6.6) with respect to s, 
one can show that ω has an extremum value when

	
w

XZ
tan

2 1

tan2

( )
( )

′′β
′β

= β −
+ γ

β
	 (6.33)

is satisfied. This implicit equation provides the β value where ω is a maximum (see 
Figure 6.2), where w, X, and Z depend on β through sin2β.

In Figures 6.2 through 6.4, the solid (dashed) curves are for σ = 0 (1). As shown 
in Figure 6.2, the maximum of ω increases with M1. At small s, the axisymmetric ω 
value substantially exceeds its two-dimensional counterpart. The upper s limit for 
this is roughly 2, where the curves tend to cross. The figure demonstrates a weak 
dependence on θb, but a strong dependence on dimensionality and M1. The weak θb 
dependence, for the values chosen, holds throughout this study. On the other hand, 
the dimensionality dependence gradually weakens as M1 increases. For instance, 
when M1 = 2, the axisymmetric ω value can exceed its two-dimensional counterpart 
by an order of magnitude. When M1 = 6, the difference is less than a factor of 2.

For large s, the axisymmetric ω value decays more rapidly and the curves cross. 
Table 6.2 shows the sonic value, s*, for the 18 cases. Except for the σ = 0, M1 = 2 cases, 
the s* values fall between 0.65 and 1.5. By comparing Figure 6.2 and Table 6.2, observe 
that the peak ω values occur at a state that ranges from subsonic to low supersonic.

The strong dependence on dimensionality and M1, and the weakening of the 
dimensionality dependence with increasing M1, stems directly from the variation of 
the curvature with s (Figure 6.3). On the symmetry axis, the |β′| value is significantly 
larger when σ = 1 than its σ = 0 counterpart, especially when M1 − 1 is small. Also 
apparent is the weak dependence of β′ on θb and the closeness of the curves when 
s exceeds 4. The dimensionality difference is caused by the shock being closer to 
the body when σ = 1. This is evident in Table 6.2, which shows r, the R R/s b ratio. 
(Although listed when θb is 5°, r is independent of θb.) At a low freestream Mach 
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74 Shock Wave Dynamics: Derivatives and Related Topics
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Figure 6.2  Vorticity (a) θb = 5°, (b) θb= 10°, and (c) θb = 15°.
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75Vorticity and Its Substantial Derivative

number, the difference between the two-dimensional and axisymmetric shock 
stand-off distances is quite large. At small s and small M1 − 1 values, because 
of the three-dimensional relief effect associated with an axisymmetric flow, β′ 
strongly depends on dimensionality. This dependence weakens as M1 increases 
and the shock stand-off distance rapidly decreases for a two-dimensional shock. 
The three-dimensional relief effect is therefore responsible for the dimensionality 
difference in the vorticity and its decline with increasing Mach number.

Examination of (∂p/∂n)2, (∂ρ/∂n)2, and (∂T/∂n)2 in Appendix E.3 shows that their 
axisymmetric σ terms are positive and compressive. These terms, however, are more 
than offset by the β′ terms. (Remember that cosβ/y is finite when y → 0.) The β′ terms 
experience a large increase in magnitude when s is small. In this circumstance, there 
is a substantial isentropic expansion just downstream of an axisymmetric shock but 
slightly removed from the centerline.

The relief effect is evident in the results of Problem 24, where the Thomas point 
[(∂p/∂s�) = 0] has a y value of 2.591 when σ = 0 and 0.9297 when σ = 1. The flow therefore 
becomes expansive much closer to the symmetry line when the flow is axisymmetric. 
This relatively close and intense expansion, when σ = 1, represents the relief effect.

In contrast to ω, Dω/Dt is proportional to (β′)2 when σ = 0. When σ = 1, Dω/Dt is 
also proportional to a β′(cosβ/y) term. On the symmetry axis, Equation (5.2) provides 
–r −1 for β′, while β′(cosβ/y) equals –r−2. Nevertheless, Equation (6.16) shows that 
Dω/Dt is zero on the symmetry axis for both two-dimensional and axisymmetric 
shocks. As s becomes large, both (β′)2 and β′(cosβ/y) approach zero, as does Dω/Dt, 
as evident in Figure 6.4.

Table 6.2
Location of the Sonic State and the r Parameter

σ M1 θb s* r

0 2 5 5.150 8.385

10 5.348

15 5.749

4 5 1.472 3.053

10 1.483

15 1.499

6 5 1.066 2.374

10 1.071

15 1.078

1 2 5 1.178 1.961

10 1.184

15 1.202

4 5 0.7501 1.561

10 0.7526

15 0.7577

6 5 0.6520 1.455

10 0.6540

15 0.6573

© 2013 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

0:
38

 1
0 

M
ay

 2
01

6 



76 Shock Wave Dynamics: Derivatives and Related Topics

0.1

0

–0.1

–0.2

–0.3

–0.4

–0.5

–0.6

–0.7

–0.8

β´
(a)

σ=0 M1 =2
σ=1 M1 =2
σ=0 M1 =4
σ=1 M1 =4
σ=0 M1 =6
σ=1 M1 =6

0.1

0

–0.1

–0.2

–0.3

–0.4

–0.5

–0.6

–0.7

–0.8

β´

(b)

0.1

0

–0.1

–0.2

–0.3

–0.4

–0.5

–0.6

–0.7

–0.8

(c)

2 4 6 8 10
s

β´

0

Figure 6.3  Shock curvature (a) θb = 5°, (b) θb = 10°, and (c) θb = 15°.
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Figure 6.4  Substantial derivative of the vorticity (a) θb = 5°, (b) θb = 10°, and (c) θb = 15°.
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78 Shock Wave Dynamics: Derivatives and Related Topics

Except when M1 = 2, both ω and Dω/Dt have extremum near s = 1. While ω is 
positive, Dω/Dt is negative and the magnitude of the vorticity therefore decreases in 
value (i.e., decays) downstream of the shock. The Dω/Dt value for M1 = 2, σ = 0 is 
barely visible; the axisymmetric case decays faster. This reverses when M1 = 4 and 6. 
When M1 = 4, the two-dimensional case decays about twice as fast as the axisym-
metric case. The margin is even bigger in favor of σ = 0 when M1 = 6. As with vortic-
ity, the magnitude of Dω/Dt increases rapidly with M1 and hardly changes with θb.
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7 Shock Wave Triple-Point 
Morphology

7.1 P reliminary Remarks

Triple points occur in steady and unsteady supersonic flows, such as transonic flow 
over an airfoil or in a jet emanating from a supersonic nozzle. A triple point also 
occurs when an incident shock is unable to regularly reflect from a wall, a symmetry 
line (in an axisymmetric flow), or a symmetry plane. At a triple point, really line, 
three shocks intersect: an incident (I) shock, a reflected (R) shock, and a Mach stem 
(M). At the intersection, a slipstream (SS), which is a free shear layer in a viscous 
analysis, is generated. The slipstream is defined by two conditions: the pressure is 
the same across it, and the velocities on each side are tangent to it. These constraints 
are the basis for any local triple-point analysis. Triple points are usually discussed 
within the context of shock wave reflection phenomena (Azevedo and Liu 1993; Ben-
Dor 2007; Courant and Friedrichs 1948; Henderson and Menikoff 1998; Hornung 
1986; Ivanov et  al. 1998; Kalghatgi and Hunt 1975; Mouton and Hornung 2007; 
Uskov and Chernyshov 2006; Uskov and Mostovykh 2011). The focus here, however, 
is on triple-point morphology, and not on the reflection process.

Shock/shock interference (for example, see Borovoy et  al. 1997; Edney 1968) 
occurs in a supersonic or hypersonic flow when an upstream shock impinges on a 
detached bow shock. There are six types of interaction (see Figure 1 in Borovoy et al. 
1997). In two of these, the two shocks cross or coalesce (with a centered expansion 
fan). In each of the other four interactions, there are two distinct triple points. In this 
type of flow, the wall reflection process is not germane, although it is convenient to 
retain the I, R, and M designations. This labeling, however, is now somewhat arbi-
trary. For instance, the two triple points are connected by a shock that can be viewed, 
for both triple points, as a Mach stem, or, in certain orientations, as a reflected shock 
for the upstream point and as the incident shock for the downstream one. One con-
stant, however, is that the flow, just downstream of the incident shock, at the triple 
point, must be supersonic. As sketched in Figure 7.1, the flow elsewhere behind the 
incident shock need not be supersonic. The subsequent analysis also covers shock/
shock interference triple points.

It has been customary to use an approach based on shock-polar diagrams whose 
coordinates correspond to the pressure and flow angle. A novel approach is intro-
duced that is analytically/computationally straightforward and physically transpar-
ent. The pressure condition becomes a linear equation, while the tangency condition 
is a simple transcendental equation. As is known (Henderson 1964) for given values 
of γ, the upstream Mach number, M1, and the incident shock wave angle, βI, the 
number of triple-point solutions ranges from 0 to 3. In our approach, this array of 
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80 Shock Wave Dynamics: Derivatives and Related Topics

possible solutions occurs within a parameter window that focuses the analytical/
computational effort. A morphology of solutions are provided for γ = 1, 1.4, and 5/3. 
It has been asserted that the qualitative nature of the solutions does not vary with γ 
(Hornung 1986). As will be shown, this is not the case. To our knowledge, this study 
is the first to systematically investigate the impact of changes in the ratio of specific 
heats. While γ = 1 is not physically realistic, gases with a large number of atoms, 
some of which are heavy (e.g., UF6) come close. Moreover, the equations consider-
ably simplify in this limit.

The analysis assumes a perfect gas and the time-independent algebraic shock 
wave equations. It is local to the triple point and utilizes a single flow plane for all 
three shocks. The analysis, locally and at a given instant of time, thus holds for an 
unsteady, three-dimensional flow, including where the upstream flow is nonuniform. 
Questions of stability and hysteresis (Henderson and Menikoff 1998; Ivanov et al. 
1998) are not considered. The stability analysis in Henderson and Menikoff is in 
terms of a convex equation of state and is not germane to a perfect gas analysis. The 
hysteresis analysis in Ivanov et al. is for a regular reflection/Mach reflection transi-
tion. Of the four types of interactions discussed in Henderson and Menikoff, the 
first three (Mach reflection, degenerate cross-node, degenerate overtake node) are 
covered. The degenerate overtake node corresponds to an inverted reflected shock, 
while the fourth type (two outgoing shocks) is not included, because it is a four-shock 
system.

A shock is locally characterized by γ, its upstream Mach number, and its wave 
angle β. This angle and the velocity turn angle, θ, are measured relative to the 
upstream velocity. It is analytically convenient, in this chapter, to consider these 
angles as limited to the first quadrant, regardless of the shock’s orientation.

To add perspective to the subsequent analysis, a typical Mach reflection flow pat-
tern is described, as sketched in Figure 7.2. The wedge is straight as is the incident 
shock. Region 2 is a uniform, supersonic flow that terminates at the reflected shock 
between the triple point (tp) and a′ and along the leading edge characteristic a-a′. 
The part of the reflected shock between the triple point and point a′ is drawn as 
straight; this will be modified shortly. There is a centered expansion that originates 
at the wedge’s shoulder whose leading edge characteristic is denoted as a-a′-a″. 
This expansion is partly transmitted into the flow region downstream of R. Region 3 
is triangular, whose vertices are the triple point and points a′ and a″. This region is 
usually supersonic. Verification of this is provided later by Tables 7.3 and 7.4, which 
provide the Mach number, M3, just downstream of R, at the triple point. The Mach 

V1

Sonic line

I

M
R

SS

Figure 7.1  A curved, incident shock at a triple point.
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81Shock Wave Triple-Point Morphology

stem is shown as concave relative to the upstream flow, and region 4 is subsonic. 
When M is concave, the subsequent analysis demonstrates that the slipstream is 
oriented downward, as pictured in the figure. Later, this is referred to as a type (b) 
or (c) triple-point configuration. Between the wall and SS, the subsonic flow experi-
ences an expansion similar to what it would experience in a converging subsonic 
nozzle. Thus, the pressure along SS, from the triple point onward, at least to point 
a″, decreases. This decrease along SS generates an expansion wave that is transmit-
ted via left-running characteristics, as sketched in the figure. The wave interacts 
with R and with the expansion fan. The interaction with R weakens it and causes 
R to slightly curve. The reflected shock between the triple point and a′ is thus not 
straight. The interaction with the right-running characteristics of the expansion fan 
is weak.

The sketch in Figure 7.2 is not unique. A triple point may have a convex Mach 
stem, in which case the SS points upward. Later, this is referred to as a type (a) triple-
point configuration. In addition, the flow downstream of R may be subsonic; that 
downstream of M may be supersonic.

The subsequent triple-point solution is purely algebraic; curvatures are not 
required, nor does the solution provide this information. Moreover, the triple-point 
curvatures of I, M, SS, and R are not independent of each other. Furthermore, if the 
wedge’s surface is curved, then I as well as the other features generally have finite 
curvatures at the triple point. Using curved shock theory, Molder (2012) has devel-
oped an approach for obtaining the various curvatures and other gradients at the 
triple point.

Figure 7.3 is another Mach reflection triple-point sketch. The velocities and states, 
denoted by subscripts 1 through 4, apply only in the immediate vicinity of the triple 
point. The Mach stem is drawn as concave to the upstream flow. It may also be con-
vex, in which case, βM and θM have a first-quadrant, counterclockwise orientation. 
As indicated in the shock/shock interference discussion, the presence of a wall is 
not required. Instead of a concave (convex) Mach stem, the Mach stem need only 
slope in the downstream (upstream) direction when measured from the triple point. 
It is, nevertheless, convenient to refer to its orientation as convex or concave as if the 
triple point was part of a Mach reflection configuration. Remember, however, that 
curvatures are not part of the subsequent solution process. In all sketches, 

��
V3 and 

��
V4 

are tangent to the slipstream. The incident shock in Figure 7.3 is drawn as a straight, 
weak-solution shock that could originate at the sharp leading edge of a wedge. This 
need not be the case. As sketched in Figure 7.1, I is part of a curved bow shock. 

M1

RI

M SS

Characteristic

Wedge

tp

a"

a'

a2

4

3

Figure 7.2  A conventional Mach reflection flow pattern.
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82 Shock Wave Dynamics: Derivatives and Related Topics

Of course, the Mach number, M2, at the triple point, just downstream of I must be 
supersonic.

There are a number of transition, or special, cases. The first is when the Mach 
stem is neither convex nor concave but is a normal shock. A second case is where 
the reflected shock is a normal shock. A third case occurs when the reflected shock 
is inverted and its slope is in the upstream direction. Typically, the reflected shock 
is presumed to be weak, while the Mach stem is considered to be a strong solution 
shock. Another case occurs when one, or both, shock deviates from this pattern. 
The formulation does not require special provisions for any of these cases; they are 
discussed when appropriate.

Section 7.2 contains the triple-point analysis, while the method of solution is rel-
egated to Section 7.3. Computational results are presented in Section 7.4 for a range 
of upstream Mach numbers and for three values for the ratio of specific heats. This 
chapter is based on the analysis by Hekiri and Emanuel (2011).

7.2 A nalysis

For the analysis, γ, M1, and βI are prescribed, where the wave angle of the incident 
shock, βI, is bounded:

	 β + ε ≤ β ≤ β − εµI I I
*  	 (7.1)

where

	 ε = small positive constant (= 10−3 rad.)	 (7.2a)

	 β = 



µ

−

M
sin

1
I

1

1

	 (7.2b)

and βI
*  is given by Equation (5.14). If βI has its Mach wave value, βIμ, there can be 

no triple point. The upper bound ensures that M2 is supersonic, not just sonic. Hence, 
R is also not a Mach wave. In the subsequent analysis, the limits, when ε → 0, and 
when βI → βIμ or M2 → 1 are discussed.

V1

V4

V1

V3 V21
2 3

4

V1
V2

M

SS

RI βI
βR

βM

θI

θR

θM

Figure 7.3  The β, θ angles and velocities at a triple point, with a concave Mach stem.
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83Shock Wave Triple-Point Morphology

The pressure condition, p4 = p3, or

	 =p
p

p
p

p
p

 4

1

2

1

3

2

	 (7.3a)

becomes, with the aid of the oblique shock equations,

	 xM = axr + b	 (7.3b)

where

	 xi = sin2βi,    i = I, R, M	 (7.4a)

	 = βw M sin  i i i
2 2 	 (7.4b)

	 = + γ −
X w1

1
2

i i 	 (7.4c)

	 = γ − γ −
Y w

1
2

i i 	 (7.4d)

	 Zi = wi − 1	 (7.4e)

	 MI = M1,  MR = M2,  MM = M1	 (7.4f)

	
( )

=
γ +

+ γ +





−











a
X
M

w M w

X
2

1
  1

1
2

I I I

I1
2

2
1
2

2 	 (7.4g)

	 = − γ −
γ +

b
Z
M

1
1

  I

1
2 	 (7.4h)

The analysis for a triple point is distinguished from other configurations when each 
of the pressure ratios in Equation (7.3a) is written in terms of an oblique shock 
equation.

With the above notation, M2 is given by (see Appendix E.1)

	
( )

= + γ +





−











M
X
Y

w M w

X
1

1
2

I

I

I I

I
2
2

2
1
2

2
	 (7.5)

Equation (7.3b) is a linear equation for the xR and xM unknowns. A second relation is 
provided by a velocity tangency constraint.
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84 Shock Wave Dynamics: Derivatives and Related Topics

Figure 7.4 is a series of sketches illustrating the three possible tangency condi-
tions. For purposes of clarity, the reflected shock is not shown. On the right side 
are sketches showing the various θ angles and the velocities, where the dashed 
line represents 

��
V 3, 

��
V 4, and SS. In type (a), the Mach stem is convex, relative to the 

upstream flow, SS slopes upward, and 
��
V3 and 

��
V4 are counterclockwise from 

��
V1. 

From the sketch on the right, the tangency condition is

	 θI = θR − θM	 (7.6a)

Types (b) and (c) have a concave Mach stem and SS slopes downward. As shown in 
the figure, SS is between 

��
V1 and 

��
V 2  in type (b), while it is rotated clockwise from 

��
V2 

in type (c). The (b) and (c) tangency conditions are

	 θI = θR + θM	 (7.6b)

V1

V1

V1 V1 V1

V1

V1

V2

V2

V2

V3, V4

V3, V4

V3, V4V1

V2
V1

V4

V4
M

M

I
SS

SS

I

θI

θI

θ4

θM

θR

θI

V2
θI

θM

θI

θR

θM

θM

θR

(c)

(b)

(a)

Figure 7.4  The three types of triple points. In (a) the Mach stem is convex, while in (b) 
and (c) it is concave. In (b) 

��
V3 and 

��
V4  are between 

��
V1 and 

��
V 2, while in (c) 

��
V3 and 

��
V 4 are 

clockwise from 
��
V 2.
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85Shock Wave Triple-Point Morphology

	 θI = θM − θR	 (7.6c)

respectively, and θi is given by

	 θ =
β

β −

+ γ +



 − β

=M

M M
i I R Mtan

1
tan

sin 1

1
1

2
sin

,          ,  , i
i

i i

i i i

2 2

2 2 2
	 (7.7)

Once γ, M1, and βI are prescribed, θI is known. With Equation (7.4a), θR and θM are 
written as

	 θ = −





−

+ γ +



 −



















− x
x

M x

M M x
tan

1 1

1
1

2

R
R

R

R

R

1
1/2

2
2

2
2

2
2

	 (7.8a)

	 θ = −





−

+ γ +



 −



















− x
x

M x

M M x
tan

1 1

1
1

2

M
M

M

M

M

1
1/2

1
2

1
2

1
2

	 (7.8b)

The desired xR,xM solution occurs when at least one of the following relations is 
satisfied:

	 = − θ − θ
θ

=F 1 0a
R M

I
	 (7.9a)

	 = − θ + θ
θ

=F 1 0b
R M

I

	 (7.9b)

	 = + θ − θ
θ

=F 1 0c
R M

I

	 (7.9c)

As evident from the foregoing, a triple-point solution only requires the solution of 
algebraic equations.

The detachment wave angle for the Mach stem and the incident shock is

	 β = γ +
γ

−
γ +

+ + γ −
γ +







+
γ +





















M
M M Msin

1
4

4
1

8
1
1

16
1

Md
2

1
2 1

2
1
4

1
2

1/2

	 (7.10)

By replacing M1 with M2, this relation also provides the reflected shock detachment 
wave angle, βRd. These detachment wave angles distinguish between the weak and 
strong solutions.
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86 Shock Wave Dynamics: Derivatives and Related Topics

As defined, the β, θ angles are not always convenient for visualizing the orienta-
tion of the shocks and the slipstream. An overbar denotes an angle measured rela-
tive to V1

��
, or the x-coordinate, in a counterclockwise orientation, as illustrated in 

the top panel of Figure 7.5. Equations for the barred angles are given in Table 7.1. 
Figure 7.5 contains sketches, based on the γ = 1.4, M1 = 6 case, for the three solution 
types, where the type (c) inverted reflected wave and not inverted cases are shown. 
Because the reflected shock requires 

��
V3, relative to 

��
V 2, to be rotated closer to R 

(see Figure 7.5), neither types (a) nor (b) can have an inverted reflected shock. The 
inverted/not inverted condition is

	 β =
< °
> °







not inverted

inverted

90 ,         

90 ,               R 	 (7.11a)

and with Table 7.1, this becomes

	 β + θ =
> °
< °







not inverted

inverted
 

90 ,         

90 ,               R I 	 (7.11b)

V1

M

M

M

M M

SS

SS

SS

SS

I

I

I

I

I R

R

R

R

R not inverted R inverted

R

x x

x

x

x

SS

θSS

βM

βI
βR

(c)

(b)

(a)

–

–

–
–

Figure 7.5  The barred angles when γ = 1.4, M1 = 6, where in (a) βI = 9.651°, (b) βI = 43.77°, 
(c) R not inverted βI = 66.52°, R inverted βI = 9.651°.
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87Shock Wave Triple-Point Morphology

Finally, the R and M shocks are normal when

	 β = ° β = °90 ,          270R M 	 (7.12a,b)

respectively. Alternatively, θ = °0ss  when M is a normal shock.

7.3 S olution Method

For a real-valued solution, the xi must satisfy

	 < < β < ≤ < ≤
M

x
M

x
M

x
1

sin ,         
1

1,         
1

  1I I R M
1
2

2 *

2
2

1
2 	 (7.13a,b,c)

where the lower bounds represents a Mach wave, while the xR,xM upper bounds rep-
resent a normal shock. Relation (7.13a) is equivalent to Equation (7.1). The lower and 
upper bounds on xR and xM are required by the equations in Equation (7.8) in order 
that θR and θM have real, first-quadrant values.

Equation (7.13) represents the parameter window mentioned in the Preliminary 
Remarks. This window excludes any shock from being a Mach wave and requires that 
M2 exceed unity. The closeness of a solution to one of the edges is partly governed by 
ε (Equation 7.2a). At the time this work was performed, the author was unaware of the 
analysis by Uskov and Chernyshov (2006), where solutions very close to this edge are 
investigated. In retrospect, a value of ε = 10−5 rad. would have generated these solutions.

The algorithm starts with prescribed values for γ and M1. An i-loop for βI is 
established:

	 ( )∆β = β − β −µ
N
1

0.002I I I
* 	 (7.14a)

	 βI,1 = βIμ + 0.001	 (7.14b)

	 βI,i = βIμ + (i − 1)ΔβI,    i = 1, 2, …, N	 (7.14c)

Table 7.1
Definitions of Barred Angles, Measured 
Counterclockwise from V 1

��
, in Degrees

Type

(a) (b) (c)

βI 180 − βI 180 − βI 180 − βI

βR βR − θI βR − θI 180 − (βR + θI)

βM 180 + βM 360 − βM 360 − βM

θss θM 360 − θM 360 − θM
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88 Shock Wave Dynamics: Derivatives and Related Topics

that spans the Equation (7.1) range, the angles are in radians, and the constants stem 
from Equation (7.2a). A second, inner k-loop for xR utilizes

	 = + −x
M
1

10R,1
2
2

4 	 (7.15a)

	 = −



+x

b
a

min 1, 
1

R N, 1 	 (7.15b)

	 ∆ = −+x
x x

N
R

R N R, 1 ,1 	 (7.15c)

	 xR,k = xR,1 + (k − 1) ΔxR,    k = 1, 2, …, N	 (7.15d)

	 xM,k = axR,k + b	 (7.15e)

With Equation (7.4g,h), the demarcation between the two upper limits for xR,N+1 is

	 β =
γ +

−M
M

sin
2

1
 

1
Idem

2 1
2

1
2 	 (7.16)

The xR,N+1 = 1 limit corresponds to a normal reflected shock, while the Mach stem 
is a normal shock in the (1 − b)/a case. In retrospect, a 10−5 value in Equation (7.15a) 
would be advisable.

The bounds of the equations in Equation (7.13) are adhered to in the above loops. 
For instance, if xR = M2

−2, Equation (7.3b) then yields xM = M1
−2, and all three distur-

bances are Mach waves. When R and M are normal shocks (see Equation 7.19), the 
incident shock is a Mach wave, and this point, on the window’s edge, is excluded.

The two loops almost cover the window of possible triple-point solutions for given 
γ and M1 values. The “almost” qualifier is unnecessary when the various limits, such 
as ε in Equation (7.2a), go to zero. As will become apparent, in this limit, the window 
is a necessary but not a sufficient condition for a solution.

In this study, N is set at 10, thereby generating an 11 × 11 (xI, xR) array of points 
for the window. (The xM value is determined by Equation 7.15e.) The vast majority of 
points have no solution, whereas those that do have a unique (xI, xR) solution. For this 
array, the largest number of solutions encountered inside a γ, M1 window is 22 out of 
a possible 121. If xI (or βI) is fixed, and xR (or βR) is allowed to vary, the number of 
possible solutions ranges from zero to three (Henderson 1964). In other words, with 
fixed values for γ, M1, and βI, there may be as many as three distinct xR values, each 
with a solution.

Frequently, a sequence of i-loop (i.e., βI,i) values, say 1 to 5, possess solutions 
of a given type, indicating a continuum of this type of solution in the open inter-
val (βI,1, βI,5). At the lower end, the interval is bounded by βI,1 – 0.001, while at 
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89Shock Wave Triple-Point Morphology

the upper end it is bounded by βI,6. Occasionally, an isolated solution is obtained; 
this solution actually represents a relatively narrow open βI interval similar to the 
foregoing one.

An actual solution is obtained when, during the k loop, an F in the equations in 
Equation (7.9) has a sign change. The xR, xM values are then determined for which F 
is zero. After this evaluation, the k loop is continued. Upon completion of the k loop, 
the process is repeated for the next xI, or βI, value.

The entropy, S, jump across each shock is evaluated to ensure second law adher-
ence. In the γ = 1 case, the entropy jump formula is indeterminate. L’Hospital’s rule 
provides

	
( )∆

= − − γ = =
S

R
w

w
w i I R M

1
2

ln , 1, , ,i i

i
i

2

	 (7.17)

where Equation (7.4b) defines wi and R is the gas constant. In addition, the require-
ment that the entropy jump across M exceed the sum of the jumps across I and R 
(Henderson and Menikoff 1998) is evaluated in the form

	 =

−



 + −





−





f

s s
R

s s
R

s s
R

2 1 3 2

4 1
	 (7.18a)

The condition

	 0 < f < 1	 (7.18b)

is satisfied, without exception for all cases, including when M is a weak solution shock.

7.4 R esults and Discussion

Parametric results are discussed for γ = 1, 1.4, and 5/3, where M1 has its solution 
onset value followed by 1.4(0.1)2(0.5)6 values. For each γ, M1 pair, 11 equally spaced 
βI values are used in accord with the equations in Equation (7.14). Coverage is dens-
est when M1 ≤ 2, and the subsequent presentation favors the γ = 1.4 cases.

While preparing this material, it became apparent that many additional solutions, 
besides those provided by the algorithm, were required for proper interpretation. 
These solutions are for specified values of γ, M1, and βI. They support the subsequent 
discussion but do not alter the algorithm-based tables and figures.

Figures 7.6 and 7.7 depict the solution types with black for (a), red for (b), and blue 
for (c). Figure 7.6 illustrates the approach when γ = 1.4 and M1 = 5. (The short, hori-
zontal tabs at each end of a solution bar are a plotting routine artifact. They represent 
a single algorithm solution.)

In Figure 7.6, where βI has its minimum value, types (a) and (c) solutions are 
close to the βI → βIμ window edge, where I becomes a Mach wave. When βI ≌ 30°, 
there is an (a) → (b) transition, M is a normal shock, and θss is zero. At the (b) → (c) 
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90 Shock Wave Dynamics: Derivatives and Related Topics

transition, R is a normal shock, and βR = 90°. These normal shocks are smoothly 
approached from both sides of the transition. As indicated in the figure, the upper 
window edge is encountered when βI = I

*β . In this limit, M2 → 1 and R becomes a 
Mach wave.

Types (a) and (b) solutions do not overlap, but both types often overlap (c). When 
overlap occurs, there are, at least, two distinct solutions with the same γ, M1, and βI 
values. This is evident in Figure 7.5, where types (a) and (c), R inverted, have the 
same γ, M1, and βI values. Although these parameters are the same, the orientation of 
R, M, and SS are, of course, quite different.

A distinction is made between two solutions of different types with the same γ, 
M1, and βI values, which occur when there is overlap, and two solutions of the same 
type, also with the same γ, M1, and βI values. This latter case is referred to as a double 
solution. Triple solutions with the same γ, M1, and βI values are discussed shortly.

An interesting feature is the two type (c) ranges. The upper segment corresponds 
to a single point in the algorithm array of solutions. Separate calculations, however, 
demonstrate a type (c) region within the open interval:

	 I I I,10
*β < β < β

and there are type (c) solutions in the interval

	 I I I,11
*β ≤ β < β

that are slightly outside the computational solution window. (This aspect would not 
occur with a sufficiently small ε.)

90
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(b) → (c) Transition

(a) → (b) Transition
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Figure 7.6 (See color insert.)  M1, βI sketch with labeling for γ = 1.4, M1 = 5.
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91Shock Wave Triple-Point Morphology
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94 Shock Wave Dynamics: Derivatives and Related Topics

Some of the foregoing discussion is specific to Figure 7.6. More general features 
are now discussed that hold for all γ and M1 values tested.

	 1.	Only type (c) has split segments. Types (a) and (b) do not have an inverted 
R shock or overlap with each other.

	 2.	Only type (c) has double solutions. When γ = 1, these occur between 
M1 = 1.32 and M1 = 1.7 and at 1.9. At M1 = 1.4, the four (c) algorithm solu-
tions are all doubled. When γ = 1.4, only M1 = 2.5 has a single double solu-
tion. When γ = 5/3, all M1 values from 3 to 6 have double solutions. Except 
for a single doubled solution at M1 = 6, there are multiple doubled solutions 
per Mach number. For instance, when M1 = 5, the i = 1, 2, …, 6 solutions are 
doubled. This feature is thus strongly γ and M1 dependent. For γ = 1 and 1.4, 
the double solutions have weak R shocks but strong M shocks. For γ = 5/3, 
both the R and M shocks are weak.

	 3.	Triple solutions most often occur when type (a) overlaps doubled type 
(c). Triple solutions involving type (b), however, do occur. For instance, 
when γ = 1.4, M1 = 2.662, and βI = 39.1° there is this type of triple solution 
(Kalghatgi and Hunt 1975). A search when γ = 1 failed to reveal any type 
(b) plus doubled type (c) solutions. This type of solution did occur when 
γ = 5/3, M1 = 4.5, and βI ranged from 33° to 36°.

	 4.	The R and M shocks can be weak or strong, thereby resulting in four dif-
ferent R/M combinations. All four occur, although the category of R strong, 
M weak is rare. When γ = 1, no cases occur. When γ = 1.4, there are two 
cases: M1 = 5.5, 6 and i = 11. When γ = 5/3, there are two cases: M1 = 2, 
i = 10, and M1 = 6, i = 11.

	 5.	There is a type (a) or (c) solution, often both, in the βI → βIμ limit for all 
γ and M1 values tested (Uskov and Chernyshov 2006). The upper window 
edge, with a type (c) solution, holds for all γ values. In this M2 → 1 limit, 
R is a very weak shock and f → 1. For instance, when γ = 1, M1 = 6, f equals 
0.99973.

	 6.	As shown in Uskov and Chernyshov (2006), the type (a) → (b) transition 
and type (b) → (c) transition simultaneously occur when

	 M
3

2
, sin

2
3

I1

1/2 1/2

= + γ



 β =

+ γ






	 (7.19)

Both M and R are normal shocks. This condition corresponds to I being a Mach 
wave, where M1sinβI = 1, and is on the window’s edge. It is excluded from the analysis.

Figure 7.7 contains three βI,M1 panels, one each for the three γ values. In this 
figure and in Figure 7.8, for visual convenience, the horizontal axis has a change in 
scale at M1 = 2. As indicated, the gap between the top of the type (a) bars and the 
bottom of the type (b) bars stems from the discrete nature of the algorithm. These 
bars actually meet where M is a normal shock.

In the γ = 1 panel, at M1 = 1.4, the type (c) solutions are double solutions, where 
each pair has slightly different θR and θM values. The type (c) R shocks are inverted 
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95Shock Wave Triple-Point Morphology
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96 Shock Wave Dynamics: Derivatives and Related Topics

with one of the doubled pair having R and M weak, the other strong. This is not 
a general feature, for instance, at M1 = 1.5, only some of the type (c) solutions are 
double and not all R shocks are inverted. Note the isolated type (c) solution at 
M1 = 1.90. This illustrates the second type (c) segment result discussed with respect 
to Figure 7.6. Because ε was not chosen sufficiently small, the figure does not show 
that all γ values have isolated type (c) solutions for viable M1 values. These solutions 
are evident when γ = 1.4 and 5/3 at large M1 values. Similarly, there are type (a) or (c) 
solutions, often both, when βI → βIμ for all γ and viable M1 values. This is evident at 
the lower edge of the γ = 1 panel.

In the γ = 1.4 panel (e.g., when M1 = 3 and βI ranges from 42° to 44°) there is 
type (b) and (c) overlap, which is not evident in the figure. At this M1 value, there is 
a (b) → (c) transition between βI of 62° and 63° with R a normal shock. A similar 
transition occurs at other M1 values. Some of these features are based on separate 
solutions and are not evident in Figure 7.7 or Table 7.3.

An unexpected result, which only occurs when γ = 1 and 3.5 ≤ M1 ≤ 6, is that Rβ , 
for most type (b) solutions, is negative. In this circumstance, the orientation of the 
reflected shock is between 

��
V1 and a downward sloping SS. At the incident shock, 

βI has a relatively modest value, and the 
��
V 2 streamline has a sufficiently negative 

slope that it encounters R at a point below the x-coordinate. In part, this behavior 
stems from the strong dependence of θI and βR on γ. Overall, the reflected shock has 
a larger angular variation than the other two shocks. This variation can extend from 
an inverted position to one below the x-coordinate.

When γ = 1.4 and M1 = 1.5, the figure shows only type (a) and (c) solutions. 
Separate calculations, however, provide type (b) solutions in between the i = 1 and 
i = 2 algorithm values (i.e., 42.5 ≤ βI ≤ 43.5°). There is thus an (a) → (b) transition 
quickly followed by a (b) → (c) transition. This behavior is a consequence of being 
close to the window edge state given by Equation (7.19).

Figure 7.8 is for γ = 1.4 and indicates when R is inverted, R is a strong solution 
shock, and M is a weak solution shock. Note the erratic nature of several features. 
For instance, the presence of inverted type (c) R shocks is prevalent at large Mach 
numbers but is not present when 1.8 ≤ M1 ≤ 2. A strong solution R shock frequently 
occurs below M1 = 2.5 but less above this Mach number. From M1 = 2.5 to 6, near 
the βIμwindow edge, type (a) has R not inverted and both R and M weak, while type 
(c) has R inverted and both R and M weak. The lower edge, for this M1 range, is a 
mixture of type (a) (R strong) and type (c) (R inverted, M weak), although not in the 
R strong, M weak combination for a given solution.

Table  7.2 shows conditions at solution onset for the three γ values. These are 
approximate to the extent that the given onset M1 value minus 0.01 had no solution. 
All cases are type (c) and R is inverted, strongly so when γ = 1.4 and 5/3. In these 
two cases, βI  and βR  differ by less than a degree, and θSS  is very nearly aligned 
with 

��
V1. At γ = 1, there is a type (c) double solution. All onset solutions are close to 

the βIμ window edge.
Table 7.3 provides results for the 16 algorithm solutions when γ = 1.4 and M1 = 3. In 

addition to the type of solution, Mach numbers, and angles, the table shows whether 
the R and M shocks are weak or strong and if R is inverted. Note that several solutions 
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97Shock Wave Triple-Point Morphology

are subsonic in region 3, while other solutions have supersonic flow in region 4. Also 
note that M3 and M4 may simultaneously be subsonic or supersonic. R is inverted only 
for type (c) shocks, where both R and M shocks are weak. Types (a) and (b) solutions 
have weak R shocks and strong M shocks, except for the first solution. Between solu-
tions 5 and 6, there is an (a) → (b) transition with a normal M shock. This is apparent 
from θSS, which goes through zero between these two solutions. As indicated earlier, 
there is a split type (c) solution when Iβ  = 117°. Hence, there is also a (b) → (c) tran-
sition with a normal R shock. There are no double type (c) solutions, but there are 
solutions where (a) and (c) overlap and where (b) and (c) overlap.

Table 7.2
Onset of Triple-Point Solutions, Angles in Degrees

γ M1 Type βI βR βM βRd βMd β̅I β̅R β̅M θS̅S

1 1.32 c 49.31 64.48 64.47 69.70 69.68 130.7 115.5 295.5 351.4

c 49.31 74.82 74.79 69.70 69.68 130.7 105.1 285.2 351.4

1.4 1.25 c 53.19 54.00 53.98 70.57 70.54 126.8 126.0 306.0 359.5

5/3 1.23 c 54.45 55.26 55.23 70.92 70.88 125.6 124.7 304.8 359.6

Table 7.3
Results for γ = 1.4 and M1 = 3 (n = no, y = yes, wk = weak, str = strong, 
inv = inverted)

Solution Type M2 M3 M4 β̅I β̅R β̅M θS̅S R R M

inv

1 a 2.996 0.8035 0.7957 160.5 70.30 250.7 33.02 n str str

2 2.700 1.057 0.5932 156.1 55.23 259.1 25.34 n wk str

3 2.452 1.199 0.5148 151.6 44.76 263.9 16.23 n wk str

4 2.228 1.250 0.4837 147.2 37.61 267.2 7.841 n wk str

5 2.020 1.244 0.4752 142.8 32.80 269.9 0.2241 n wk str

6 b 1.824 1.202 0.4814 138.4 29.91 272.4 353.3 n wk str

7 1.639 1.141 0.5004 134.0 28.84 274.8 346.8 n wk str

8 1.465 1.071 0.5342 129.5 29.82 277.5 340.7 n wk str

9 1.301 1.002 0.5903 125.1 33.53 280.7 334.9 n wk str

10 1.146 0.9509 0.6927 120.7 41.84 285.4 329.5 n str str

11 c 2.996 1.193 1.188 160.5 122.0 301.9 327.3 y wk wk

12 2.700 1.374 1.080 156.1 122.4 298.7 326.4 y wk wk

13 2.452 1.478 1.064 151.6 121.6 298.2 326.3 y wk wk

14 2.228 1.523 1.105 147.2 120.0 299.5 326.5 y wk wk

15 2.020 1.539 1.193 142.8 118.0 302.1 327.3 y wk wk

16 1.824 1.560 1.354 138.4 116.3 306.6 329.3 y wk wk
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98 Shock Wave Dynamics: Derivatives and Related Topics

The type (a) → (b) → (c) sequence in Table 7.3 represents a clockwise rotation of 
θss from above the x-axis to below it at the start of type (b). Partway through type 
(c), θss reverses its rotational direction. This reversal does not include the split (c) 
segment.

Table 7.4 has data for two triple solutions that occur when γ = 1.4 and M1 = 2.5. 
When γ = 5/3, there are many triple solutions, since, when i = 1, type (c) is doubled 
for all M1 ≥ 3. As in Table 7.2, the first type (c) βI = 23.64° solution has the I and R 
shocks nearly coincident and θss nearly horizontal.

Our results, when available, agree with those in Uskov and Chernyshov (2006), 
which are for special cases, such as when M or R is a normal shock, or an extreme 
triple-point configuration, such as occur near the window’s edge. Their results are 
limited to γ = 1.4. Nevertheless, this comparison makes evident the need for a smaller 
ε value and a larger N value than utilized in the present study.

Table 7.4
Two Triple-Solution Cases When γ = 1.4 and M1 = 2.5 (n = no, y = yes, 
wk = weak, str = strong, inv = inverted)

Type βI β̅I β̅R β̅M θS̅S M2 M3 M4 R
inv

R M

a 23.64 156.4 71.76 252.1 279.4 2.497 0.7600 0.7550 n str str

c 23.64 156.4 156.0 336.1 359.5 2.497 2.479 2.479 y wk wk

c 23.64 156.4 126.2 306.2 333.1 2.497 1.271 1.269 y wk wk

a 34.32 144.7 46.56 266.6 7.849 1.939 1.033 0.5235 n wk str

c 34.32 144.7 134.8 323.8 345.7 1.939 1.909 1.902 y wk wk

c 34.32 144.7 124.1 309.7 335.0 1.939 1.525 1.384 y wk wk
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8 Derivatives When 
the Upstream Flow 
Is Nonuniform

8.1 P reliminary Remarks

The uniform upstream flow constraint of Chapter 4 is removed. Of course, if the 
shock is two-dimensional (axisymmetric), the nonuniform upstream flow must also 
be two-dimensional (axisymmetric). This constraint does not alter the jump condi-
tions but substantially alters the tangential and normal derivatives. Earlier assump-
tions are retained, such as a steady flow of a perfect gas. The flow plane approach 
means the jump conditions hold in a three-dimensional flow, as before. The normal 
derivatives still require a two-dimensional or axisymmetric flow. The homenergetic 
aspect is retained (except in Section 8.6), but the nonuniform upstream flow may be 
rotational or irrotational. In Section 8.7, an illustrative model is provided where the 
nonuniform upstream flow is irrotational.

A number of notational changes are required. Angles, such as β, when mea-
sured from the x-coordinate, see Figure 8.1, are primed, as compared to unprimed 
angles that are measured from V1

��
. In the preceding analysis, V1

��
 is aligned with the 

x-coordinate, and there is no difference between primed and unprimed angles. The 
angles that V1

��
 and V 2

��
 have, relative to the x-coordinate, are denoted as ′δ1 and ′δ2, 

respectively. The various angles satisfy

	 θ = ′δ − ′δ = ′θ − ′δ ′θ − ′δ β = ′β − ′δ β − θ = ′β − ′θ, , ,2 1 1 2 1 	 (8.1)

The downstream streamline, or V 2

��
, angle is denoted as θ′ (see Figure 8.1). The dβ/ds 

derivative was denoted as β′; it now is written as βs. Tangential shock and normal 
derivatives are denoted with s and n subscripts, respectively.

The −βs parameter is now the local shock curvature in the flow plane; 
the actual (geometric) curvature, − ′βs, requires the shock angle be measured from 
the x-coordinate. This curvature equals −βs + d ′δ1/ds. Similarly, when the flow is 
axisymmetric, the local transverse curvature of the shock, in a plane normal to the 
shock and flow plane, is now cosβ/y, not cosβ′/y.

The convenient Appendix E notation is retained, where w is still the square of 
the normal component of the Mach number, msin2β. Note that X, Y, and Z, without a 
subscript, use w. On the other hand, an isentropic relation, such as

	 = γ γ −p p X o 1 1
/( 1) 	 (8.2a)
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100 Shock Wave Dynamics: Derivatives and Related Topics

utilizes

	 = + γ − = + γ −
X m M   1

1
2

   1
1

2
1 1

2 	 (8.2b)

Throughout the subsequent analysis, p1, 1ρ , and V1 normalize the pressure, den-
sity, and velocity or velocity components, respectively, where an overbar denotes a 
dimensional variable or parameter. Lengths are normalized with a constant refer-
ence length, R, which could be the radius of a sphere or cylinder. We thus define

	 = = = = = =�
�

�
�

s
s
R

n
n
R

s
s
R

n
n
R

x
x
R

y
y
R

    ,      , ,   ,     ,     	 (8.3)

where �s and �n are intrinsic coordinates. Nondimensional variables and derivatives 
are written as

	 �u
u
V

p
p
p

    ,     , 2
2

1
2

2

1

= = 	 (8.4a)

�M
M
s

V
V

V
s

p
p

p
s

p
p

p
n

,
1

,
1

,
1

,s s s n1
1

1
1 1

1

1 1
2

1 2

= ∂
∂





 = ∂

∂






= ∂
∂





 = ∂

∂




 	 (8.4b)

This normalization does not imply that p1, ρ1, or V1 are constants. As a result of the 
normalization, the inverse of the parameter

	 m M
V

p
V
p

           1
2 1

2

1 1

1 1
2

1

γ = γ = γ
γ ρ

= ρ
	 (8.5)

is frequently encountered. In this chapter, generally only nondimensional parameters 
and variables are used.

V1

V2

s

n x

Shock

β

1 2

β
δ1'

θ', δ2'
δ1'

β'

θ

Figure 8.1  Shock schematic in the flow plane.
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101Derivatives When the Upstream Flow Is Nonuniform

8.2  Jump Conditions

Because of the complexity of the normal derivatives, given later, a vector/matrix 
formulation is introduced. In vector notation, define

	 qj = (u, v, p, ρ)2,    j = 1, …, 4	 (8.6)

where, for example, q2 = v2. The jump conditions are

	 qj = fj	 (8.7a)

or

	
�
q  = 

�
f 	 (8.7b)

where the fj are given in Appendix F.1. Of course, these stem from the Appendix E.1 
equations.

8.3 T angential Derivatives

Again, in vector notation, derivatives, in the flow plane, along the upstream side of 
the shock are written as

	 χi = (M1s/M1, V1s, p1s, ρ1s, βs),    i = 1, ..., 5	 (8.8)

and the desired derivatives as

	 q
q

s
u v pjs

j
s s s s= ∂

∂
= ( )      ,  ,   ,   ,       2 2 2 2ρ         ,  , j = 1 4� 	 (8.9)

Equation (8.7a) is differentiated with respect to s, with the result

	 q gjs
i

ji i
1

5

= ∑ χ
=

	 (8.10a)

or

	
�
qs = 

�
χg 	 (8.10b)

where g is a 4 × 5 matrix. The gji elements are summarized in Appendix F.2. They 
are functions only of γ, β, and M1.

Note that there is no direct dependence on ′δ1. The dependence on ′δd ds/1 , 
however, is accounted for in ′βs. In Section 8.7, a flow is analyzed where ′βs = 0, but βs 
is variable. This situation occurs because the shock is straight (i.e., ′βs = 0), but there 
is local curvature, because ′δd ds/1  is varying.
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102 Shock Wave Dynamics: Derivatives and Related Topics

To illustrate the derivation, v2s is obtained:

	 =
γ + β

v V
X

m

2
1 sin

2 1 	 (8.11)

∂
∂





 =

γ + β
∂
∂

+ γ −
β

−
β

−
β

β β






v

s

X

m

V

s

V

m

dw

ds

V
M M

V X

m

2
1 sin

1
2 sin

2 X
m sin sin

coss s

2

1 1 1
2 1 1

1
2

	 =
γ + β

+ γ −
β

−
β

− β β






v
X

m
V

m

dw

ds

X

m

M

M

X

w

2
1 sin

1
2

1
sin

2
sin

coss s
s

s2 1
1

1

	 (8.12a)

The dw/ds derivative is

	 = β + β β β = +
γ +

βdw

ds
M

dM

ds
M

d

ds
w

M

M
XA   2    sin    2 sin   cos       2      

4
1

 s
s1

1 2
1
2 1

1

	 (8.13)

Elimination of dw/ds from Equation (8.12a), after simplification, yields

	 = −
γ + β

+
γ + β

−
γ −

− γ −

β βv
m

M

M

X

m
V

w

w

4
1

1
sin

 
2

1
 

sin
2

1
 
1

1
2 coss

s
s s2

1

1
1 	 (8.12b)

which is in accord with the listed g2i.
The first four χi are not independent. In view of Equation (8.5), we have

	 = − + ρM

M
V p   

1
2

 
1
2

 s
s

1

1
1 s s1 1 	 (8.14)

It is convenient, however, to retain the V1s and M1s terms and not replace one with 
the other. When the upstream flow is uniform, the first four χi are zero and Equation 
(8.10a) agrees with Appendix E.2.

This section concludes by obtaining the derivative of θ starting with its equation 
in Appendix E.1:

	 θ =
β γ + −

Z

m Z
tan

1
tan 1

2

	 (8.15)

	
θ = − β + − γ + −



ln ln lnZ ln M Ztan   tan  

1
2

  1
2

	

θ
θ θ

= − β
β β

+ − γ + −
γ + −Z

dw

ds

M M dw ds

m Ztan cos tan cos
1 ( 1) ( / )

1
2

s s s
2 2

1 1
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Z m Z
w

M
M

XA

m

m Z

M
M

sin cos sin cos
1 1

1
2

  2
4

1

( 1)
1

2

s s s
s

s

1

1

1

1

θ
θ θ

= − β
β β

+ + γ + −

















+
γ +

β






− γ +
γ + −

	
θ

θ θ
= − β

β β
+ γ +

γ + −





+ γ + −





βm

Z m Z

M

M

mXA

Z m Zsin  cos sin  cos
( 1)

1
2

 2
1

2

s s s
s

1

1 	 (8.16)

One can show that

	 θ θ =

γ + −





β β
Z m Z

X B
sin cos

1
2 sin cos2 	 (8.17)

where X2B is given by Equation (5.13c). Equation (8.16) now becomes

	
( )

θ = +

γ + + + − − γ



 βA

XB

M

M

m w w w

X B
   

2
 

1
2

    1    1 2

s
s

s
1

1

2

2
	 (8.18)

When M1s is zero (uniform freestream); θs is zero when βs is zero, a trivial result, or 
when the term in the square bracket is zero. The bracket term is zero when β has its 
uniform upstream flow detachment value, βd, given by Equation (7.10). Detachment, 
with a uniform freestream, occurs when θ has a maximum value relative to β—that 
is, (∂θ/∂β) = 0, which, in turn, requires θs = 0. As indicated by Equation (8.18), 
detachment (i.e., θs = 0) is more involved when the freestream is not uniform. 
When M1s = 0, θs agrees with Chapter 5 results, such as the (∂θ/∂s)2 equation below 
Equation (5.3), for a normal shock.

8.4 N ormal Derivatives

As discussed in Section 4.4, the angle θ, between ξ1 and the x-coordinate becomes 
β when the coordinates used with the Euler equations are adjusted to a shock. When 
the upstream flow is uniform, and 

��
V1 is aligned with x, it is convenient, because 

of the jump conditions, to measure β relative to 
��
V1. Now, however, β becomes β′, 

which is measured relative to the x-coordinate. From Equation (8.1), we have the 
connection

	 β′ = β + ′δ ′β = β + ′δ      ,        s s s1 1
	 (8.19)
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104 Shock Wave Dynamics: Derivatives and Related Topics

The two vectors are

	 qn = (u2n, v2n, p2n, ρ2n)	 (8.20)

	 ′χ = ρ ′β σ α






u v p
y

    ,  ,  ,  ,  ,i s s s s s2 2 2 2 1 	 (8.21)

where

	 u vsin cos1 2 2α = ′β − ′β 	 (8.22a)

The σα1/y term stems from the axisymmetric term in the continuity equation. 
The normal derivative equations have the form

	 ∑= ′χ
=

q h     jn

i

ji i

1

6

	 (8.23a)

or

	 = ′χq h     n
� �

	 (8.23b)

where h is a 4 × 6 matrix. The rightmost two elements in χ′ depend on the longitudinal 
curvature, − ′βs, and on the transverse curvature that occurs in an axisymmetric flow. 
Along with γ and M1, the hji will depend on q (i.e., u2, v2, p2, and ρ2). No attempt has 
been made to eliminate u2, v2, …, and u2s, v2s, …, in favor of M1s, …, from the right 
side of Equation (8.23a). (This could be done using symbolic manipulation software.)

Initially, the sequential procedure for obtaining the normal derivatives, discussed 
after Equations (4.11), is followed. From the tangential momentum equation in 
Equation (4.10), u2n is

	 = − −
γ ρ

− ′βu
u
v

u
m v

p u 
1

n s s s2
2

2
2

2 2
2 2 	 (8.24a)

Continuity can be written as

	 ρ2v2n + v2ρ2n = α2	 (8.25a)

where

	 α = − ρ + ρ + ρ ′β + σ ρ α






u u v
y

s s s2 2 2 2 2 2 2 2 1 	 (8.22b)

By eliminating p2n/ρ2 from the normal momentum equation and the normal deriva-
tive of the homenergetic equation, a second equation with v2n and ρ2n as the unknowns 
is obtained:

	 +
ρ

ρ = αv v
p

m
n n2 2

2

2
2 2 3 	 (8.25b)
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105Derivatives When the Upstream Flow Is Nonuniform

where

	 α = γ − − γ + γ ′βu u u v u   ( 1) n s s3 2 2 2 2 2
2 	 (8.22c)

The equations in Equation (8.25) are solved, with the result

	 v
m

p
v

1
n2

2

2
2 2 2 3∆ =

ρ
α − α 	 (8.26a)

	 Δρ2n = ρ2α3 − v2α2	 (8.26b)

where the left-side determinant is

	
p

m
v2

2
2
2∆ =

ρ
− 	 (8.27)

This determinant is zero only when the shock becomes a Mach wave (see Equation 
9.80k). Finally, the pressure derivative is given by

	 p
p

m u u v v– ( 1) ( )n n n n2
2

2
2 2 2  2 2 2=

ρ
ρ γ − ρ + 	 (8.26c)

As mentioned, with

	 M1s = V1s = p1s = ρ1s = 0	 (8.28)

the tangential derivatives check against Appendix E.2. With β′ = β and Equation 
(8.28), u2n, given by Equation (8.24a), reduces to the result given in Appendix E.3, 
including the g1 equation. A much more tedious, but successful, check for v2n yielded 
the result in Appendix E.3, including the g2 equation. This type of check should be 
done with symbolic manipulation software.

The α1, α2, and Δ parameters do not depend on any normal derivative, whereas 
α3 depends on u2n. Elimination of u2n from α3 yields

	 α = − γ − − γ − γ −
γ ρ

+ ′βu
v

u u v
u

m v
p u( 1)

1
s s s s3

2
2

2
2 2 2

2

2 2
2 2

2 	 (8.29)

By substituting this relation into Equation (8.26a,b), all normal derivatives are 
removed from the right side of the v2n and ρ2n equations, with the result

	

∆ = −
ρ

+ γ −








 + γ + γ −

γ ρ

−
ρ

ρ −
ρ

+






′β −
ρ

σ α

v
p

m
u u u v v

u
m

p

p u
m

v
p

m
u

p
m y

    ( 1) ( 1)

   

n s s s

s s

2
2

2
2
2

2 2 2 2
2

2
2

2 2

2
2 2 2

2

2
2
2 2

2
1 	 (8.24b)
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v
u v u u v

u
mv

p

u v u v v
y

( 1) ( 1)n s s s

s s

2
2

2
2
2

2
2

2 2 2 2
2

2
2

2 2 2 2 2
2

2
2

2 2 1( )

∆ρ = ρ − γ − +  − γρ − γ −
γ

+ ρ + ρ + ′β + ρ σ α
	

(8.24c)

By replacing the ρ2n, u2n, and v2n derivatives in Equation (8.26c), we finally obtain

	

( )

∆ = γ ρ
ρ

− γ −








 − γ ρ

ρ
+ γ −











− γ − +
γ

ρ
ρ + γ + ′β + γ σ α

p m v
p

m
u u m u

p
m

v v

u v p
p u v

p u v p v
y

( 1) ( 1)

( 1)

n s s

s s s

2 2 2
2

2
2
2

2 2 2
2

2
2
2

2

2 2 2
2 2 2

2
2 2 2

2
2
2

2 2 1

	

(8.24d)

The equations in Equation (8.24) are the desired normal derivatives. This result is 
summarized in Appendix F.3.

8.5 I ntrinsic Coordinate Derivatives

One motivation for the study in this section is to verify the curved shock theory 
(CST) of Molder (2012). (This verification has been accomplished.) This theory 
utilizes the standard, two-dimensional or axisymmetric, steady flow gas dynamic 
assumptions, except the upstream flow may be nonuniform. In CST, the focus is 
on two parameters: these are the streamline derivatives, just downstream of the 
shock, of the pressure and the streamline’s inclination angle ′δ2. These two param-
eters are functions of the two shock wave curvatures and the upstream values of 
the two streamline derivatives and the vorticity. Although there is some overlap in 
results, the CST approach and that used here are quite different. The subsequent 
analysis provides equations for the CST parameters, (∂p/∂�s)2 and (∂ ′δ2/∂�s), when the 
freestream is nonuniform.

The streamline derivative is given by Equation (5.10a), where we note that

	
β − θ = ′β − ′θ = ′β − ′δ2 	 (8.30)

We thus obtain, for the pressure,

	 �
p
s B

A p p
1

( )s n

2
1/2 2 2

∂
∂





 = + 	 (8.31)

The ′δ2 streamline derivative cannot be obtained from Equation (8.18). It is con-
veniently obtained from the streamline’s transverse momentum equation, Equation 
(5.22), when written with intrinsic coordinates:

	 ∂ ′θ
∂

+
γ ρ

∂
∂

=
s m V

p
n

   
1

02� �
	 (8.32)
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107Derivatives When the Upstream Flow Is Nonuniform

where, at the shock, ′θ = ′δ  2. The �n derivative is given by Equation (5.10b) with the 
result

	 �
p
n B

p A p
1

( )s n

2
1/2 2 2

∂
∂





 = − 	 (8.33)

Hence, the desired ′δ2 derivative is

	
∂ ′δ
∂

=
γ ρ

− +
s m V B

p A p   
1

 ( )s n
2

2  2
2 1/2 2 2� 	 (8.34)

where = +V u v2
2

2
2

2
2. Both CST parameters linearly depend on the p2s and p2n 

derivatives.
In CST, the p and ′δ2 streamline derivatives, at state 2, explicitly depend on the 

upstream vorticity. This is not the case here, because the treatment automatically 
includes the presence of any upstream vorticity, which is the subject of the next section.

8.6  Vorticity

The vorticity, just downstream of a curved shock, is provided by Equation (6.6) when 
the upstream flow is uniform. Its nonuniform upstream flow counterpart is derived, 
but without the homenergetic requirement. The derivation is straightforward without 
this requirement because the shock is two-dimensional or axisymmetric. This 
section is largely based on Emanuel (2011).

We start with Crocco’s equation minus the unsteady term. With the aid of 
Equation (6.1), we obtain the dimensional result

	 ω = − ∂
∂

+ ∂
∂

T
v

S
s v

h
s

1 o 	 (8.35)

or

	 = − ω +dS
ds

v
T T

dh
ds

1 o 	 (8.36)

where partial derivatives become ordinary derivatives along the shock.
The entropy change across a shock is

	 − = −
γ −

γ +

















( )γ + γ

γS S
R

ln
w

X Y1
1

2
2 1

1

	 (8.37)

where R is the gas constant. The derivative with respect to w results in

	 = + γdS
dw

dS
dw

R Z
wXY2

2 1
2

	 (8.38a)
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108 Shock Wave Dynamics: Derivatives and Related Topics

or

	 = + γdS
ds

dS
ds

R Z
wXY

dw
ds2

2 1
2

	 (8.38b)

The entropy derivatives are replaced with Equation (8.36), to obtain

	
v

v

T

T

R T

v

Z

wXY

dw

ds v

dh

ds

T

T

dh

ds2
1 o o

2
1

2

2

1
1

2

2

2

2 2

2

1 1

ω = ω − γ + 



 − 











 	 (8.39a)

The following relations

	 = β =
γ + β

v

V

v

V

X

M
sin ,

2
1 sin

1

1

2

1 1 
2 	 (8.40a,b)

	
T

T

XY

w

p

p
Y

dh

ds

dh

ds

2
1

, 
2

1
, o o2

1

2

2

1 2 1

=
γ +







=
γ +





 = 



 	 (8.40c,d,e)

are introduced into Equation (8.39a), with the result

	 p

p
V

Z

w X

dw

ds

w Z

V X

dh

ds

1
1

sin  
1
1

1

sin
o

2
2

1
1 1

2

2
1 1

)(
ω = ω −

γ +
β − γ −

γ +
+ γ

β






	 (8.39b)

Equations (8.40b,c,d) are the jump conditions for v, T, and p. Equation (8.40e) stems 
from ho being a constant across a shock. By replacing dw/ds with Equation (8.13), the 
final nondimensional result is obtained:

	

( )
ω = ω − γ −

γ +
+ γ

β




 −

γ +






β 





−
γ +







β β

p

p

w Z

V X

dh

ds

Z

wX M

dM

ds

Z

wX

1
1

1

sin
2

1
sin

2
1

coss

2
2

1
1

1
2

0

1

2

1 1

2

	 (8.39c)

where the vorticities are normalized with V1 and a convenient length scale. Note that 
ω2 only depends on local parameters—that is, V1, M1, β, βs, (dM/ds)1, (dho/ds)1, and 
ω1. As written, there is no dependence on the cosβ/y curvature, and the β angle is 
unprimed. If βs, however, is replaced with Equation (8.19), the transverse curvature 
can be introduced through the (∂ ′δ1/∂s) term. This derivative is first written in terms 
of intrinsic coordinate derivatives. The continuity equation, in intrinsic coordinates, 
then involves both the �∂ ′δ ∂n/1  derivative and the cosβ/y curvature when the flow is 
axisymmetric.

The p2/p1 coefficient stems from continuity, (ρv)2 = (ρv)1, and can consider-
ably amplify ω1. The (dho/ds)1 and (dM/ds)1 terms account for upstream gradients 
not associated with vorticity. For instance, if the upstream flow is a supersonic, 

© 2013 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

2:
02

 1
0 

M
ay

 2
01

6 



109Derivatives When the Upstream Flow Is Nonuniform

cylindrical source flow, as in the next section, ω1 and (dho/ds)1 are zero but (dM/ds)1 
is not zero when the shock is not cylindrical. The βs term in Equation (8.39c) agrees 
with Equation (6.6) and represents the local longitudinal curvature contribution. 
Note that Equation (8.39c) appreciably differs from

	 ω = ω −
γ +

β βV
Z

wX

2
1

coss2 1 1

2

	 (8.41)

that sometimes is incorrectly used.

8.7 S ource Flow Model

The model consists of a supersonic, cylindrical source flow that impinges on a planar, 
straight shock. Only a wedge slice of the source flow is relevant. The upstream flow 
is cylindrically symmetric whose solution only depends on the radial distance from 
the (virtual) source. (With characteristic theory, it is possible to design an asym-
metric nozzle with a supersonic, wedge source flow at its exit.) Flow conditions just 
upstream of the straight shock are therefore nonuniform, homenergetic, and irrota-
tional. Nevertheless, the flow downstream of the shock is rotational (see Problem 22). 
(There is an entropy gradient along the downstream side of the shock.) There is no 
presumption that the model represents an actual flow.

A similar analysis, by the author, utilizes a point source that generates a spheri-
cally symmetric, supersonic flow that impinges on a conical shock whose symmetry 
axis passes through the point source. This is a relatively simple, analytical, test model 
for an axisymmetric flow. It has many of the same features as the two-dimensional 
test model.

A Cartesian coordinate system (Figure 8.2) is utilized whose origin is the center of 
the cylindrical source flow. The shock wave angle, β′, is a constant, whereas the other 
angles vary. The solution is constrained to a φ′ range of zero to φ′ *, where the shock 
becomes a Mach wave. This occurs despite M1 increasing with φ′, because the normal 
Mach number component, M1n, decreases.

V1

V2

φ'

δ1'δ2'

β'
x

s

M=1

r

a

1 2
*

y

Figure 8.2  Flow schematic.
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110 Shock Wave Dynamics: Derivatives and Related Topics

The nondimensional solution for the flow just upstream and downstream of the 
shock only depends on the ratio of specific heats, γ, the fixed angle β′, the normal 
component of the state a Mach number, M1na, and φ′. (State a is where the shock and 
the x-coordinate intersect, see Figure 8.2.) For a given configuration, only φ′ is variable, 
and the β′ angle is (arbitrarily) chosen such that the shock is a weak solution shock at 
state a. A wedge (not shown in the figure) for generating the shock, with a curved 
surface and a sharp tip at state a would have a positive inclination, ′δ a2 , at the tip.

The strength of the source flow, per unit depth, �m, is provided by continuity

	 = π ρ�m r V2 	 (8.42)

where an overbar represents a dimensional length parameter, and, at the shock,

	 V a M a
M

X
o1 1 1

1

1
1/2= = 	 (8.43)

At an arbitrary point on the shock, Equation (8.42) reduces to

	 = = γ+ γ−r
r
R M

X
1

1
1
( 1) [2( 1)]

	 (8.44)

where all lengths are normalized with

	 R
a

m1
2o o

�
=

ρ π
	 (8.45)

When M1 = 1, there is a sonic circle with a radius

	 r
1

2
1.728*

( 1) [2( 1)]

= γ +



 =

γ + γ −

	 (8.46)

when γ = 1.4. This circle is sketched in Figure 8.2. The derivative of Equation (8.44) 
yields

	 = − − γ γ −dr
dM

M
M

X
1

 
1

1
2

1
2 1

(3 )/[2( 1)] 	 (8.47)

which indicates an extremum when M1 = 1. Figure 8.3 is a sketch of M1 versus r, 
which shows that r has a minimum at r*. Only the supersonic upper branch is of 
interest.

The normal component of the Mach number is

	 M1n = M1 sin (β′ − φ′)	 (8.48)

Hence, at state a, where φ′ = 0, we have

	 M
M

 
sin

a
na

1
1=

′β 	 (8.49)
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111Derivatives When the Upstream Flow Is Nonuniform

where M1na and β′ are prescribed, and M1na should be well in excess of unity. This is 
necessary if φ′ * is to exceed, say, 40°. We now have, at state a,

	 = γ+ γ−r
M

X
1

a
a

a
1

1
( 1)/[2( 1)] 	 (8.50)

	 ′δ =
′β γ + −

Z

M Z
tan

1
tan 1

2

a
a

a a

2
1

1
2

1

	 (8.51)

From the law of sines, the radial coordinate at the shock is

	 r
r sin

sin
a

( )= ′β
′β − ′ϕ

	 (8.52)

Given γ, β′, φ′, and M1na, this equation links r and φ′. Equation (8.44) then 
connects M1 and r. In the following analysis, it is convenient to view M1, instead 
of φ′, as the prescribed independent parameter, although computational results 
revert to φ′. Equation (8.44) then provides r, while φ′ is given by the inversion of 
Equation (8.52):

	
r

r
sin

sina1′ϕ = ′β − ′β





− 	 (8.53)

The derivate of φ′, needed shortly, is

	

d
dr

r
r
r

1

sin 1
a

2 1/2

′ϕ =

′β





−












	 (8.54a)

MIa

ra
r

M

r*

1

Figure 8.3  Cylindrical flow sketch for M1 vs. r.
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112 Shock Wave Dynamics: Derivatives and Related Topics

or, more conveniently,

	
dr
d

r sin
cos

sin
a 2( ) ( )

( )′ϕ
= ′β

′β − ′ϕ
′β − ′ϕ

	 (8.54b)

The length along the shock, measured from state a, is also given by the law of 
sines:

	 s
r sin

sin
a

( )= ′ϕ
′β − ′ϕ

	 (8.55)

Its derivative is

	
ds

d
r

r
   

sina

2

′ϕ
=

′β
	 (8.56)

which requires the use of Equation (8.52).
The angles, β, β′, θ, θ′, 1′δ , and 2′δ  are connected by

	 θ = ′θ − ′ϕ ′β = β + ′δ θ = ′δ − ′δ ′δ = ′ϕ ′δ = ′θ, , , ,1 2 1 1 2 	 (8.57a,b,c,d,e)

	 ( )′δ − ′δ =
β γ + −

Z

m Z
tan

1
tan 1

2

2 1 	 (8.57f)

where m = M  1
2,and Z utilizes M n1

2 , not M1
2. From these equations, we obtain

	 d
ds

r
r

r
m

X
sin

sins
a

a
 

2
1
( 1)/( 1)( )β = − ′ϕ = − ′β = − ′β γ+ γ−

	 (8.58a)

	 ′β = β + ′ϕ =d
ds

0s s 	 (8.58b)

The M1s parameter is given by

	
M

dM
ds

dM
dr

dr
d

d
ds

m m w
m X

[ ( )]
1

1
s1

1 1
1/2

1
(3 )/[2( 1)]= =

′ϕ
′ϕ = −

− −γ γ−

or

	 = −
− −γ γ−

M
M

m w
m X

 
( )

1
 

1s1

1

1/2

1
(3 )/[2( 1)] 	 (8.59a)
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113Derivatives When the Upstream Flow Is Nonuniform

From the isentropic relations for the pressure and density, we have

	 p
m

X

M

M
p,

1
s

s
s s1

1

1

1
1 1= −

γ
ρ =

γ
	 (8.59b,c)

while Equation (8.14) yields

	 =V
X

M
M

1
s

s
1

1

1

1

	 (8.59d)

Note that M1 and β, which appear in w, depend on φ′, as will be evident in the sub-
sequent example.

Conditions at state 2 are obtained from Appendix F with σ and ′βs equal to zero. 
For instance, for the pressure, we have

	 = =
γ +

p f Y
2

1
2 3 	 (8.60a)

    p g g g wM Yp XA
4

1
2

1
8

( 1)
s s s s2 31 1 33 3 35 5 1 1 2= χ + χ + χ = γ

γ +
+

γ +
+ γ

γ +
β 	 (8.60b)

	

= ′χ + ′χ + ′χ + ′χ

= γ ρ
∆ ρ

− γ −








 −

γ ρ
∆ ρ

+ γ −










−
γ −

∆
+

γ
∆ρ

ρ

p h h h h

m v p
m

u u
m u p

m
v v

u v
p

p u v

( 1) ( 1)

( 1)

n

s s

s s

2 31 1 32 2 33 3 34 4

2 2 2

2
2
2

2
2 2 2

2
2
2

2

2 2
2

2 2 2

2
2 	 (8.60c)

Observe that βs, in p2s depends on the nondimensional length parameter (ra sin β′).
With

	 M1.4, 3, 60 , 25na1γ = = ′β = ° ′φ = ° 	 (8.61)

prescribed, we evaluate the CST parameters, p s( /∂ )2�∂  and ∂ ′δ s( /∂ )2 2� , which are 
given by Equations (8.31) and (8.35), respectively. From Equations (8.49) and (8.50), 
we obtain

	 M r r3.464,  11.35, sin 9.826a a a1 = = ′β = 	 (8.62a)

We next obtain r, Equation (8.52), and M1, Equation (8.44), as

	 r = 17.13,    M1 = 3.912	 (8.62b)
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114 Shock Wave Dynamics: Derivatives and Related Topics

where M1 is closely estimated using standard gas dynamic tables for a nozzle’s 
area ratio versus the Mach number. Other state 1 parameters are then readily 
evaluated:

	
= ′δ = °M 2.244,  25n1 1

	 m = 15.30,    w = 5.035,    X1 = 4.061

	 X = 2.007,    Y = 6.849,    Z = 4.035,    A = 4.299,    B = 19.48	 (8.62c)

	 p1s = −7.181 × 10−2,    ρ1s = −5.129 × 10−2,    M1s = 5.325 × 10−2

At the shock, we have

	 β = ° β = − × ′β =−35 ,            3.354 10 ,             0s s
2

	 (8.62d)

while at state 2,

	 p2 = 5.707,    ρ2 = 3.010,    u2 = 0.8192,    v2 = 0.1905

	 p2s = −0.8127,    ρ2s = −0.2573,    u2s = 2.198 × 10−2,    v2s = −1.977 × 10−3

	 M2 = 2.390,    ′δ2 = 46.91°	 (8.62e)

	 α2 = 0.1446,    α3 = −5.021 × 10−3,    Δ = 8.758 × 10−2

	 p2n = −0.9179,    ρ2n = −0.5562,    u2n = −2.838 × 10−2,    v2n = 8.323 × 10−2

	 p
s s

0.9996, 1.557 10
2

2 2

� �
∂
∂





 = − ∂ ′δ

∂
= − × − 	 (8.62f)

The last two parameters are the desired CST results. See Problem 22 for the 
vorticity.

With increasing distance along the shock, M1 increases and p1 and ρ1 isentropi-
cally decrease, with the rate of decrease greater for the pressure. This is evident in 
the p1s and ρ1s values in the above list, whose ratio is γ. It is easy to demonstrate that 
M1n decreases with s, and the shock strength therefore also decreases. Consequently, 
p2 and ρ2 have a much more rapid decrease with s than p1 and ρ1, as is evident from 
the p2s and ρ2s values.

The magnitudes of p2n and ρ2n are somewhat larger than their p2s and ρ2s coun-
terparts. This stems, in part, from the angle between the state 2 streamline and the 
shock, ′β − ′δ2, being only 13.1°. The streamline is thus nearly parallel to the shock. 
The rate of change of p2 and ρ2 with s therefore results in larger magnitudes for p2n 
and ρ2n.
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115Derivatives When the Upstream Flow Is Nonuniform

Upstream of the shock, the flow is expansive with ∂ ′δ s( /∂ )1 �  = 0, because the stream-
lines are straight. The flow downstream of the shock is also expansive, as indicated 
by the negative value for p2n. In turn, this results in a positive value for p n( /∂ )2�∂  and 
a slightly negative value for ∂ ′δ s( /∂ )2 2� . At this shock location, the streamline curves 
downward. Note that the streamline curves upward at state a.

The length normalization given by Equation (8.45) is arbitrary, because ρm a/( )o�  
is unspecified. Hence, nondimensional derivative values, such as βs, p1s, and p2n, 
are arbitrary to within an R multiplicative factor.
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9 General Derivative 
Formulation

9.1 P reliminary Remarks

A different approach from that in Chapter 8 is used to extend the analysis to a three-
dimensional shock whose upstream flow may be nonuniform. The distinction in the 
preceding chapter between angles based on 

��
V1 and the x-coordinate will no longer 

be necessary.
The quantities

	 F(xi), v1,i, p1, ρ1	 (9.1)

are presumed known functions of the xi and are sufficiently differentiable, as 
needed. For Sections 9.3 through 9.8, these parameters are time independent; 
a  steady flow is assumed. The last two sections, however, consider the unsteady 
case, and parameters, such as v1,i, now explicitly depend on xi and t. Knowledge 
of these items are the necessary and sufficient conditions for the analysis in this 
chapter. The above items parallel the approach discussed in Section 4.1 and should 
result in a computer-friendly set of algorithms. This approach provides a seamless 
transition from CFD or experimental data, in a laboratory frame, to the shock-based 
frame of the theory.

The next section is primarily devoted to establishing a general version of the 
t̂ , n̂, b̂ basis and related parameters. The third section establishes a three-dimensional 
shock test case that easily reduces to a two-dimensional or axisymmetric shock, 
where Chapters 4 through 6 and Appendix E apply. This is an elliptic paraboloid 
(EP) shock whose freestream is uniform. The EP model is systematically utilized 
to illustrate the steady theory, and to partially verify it. Sections  9.4 through  9.8 
cover shock curvatures, vorticity, jump conditions and tangential derivatives, nor-
mal derivatives, and applications, respectively. Section 9.9 extends the analysis to 
the unsteady case. This analysis is applied in Section 9.10 to the unsteady, curved 
reflected shock observed in a shock tube experiment.

The material in Sections 9.2 through 9.7 is summarized in three successive 
appendices. The first, Appendix H, contains the general steady formulation, while the 
second lists equations when the freestream is uniform. The last of these appendices 
does the same but with the EP model. Appendix L summarizes the unsteady shock 
approach.
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118 Shock Wave Dynamics: Derivatives and Related Topics

9.2  Vector Relations

The shock’s generic shape is written as

	 F = F (xi) = 0	 (9.2)

As before, the normal to the surface is

	 n
F
F

ˆ   
| |

= ∇
∇

	 (9.3)

where

	
∑ ∑∇ = ∇ = 



F F F F  |̂ ,             x j x

2
1/2

j j

Let 
��
V1 be the velocity just upstream of the shock:

	 V v  |̂j j1 1,

�� ∑= 	 (9.4)

where the v1,j components are assumed to be known functions of the xi that satisfy 
Equation (9.2). The arbitrary sign of F is chosen such that n̂  points in the down-
stream direction. This means the angle, β, in the flow plane is positive:

	 V

V
nsin    

 
  ˆ  01

1

β = ⋅ >
��

	 (9.5a)

where

	 ∑= 



V v    j1 1,

2
1/2

	 (9.6a)

The equation for sinβ can be written as

	 ∑β =
∇

v F

V F
sin    

| |

j x1,

1

j
	 (9.5b)

From Figure 9.1, V1

��
 can also be written as

	 V

V
n t   sin   ˆ   cos    ˆ1

1

= β + β
��

	 (9.6b)

As before, a right-handed, orthonormal basis, t n bˆ, ˆ, ˆ, is introduced (see Figure 9.1). 
We proceed to write all vectors in terms of a Cartesian |̂j basis, as is already the case 
for n̂ and V1

��
. From the figure, observe that

	 ( )× = − − β = − β
��

n
V

V
b bˆ ˆ sin 90 ˆ cos1

1
	 (9.7a)
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119General Derivative Formulation

which becomes

	 ∑=
β

× = −χ
��
V

V
n Kb̂

1
cos

  ˆ |̂j j
1

1

	 (9.7b)

where b̂  and |̂3 have roughly opposite orientations, and

	 K v F v F K v F v F K v F v F, ,x x x x x x1 1,3 1,2 2 1,1 1,3 3 1,2 1,12 3 3 1 1 2= − = − = − 	 (9.8)

	 V F
   

1
| | cos1

χ =
∇ β 	 (9.9)

The t̂  vector is given by

	 ∑ ∑ ∑= − × = χ
∆





 × 



 = χ

∇
t b n

F
K F

F
Lˆ ˆ ˆ  

| |
|̂ |̂

| |
|̂  j j x j j jj

	 (9.10)

where

	 = − = − = −L F K F K , L F K F K L F K F K,x x x x x x1 2 3 2 3 1 3 1 23 2 1 3 2 1 	 (9.11a)

or

	 ∑= ∇ − 



L F v v F F   | |    j j k x x

2
1, 1, k j

	 (9.11b)

Since

	 n b n t t b
V
V

b b b t tˆ    ˆ    ˆ     ˆ    ˆ    ˆ        ˆ   0,   ˆ    ˆ    ˆ    ˆ   11

1

��
⋅ = ⋅ = ⋅ = ⋅ = ⋅ = ⋅ = 	 (9.12)

V1

V2

Shock

β θ

n̂

t̂
s

Figure 9.1  Shock-based basis and angles in the flow plane. b̂ is into the page.
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120 Shock Wave Dynamics: Derivatives and Related Topics

we obtain

	

F K F L K L v K K

L
F

             0,      
1

,

   
| |

x j x j j j j j j

j

1,
2

2

2
2

2

j j∑ ∑ ∑ ∑ ∑
∑

= = = = =
χ

= ∇
χ

	 (9.13)

These sums can also be obtained by direct substitution of the Kj and Lj components. 
They are used to simplify some of the subsequent algebra.

This section concludes with relations for V 2

��
, where V2 is given in Appendix E.1, 

by writing

	
��

�V = V ŝ2 2 	 (9.14)

The state 2 vector, ŝ�, is evaluated using

	
s

V
V

a n c
V
V

ˆ       ˆ      2

2

1

1

�
�� ��

= = +

With the aid of

	

V

V

V

V
n

V

V
       cos  ,    ˆ       sin2

2

1

1

1

1

⋅ = θ ⋅ = β
�� �� ��

the a and c coefficients are established. These equations provide

	 a sinβ + c = cosθ,    a sin(β − θ) + c cosθ = 1

which results in

	 s n
V
V

ˆ   
sin
cos

  ˆ   
cos

cos
  1

1

�
��( )= − θ

β
+

β − θ
β

	 (9.15a)

Alternative forms are

	 � ( )( ) ( )= β − θ + β − θ = +s n t
B

n Atˆ   sin     ˆ   cos     ˆ  
1

  ˆ    ˆ
1/2 	 (9.15b)

where β and θ are measured relative to V1

��
, as indicated in Figure 9.1.

Appendices H.1, I.1, and J.1 summarize the foregoing, where Appendix J.1.1 
utilizes the EP model of the next section.
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121General Derivative Formulation

9.3 E lliptic Paraboloid Shock

Before introducing the EP shock equation, the simplification associated with a 
uniform freestream

	 V V v v v V constant       |̂        |̂ ,            0,       1 1 1 1,1 1 1,2 1,3 1

��
= = = = = 	 (9.16)

is discussed. The sine and cosine of β become

	

F

F F
sin

| |
, cos

| |
x

1/2
1β =

∇
β = ψ

∇

where

	 F Fx x
2 2
2 3ψ = +

Other parameters simplify to

	
= = = −K K V F K V F0, ,x x1 2 1 3 13 2

	
= ψ = − = −L V L V F F L V F F, ,x x x x1 1 2 1 3 11 2 1 2

and, from Equation (9.13),

	
K

V
1 1

 
j
2

1/2
1

1/2

∑
χ =







=
ψ

The n̂  basis vector is unchanged, but b̂  and t̂  become

	
b F Fˆ 1

|̂ |̂x x1/2 2 33 2−( )=
ψ

+

	
t

F
F F Fˆ  

1
| |

  |̂   |̂ |̂x x x1/2 1 2 31 2 3− ( )=
∇ ψ

ψ +





Although the shock is three-dimensional, because V V( / ) |̂1 1 1=
��

 and b̂ is normal to the 

flow plane, b̂ does not have a component along |̂1.
This is also a convenient time to discuss some differences between a three-

dimensional shock and a two-dimensional or axisymmetric shock. These dif-
ferences focus on intrinsic coordinates, previously discussed in Section 5.2. 
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122 Shock Wave Dynamics: Derivatives and Related Topics

For a convex shock, n̂2�  points into the upstream flow. The binormal unit basis, b�̂, is 
normal to the streamline’s osculating plane and is given by

	 b n s
ˆ ˆ ˆ= ×� � � 	 (9.17)

As with b̂, b�̂ points into a page that contains n̂�  and ŝ�.
An intrinsic coordinate system is definable at any point in the flow, including at 

state 2. (A uniform flow is an exception.) As previously mentioned, when a shock 
is two-dimensional or axisymmetric, the osculating and flow planes coincide, and 

b b
ˆ ˆ=� . When a shock is three-dimensional, however, the two planes do not coincide, 
except along ŝ�. In the three-dimensional case, the osculating plane is rotated from 

the flow plane along a line containing ŝ� , and the vectors b̂ and b�̂  are no longer col-
linear. Except when the shock is a normal shock, any vector normal to ŝ�, or V2

��
, as is 

� �b n
ˆ
 and  ˆ , cannot be in the shock’s tangential plane.

The scalar momentum equations are simple and elegant when written with intrin-
sic coordinates. Of special interest is the steady momentum equation that is normal 
to the osculating plane (Serrin 1959):

	 ∂
∂

=p

b
   0� 	 (9.18)

Since coordinates b and b� do not coincide, this implies that (∂p/∂b) ≠ 0 at state 2. 
This is demonstrated shortly using an EP shock. In addition, Appendix H.4 provides 
relations for the nonzero b derivatives, including for the pressure. The distinction 
between the flow and osculating planes and Equation (9.18) are of considerable 
importance in Section 9.7, where the n derivatives are evaluated.

It is convenient for a three-dimensional shock to summarize the above discussion 
concerning the b and b� coordinates, and to discuss a third coordinate, bsh, which is 
introduced in Section 9.8. All three coordinates are distinct, originate at the same 
state 2 location, and are only locally defined. The b coordinate is in the shock’s tan-
gent plane, is normal to the flow plane, and, for example, (∂p/∂b)2 is not zero. The b� 
coordinate is normal to the osculating plane and has ∂p/∂b� equal to zero; it is not 
in the tangent plane but is in the s�,bsh plane. The bsh coordinate is defined as being 
in the tangent plane with ∂p/∂bsh = 0. It is not in the osculating plane or normal to 
either the flow or osculating planes.

The chosen EP shock shape is

	 F x
x
r

x
r

   
2 2

   01
2
2

2

3
2

3

= − − σ = 	 (9.19)

where r2 is the radius of curvature at the nose in the x3 = 0 plane, and r3 is the radius 
of curvature at the nose in the x2 = 0 plane.

The shock is convex relative to the upstream flow and is three-dimensional when 
r2 ≠ r3. It is two-dimensional when σ = 0 and axisymmetric when

© 2013 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

2:
04

 1
0 

M
ay

 2
01

6 



123General Derivative Formulation

	 σ = = = = +r r r y x x   1,               ,              2 3
2

2
2

3
2 	 (9.20a)

For both the two-dimensional and axisymmetric cases, it has the form of Equation 
(3.2) if f is written as

	 f = (2 r2 x1)1/2 = (2 r x1)1/2	 (9.20b)

The orientation of an isobaric (constant p2) curve through a fixed xi point on an 
EP shock is evaluated. From Appendix E.1, this corresponds to a constant value for 
β. Moreover, this curve also has constant values for ρ2, u2, v2, …. A constant β value 
results in (see Equation J.4)

	 ψ = 





+ σ





=x
r

x
r

constant       2

2

2
3

3

2

	 (J.3)

A tangent vector to the isobaric curve on the shock’s surface is given by

	
�
a F       = ∇ × ∇ψ

where

	

x
r

x
r

   
2 

|̂  
 2 

|̂2

2
2 2

3

3
2 3∇ψ = + σ

Hence, 
�
a equals

	

�
a

x x
r r r r

x
r

x
r

   2
1
 

 
1

|̂   |̂   |̂2 3

2 3 2 3
1 

3

3
2 2

2

2
2 3− −= σ 





σ +










whereas b̂ is given by

	 b
x

r

x

r
ˆ 

1
|̂      |̂1/2

3

3
2

2

2
3−=

ψ
σ





	 (J.10)

The two vectors are collinear only when one of the Equation (G.22) (Appendix G), 
array is satisfied. Hence, when a shock is three-dimensional, the isobaric curve is not 
tangent to the b-coordinate.

9.4 S hock Curvatures

For consistency with curved shock theory (Molder 2012), the earlier curvatures, 
−dβ/ds and σcosβ/y, are replaced with Sa and Sb, respectively. The Sa curvature is 
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124 Shock Wave Dynamics: Derivatives and Related Topics

in the flow plane, while Sb is in the plane that is normal to both the shock and flow 
plane. As before, both curvatures are negative (positive) when the shock is concave 
(convex) relative to the upstream flow. If the point of interest is in the vicinity of a 
saddle point, the curvatures are of opposite signs. At a saddle point, both curvatures 
have extremum values of the opposite sign.

Each curvature is for a curve at a prescribed point, xi
*, on the shock, and the sub-

sequent analysis requires a Cartesian basis, ′̂|i  defined below, and a corresponding 
coordinate system, ′xi . This coordinate system is required because the curve, whose 
curvature is Sm, m = a, b, is written in terms of the ′x1 and ′x2 coordinates.

For Sa, the right-handed system

	 ′= ′ = ′ = −n t b|̂   ˆ, |̂   ˆ, |̂   ˆ
1 2 3

is chosen such that ′ ′x x,1 2 are in the flow plane. The subsequent analysis makes use 
of the differential operator approach in Appendix G. From Equation (G.17a,c), the 
linear, differential operators are written as

	 ∑∂
∂ ′

=
∇

∂
∂x F

F
x

 
1

   x
j1

*
*
j 	 (9.21a)

	 ∑∂
∂ ′

= χ
∇

∂
∂x F

L
x

     j
j2

*

*
* 	 (9.22a)

where the asterisk indicates evaluation at a fixed shock point, xi
*, where the coef-

ficients of the ∂()/∂xj, such as Fx
*
j/|F|*, are constants. The “a” used with the equation 

numbering indicates these operators are associated with Sa.
For Sb, the right-handed system (b̂ points into the page)

	 ′= ′ = ′ =n b t|̂   ˆ, |̂   ˆ, |̂   ˆ1 2 3

is chosen such that ′ ′x x,1 2  are in the n bˆ, ˆ or Sb plane. From Equation (G.17b,c), the 
operators are

	
x F

F
x

 
1

   x
j1

*
*
j∑∂

∂ ′
=

∇
∂

∂
	 (9.23b)

	
x

K
x

     j
j2

* *∑∂
∂ ′

= − χ ∂
∂

	 (9.24b)

where, again, the coefficients of ∂()/∂xj are constants evaluated at xi
*.

These operators generate the derivatives

	 =′ ′ ′ ′ ′ ′ ′ ′ ′ ′F F F F F F, , , ,x x x x x x x x x x1 2 1 1 1 2 2 1 2 2	 (9.25)
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125General Derivative Formulation

required for Sm, m = a, b. The F, of course, is given by Equation (9.2), but Fx2′ is given 
by Equation (9.22a), for Sa, while Equation (9.24b) is used with Sb. The relevant 
implicit curvature equation (Courant 1949) is

	 ( )
= − − +

+
′ ′ ′ ′ ′ ′ ′ ′ ′ ′

′ ′

S
F F F F F F F

F F

2
m

x x x x x x x x x x

x x

2 2

2 2 3/2
2 1 1 1 2 1 2 1 2 2

1 2

,  m = a, b	 (9.26)

After the F derivatives are evaluated, the xi
* are no longer required and are replaced 

with xi. Thus, Sm only depends on the now variable shock point, xi. This curvature 
relation, as written, is in accord with the earlier Sm sign convention.

The EP shock yields (see Appendix J.2)

	 =
+ σ







+ σ

















+ 





+ σ

















S

x
r

x
r

x
r

x
r

 
x
r

x
r

1

a

2
2

2
3

3
2

3
3

2

2

2
3

3

2
2

2

2
3

3

2 3/2 	 (9.27a)

	 =
σ +













+ 

















+ 





+ 

















S

x
r

x
r

r r
x
r

x
r

 
x
r

x
r

1

b

2
2

2

3
2

3

2 3
2

2

2
3

3

2
2

2

2
3

3

2 1/2 	 (9.27b)

When the flow is two-dimensional, this becomes

	 =

+ 

















=S

r
x
r

S   
1

1

 ,          0a b

2
2

2

2 3/2 	 (9.28a,b)

This is readily confirmed for Sa using the explicit curvature formula

	 κ = −

+ 

















 

d x
dx

dx
dx

1

2
2

1
2

2

1

2 3/2 	 (9.29)

with x2 = (2r2x1)1/2. (The curvature sign convention adopted at the start of Section 5.1 
requires the minus sign.) Note that Sa = −r2

1 when x2 = 0, as expected.
When the shock is axisymmetric, Equation (9.20a) applies, with the result

	
( ) ( )

=
+

=
+

S
r

r y
S

r y
     ,          

1
a b

2

2 2 3/2 2 2 1/2 	 (9.30a,b)
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126 Shock Wave Dynamics: Derivatives and Related Topics

Again, both curvatures become r −1 when y = 0. The Sa result agrees with Equation 
(9.28a) when r2 = r, and Sb agrees with

	 = β
S

y
cos

b 	 (9.31)

with the cosβ relation in Equation (J.4).

9.5  Vorticity

In Chapter 6, the homenergetic condition is automatic, because the upstream flow is 
uniform and the shock is steady. In Section 8.6, this requirement is specifically not 
assumed, because the flow is two-dimensional or axisymmetric. We now discuss its 
relevance when the shock’s shape is three-dimensional.

The vorticity, 
��
ω2, can also be obtained with the curvilinear curl operating on 

the flow-plane velocity using shock-based coordinates. The uniform upstream flow 
result (see Equation 6.8c) contains a normal derivative term that must be deleted if 
the well-known shock-generated vorticity equation is to be obtained. In this circum-
stance, 

��
ω2 is tangential to the shock.

The requirement of a homenergetic flow in the above tangency discussion can be 
demonstrated with a two-dimensional flow with sweep (Emanuel 2001, Chapter 10). 
The flow initially consists of two uniform, supersonic flow regions separated by a 
planar, oblique shock, where the shock has a sweep angle (i.e., the attached shock 
is generated by a straight ramp with sweep). This flow, of course, is irrotational, 
homenergetic, and the streamlines are straight. By means of the substitution principle 
(Emanuel 2001, Chapter 8), the two uniform flows are transformed into nonuniform, 
parallel flows. The substitution principle generates a new rotational, nonhomener-
getic flow that still satisfies the steady, three-dimensional Euler equations and leaves 
the geometry unchanged. Thus, the straight streamlines and the planar shock, with 
sweep, are invariant. The vorticity vector is perpendicular to the straight streamlines 
at states 1 and 2 and is not tangent to the shock. The difference between the two 
flows is that the first is homenergetic, the second is not. The nontangency result is 
also apparent from Crocco’s equation, Equation (6.2a), which contains the gradient 
of the stagnation enthalpy. In this section, we thus assume a homenergetic flow in 
order that 1ω

��
 and 2ω

��
 are tangent to the shock.

Derivatives of parameters, such as M1, are in terms of the xi. For instance, for M1, 
we have

	 M
V
p

   1
2 1 1

2

1

= ρ
γ

	 (9.32)

and, consequently,

	 ∑ −= + ρ
ρ

M
M V

v v
p
p

   
1

   
1
2

     
1
2

 x
j jx

x x1

1 1
2 1, 1,

1

1

1

1

i
i

i i 	 (9.33)
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127General Derivative Formulation

Another derivative parameter, encountered shortly, is xiβ . We start with Equation 
(9.5b) and

	
V F

cos    
1

| |1

β =
∇ χ

	 (9.34)

to obtain

	

∑ ∑ ∑

∑ ∑ ∑

β = χ
∇

∇ − 















+ ∇ − 














V F
F V v F v F v v

V F v F v F F F

   
| |

  | |    

  | |

x jx x j x j jx

j x x j x x x x

1
2 2

2
1
2

1, 1, 1, 1,

1
2 2

1, 1,

i i j j i

i j j j i j 	 (9.35)

where j is summed over in each summation. Thus, βxi is fully determined by F and 
v1,j and derivatives thereof.

Some of the subsequent discussion follows that in Section 8.6. It is convenient to 
write the velocity, vorticity, and gradient operator as

	
��

= +V ut vnˆ   ˆ 	 (9.36a)

	
��
ω = ω + ωb t    ˆ    ˆ

b t 	 (9.36b)

	 t
s

n
n

 b
b

     ˆ ˆ ˆ  ∇ = ∂
∂

+ ∂
∂

+ ∂
∂

	 (9.36c)

Crocco’s equation results in

	 T
S
b

v T
S
s

v T
S
n

u    ,     ,    t b b −∂
∂

= ω ∂
∂

= ω ∂
∂

= ω 	 (9.37a,b,c)

Equations (9.37b,c) yield

	
u 

S

s
 v 

S

n
0

∂
∂

+ ∂
∂

=

which is the equation for an isentropic flow. Equation (9.37a,b) is written as

	
S
b

v
T

S
s

v
T

    ,               t b−∂
∂

= ω ∂
∂

= ω 	 (9.38a,b)
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128 Shock Wave Dynamics: Derivatives and Related Topics

The entropy change across a shock is

	 S S
R

ln
w

X Y
    

1
1

2
2 1

1

− =
γ −

γ +

















( )γ+ γ

γ 	 (9.39)

The entropy jump and w equations are differentiated with the result

	 ∂
∂

= ∂
∂

+ γS
x

S
x

R Z
wXY

w       
2

   
i i

x
2 1

2

i
	 (9.40)

	 ( )= + β β





w w
M
M

   2     cotx
x

x
1

1
i

i
i 	 (9.41)

where M x1 i and βxi are given by Equations (9.33) and (9.35), respectively. Elimination 
of wxi yields

	 ( )∂
∂

= ∂
∂

+ γ + β β





S
x

S
x

R
Z
XY

M
M

              cot  
i i

x
x

2 1
2

1

1

i
i

	 (9.42)

The ∂S/∂b derivative is related to the ∂S/∂xi  derivatives by Equation (G.17b), with 
the result

	 ∑−∂
∂

= χ ∂
∂

S
b

K
S
x

     i
i

1 1 	 (9.43)

	
∑−∂

∂
= χ ∂

∂
S
b

K
S
x

     i
i

2 2

	
∑ ∑− − ( )= χ ∂

∂
γ χ + β β





K
S
x

R
Z
XY

K
M
M

                  coti
i

i
x

x
1

2
1

1

i
i

	 ∑− ( )= ∂
∂

γ χ + β β





S
b

R
Z
XY

K
M
M

              coti
x

x
1

2
1

1

i
i 	 (9.44)

This is combined with Equation (9.38a) to obtain

	 ∑ ( )ω = ω − γ χ + β β





v
T

v
T

R
Z
XY

K
M
M

                    cott t i
x

x
2

2
2

1

1
1

2
1

1

i
i

	 (9.45)
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129General Derivative Formulation

With Equations (G.17a), (9.38b), and (9.42), the other vorticity component is

	 ∑ ( )ω = ω − γ χ
∇

+ β β





v
T

v
T

R
Z

XY F
L

M
M

            
| |

      cotb b i
x

x
2

2
2

1

1
1

2
1

1

i
i

	 (9.46)

With the following relations

	 ( )= β = β − θ =
γ

v V v V M
V
RT

    sin  ,        sin  ,      1 1 2 2 1
2 1

2

1

	
T
T

XY
w

p
p

Y
2

1
   ,       

2
1

 2

1

2

2

1

=
γ +







=
γ +

	 (9.47)

	 ( )= β +
γ +







β











=
γ +

β
β − θ

V
V

X
w

X
w

  cos    
2

1
 

 sin
   

2
1

   
sin

sin
2

1

2

2 2 2

2

1/2

the components are given by

	
p
p

Q         b b b2
2

1
1ω = ω − 	 (9.48)

	
p
p

Q         t t t2
2

1
1ω = ω − 	 (9.49)

where

	 ∑ ( )=
γ +

β
∇

+ β β





Q
Z
wX F

L
M
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2

1
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| |
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x

2

2
1

1

i
i

	 (9.50a)

	 ∑ ( )=
γ +

β
∇

+ β β





Q
Z
wX F

K
M
M

   
2

1
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| |
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x
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2
1

1

i
i

	 (9.50b)

The vorticity then is

	
�� ��p

p
Q b Q t        ˆ    ˆ

b t2
2

1
1ω = ω − − 	 (9.51a)

and its magnitude is

	 ω = ± ω −






+ ω −


















p
p

Q
p
p

Q b b t t2
2

1
1

2
2

1
1

2 1/2

	 (9.51b)
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130 Shock Wave Dynamics: Derivatives and Related Topics

where the plus (minus) sign is used for a convex (concave) shock. Other than being 
tangent to the shock, the orientation of 

��
ω2 is not simply related to 

��
ω1 or to either 

curvature plane.
For a steady, homenergetic flow, 

��
ω2 is determined by the upstream vorticity, 

amplified by p2/p1, the gradient of M1 on the shock’s surface, and the βxi factor. 
In particular, the M1 and β gradient terms account for any irrotational upstream 
nonuniformity not associated with the upstream vorticity.

Appropriate summaries are provided in Appendices H, I, and J. Equations 
(J.15), (J.16), and (J.17) provide the EP shock results for Qb, Qt, and 

��
ω2. The sign of 

Qt depends on the relative size of the ri. When r2 > r3, Qt and Qb are both negative 
for a convex shock. When the shock is axisymmetric, Qt = 0 and Qb has its conven-
tional form:

	 Q
Z

wX
V   

2
1

      cos  b s

2

1 ( )=
γ +

β β 	 (9.52)

where, with the aid of Equation (G.17a), we obtain

	 ∑ ∑β = ∂β
∂

= β ∂
∂

= χ
∇

β
s

x
s F

L           
| |

 s x
i

i xi i 	 (9.53)

9.6  Jump Conditions and Tangential Derivatives

Appendices E.1 or F.1 can be used for the jump conditions. Our next goal is to 
formulate equations for the s and b derivatives of u, v, p, and ρ, at state 2, in terms 
of the known (Equation 9.1) parameters and their xi derivatives. Assisting in this 
effort are Equations (9.5b) and (9.35) for β and βxi and Equations (9.32) and (9.33) 
for M1 and M x1 i. The connection between the two types of derivatives is provided by

	 ∑∂
∂

= χ
∇

∂
∂s F

L
x

   
| |

  i
i

	 (G.17a)

	
b

K
x

        i
i

∑∂
∂

= − χ ∂
∂

	 (G.17b)

In using Appendix E.1, w (Equation 4.2) is often encountered, whose state 1 surface 
derivatives are

	
w

w

s F
L

M

M
L

1
     2

| |
   coti

x
i x

1

1

i
i∑ ∑∂

∂
= χ

∇
+ β β





	 (9.54a)

	
w

w

b
K

M

M
K

1
       2    coti

x
i x

1

1

i
i∑ ∑∂

∂
= − χ + β β





	 (9.54b)
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131General Derivative Formulation

This operator approach is illustrated by obtaining the pressure derivatives, where

	 =
γ +

p p Y   
2

1
2 1 	 (9.55)

We thus have

	 ∑∂
∂





 =

γ +
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∇
+ γ ∂

∂




p

p
s

Y
F

L
p
p

w
s

1
 

2
1 | |

   i
x

1 2

1

1

i 	 (G.20)

	 ∑ ∑ ∑=
γ +

χ
∇

+ γ + γ β β




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Y L
p
p

w L
M
M

w  L
2

1 | |
   2    2 coti

x
i

x
i x

1

1

1

i i
i 	 (9.56)

	
∑ ∑ ∑∂

∂




 = −

γ +
χ + γ + γ β β





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p
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Y K
p
p

w K
M
M

  w  K
1

   
2

1
2 2 coti

x
i

x
i x

1 2 1

1

1

i i
i

� (9.57)

which are Equations (H.17) and (H.18).
Appendix H.3 summarizes the s and b tangential derivatives, while simplified 

versions are provided in Appendix I.3 and Appendix J.3. With the u, v, p, and ρ 
derivatives available, other derivatives, such as for T2 or M2, can be obtained.

The s derivatives are checked against Appendix E.2 when the freestream is uni-
form and the shock is two-dimensional or axisymmetric. The comparison is expe-
dited with the use of Equation (9.53). For example, the Appendix E.2 equation for 
(∂p/∂s)2 becomes (with β′ = βs)

	 ∑∂
∂





 =

γ +
β′ β β = γ

γ +
β χ

∇
β

p
p
s

m w
F

L
1

 
4

1
 sin  cos    

4
1

 cot  
| |

 i x
1 2

i 	 (9.58)

which agrees with Equation (H.17) when pxi  and Mxi  are zero.
One can show that p2s[= (∂p/∂s)2/p1] in Appendix F, where the upstream flow is 

nonuniform, is in accord with Equation (9.56). To obtain agreement, use Equations 
(9.53), (G.18), and (9.54a). We also note that from Equation (J.27) that (∂p/∂b)2 is zero 
if σ = 0 or r2 = r3.

9.7 N ormal Derivatives

When the normal derivative analysis was started, it was expected that the two-
dimensional/axisymmetric approach in Chapters 3 and 4 would suffice. After much 
effort, it was realized that a global, shock-based coordinate system, ξi, as determined 
in Chapter 3, does not exist for a three-dimensional shock. This demonstration is 
relegated to Appendix K. In the following, the steady Euler equations are directly 
obtained in terms of s, n, and b coordinates. The corresponding hi scale factors 
appear only in logarithmic derivative form. A variety of techniques are used to eval-
uate these derivatives, with a number of them established with the aid of the operator 
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132 Shock Wave Dynamics: Derivatives and Related Topics

approach in Appendix G. Algebraic equations for the scale factors are not obtained 
and integration of these derivatives is not necessary, and, in fact, is not possible. 
The hi derivatives are evaluated in terms of the xi-coordinates; a relation between 
these coordinates and the s,n,b coordinates, however, does not exist. As will become 
apparent, the method is quite different from that in Chapter 3 and Section 4.4.

The velocity and gradient operator are written as

	
��

= + +V ut vn wb    ˆ    ˆ     ˆ 	 (9.59)

	 ∇ = ∂
∂

+ ∂
∂

+ ∂
∂

t
s

n
n

b
b

    ˆ      ˆ       ˆ  	 (9.60)

where, at state 2,

	 w
w
s

w
b

w
n

   0 ,        0 ,      0= ∂
∂

= ∂
∂

= ∂
∂

≠ 	 (9.61)

The b̂ velocity component, w, has the form w = w(n), w(0) = 0. Of course, for a 
two-dimensional or axisymmetric shock, ∂w/∂n is also zero. In the general case, a 
streamline, at state 2, generally has a nonzero torsion value. It is essential that ∂w/∂n 
not be zero if torsion is to occur. Although 

��
V 2 is in the flow plane, and the stream-

line is tangent to the flow plane at state 2, because ∂p/∂n is not zero, the streamline 
curves away from the flow plane (i.e., it has nonzero torsion).

Kaneshige and Hornung (1999), in a correction to an earlier paper, and Hornung 
(2010) provide a formulation for the normal derivatives of a three-dimensional shock. 
A flow plane is utilized and w and its flow plane derivatives, including ∂w/∂n, are taken 
as zero. Only the derivative of w normal to the flow plane is nonzero. The derivatives of 
p, ρ, and u that are normal to the flow plane are also taken as zero. This formulation dis-
agrees with Equations (9.18) and (9.61). The impact of the osculating plane, as discussed 
in the EP shock section, has been overlooked. In particular, the derivative of p that is 
normal to the osculating plane is zero. It is not zero when normal to the flow plane.

At state 2, the unknowns to be evaluated are

	 u
n

v
n

p
n n

w
n

 ,  ,  ,  ,
∂
∂

∂
∂

∂
∂

∂ρ
∂

∂
∂

	 (9.62)

For these parameters, the five governing scalar equations are continuity, momentum 
(three scalar equations), and an isentropic flow equation:

	 V V            0
�� ��

ρ∇ ⋅ + ⋅ ∇ρ = 	 (9.63a)

	 DV
Dt

p   
1

    0

��
+

ρ
∇ = 	 (9.63b,c,d)

	 V
p

      0
��

⋅ ∇
ρ







=γ
	 (9.63e)
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133General Derivative Formulation

The isentropic relation is equivalent to but somewhat simpler than a stagnation 
enthalpy relation, as previously used in Section 4.4. In the following discussion, 
the acceleration and then the divergence of the velocity are first evaluated with 
shock-based coordinates.

For a steady flow, Problem 7 provides
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	(9.64a)

With Equation (9.61), this simplifies to
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The use of Equation (9.61) results in the absence of b derivatives in Equation (9.64b). 
In the subsequent analysis, the s tangential derivatives for u, v, p, and ρ are required 
but not the corresponding b tangential derivatives, except for the pressure.

To eliminate the basis derivative terms, Equations (3.10), (3.31), and (3.37) are 
utilized, with the result
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These relations, unlike Equation (3.43), are not restricted to a two-dimensional or 
axisymmetric shock. Morse and Feshbach (1953) also provide these orthonormal 
basis relations. Equation (9.64b) now becomes
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	 (9.64c)

Our next task is the evaluation of the hi derivatives:
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	(9.66)

that appear in the above equation. As shown by Morse and Feshbach (1953), the 
curvatures of the s, b, and n coordinates are, respectively,

	 S t
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h
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	 (9.67a)
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	 (9.67b)
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t
n h

h
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2  = n-coordinate curvature	 (9.67c)

where Sb will appear later in the divergence of the velocity. The n-coordinate 
curvature, previously denoted as κo (see Equation 4.8), must be deleted for a surface 
evaluation. The remaining two factors in Equation (9.66), (∂h1/∂b)/h1 and (∂h2/∂b)/h2, 
are next evaluated.

With the use of Equation (G.17a), we have
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	 ∑ ∑= − χ
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L L
K
x

   
| |
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j

j
i

j

3

2 	 (9.68a)

since the KiLi summation is zero, see Equation (9.13). A similar calculation for the 
other factor yields
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	 (9.68b)

where Equation (G.17c) is now used. The state 2 acceleration thus has its final form
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	(9.64d)

The divergence of the velocity is given by
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	 (9.69a)

Since

	 ⋅ = ⋅ = ⋅ =t t n n b bˆ    ˆ    ˆ     ˆ     ˆ    ˆ  1
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∂
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With these and the foregoing relations, we obtain
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The rightmost factor is evaluated in the same way as with Equation (9.68):
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The divergence of the velocity then is

	 V
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h
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3

3��
( )∇ ⋅ = ∂

∂
+ ∂

∂
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∂
	 (9.69c)

It is worth noting that Equation (9.64d) and Equation (9.69c) are unaltered when the 
shock is unsteady. 

An asterisk is temporarily used to denote a nondimensionial parameter—that is,
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This nondimensionalization does not imply that V1, p1, or ρ1 are constants. Note 
that the 1/V1 is outside the ∂u/∂n derivative, in conformity with Appendix E, and, as 
a consequence, a 1/(γm) factor will appear in the scalar momentum equations. All 
lengths, including Sa

1−  and Sb
1− , can be dimensional or nondimensional. The final, 

state 2, nondimensional Euler equations, with the asterisks deleted, are
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	 u
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+ ∂
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− γ
ρ

∂ρ
∂

+ ∂ρ
∂





 = 	 (9.71e)

In the above, the unknowns are listed in Equation (9.62), parameters, such as u, v, 
∂u/∂s, ∂p/∂b, …, are given by the jump and tangential derivative relations, Sa and Sb 
are provided in Section 9.4, and the three hi derivatives are given by Equation (9.68). 
These quantities are fully determined by the Equation (9.1) parameters.

While Equation (9.71b,c,e) are in accord with their Equation (4.10) counterparts, 
this is not the case for continuity or Equation (9.71d), which has no Equation (4.10) 
equivalent. When the shock is two-dimensional or axisymmetric,
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p
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  0,   0
∂
∂

= ∂
∂

=

in Equation (9.71d) and one can show that

	 h
h
b h

h
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∂

= ∂
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=

This is done by evaluating the two double sums in Equation (9.68a,b) using 
Appendix I and

	
= = = σ =F F F 0, 0x x x x x3 2 3 3 3

and appropriate symmetry relations for derivatives of F when σ = 1. Thus, in the 
two-dimensional or axisymmetric case, each term in Equation (9.71d) is zero, and 
∂w/∂n and Equation (9.71d) are not relevant.

Equation (9.71b) provides ∂u/∂n directly, while Equation (9.71d) provides ∂w/∂n. 
The other three equations are readily solved for ∂v/∂n, ∂p/∂n, and ∂ρ/∂n. The final 
result is
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where
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	 = − ∂
∂

−A u
v

s
u S          c a

2 	 (9.73b)

	 = − ∂
∂

+
γ
ρ

∂ρ
∂

A u
p

s

pu

s
            e 	 (9.73c)

As noted with respect to Equation (8.27), the denominator, p/(mρ)−v2, in Equation 
(9.72b,c,d) is zero only when the shock becomes a Mach wave.

Appendices H.5, I.5, and J.5 contain the relevant summaries, although the sim-
plification is quite limited in Appendix I.5. Appendix J.5 contains extra material in 
view of the complexity of the results for an EP shock.

The ∂p/∂n derivative, in a tedious effort, has been evaluated for an EP shock with 
r = r2 = r3. The result is
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γ + θ γ +
+ σθ −
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where g5 is defined in Appendix E.4 and

	

y
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y
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2
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θ = + 



 =

σ =
σ =







Because the shock is two-dimensional or axisymmetric, the derivative should agree 
with its counterpart in Appendix E.3. Although the two ∂p/∂n equations do not 
resemble each other, they are, for both σ = 0 and σ = 1, in fact, the same.

An additional check uses an EP shock with

	 γ = 1.4,  M1 = 3,  w = 4,  r2 = r3 = 2,  σ = 0, 1	 (9.74)

This also is the subject of Problem 26. The data are sufficient to establish the xi as 
well as the nondimensional values tabulated in Appendix J.5. For instance, we have
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

When σ = 0, we readily obtain

	 x2 = 51/2 = 2.236,  x3 = 0
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139General Derivative Formulation

When σ = 1, we have

	 y = ( )+x x 2
2

3
2 1/2

= 51/2 = 2.236

The coordinates are then given as

	

=
σ =
σ =






=





=




x x x
1.25,    0

1.25,    1
,  

2.236
1.581

,  
0

1.581
 1 2 3

Problem 26 demonstrates that the s and n derivatives of u, v, p, and ρ check against 
their Appendix E values. The u, v, p, and ρ values themselves are directly provided 
by Appendix E. For the Problem 26 data, we obtain

	 β = 41.81°,  M2 = 1.816, 
p
s

   
3.325
2.769�

∂
∂

= −




and the flow is expansive at state 2. Consequently, there is a Thomas point at a larger 
β value for both the two-dimensional and axisymmetric shocks.

9.8 A pplications

A few uses of the theory in this chapter are briefly outlined. The first application 
discusses the isobaric curve on the shock. The second item provides the angle, λ, 
between the b and bsh coordinates, where bsh is along the isobaric curve on the shock. 
The next item evaluates the streamline derivative at state 2. The ∂p/∂n derivative for 
a normal EP shock is then derived. The section concludes by establishing the intrin-
sic coordinate basis at state 2.

As mentioned in Section 9.3, when the shock is three-dimensional, the osculating 

and flow planes do not coincide and �bˆ  and b̂ are not collinear. Somewhat more 
general results than those given in Section 9.3 are obtainable. For instance, the 
isobaric surface condition

	
∂

∂






=p
b

0
sh 2

	 (9.75)

is reexamined, where bsh is a surface coordinate that differs from b. Both bsh and �b 
are also distinct coordinates (as previously noted, �b is not in the tangent plane of the 
shock) that originate at the same state 2 point, and both have a zero pressure gradi-
ent. Because �b is normal to the osculating plane, bsh cannot also be normal to this 
plane, otherwise the two coordinates would not be distinct.

The included angle, λ, between the b and bsh surface coordinates is now evalu-
ated. In the shock’s tangential plane, we have
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p

b

p

b

p

s
       cos       sin     0

sh

∂
∂

= ∂
∂

λ + ∂
∂

λ = 	 (9.76)

This yields

	 λ = −

∂
∂
∂
∂

p
b
p
s

tan     	 (9.77a)

where the s and b derivatives are given by Equations (H.17) and (H.18). When the 
upstream flow is uniform, Appendix I simplifies this relation to

	 F
K

L
tan       

 

 

i x

i x

i

i

∑
∑

λ = ∇
β

β
	 (9.77b)

Because �s  is in the flow plane, the ∂()/∂ �s derivative only depends on the ∂()/∂s and 
∂()/∂n derivatives. In other words, the direction cosine between b̂ and �ŝ is zero 
(see Equation 9.15b). Hence, the derivative, ∂()/ �∂s, is still given by Equation (5.10a).

General results for a normal derivative, at a location where the shock is normal to 
the upstream flow, are not as straightforward as in Section 5.1. These equations are 
indeterminate. For instance, we start with the normal shock condition

	

��
=V

V
n̂1

1

which yields

	 sinβ = 1,  cosβ = 0

as expected. But now χ, which appears in many equations, is infinite, while the Kj 
and Lj, for all j, are zero.

To simplify and focus the discussion, the ∂p/∂n derivative is evaluated at the nose 
of an EP shock, with r2 ≠ r3. This location is at the origin of the xi-coordinate sys-
tem. To evaluate the indeterminacies, a plane is introduced that passes through the 
x1-coordinate:

	 x3 = x2 tanα

where α is a given angle. The indeterminacies are evaluated, as the origin is 
approached, along a curve given by the intersection of the plane with the shock. It is 
convenient to introduce the following constants:

	 c
r r

    
1

    
tan

1
2

2

2

3

= + α 	 (9.79a)
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	 (9.79b)
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r r

     
1

       
tan

3
2

2
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2

3
3= + σ α 	 (9.79c)

In the subsequent listing, only the leading-order term, when x2 → 0, is provided.
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2

2
2 	 (9.80a)

	 sinβ = 1,  cosβ = c2x2	 (9.80b)
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γ +
ρ = γ +

	 (9.80f)

	
h

h
b c r r r r x h

h
b h

h
s

c
r r c x

1
   

1 1
 
tan

,
1

  0,
1

   
1

1

2
3

3 2 3 2 2 2

2

3

3 1
2

2 3 2
3

2

∂
∂

= σ −





α ∂
∂

= ∂
∂

= σ � (9.80g)

	 S
c

c
S

r r

c

c
,        a b

3

2

2

2 3

1

2

2

= 





= σ 





	 (9.80h)

	
u

s

c

c

v

s

p

s s
,                  03

2

2∂
∂

= 





∂
∂

= ∂
∂

= ∂ρ
∂

= 	 (9.80i)

	 A
Z

m

c

c r r

c

c
A A 

2
1

      ,       0a c e
3

2

2

2 3

1

2

2

= −
γ +







+ σ 

















= = 	 (9.80j)

	
ρ

− =
γ +

p
m

v
XZ
mw

2
1

 2 	 (9.80k)

Note that Aa may be written in terms of the Sa, Sb curvatures, and the s derivatives of 
v, p, and ρ are zero as expected from symmetry considerations at a location where 
the shock is normal to the upstream flow.
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142 Shock Wave Dynamics: Derivatives and Related Topics

With the foregoing, the desired pressure gradient, given by Equation (J.43), is

	
p
n

Y
c
c r r

c
c

Y S S   
4

1
       

4

1
   a b2

3

2

2

2 3

1

2

2

2( ) ( ) ( )∂
∂

= γ
γ +







+ σ 

















= γ
γ +

+ 	 (9.81)

This readily reduces to Equation (5.5b) when the shock is two-dimensional or axi-
symmetric. In the axisymmetric case, set r2 = r3 = Rs. This gradient not only depends 
on γ, M1, and σ, but also on the sum of the curvatures.

A right-handed, orthonormal, intrinsic coordinate basis, s b nˆ,
ˆ
, ˆ� � � , at state 2, is 

now established. Since �ŝ , given by Equation (9.15b), is in terms of t̂  and n̂, it is 
analytically convenient to continue to use the t n bˆ, ˆ, ˆ basis. We thus write

	 b a t a n a b
ˆ ˆ ˆ ˆ

t n b= + +� 	 (9.82a)

where

	 + + =a a a          1t n b
2 2 2 	 (9.82b)

The equation for �n̂ is then

	 n s b
B

a t Aa n Aa a bˆ ˆ ˆ
 

1
  ˆ ˆ      ˆ

b b n t1/2 ( )= × = − + −



� � � 	 (9.83a)

A second relation for the a’s stems from

	
b s
ˆ ˆ 0� �⋅ =

or

	 an = − at A	 (9.84)

As has been established, the pressure gradient is zero along the coordinate tangent 

to �bˆ—that is,

	 p

b
b p
ˆ
    0

2
�

�∂
∂





 = ⋅∇ =

which becomes

	 a
p

s
a

p

n
a

p

b
        0t n b

∂
∂

+ ∂
∂

+ ∂
∂

= 	 (9.85)

where equations for the pressure derivatives are provided in Appendices H, I, and J.
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143General Derivative Formulation

Equations (9.82b), (9.84), and (9.85) yield the desired solution:

	 a
D

p
b

a
D

p
s

A
p
n

a
A
D

p
b

1
   ,      

1
       ,          t b n∓ ∓= ± ∂

∂
= ∂

∂
− ∂

∂




 = ∂

∂
	 (9.86)

where

	 D
p

s
A

p

n
B

p

b
 

2 2 1/2

= ∂
∂

− ∂
∂





 + ∂

∂


















	 (9.87)

It is expected that �⋅b bˆ ˆ
 > 0, or ab > 0. With Equations (5.10b) and (5.22), ab can be 

written as

	
�( )= ± ρ ∂θ

∂
a

B
D

V
s

           b

1/2
2

2
	 (9.88)

From the Crocco point discussion in Section 5.6, it is evident that (θ/ �∂s ) can be 
positive or negative. Hence, both signs are required in Equation (9.86) in order 
that ab > 0.

By way of summary, �ŝ is given by Equation (9.15b), �bˆ is given by Equations 
(9.82a) and (9.86), and �n̂ by Equation (9.83a). In view of Equations (9.84) and (9.86), 
the �n̂ equation can be written as

	 � ∓ ∓( )= ∂
∂

+ ∂
∂





 ± ∂

∂






n
B D

p
s

p
n

t An B
p
b

bˆ 
1

      ˆ    ˆ       ˆ
1/2 	 (9.83b)

As an illustration, the intrinsic coordinate basis is evaluated for an EP shock whose 
data are given by Equation (9.74), and which is the subject of Problem 26. Appendix J 
is utilized to obtain

	

=
σ =

− σ =






= − =A A A

0.07545,    0

0.06344,    1
,       0.08573,       0.02881a c e

	
p
s

p
b

p
n

  1.546,         0,      
5.848
4.098

∂
∂

= − ∂
∂

= ∂
∂

= −
−





	 (9.89)

	

D   
15.89
10.67

=




with the result

	 at = 0,  an = 0,  ab = 1	 (9.90)
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144 Shock Wave Dynamics: Derivatives and Related Topics

This simple result could have been anticipated, because the shock is two-dimensional 
or axisymmetric. This is evident from r2 = r3, or r3 = 0, and ∂p/∂b equaling zero. 
The intrinsic coordinate basis therefore is

	 s
B

At nˆ 1
  ˆ   ˆ

1/2
� ( )= + 	 (9.91a)

	 b b
ˆ
    ˆ� = 	 (9.91b)

	 � ( )= −n
B

t Anˆ 
1

  ˆ   ˆ
1/2 	 (9.91c)

The �ŝ equation is Equation (9.15b), and the �n̂ equation is also derived in Problem 9, 
where it is denoted as êno.

9.9 U nsteady, Normal Derivative Formulation

The approach in Section 9.7 is extended to an unsteady shock. Much of the earlier 
material still applies. This includes Appendix E.1 for jump conditions, and Section 
9.2, where the t n bˆ, ˆ, ˆ basis is obtained. Equations (9.21a) through (9.24b) and 
Equation (9.26) for the Sa,Sb curvatures, as well as Equations (9.59) through (9.61), 
for ∇V ,

��
, and w, hold. Equations (9.64d) and (9.69c) for V V( )⋅ ∇

�� ��
 and ·V

��
∇ , respec-

tively, along with Equation (9.68), for the scale factor derivatives, also hold. On the 
other hand, the vorticity analysis in Section 9.5 does not apply. This is because the 
acceleration term, V t( )2∂ ∂

��
, in Crocco’s equation that is used in the vorticity deriva-

tion, was not included. (This derivative is evaluated shortly.)
One change, however, is that the v1,i item in Equation (9.1) is relabeled as v i1,′ , 

where

	 V v |i i1 1,

��� �∑′ = ′ 	 (9.92)

As indicated in Figure 9.2, V1

���
′ , which is not necessarily uniform, is the upstream 

velocity. The local velocity, however, is

	 V V V v |R i i1 1 1,

��� ��� �� �∑′= − = 	 (9.93)

VR

VR

V1

V1

R(1)

i

(2)
–

β
β

Figure 9.2  Sketch of the 
��
V 1, V1

���
′ , and 

��
V R velocities.
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145General Derivative Formulation

Where the shock’s velocity, given by Equation (2.5), is

	 ∑= = −
∂

∂
∂







∂
∇

= −
∇

V V n
F

F

t

F

F

F

F
F

1
|R R

t
x i2 i

�� �� 	 (9.94a)

As noted in Figure 9.2, β is measured from V1

���
, not V1

��′. The magnitude of VR

��
 is readily 

obtained

	 =
∇

V
F

F
R

t 	 (9.94b)

Combining the above yields

	 = ′ +
∇

v v
F F

F
i i

t x
1, 1, 2

i 	 (9.95a)

and

	 V v
F

F
F v

F

F

2
i

t
x i

t
1 1,

2
2 1,

2

2

1 2

i∑ ∑= ′ +
∇

′ +
∇







	 (9.95b)

With v i1,′  changed to v1,i, the equations in Section 9.2 are unaltered.
The unsteady Euler equations are

	
∂ρ
∂

+ ρ∇ ⋅ + ⋅∇ρ =
t

V V 0
�� ��

	 (9.96a)

	
V
t

V V p
1

0

��
�� ��∂

∂
+ ⋅∇ +

ρ
∇ = 	 (9.96b)

	
p
t

p
t

u
p
s

v
p
n

p
u

s
v

n
0

∂
∂

− γ
ρ

∂ρ
∂

+ ∂
∂

+ ∂
∂

− γ
ρ

∂ρ
∂

+ ∂ρ
∂





 = 	 (9.96c)

The normal derivative solution, as before, depends on state 2 parameters, such as p2, 
and state 2 tangential derivatives, both with respect to s and b. The normal derivates 
also depend on

	 p
t t

V
t

, ,
2 2 2

��
∂
∂







∂ρ
∂







∂
∂







	 (9.97)

where V t
2

�� )(∂ ∂  must be written in terms of the t n bˆ, ˆ, ˆ basis. All these parameters are 
to be evaluated in terms of the Equation (9.1) items, but with the v i1,′  replacement.

Evaluation of V t
2

�� )(∂ ∂  starts with

	 V v |i i2 2,

�� �∑= 	 (9.98a)
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146 Shock Wave Dynamics: Derivatives and Related Topics

and

	
V
t

v |it i
2

2,

��
�∑∂

∂




 = 	 (9.99a)

By inverting the t n bˆ, ˆ, ˆ equations in Section 9.2, we obtain

	 = χ
∇

+
∇

− χ =
F

L t
F

F n K b i| ˆ 1 ˆ ˆ, 1,2,3i i x ii
� 	 (9.100)

with the result

	 ∑ ∑∑∂
∂





 = χ

∇
+

∇
− χV

t F
t L v

n

F
F v b K vˆ ˆ ˆ

i it x it i it
2

2, 2, 2,i

��
	 (9.99b)

From Equations (9.14) and (9.15b), V2

��
 can also be written as

	 V
V
B

n Atˆ ˆ2
2

1 2

�� )(= + 	 (9.98b)

where (see Appendix E.1)

	 V V
XB

w
2

1
sin

2 1

1 2

=
γ +

β
	 (9.101)

Hence, v2,i is given by

	 ( )=
∇

+ χ =v
V

F B
F AL i, 1,2,3i X i2,

2
1 2 i 	 (9.102)

Its time derivative is written as

	 v2,it = v2,i(J + Hi),    i = 1, 2, 3	 (9.103)

where J, which does not depend on the i suffix, and Hi are given in Appendix L by 
Equations (L.28) and (L.29), respectively. The time derivatives of χ, A, and Li that 
appear in Hi are listed in Appendix L. 

With the above and Equations (9.64d), (9.69c), and (9.68), the Euler equations can 
be written as:

	
v
n

v
n

A1
∂
∂

+
ρ

∂ρ
ρ

= 	 (9.104a)

	
∂
∂

=v
u

n
A2 	 (9.104b)

	
∂
∂

+
ρ

∂
∂

=v
v

n

p

n
A

1
3 	 (9.104c)
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∂
∂

=v
w

n
A4 	 (9.104d)

	
p
n

p
n

A5
∂
∂

− γ
ρ

∂ρ
∂

= 	 (9.104e)

where

	 A
u
s

v S S
u
F

L K
K
x

u
s t

( )
1

a b j j
i j
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j
1

3

,∑= − ∂
∂

+ + + χ
∇

∂
∂

−
ρ

∂ρ
∂

−
ρ

∂ρ
∂

	 (9.105a)

	 ∑= − ∂
∂

+ −
ρ

∂
∂

− χ
∇

A u
u
s

uvS
p
s F

L v
1

a i it2 2, 	 (9.105b)

	 A u
v
s

u S
F

F v
1

a x it3
2

2,i∑= − ∂
∂

− −
∇

	 (9.105c)

	 A
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F
L L

K
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F
F F

K
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p
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K v
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i j
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x x

i j

i

j
i it4

3 2

2
,

2

2
,

2,i j∑ ∑ ∑= − χ
∇

∂
∂

− χ
∇

∂
∂

−
ρ

∂
∂

+ χ 	 (9.105d)

	 = − ∂
∂

+ γ
ρ

∂ρ
∂

− ∂
∂

+ γ
ρ

∂ρ
∂

A
u

v

p

s

p u

v s v

p

t

p

v t

1
5 	 (9.105e)

Two of the equations have a ready solution,

	
∂
∂

=u

n v
A

1
2 	 (9.106a)

	
∂
∂

=w

n v
A

1
4 	 (9.106b)

The remaining three equations are easily solved, with the result

	
∂
∂

=
ρ
γ

−
− + ρ

γ
−

γ






v

n v

p

A
v

p
A

v

p
A

1

1
2 1 3 5 	 (9.106c)

	
p

n v

p

vA A
v

p
A

1
2 1 3

2

5
∂
∂

= ρ
ρ
γ

−
− +

γ






	 (9.106d)

	
n

p

v

p

vA A A
1

2 1 3 5( )∂ρ
∂

=

ρ
γ

ρ
γ

−
ρ − ρ + 	 (9.106e)
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148 Shock Wave Dynamics: Derivatives and Related Topics

These equations agree with the steady results in Section 9.7, when the unsteady 
terms are deleted.

The tangential derivatives, as before, are based on Appendix E.1. Appendix H.4 is 
directly applicable for the s and b derivatives. When the shock’s unsteady, 

��
V1 and its 

components are not constant, and Appendix H.4, which does not assume a uniform 
upstream flow, is thus applicable. On the other hand, if the shock is propagating into 
a uniform flow, Appendix I.4 cannot be used, since 

��
V1 is not constant.

Formulas for the unsteady, tangential, and normal derivatives at state 2 are pro-
vided by Appendix L, where the tangential derivatives are provided by Appendix H.4 
and the normal derivatives also require Equations (9.105) and (9.106).

9.10 S ingle Mach Reflection

The tangential and normal derivatives are evaluated just downstream of the reflected 
shock in a single Mach reflection (SMR) pattern (see Figure 9.3). The figure is a 
side-view sketch of the flow pattern shortly after a planar incident shock encounters 
a straight ramp inside a shock tube with a rectangular cross-section. The features R, 
I, M, SS, and T are the reflected shock, incident shock, Mach stem, slipstream, and 
triple point, respectively. The reflected shock may or may not have a maximum x2 
value. The figure shows a maximum at x1c,x2c, since the experimental reflected shock 
to be used has a maximum. The origin is at the leading edge of the ramp and x1 is 
aligned with the velocity of the incident shock.

Detailed data for the SMR pattern comes from Ben-Dor and Glass (1978). 
Yi (1999) and Yi and Emanuel (2000) provide analytical/computational results for 
the vorticity just downstream of the reflected shock, based on data in Figures (4c) 
and (4d) of Ben-Dor and Glass (1978). Emanuel and Yi (2000) is another unsteady 
shock analysis, but does not utilize Ben-Dor and Glass (1978). Both Emanuel and 
Yi  (2000) and Yi and Emanuel (2000) are based on Yi’s MS thesis, from which 
Figure 9.3 is taken.

For brevity, our interest in SMR is limited to providing the unsteady, tangential, 
and normal derivatives for the pressure and density just downstream of the reflected 

VR

x1x1s

V1
(x1c, x2c)

θw

x2

R

(1)

(2) SS M

I

T (0)

0

FIgure 9.3  Schematic of a single-Mach reflection configuration.
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149General Derivative Formulation

shock. The flow field downstream of the incident shock is uniform, and the reflected 
shock propagates into this flow.

At a given shock point, state 1 is associated with the upstream velocity, 
��
V1, in 

contrast to V1

�
′, which is constant and is imposed by the incident shock. The shock wave 

angle, β (see Figure 9.2), is measured relative to V1

��
 not V1

�
′, and V t1

�( )∂ ′ ∂  is zero, but 
V t1

�
∂ ′ ∂  is not. The flow is two-dimensional, which later provides some simplification.

Before embarking on numerical results, the shock shape and its required deriva-
tives are established. This is followed by a discussion of the flow associated with the 
reflected shock.

As shown in Yi and Emanuel (2000), the reflected shock is approximately modeled 
as an ellipse, where x2c is the maximum value on the shock and x1s is where it is normal 
to the wall (see Figure 9.3). For an SMR flow, there is no characteristic length in the 
initial data, which would not be the case, for example, if the ramp’s surface is curved. 
With a uniform upstream flow and no initial data characteristic length, the reflected 
shock is referred to as pseudostationary (Glass and Sislian 1994, p. 184). In this circum-
stance, the reflected shock’s shape is invariant with time when measured from the start 
of the interaction. In other words, the reflected shock at time 2t looks just like it does at 
time t, although doubly magnified. The shock’s shape thus is (Yi and Emanuel, 2000)

	
x x

x x

x

x
1c

s c c

1 1

1 1

2
2

2

2−
−







+ 





= 	 (9.107)

where

	 x1s = −c1a0t,  x1c = c2a0t,  x2c = c3a0t	 (9.108)

The ci are positive, nondimensional constants, and a0 is the speed of sound in the 
quiescent upstream region. It is convenient to write the shock shape as (Yi, 1999; 
Yi and Emanuel, 2000)

	 F(x1, x2, t) = f(x1, t)− x2 = 0	 (9.109a)

where

	 x f
c

c c
A B2

3

1 2

1/2 1/2= =
+

	 (9.109b)

	 A = (c1 + 2c2)a0t − x1	 (9.109c)

	 B = c1a0t + x1	 (9.109d)

	 C = c2a0t − x1	 (9.109e)

At the wall, where x2s = 0, B is zero and x1s equals –c1a0t.
The various nonzero derivatives of F, required shortly, are given by:

	 F
Cx
AB

x1
2= 	 (9.110a)
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150 Shock Wave Dynamics: Derivatives and Related Topics

	 = −F 1x2
	 (9.110b)

	 [ ]= + +F
a x

AB
c c c a t c x( 2 )t

0 2
1 1 2 0 2 1 	 (9.110c)

	 )(= + − + −F
F

x

F

ABC
AB BC CAx x

x x
2

2
1 1

1 1 	 (9.110d)

	 [ ])(= = + − + −F F
F F

x

a F

ABC
c AB c c BC c AC2x t tx

x t x

2

0
1 1 2 11 1

1 1 	 (9.110e)

	 [ ]

[ ]

( )

= + +




− + + + +








+ +F
a
AB

c c c a t c x F c c c a x

a x c c c a t c x
c c

A
c
B

( 2 ) ( 2 )

2
2

tt t
0

1 1 2 0 2 1 1 1 2 0 2

0 2 1 1 2 0 2 1
1 2 1 	 (9.110f)

In obtaining Ftt, note that ∂x2/∂t equals ∂f/∂t. Although x2, given by 
Equation (9.109b), appears in several of these equations, they only depend on x1 and 
t1. As a consequence, parameters such as βx2 are zero. That is, the formula for β will 
depend only on x1 and t.

At this time, it is convenient to provide the quiescent gas conditions in the 
shock tube (Ben-Dor and Glass, 1978) and shock-shape data (Yi, 1999; and Yi and 
Emanuel, 2000):

	
R

J
kg K

M1.4, 296.95 2.01Iγ = =
− ′

′ =

	

= × ρ = ×

= =

−p Pa kg m

T K a m s

6.665 10 , 7.567 10 ,

296.6 , 351.1

0
3

0
2 3

0 0 	 (9.111)

	 t = 4.817 × 10−5 s,    c1 = 0.1898,    c2 = 1.537,    c3 = 1.496	 (9.112)

The given time is from Ben-Dor and Glass (1978). It is the time when they 
provide, in Figure 4(c), constant density curves downstream of the Mach disk and 
reflected shock based on a Mach–Zehnder interferogram. With the foregoing, the 
sole independent variable is x1, where x1s ≤ x1 ≤ x1T. In addition, the ramp angle is 
26.56 degrees. Note that the incident shock Mach number, ′MI  is modest, which 
results in a weak reflected shock.

The change in Mach number across an unsteady, normal shock is

	 ′ = −

+ γ −



 γ − γ −





=M
M

M M

1

1
1

2
1

2

0.9679I

I I

1

2

2
1/2

2
1/2 	 (9.113)
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151General Derivative Formulation

The corresponding downstream velocity is 

	 V a M m s|̂ 457.2 0.9679 |̂ 442.5 |̂ ,1 1 1 1 1 1

�
′= ′ = × = 	 (9.114)

where the speed of sound is given by 

	 = 





a
T

T
a1

1

0

1/2

0 	 (9.115)

From Equation (L.3) in Appendix L, we have 

	 = ′ +
∇

= −
∇

=v a M
F F

F
v

F

F
v

| |
,

| |
, 0t x t

1,1 1 1 2 1,2 2 1,3
1 	 (9.116a)

where a M V1 1 1)(′ = ′  is a constant and

	 ( )= +V v v1 1,1
2

1,2
2 1/2

	 (9.116b)

	 =M
V

a
1

1

1

	 (9.116c)

Also note that

	 p1t = ρ1t = 0	 (9.116d)

and

	 ∑=M

M V
v v

1t
i it

1

1 1
2 1, 1, 	 (9.116e)

where

	 ( )=
∇

+
∇

−v
F F

F

F F

F
F

| | | |
1t

x tt t x t
x1,1 2 4
21 1
1 	 (9.116f)

	 = −
∇

+
∇

v
F
F F

F F F
| |

2
| |

t
tt

x t x t1,2 2 4 1 1 	 (9.116g)

Finally, we have

	
∑β =

∇









 = −

∇






− −
v F

V F
v F v

V F
sin

| |
sin

| |

i x
x1

1,

1

1 1,1 1,2

1

i
1 	 (9.116h)

where

	 ∑ )( )(∇ = = +F F F| | 1x x
2

1/2
2 1/2

i 1 	 (9.116i)
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152 Shock Wave Dynamics: Derivatives and Related Topics

Note that M1 and β only depend on fixed quiescent gas parameters, ′MI , and F and 
its derivatives.

Consider a ray through the origin that intersects the reflected shock. This ray is 
written as

	 xi = bit,    i = 1, 2	 (9.117)

where b1 is a negative constant when the ray is in the second quadrant, and b2 is a 
positive constant. From the equations in Equation (9.109), we obtain

	 b
c

c c
c c a b c a b22

3

1 2
1 2 0 1 1 0 1

1/2{ }[ ]( )( )=
+

+ − + 	 (9.118)

Similarly, Fx1 and Ft are constant along the ray, for example,

	

[ ]

[ ]

( )
( )

( )
( )

( )

( )

= = −
+ − +

= −
+ − +

F
Cx
AB

c a b tb t
c c a b c a b t

c a b b
c c a b c a b

2

2

x
2 2 0 1 2

1 2 0 1 1 0 1
2

2 0 1 2

1 2 0 1 0 1

1

	 (9.119)

As a consequence, β and M1 are also constant along a ray. The β result is necessary if 
the reflected shock is to retain its shape with time. Thus, parameters, such as p2 and 
ρ2, are also constant along a ray. Second-order F derivatives, however, are not con-
stant along a ray. Hence, constancy along a ray does not extend to derivative quanti-
ties. For instance, βt, which appears in p2t and ρ2t, depends on Fx ti , which approaches 
infinity as t → 0.

The most obvious simplification when the flow is two-dimensional is

	 b̂ 1̂3= −

This results in

	

= = =
χ

= ′=

= = =

= = =

K K K V constant

L K L K F L

L L K F L

0,
1

, , 0

0, , 0

x

t t x t t

1 2 3 1

1 3 2 3 3

1 2 3 3

1

1

Table 9.1 shows results along the shock, where case 1 is very close to the attach-
ment point. At this point, β is 89.42 degrees. The computer calculation could not be 
extended to the wall because all F derivatives become infinite at the wall. Case 6 is 
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153General Derivative Formulation
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154 Shock Wave Dynamics: Derivatives and Related Topics

where the shock’s x2 value has a maximum and case 7 is close to the triple point. An 
algorithm, based on Appendices H.4 and L, was developed for the reflected shock 
and ably coded by Dr. Hekiri.

While M1 gradually increases with arc length along the shock, its normal compo-
nent, M1sinβ, has a shallow minimum near case 3. Overall, M1sinβ is nearly constant, 
and its value indicates the relative weakness of the shock. As expected, both p2/p1 
and ρ2/ρ1 have a similar minimum. Because of this minimum, both p2s /p1 and ρ2s/ρ1 
are negative at first, but become positive after the minimum.

For a steady, convex shock with a uniform freestream, M1sinβ steadily decreases. 
This does not happen here, because the shock speed, VR, steadily and rapidly 
increases. This results in the roughly constant shock strength.

Surprisingly, the pressure and density time derivatives go through two zeros, and 
their magnitude dwarfs that of the other derivatives as the triple point is approached. 
The magnitude of the various derivatives appears large because seconds and meters 
are the units rather than ms and mm. As noted, the tangential derivatives have one 
zero, while the normal derivatives do not.

The negative normal density derivative is in accord with the blast wave theory, 
in which the density derivative, just downstream of a shock, even when it is weak, 
is negative. The normal density derivative, which is evident in Figure 4c of Ben-Dor 
and Glass (1978), however, is positive. Part of the discrepancy may be due to the 
assumption of an elliptical shape for the shock. For instance, at the attachment point, 
Ben-Dor and Glass in Figure 4c, show a shock inclination angle, relative to the wall, 
of about 77 degrees. This is due to a shock interaction with the residual boundary 
layer from the incident shock. The elliptic shock approximation is thus not reliable 
in this region.
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Appendix E: Conditions on 
the Downstream Side of 
a Two-Dimensional or 
Axisymmetric Shock with 
a Uniform Freestream
E.1  Jump Conditions

	
m M w m X w Y w Z w, sin , 1

1
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,
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2
, 11

2 2≡ ≡ β ≡ + γ − ≡ γ − γ − ≡ −
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2
1

1 2 2 1 7 2 3 16
2 2 2 3( ) ( )( ) ( )=

γ +
− γ − + γ − + γ − γ − − γ − 

	
g w w w

1

2
4 1 3 18 3 4 27

2 2 3( )( )( ) ( )=
γ +

− γ − γ + + γ + γ − − γ − γ 

	

g w w

w w

2 1 2 1 3 9 14 1

17 1 3 4 3

8
2 2

3 2 3 2 4

( )
( ) ( )
( ) ( )( )= − γ − + γ − − γ + γ − γ +

+ γ − γ − γ + + γ − γ + γ +
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Appendix B: Oblique 
Shock Wave Angle
Let β be the shock wave angle and θ be the velocity turn angle. Both are measured 
with respect to the velocity upstream of the shock, as pictured in Figure 2.1. The two 
angles are related by Equation (2.28), which is an explicit relation for θ. Because θ 
represents the usually known wall turn angle, an explicit, computer-friendly equation 
for β is desirable. The derivation of this relation is placed in an appendix because of 
its frequent usage in gas dynamics.

Thompson (1950) may have been the first to observe that Equation (2.28) could be 
written as a cubic in sin2β

β − + + γ θ








 β + + + γ +






 + γ −









θ









βM

M

M

M M
sin    

2
 sin  sin

2 1 1
2

1
sin sin6

2

2
2 4

2

4

2

2
2 2

	 − θ =
M

   
cos

   0
2

4 	 (B.1)

It is analytically convenient, however, to recast this relation as a cubic in tanβ, with 
the result

	

( )( )β = + γ −



 θ β − − β

+ + γ +



 θ β + =

F M M

M

    1
1

2
 tan  tan     1  tan

  1
1

2
 tan  tan    1   0

2 3 2 2

2 	 (B.2)

Observe that the coefficients in this polynomial are appreciably simpler than those in 
Equation (B.1). We assume M > 1 and θ > 0, and note that

	 F(−π/2) = −∞,  F(0) = 1,  F(π/2) = ∞,

From these values, we deduce that F(β) has three real, unequal roots for an attached 
shock wave. The negative β root is not physical, while the two roots between β = 0 
and π/2 correspond to the weak and strong shock solutions.

Equation (B.2) is next recast into the standard form

	 x3 + ax + b = 0	 (B.3)
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160 Appendix B: Oblique Shock Wave Angle

for solving a cubic equation, where

	 = β − −

+ γ −



 θ

x
M

M
   tan    

1

3 1
1

2
 tan

2

2
	 (B.4)

	

( )
=

+ γ −



 + γ +



 θ − −

+ γ −



 θ

a
M M M

M

   
3 1

1
2

1
1

2
 tan 1

3 1
1

2
 tan

2 2 2 2 2

2
2

2

	

( )
=

− − + + γ −



 + γ − + γ +



 θ

+ γ −



 θ

b
M M M M

M

   
2 1 18 1

1
2

  1
1

2
1

4
tan

27 1
1

2
tan

2 3 2 2 4 2

2
3

3

Because the roots are real and unequal, the trigonometric solution of a cubic equa-
tion is particularly convenient. This solution requires the quantity:

	

( )

( )
χ = −







=
− − + γ −



 + γ − + γ +



 θ

− − + γ −



 + γ +



 θ





b

a

M M M M

M M M

     
27
4

 
1 9 1

1
2

1
1

2
1

4
tan

1 3 1
1

2
1

1
2

tan

 
2

3

1/2
2 3 2 2 4 2

2 2 2 2 2
3/2

	
� (B.5)

The three solutions of Equation (B.3) are contained among the six expressions

	 ± −





φ ± −





φ + π



 ± −





φ + π





a a a
 
4
3

cos
3

 ,        
4
3

cos
2

3
 ,        

4
3

cos
4

3

1/2 1/2 1/2

where φ = cos−1χ.
In particular, the weak and strong solutions are given by

	
= −





φ + π = −





φ
x

a
x

a
   

4
3

cos
4

3
 ,          

4
3

cos
3

weak strong

1/2 1/2

where

	
( )

−



 =

− − + γ −



 + γ +



 θ





+ γ −



 θ

a
M M M

M
 
4
3

 
2 1 3 1

1
2

1
1

2
tan

3 1
1

2
tan

1/2
2 2 2 2 2

1/2

2
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161Appendix B: Oblique Shock Wave Angle

With the aid of Equation (B.5), a computationally convenient form for β is

	 ( )λ = − − + γ −



 + γ +



 θ





M M M  1 3 1
1

2
1

1
2

tan2 2 2 2 2
1/2

	 (B.6a)

	
( )

χ =
− − + γ −



 + γ − + γ +



 θ

λ

M M M M1 9 1
1

2
1

1
2

1
4

tan2 3 2 2 4 2

3 	 (B.6b)

	
( )

β =
− + λ πδ + χ





+ γ −





 θ

−M

M
tan    

1 2 cos 4 cos 3

3 1
1

2
tan

2 1

2
	 (B.6c)

where the angle (4πδ + cos−1χ)/3 is in radians. The strong shock solution is provided 
by δ = 0, while δ = 1 yields the weak shock solution, and |χ| ≤ 1 for an attached shock.

The author discovered the solution to Equation (B.6) in March 1991. It was 
quickly submitted and accepted for publication by the AIAA (American Institute of 
Aeronautics and Astronautics) journal. Before it was scheduled to appear, however, it 
was learned that the solution, in a different form, had already been published. In fact, 
it has repeatedly appeared in journals (e.g., see Mascitti 1969; Wolf 1993).
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Appendix C: Method-of-
Characteristics for a Single, 
First-Order Partial 
Differential Equation
There are many ways to introduce the method-of-characteristics (MOC). Here inter-
est is limited to a single, first-order, linear or quasilinear partial differential equation 
(PDE). Our approach is thus specifically tailored for the task at hand.

For purpose of generality, we consider an inhomogeneous equation for the depen-
dent variable f

	 ∑ ∂
∂

+ =
=

−
a

f

x
a 0i

i
n

i

n

0

1
	 (C.1)

where n is a positive integer. This equation is assumed to be quasilinear, in which 
case a0, …, an can depend on the xj and f, but not on any derivative of f. We further 
simplify the equation by noting that if f is a solution, then

	 G(x0, …, xn) = f(x0, …, xn−1) + xn	 (C.2)

is a solution of the homogeneous equation

	 ∑ ∂
∂

=
=

a
G

x
0i

ii

n

0
	 (C.3)

Thus, by adding a new independent variable, xn, the inhomogeneous term in Equation 
(C.1) is incorporated into Equation (C.3).

C.1 G eneral Solution

Observe that G = constant is a solution of Equation (C.3). This constant may be taken 
as zero. We therefore seek a solution with the form

	 G(x0, …, xn) = 0	 (C.4)

The remainder of the section provides this solution.
It is conceptually convenient to introduce an (n + 1)-dimensional Cartesian space 

that has an orthonormal basis |̂ i . Thus, the gradient of G is
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164 Appendix C: Method-of-Characteristics

	 ∑∇ = ∂
∂=

G
G

x
|̂

i

n

i
10

	 (C.5)

 can be defined that is based on the ai coefficients

	
�
A a |̂i

i

n

i

0

∑=
=

Hence, Equation (C.3) becomes

	
�
A G = 0⋅∇ 	 (C.6)

Equation (C.4) represents a surface in an (n + 1)-dimensional space, and the gradi-
ent ∇G is everywhere normal to this surface. On the other hand, 

�
A  is perpendicular 

to ∇G and therefore 
�
A  is tangent to the surface. Thus, the solution of Equation (C.3) 

or (C.6) is a surface that is tangent to 
�
A.

Consider a characteristic curve that lies on the surface given by Equation (C.4) 
and everywhere is tangent to 

�
A. The surface can be viewed as consisting of an infi-

nite number of these curves. Moreover, each of these curves constitutes a solution of 
Equation (C.3).

We need to construct a curve in the (n + 1)-dimensional space whose coordinates 
are x0, …, xn. For example, in three dimensions a curve is determined by the intersec-
tion of two surfaces. More generally, the characteristic curve we seek is determined 
by the intersection of the n surfaces:

	 u(0)(x0, …, xn) = c0

	 u(1)(x0, …, xn) = c1
	 (C.7)

	 ⋮

	 u(n−1)(x0, …, xn) = cn−1

where the cj are constants, and the first equation is sometimes written as u = c. 
We have a different curve for each choice of the cj.

Because 
�
A is tangent to a characteristic curve, the differential change in the xi 

along such a curve must stand in the same relationship to each other as the corre-
sponding component of A

�
. Thus, on a characteristic curve, we have

	 = = =…
dx

a

dx

a

dx

a
n

n

0

0

1

1
	 (C.8)

As noted, G is constant along a characteristic curve. We therefore see from Equation 
(C.2) that dxn can be replaced with –df. This change is usually convenient, because 
the ai are functions of x0, …, xn−1 and f. The equations in Equation (C.8) are 
n-coupled, first-order ordinary differential equations (ODEs) that relate the xi along a 
characteristic curve. The unique solution of these equations is provided by Equation 
(C.7), where the cj are constants of integration. We thus have reduced the problem 
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165Appendix C: Method-of-Characteristics

of solving a first-order PDE to solving n-coupled ODEs. As will become apparent, 
this reduction is advantageous whether Equation (C.3) is to be solved analytically or 
numerically.

We now see why Equation (C.3) is limited to being quasilinear. If one of the ai 
depended on a derivative of f, then one of Equation (C.8) would not be an ODE, and 
the theory would collapse. Normally, the MOC applies only to hyperbolic equations. 
For Equation (C.3), this qualification is unnecessary. The only essential restriction 
is that it be quasilinear.

Note that 
�
A G⋅∇  is also the derivative of G along a characteristic curve. Equation 

(C.6) therefore means that G has a constant value along any particular characteristic 
curve. For this to be so, G can depend on the xi only in combinations such as dG = 0 
along any characteristic curve. However, the u( j) depend on the xi but have a constant 
value along any characteristic curve. Consequently, G is an arbitrary function of the 
u( j). The general solution of Equation (C.3) is thus

	 G(u(0), u(1), …, u(n−1)) = 0	 (C.9)

If one or more of the ai depend on f, or if an ≠ 0, then f explicitly appears in 
the u( j), and Equation (C.9) is a solution of Equation (C.1). On the other hand, if 
none of the ai involves f and an = 0, then the general solution of Equation (C.1) can 
be written as

	 f = f(u(0), u(1), …, u(n−2))	 (C.10)

C.2 D iscussion

We verify that Equation (C.9) is a solution of Equation (C.3) by first evaluating du( j) 
with the aid of Equation (C.8):

	
∑ ∑= ∂

∂
= ∂

∂
( )

( ) ( )

= =

du
u

x
dx

dx

a
a

u

x
         j

i

n j

i
i

i

n

i

j

i   0

0

0    0

where we assume one ai, say a0, is nonzero. We next obtain

	 ∑ ∑ ∑= ∂
∂

= ∂
∂

∂
∂( )

( )
( )

( )

=

−

=

−

=

dG
G

u
du

dx

a

G

u
a

u

x
           

j

n

j
j

j

n

j
j

n

i

j

i   0

1
0

0    0

1

   0

	 ∑ ∑ ∑= ∂
∂

∂
∂

= ∂
∂

=)

)

(

(

= =

−

=

dx
a

a
G

u

u
x

dx
a

a
G
x

0
j

n

i

i

n

j

j

i i

n

i
i

0

0    0    0

1
0

0    0

in accordance with Equation (C.3).
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166 Appendix C: Method-of-Characteristics

The functional form of G is determined by an initial, or boundary, condition. 
Without loss of generality, this condition may be specified at x0 = 0 as

	 G0 = G[u(0)(0, x1, …, xn), …, u(n-1)(0, x1, …, xn)]

where G0 is the prescribed relation for G at x0 = 0.
As we have mentioned, the unique solution of Equation (C.8) can be written as 

Equation (C.7). An analytical solution of Equation (C.8) may require inverting some of 
Equation (C.7). For example, suppose n = 3, and we have obtained a solution, u = c, to

	 =dx

a

dx

a
   0

0

1

1

Further, suppose a2 depends on x0, x1, and x2. If u = c can be explicitly solved for x0, 
we would then integrate

	 =dx

a

dx

a
   1

1

2

2

with x0 eliminated. Similarly, if u = c is more readily solved for x1, we could obtain 
u(l) by integrating

	 =dx

a

dx

a
   0

0

2

2

instead. In either case, the elimination of x0 (or x1) from the dx2 equation is consistent 
with obtaining a simultaneous solution of Equation (C.8).

C.3 I llustrative Example

As an example, the general solution to

	
∂
∂

+ ∂
∂

=xz
z

x
yz

z

y
xy     

is found. We first solve the characteristic equations:

	 = =dx

xz

dy

yz

dz

xy
       

From the leftmost equation, we have

	 =dx

x

dy

y
   

which integrates to

	 = =u
y

x
c       

© 2013 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

2:
11

 1
0 

M
ay

 2
01

6 



167Appendix C: Method-of-Characteristics

For a second equation, we use

	 =dx

z

dz

y
   

or by the elimination of y

	 cxdx = zdz

	 cx2 = z2 − c1

	 





y

x
 x2 = z2 − c1

	 u(1) = z2 – xy = c1

Hence, the general solution to the PDE is

	 g(z2 − xy,y/x) = 0

which is readily verified by direct substitution. An alternate form for the solution can 
be written as

	 z2 − xy = g(y/x)

or as

	 z = ±[xy + g(y/x)]1/2

where g is an arbitrary function of its argument.
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Appendix A: Selective 
Nomenclature
a:  Speed of sound

A:  m
X

1
2

 
 sin  cosγ + β β ; cross-sectional area

B:  1 + A2

C–:  Right-running characteristic wave
C+:  Left-running characteristic wave
F:  F = 0 is the shock’s shape
h:  Enthalpy
hi:  Scale factors
J:  Jacobian
Kj:  Equation (9.8)
Lj:  Equation (9.11a)
m:  M1

2

�m:  Mass flow rate
M:  Mach number
s,n,b:  Arc length coordinates tangential to t̂ ,n̂,b̂, respectively
t̂ ,n̂, b̂:  Right-handed, orthonormal shock basis; n̂ normal to the shock in the down-

stream direction, b̂ binormal basis, t̂  basis vector tangent to the shock in 
the flow plane

p:  Pressure
R:  Gas constant; radius�
r:  Position vector
S:  Shock surface curvature; entropy
T:  Temperature
u:  Velocity component tangent to the shock in the flow plane
v:  Velocity component normal to the shock in the downstream direction
vj:  Velocity component in the Cartesian, |̂j, system
V:  Velocity magnitude
w:  m sin2β
xi:  Cartesian, |̂i, coordinate
xi

*:  Arbitrary point on a shock

X:  w1   
1

2
+ γ −

y:  Radial or transverse coordinate; variable

Y:  γ − γ −
w   

1
2

Z:  w − 1
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156 Appendix A: Selective Nomenclature

Greek

β:  Shock wave angle in the flow plane, relative to V1

�

β′, βs:  dβ/ds
δδ′i:  Angles that Vi

�
 have relative to the x-coordinate

Δ:  Shock stand-off distance; Equation (8.27) determinant
γ:  Ratio of specific heats
ε:  Small positive constant
θ:  Acute angle between V1

�
 and V2

�

ζo:  Streamline characteristic
ζ–:  Right-running characteristic
ζ+:  Left-running characteristic
κ:  Curvature
μ:  Mach angle
ξi:  Orthogonal curvilinear coordinates
ρ:  Density
σ:  0 for two-dimensional flow, 1 for axisymmetric flow
Σ:  Summation symbol

χ: 
∑∇ β

=






V F
K

1
| | cos

   
1

j
1 2

1/2

ψ:  F F x x
2 2
2 3+

ω:  Vorticity

Subscripts and Superscripts

()a:  Flow plane
()b:  Plane normal to the shock and normal to the flow plane; body
()cp:  Crocco point
()n:  Normal to the shock
()s:  Derivative along the shock in the flow plane
()t:  Tip; transverse
()tp:  Thomas point
()1:  State just upstream of the shock
()2:  State just downstream of the shock
()o:  Stagnation value
()*:  Arbitrary point on the shock; sonic state just downstream of the shock; vector 

relative to a moving shock
()′:  Angle measured relative to the x-coordinate

Special Symbols

|̂i:  Cartesian basis
( � ):  Unit vector
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157Appendix A: Selective Nomenclature

(
�
):  Vector

∇:  Del operator
D()/Dt:  Substantial derivative
( ):  Dimensional parameter; angle measured counterclockwise relative to V1

�

(�):  Denotes intrinsic coordinate parameter
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Appendix F: Conditions on 
the Downstream Side of a Two-
Dimensional or Axisymmetric 
Shock When the Upstream 
Flow Is Nonuniform
F.1  Jump Conditions

	

m M w m X w Y w Z w

A
m

X
B A

q u v p f

f f
X

m
f Y f

w

X

,  sin , 1 
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2
  ,

1
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1
2

 
sin  cos
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cos ,
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1
 

sin
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j j
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( )

≡ ≡ β ≡ + γ − ≡ γ − γ − ≡ −

≡ γ + β β ≡ +
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= β =
γ + β
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= γ +

F.2 T angential Derivatives

	

q u v p

M M V p
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g g g g g

q v
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m
g g
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F.3 N ormal Derivatives
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Appendix G: Operator 
Formulation
Let |̂j and êi be two right-handed, Cartesian bases related by

	 ∑= α =
=

e iˆ |̂ , 1, 2, 3i

j

ij j

1

3

	 (G.1)

where

	 i1,   1, 2, 3
j

ij
2∑α = = 	 (G.2)

and the αij (=êi  ⋅ |̂j) are direction cosines. Write the position vector as

	 ∑ ∑= =r x y e|̂ ˆj j i i
�

	 (G.3)

where the xj and yi are the 
�
r  coordinates in the two systems. We now have

	 ∑ ∑∂
∂

=
∂
∂

= = αr

y

x

y
e      |̂      ˆ     |̂

i

j

i
j i ij j

�
	 (G.4)

and, consequently,

	
x

y
 j

i
ij

∂
∂

= α 	 (G.5)

The differential of r
�
 with respect to xj yields

	
r

x

y

x
e      ˆ     |̂  

j

i

j
i j∑∂

∂
= ∂

∂
=

�
	 (G.6)

The inversion of Equation (G.1) is written as

	 e|̂     ˆ ,  1j ji i ji

i

2∑ ∑= β β = 	 (G.7)

where

	
y

x
 ji

i

j

β = ∂
∂

	 (G.8)

The α and β matrices are orthogonal (Goldstein 1950)—that is,

	 β = α−1 = αt	 (G.9)
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180 Appendix G: Operator Formulation

where αt is the transpose of α. Hence, we have

	
y

x

x

y
   i

j x

j

i y

ij ji

k k

∂
∂







=
∂
∂







= α = β 	 (G.10)

where the subscript on the derivatives indicates the fixed variable.
When applied to Equations (9.10), (9.2), and (9.7b), we obtain

	 ∑ ∑ ∑= = χ
∇

= =
∇

= = −χe t
F

L e n
F

F e b Kˆ ˆ
| |

|̂ , ˆ ˆ 1
| |

|̂ , ˆ ˆ |̂j j x j j j1 2 3j 	 (G.11)

and

	
F

L
F

F
K j

| |
,

| |
, 1, 2, 3j j j

x
j j1 2 3

jα = χ
∇

α =
∇

α = − χ = 	 (G.12)

With

	 y1 = s,  y2 = n,  y3 = b	 (G.13)

Equations (G.10) and (G.12) provide

	
∂
∂

= χ
∇

∂
∂

=
∇

∂
∂

= −χs

x F
L

n

x

F

F

b

x
K 

| |
,

| |
 ,

i
i

i

x

i
i

i 	 (G.14)

The transformation of xi partial derivatives is given by the chain rule

	
∂

∂
= χ

∇
∂
∂

+
∇

∂
∂

−χ ∂
∂x F

L
s

F

F n
K

b| | | |
     

i
i

x
i

i 	 (G.15)

This relation should not be confused with the Sa and Sb derivative operators dis-
cussed in Section 9.4.

For the inverse transformation, again use Equation (G.10)

	
∂
∂

=
∇

∂
∂

= χ
∇

∂
∂

= −χ
x

n

F

F

x

s F
L

x

b
K

| |
,

| |
,  j x j

j
j

j
j 	 (G.16)

for the derivatives

	
s

x

s x F
L

x
 

| |
j

j
j

j
∑ ∑∂

∂
=

∂
∂

∂
∂

= χ
∇

∂
∂

	 (G.17a)

	
b

x

b x
K

x
 j

j
j

j
∑ ∑∂

∂
=

∂
∂

∂
∂

= −χ ∂
∂

	 (G.17b)

	
n

x

n x F
F

x
 

1
| |

j

j
x

j
j∑ ∑∂

∂
=

∂
∂

∂
∂

=
∇

∂
∂

	 (G.17c)
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181Appendix G: Operator Formulation

Equation (G.17c) cannot be used for surface parameters, such as M1 or β, because 
their derivatives with respect to n are zero. The consistency of Equations (G.15) and 
(G.17) can be verified with the use of Equation (9.13). For instance, we check ∂()/∂s:

s F
L

x F
L

F

F n F
L

s
K

b

F
F L

n F
L

s F
K L

b s

| |
 

| | | | | |

| | | | | |
 

j
j

j
x

j j

x j j j j2

2

2
2

2

j

j

∑ ∑

∑ ∑ ∑

∂
∂

= χ
∇

∂
∂

= χ
∇ ∇

∂
∂

+ χ
∇

∂
∂

− χ ∂
∂







= χ
∇







∂
∂

+ χ
∇







∂
∂

− χ
∇







∂
∂

= ∂
∂

	(G.18)

A similar check holds for ∂()/∂b and ∂()/∂n. Equations (G.17a,b) provide shock 
surface derivatives that apply on both sides of the shock. For instance, Equation 
(9.54a) for (∂w/∂s)/w holds at state 1 even when the upstream flow is uniform, 
because there is a β derivative contribution. This also can be checked for the 
upstream side using the source flow model of Section 8.7 (Problem 23). Moreover, 
it is easy to show that

	 ∑∇ = ∂
∂

= ∂
∂

+ ∂
∂

+ ∂
∂x

t
s

n
n

b
b

    |̂ ˆ   ˆ ˆ
j

j

	 (G.19)

Equation (G.17c) does not circumvent the need of the Euler equations for the eval-
uation of normal derivatives, such as (∂p/∂n)2. Equation (G.17c) simply replaces this 
derivative with the unknown (∂p/∂xj)2 derivatives. When the freestream is uniform, 
derivatives, such as (∂p/∂s)1 and (∂M1/∂b), are clearly zero. In this case, Equation 
(G.17a,b) reduce to Equations (I.18) and (I.19) in Appendix I. For a surface param-
eter, such as β, Equation (G.17a,b) are useful, because βxi is known, see Equations 
(9.35), (I.6), or (J.5). On the other hand, a jump parameter, say p, is given by (see 
Appendix E)

	

p
s

p
s

Y p
w
s

p
p
s F

Y L
p

p
w
s

2
1

         

1
   

2
1

 
| |

     j
x

2 1
1

1 2

1

1

j∑

∂
∂





 =

γ +
∂
∂





 + γ ∂

∂










∂
∂





 =

γ +
χ

∇
+ γ ∂

∂






	 (G.20)

where (∂p/∂s)1 is given by Equation (G.17a), and where, like M  x1 j , p x1 j  is presumed to 
be known. In a similar manner, we obtain

	 ∑∂
∂





 = −

γ +
χ + γ ∂

∂




p

p

b
Y K

p

p

w

b

1
     

2
1

       j
x

1 2

1

1

j 	 (G.21a)

The s and b derivatives of w are provided by Equations (9.54) or (I.20) or (I.21) when 
the upstream flow is uniform. With these relations and Equation (I.13), we have
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182 Appendix G: Operator Formulation

	

p
p
b

w
F

F F F F F

F F F F F F F F

1
 

4
1

 
sin  tan

         

             

x
x x x x x x x

x x x x x x x x x x x

1 2

2

4

2 2

1

1 2 3 2 2 3 3

3 1 2 2 1 3 1 3 2 2 3( )

( )∂
∂





 =

γ +
β β −

− ψ + ψ + −  	 (G.21b)

With the further simplification of an elliptic paraboloid EP shock (Appendix J), 
we obtain

	

p
p
b

w
x x
r r r r

m x x
r r r r

1
 

4
1

  sin  tan    
1 1

4
1

 
1

 
1 1

1 2

2 2 3

2 3 3 2

2 1/2

2 3

2 3 3 2( )

∂
∂





 =

γ +
β β σ −















= γ
γ + + ψ ψ

σ −





	 (G.21c)

Note that this is zero only when one of the following conditions is satisfied:

	 x2 = 0,	 x3 = 0,	 σ = 0,	 r2 = r3	 (G.22)

If the EP shock is not two-dimensional or axisymmetric and the point of interest is 
not on a x2 = 0 or x3 = 0 symmetry curve, there is a finite pressure gradient along b 
whose sign depends on the sign of x2x3(r2 − r3).
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Appendix J: Elliptic Paraboloid 
Shock Formulation
J.1 C ommon Items

	 F x
x

r

x

r
   

2
   

2
01

2
2

2

3
2

3

= − − σ = 	 (J.1a)

	 F F
x
r

F
x
r

 1,       ,      x x x
2

2

3

3
1 2 3= = − = − σ 	 (J.1b)

	 F F F F F
r

F
r

0, 0, 0, 0, 
1

, x x x x x x x x x x x x
2 3

1 1 1 2 1 3 2 3 2 2 3 3= = = = = − = − σ
	 (J.2)

	
x
r

x
r V

F,      
1

,       12

2

2
3

3

2

1
1/2

1/2( )ψ = 





+ σ





χ =
ψ

∇ = + ψ 	 (J.3)

	 sin
1

1
,      cos

1
1/2

1/2

1/2( ) ( )
β =

+ ψ
β = ψ

+ ψ
	 (J.4)

	
x
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x
r

0,      
1
1

,      
1
1

x x x1/2
2

2
2 1/2

3

3
21 2 3( ) ( )β = β = −

ψ + ψ
β = −

ψ + ψ
σ





	 (J.5)

	 K K V
x
r

K V
x
r

0,         ,      1 2 1
3

3
3 1

2

2

= = − σ = 	 (J.6)

	 L V L V
x
r

L V
x
r

,       ,      1 1 2 1
2

2
3 1

3

3

= ψ = = σ
	 (J.7)

	 t
x
r

x
r

ˆ 1

1
    |̂   |̂ |̂1/2 1/2 1

2

2
2

3

3
3( )

=
+ ψ ψ

ψ + + σ





	 (J.8)

	 n
x
r

x
r

ˆ 1

1
    |̂   |̂ |̂1/2 1

2

2
2

3

3
3( )

=
+ ψ

− − σ



 	 (J.9)

	 b
x
r

x
r

ˆ 1
    |̂   |̂1/2

3

3
2

2

2
3=

ψ
σ −





	 (J.10)
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192 Appendix J: Elliptic Paraboloid Shock Formulation

J.2  Sa, Sb

	 S
x
r

x
r

   
1

1
     a 3/2

2
2

2
3

3
2

3
3( )

=
ψ + ψ

+ σ





	 (J.11)

	 S
r r

x
r

x
r

   
1

1
     b 1/2

2 3

2
2

2

3
2

3( )
=

ψ + ψ
σ +







	 (J.12)

J.3  2
���
ωω
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r
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1
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2
2

2
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3
2

3
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

	 (J.13)
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r r
x
r

x
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1
   

1
i x

1
1/2

2 3

2
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

	 (J.14)
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x
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


	 (J.15)

	 Q V
Z
wX r r
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r

x
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2

1
1
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1
   

1
t 1 3/2 1/2

2

2 3

2
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3
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=

γ +
σ

+ ψ ψ
−





	 (J.16)

	 Q b Q tˆ ˆ
b t2ω = − −
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J.4 T angential Derivatives

	
s x

x
r x

x
r x

   
1

1
         

1/2 1/2
1

2

2 2

3

3 3( )
∂
∂

=
ψ + ψ

ψ ∂
∂

+ ∂
∂

+ σ ∂
∂







	 (J.18)

	
b

x
r x

x
r x

     
1

       1/2
3

3 2

2

2 3

∂
∂

= −
ψ

− σ ∂
∂

+ ∂
∂







	 (J.19)

	
w

w
s

x
r

x
r

1
   

2

1
 3/2 1/2

2
2

2
3

3
2

3
3( )

∂
∂

= −
+ ψ ψ

+ σ





	 (J.20)

	
w

w
b

x x
r r r r

1
 

2
1

 
1

   
1

1/2
2 3

2 3 2 3( )
∂
∂

= −
+ ψ ψ

σ −





	 (J.21)

	
V

u
s

x
r

x
r

1
   

1

1
     

1 2
2

2
2

2
3

3
2

3
3( )

∂
∂





 =

+ ψ ψ
+ σ





	 (J.22)

	
( )

∂
∂





 =

+ ψ ψ
σ −



V

u
b

x x
r r r r

1
   

1

1
   

1
   

1

1 2
3/2

2 3

2 3 2 3

	 (J.23)

© 2013 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

3:
04

 1
0 

M
ay

 2
01

6 



193Appendix J: Elliptic Paraboloid Shock Formulation

	
V

v
s

w

w
x
r

x
r

1
   

2
1

 
1

1
2  

1

1
     

1 2
2 1/2

2
2

2
3

3
2

3
3( )

∂
∂





 =

γ +

− γ −

+ ψ ψ
+ σ





	 (J.24)

	
V

v
b

w

w
x x
r r r r

1
   

2
1

 
1

1
2  

1

1
   

1 1

1 2
3/2 1/2

2 3

2 3 2 3( )
∂
∂





 =

γ +

− γ −

+ ψ ψ
σ −





	 (J.25)

	
p

p
s

m x
r

x
r

1
 

4
1

 
1

   
1 2

5/2 1/2

2
2

2
3

3
2

3
3( )

∂
∂





 = − γ

γ + + ψ ψ
+ σ





	 (J.26)

	
p

p
b

m x x
r r r r

1
     

4
1

 
1

   
1 1

1 2
2 1/2

2 3

2 3 2 3( )
∂
∂





 = − γ

γ + + ψ ψ
σ −





	 (J.27)

	
s

m

X

x
r

x
r

1
  1  

1
     

1 2
5/2 1/2 2

2
2

2
3

3
2

3
3( ) ( )ρ

∂ρ
∂





 = − γ +

+ ψ ψ
+ σ





	 (J.28)

	
b

m

X

x x
r r r r

1
  1  

1
   

1 1

1 2
2 1/2 2

2 3

2 3 2 3
( ) ( )ρ

∂ρ
∂





 = − γ +

+ ψ ψ
σ −





	 (J.29)

J.5 N ormal Derivatives
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When the shock is two-dimensional or axisymmetric, set ∂w/∂n = 0.
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195

Appendix K: Global, 
Shock-Based Coordinates
By means of examples, this appendix demonstrates the nonexistence of shock-based 
coordinates, ξi, for a three-dimensional shock. A variety of approaches were tried. 
The one discussed is perhaps the easiest to follow; it is similar to the analysis in 
Chapter 3.

Coordinates are assumed such that

	
h

t
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b   
1

  ˆ,             
1

  ˆ,             
1

  ˆ
1

1
2

2
3

3

∇ξ = ∇ξ = ∇ξ = 	 (K.1a)

where the hi are scale factors and

	 ξ1 ~ s,  ξ2 ~ n,  ξ3 ~ b	 (K.2)

With t̂ , n̂, b̂ given by Equations (9.10), (9.2), and (9.7b), respectively, we obtain
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	 (K.1d)

This yields the array
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which is in accord with Appendix G. The scale factors are evaluated using Equation 
(3.19), the existence condition. For instance, for ξ2 we write
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and a similar result for ∂2ξ2 / (∂x1 ∂x2). Equating the two equations then yields
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196 Appendix K: Global, Shock-Based Coordinates

where

	 q2 = ln h2

More generally, the three partial differential equations (PDEs) for q2 are
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As is done in Chapter 3, these equations are solved by the method-of-characteristics 
(MOC). In the solution process, three functions occur for each hi
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where the gs are arbitrary functions of their arguments, and the u1,u2 equal the inte-
gration constants of the ordinary differential equations (ODEs). The gs are chosen 
such that

	 h h h h i            ,             1, 2, 3a b c
2 2

( )
2
( )

2
( )= = = = 	 (K.7)

(As will be demonstrated, it is this last step that breaks down.) Once an hi(xj) function 
is established, the corresponding ξi coordinate is found by sequentially integrating 
the ∂ξi / ∂xj, j = 1, 2, 3, derivatives in Equation (K.3).

The foregoing procedure is simplified by using the elliptic paraboloid (EP) model 
and Appendix J. For instance, the three PDEs for h2 have the form
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These have the following solutions:
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Set
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to obtain
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With this h2 value, integration of the ∂ξ2 / ∂xj equations results in
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in accord with Chapter 3.
For q1 = ln h1, the EP model PDEs are
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Note the 2 ↔ 3 symmetry between Equations (K.12a) and (K.12b). The three 
solutions are
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	 (K.13b)
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Condition (K.7) results in
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	 (K.14)

When σ = 0, we can choose

	
g g

x
r

x
r

g
r

x
r

   1,         

1

,            
2

 
2

 a b c
1
( )

1

2

2

2
2

2
2

1/2 1
( )

2

2
2

2

= =
+







=






= ψ( )

with the result
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= ψ
+ ψ


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when σ = 1, r = r2 = r3, we can choose
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2

 
2

 a b c
1
( )

1
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1
( ) 2
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= ψ

with the same h1 result. However, when σ = 1, r2 ≠ r3, Equation (K.14) does not have 
a nontrivial solution.

For completeness, the result for h3 and ξ3 is provided. Because

	
x

   03

1

∂ξ
∂

= 	 (K.15)

only one PDE

	
x x x x

   
2

3

3 2

2
3

2 3

∂ ξ
∂ ∂

= ∂ ξ
∂ ∂

	 (K.16)
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199Appendix K: Global, Shock-Based Coordinates

is relevant. This becomes
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= 	 (K.17)

whose general solution is

	 h
x
r

x
r

g x
x
r

x
r

   
1

  , 
r r r r r r r r

3 1/2
2

2

/
3

3

/

3 1
2

2

3

3

3 3 2 2 3 2 2 3

=
ψ







σ











σ

















− − − −( ) ( )

	 (K.18a)

With g3 = 1, we have
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	 (K.18b)

The corresponding coordinate is
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	 (K.19)

Note the r3 ≠ r2 requirement.
With ξ2 and ξ3 known, the orthogonality condition can be used:

	 ∇ξ1 · ∇ξ2 = 0,  ∇ξ3 · ∇ξ1 = 0 	 (K.20)

to try to circumvent the requirement of first obtaining h1. We thereby obtain
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These yield

	 g x r lnx x r lnx         ,      a a
1
( ) ( )

1 2 2 1 3 3( )ξ = + + σ 	 (K.22a)
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3
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3

ξ = + σ
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
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	 (K.22b)

and, again, there is no joint solution. As a check, one can show that

	 ∇ξ2 · ∇ξ3 = 0

is satisfied.
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200 Appendix K: Global, Shock-Based Coordinates

We next demonstrate, again by example, that the existence difficulty is not unique 
to an EP shock or to h1 and ξ1. For this, an elliptic cone shock

	 F
x
r

x
r

x
r

   
2

 
2

 
2

   01
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2
2

2

3
2

3

= − − = 	 (K.23)

with a uniform freestream is utilized. The three PDEs for h2 are
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These have the respective solutions:
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	 (K.25c)

In this case, h2 does not exist if r2 ≠ r3. For a circular cone, r2 = r3, a solution does 
exist—that is,

	 h
F

   
1

| |
2 =

∇
	 (K.26)

As shown in Chapter 3, an explicit solution for the ξi exists when the flow is 
two-dimensional or axisymmetric. Because an orthonormal, flow-plane-based basis, 
at every shock point, is readily established, a corresponding three-dimensional 
coordinate system was expected to exist. In the general case, however, this does 
not occur even when the freestream is uniform. Two arbitrarily positioned, closely 
spaced shock points cannot be represented by a single coordinate system. A local 
solution in which the ξi are linearly related to the x j can be determined but was also 
unsuccessful.
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Appendix I: Uniform 
Freestream Formulation
I.1 C ommon Items

	 v1,1 = V1 = constant,  v1,2 = v1,3 = 0,  Mxi = 0,  ω1 = 0	 (I.1)

	 F Fx x
2 2
2 3ψ = + 	 (I.2)

	 F Fx
2 1/2

1( )∇ = + ψ 	 (I.3)

	
V

1

1
1/2χ =

ψ
	 (I.4)
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F F
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| |
 , cos    

| |
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1   
1

2
sin

x
1/2

1
2 2

2
1
2

1β =
∇

β = ψ
∇

θ =
β

β −

+ γ + − β





	 (I.5)

	
F

F F F F F F
1
| |

x x x x x x x x x x1/2 2i i i i1 1 2 2 3 3( )β =
ψ ∇

ψ − +  	 (I.6)

	 K K V F K V F0,       ,      x x1 2 1 3 13 2= = = − 	 (I.7)

	 L V L V F F L V F F,       ,       x x x x1 1 2 1 3 11 2 1 3= ψ = − = − 	 (I.8)

	 t
F

F F Fˆ 1
| |

|̂ |̂     |̂x x x1/2 1 2 31 2 3( )=
∇ ψ

ψ − +



 	 (I.9)

	 n
F

Fˆ 1
| |

  |̂x jj∑=
∇

	 (I.10)

	 b F Fˆ  
1

|̂ |̂x x1/2 2 33 2( )= −
ψ

− 	 (I.11)

I.2  Sa, Sb

Use Appendix H.2, but with Lj
*  and K j

* replaced with Equations (I.8) and (I.7), 
respectively.
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I.3 
���
ωω2
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	 (I.17)

I.4 T angential Derivatives
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I.5 N ormal Derivatives
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∂
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For Equations (H.28) through (H.35), use Appendix E for u, v, p, and ρ and 
Appendices I.2 and I.4 for the tangential derivatives and Sa and Sb.
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Appendix H: Steady Shock 
Derivative Formulation
H.1 C ommon Items

	 F = F(xi) = 0	 (H.1)
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	 ∑= −χb Kˆ    |̂j j 	 (H.5)

	 K v F v F K v F v F K v F v F,       ,      x x x x x x1 1,3 1,2 2 1,1 1,3 3 1,2 1,12 3 3 1 1 2= − = − = − 	 (H.6)
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	 L F K F K L F K F K L F K F K,           ,      x x x x x x1 2 3 2 3 1 3 1 23 2 1 3 2 1= − = − = − 	 (H.8)
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184 Appendix H: Steady Shock Derivative Formulation

H.2  Sa, Sb

For Sa use Equations (9.21a), (9.22a), and (9.26). For Sb use Equations (9.23b), (9.25b), 
and (9.26).

H.3  ω
�

2

Use Equations (9.48) through (9.51b), where M x1 i and βxi  are given by Equations 
(9.33) and (9.36), respectively.

H.4 T angential Derivatives

Equations for βxi, M1, Mxi, ∂()/∂s, ∂()/∂b, ∂w/∂s, and ∂w/∂b are given by Equations 
(9.35), (9.32), (9.33), (G.17a,b), and (9.54a,b), respectively.
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H.5 N ormal Derivatives
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∂
∂
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Appendix L: Unsteady 
State 2 Parameters
The basic data required for a solution is

	 γ ′ ρF x t v x t p x t x t, ( , ), ( , ), ( , ), ( , )i j i i i1, 1 1

From these, we first evaluate:

	 F F F F F v p, , , , , , ,x t tt x x x t jt t t1, 1 1i i j i ρ 	 (L.1)

The following is then evaluated:
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∇
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∇
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	 (L.22)

	 u2 = V1cosβ	 (L.23)
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	 =
γ +

+ γ −

β
v V
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2
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2 1
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2  	 (L.24)

Equations for u2t and v2t are not provided, since they do not appear in 
Equation (9.105). For the s and b tangential derivatives, utilize Appendix H.4.
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i 	 (L.29)

	 v2,it = v2,i(J + Hi)	 (L.30)
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205

Problems

	 1.	Start with Equation (2.27) and derive Equation (2.28).
	 2.	The thermodynamics of a van der Waals gas is based on the thermal equation 

of state

	 = ρ
− βρ

− αρp
RT

   
1

    2

	 where α, β, and R are constants. By introducing reduced variables

	 p = pcpr,    ρ = ρc ρr,    T = TcTr

	 where a c subscript denotes a critical point value

	 p T
R27

,      
1

3
,      

8
27

c c c2= α
β

ρ =
β

= α
β

	 we obtain

	 = ρ
− ρ

− ρp
T

   
8
3

   3r
r r

r
r
2

	 For this equation of state, the constant volume specific heat cv is a function 
only of the temperature. For purposes of simplicity, assume cv to be a constant. 
As a consequence, the reduced enthalpy, entropy, and speed of sound are

	
( )( )= − = − +

− ρ
+ − ρ −h

h h

RT

c

R
T

T
        1    

3
3

   
9
4

1    
3
2

r
C

c

v
r

r

r
r

	
= − = − ρ

ρ






+s
s s

R
ln

c

R
ln T         

4
2

     r
c r

r

v
r

	

( )
= = α

β

= +



 − ρ

− ρa
a

a

a
R

c

c

R

T c

R
        2

3

    1
4

3
   r

c

v

v r

r

v
r

2
2

2

2

2

	 For this gas, determine the counterpart to Equation (2.28) in the form

	 F(θ, β; m, cv /R, pr1, ρr1) = 0
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206 Problems

	 where

	 m
V
RTc

2 1
*2

=

	 3.	With Equation (3.12), show that Equation (3.21) is identically satisfied for 
j = 2.

	 4.	Utilize Equation (6.21), with y = R, to obtain the scale factors and coor-
dinate transformation for this surface. Your answer should be in terms of 
r, β∞, z, xi, and R. Simplify your results as much as possible. (Hint: Use 
Equations 3.28 and 3.29.)

	 5.	A two-dimensional or axisymmetric shock has the shape

	 rx x x2            01 2
2

3
2− − σ =

	 where r is the radius of curvature at the nose of the shock, and the upstream 
flow is uniform. Determine t̂ , n̂, b̂, the hi, and the ξi in terms mostly of the 
xi, R, and β.

	 6.	Start with the tanθ equation in Appendix E.1 and derive the subsequent 
equation for sinθ.

	 7.	Assume a steady, three-dimensional flow of perfect gas. Use

	
V ut vn wb    ˆ   ˆ   ˆ���

= + +

	
∇ = ∂

∂
+ ∂

∂
+ ∂

∂
t

s
n

n
b

b
  ˆ      ˆ       ˆ 

	 and evaluate the following at state 2:
	 (a)	 DV

�
/Dt.

	 (b)	 Use the part (a) general result to evaluate the three scalar Euler 
momentum equations for a two-dimensional or axisymmetric shock. 
Do not, at this time, delete any terms.

	 (c)	 Utilize Appendix E to evaluate (∂p/∂s)2 and compare your result with 
the (∂p/∂s)2 in Appendix E. What changes, if any, are needed for 
agreement?

	 (d)	 Repeat part (c) for (∂p/∂n)2.
	 8.	Show that the entropy satisfies

	
S

s
 0

2�
∂
∂





 =

	 where the entropy is given by Equation (6.4). Utilize Equation (5.10a), but 
do not use the relation between the entropy and the stagnation pressure.
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207Problems

	 9.	Let êno be a unit vector in the flow plane that is normal to V2

�
, and is for a 

right-handed system with V2

�
 and b̂. Use Appendix E to show that

	 ( )= −e
B

t Anˆ 1 ˆ ˆ no 1/2

	 10.	Derive some of the mg3 + g4, …, (∂T/∂n)2 equations listed in Section 5.1.
	 11.	A normal shock has a speed Vs(t). The uniform and steady upstream flow 

has a constant velocity, V1 |̂ 1, that is perpendicular to the shock. Develop 
equations for (∂p/∂n)2, (∂ρ/∂n)2, and (∂V */∂n)2, where n is measured from 
the shock and is positive in the downstream direction. You will need the 
unsteady, one-dimensional Euler equations. These should be transformed 
from (x,t) coordinates to (n,τ) coordinates, where τ = t and n = F(x,t), and 
F = 0 at the shock’s location. Do not assume a specific form for the enthalpy 
(i.e., use Equation 2.26). This means Appendix E, which requires a perfect 
gas, is not used. Results will depend on time derivatives, such as (∂p/∂τ)2 
and dVs/dt. It is beyond the scope of this problem to evaluate (∂p/∂τ)2, for a 
perfect gas, using Appendix E.1, where p1 is a constant. However, w equals 
M1

*2, where this Mach number is based on V1
*.

	 12.	A spherically symmetric flow is caused by an intense point explosion in a 
uniform atmosphere. Assume air to be a perfect gas and the Euler equations 
in unsteady, spherical coordinates are

	 V V
V

r
           

2
   0t r rρ + ρ + ρ +



 =

	 V VV p       
1

   0t r r+ +
ρ

=

	 h Vh p       
1

   0ot or t+ −
ρ

=

	 where the stagnation enthalpy is

	 h
p

V   
1

     
1
2

o
2= γ

γ − ρ
+

	 Eliminate ho in favor of p, ρ, and V. Use a coordinate system fixed at the 
shock by introducing

	 R(r,t) = rs(t) − r,  τ = t,  W = Vs − V

	 where rs is the radius of the spherical shock and the shock speed, Vs, is 
drs/dt.
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208 Problems

	 (a)	 Determine the Euler equations in terms of these variables.
	 (b)	 Define the shock Mach number Ms = (Vs/a1), where a1 is the speed of 

sound ahead of the shock, and develop jump conditions for p, ρ, and W 
assuming a strong shock (i.e., Ms >> 1).

	 (c)	 With this assumption, determine ρ2R[= (∂ρ/∂R)2], p2R, and W2R in terms 
of rs and its derivatives just behind the shock. Obtain simplified 
results for these derivatives when γ = 1.4 and rs = ct2/5, where c is a 
constant.

	 13.	Consider a steady, two-dimensional or axisymmetric flow of a perfect gas. 
Let �s and �n be intrinsic coordinates where �s and �n are along and normal to 
the streamlines.

	 (a)	 Derive an equation for (∂p/∂ �n)2 that has the form of the Appendix E.3 
equations.

	 (b)	 The curvature of the shock κs and the curvature of a streamline κo, just 
downstream of the shock, are given by

	 �
,

s
s o

2

κ = − ′β κ = − ∂θ
∂







		  The minus signs mean that both curvatures are positive when the shock 
appears as shown in Figure 5.3. Write a relation between the curvatures.

	 (c)	 Evaluate the curvatures when

	 β = 90°,  β′ = − 
R
1

s

	 14.	The Crocco point is defined by

	
�s

0
2

∂θ
∂





 =

	 This derivative can be written as

	
�s

C G Ccp

2
1 2( )∂θ

∂




 = ′β + σ

	 where cp stands for Crocco point and

	 C
A

X ZB
2

1
1 2 3/2=

γ +

	
G mg g X Z

1
4

2cp 5 6
2( )= γ + + −
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209Problems

	
C XYZ

y

cos
2 =

β

	 In the two-dimensional case, the Crocco point is determined by Gcp = 0 or 
β′ = 0, hereafter excluded. With γ and M1 fixed, Gcp = 0 is a cubic equation 
for sin2βcp. Develop a computer code to determine βcp for (eight cases)

	 γ = 1.4, 1.6667

	 M1 = 2, 3, 4, 6

	 Compare βcp with β* (Equation 5.14) and with the detachment wave 
angle, βd, given by Equation (7.10). If there are no bugs, these βcp values 
satisfy

	 β* < βcp < βd

	 Tabulate all three β values.
	 15.	Develop a code to compute d(μ − θ)/dβ, Equation (5.13b), as a function of 

γ, M1, and β. Tabulate the derivative versus β for several M1 values using 
γ = 1.4.

	 16.	Use Appendix E to evaluate

	

dp

d

d

d

dM

d
,          ,         

2

η
ρ
η η

	 just downstream of the conical shock in a Taylor-Maccoll flow (see Section 5.5).
	 17.	Solve.

	 (a)	 A conical shock has

	 γ = 1.4,  M1 = 3,  β = 30°

		  where θb = 20.5° (NACA 1135). Determine M2, θ2, μ2, and β*. Evaluate

	 p

p

n

M

n s

1
,          ,         

1 2

2

2 2�
∂
∂







∂
∂







∂θ
∂







		  where each answer is a constant divided by y. Evaluate

	
∂
ζ







∂
ζ





±p

p

p

p1
,         

1

o1 2 1 2

		  Sketch the ζo, ζ± curves and the shock with respect to x.
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210 Problems

	 (b)	 Repeat part (a) for the lower half of an inverted conical shock where 
β = 210°.

	 18.	A normal detonation wave has cellular structure. Consider such a wave in 
an air/hydrogen mixture in which a given cell has an approximately spheri-
cal shock with a 3 mm radius. Ignore the effect of the downstream combus-
tion process. Let θ be the angle measured from the center of the sphere. 
Upstream of the shock the temperature is 300 K and the gas constant is 
450 J/kg-K. Tabulate the dimensional vorticity, 2ω , when θ = 0, 10, 20° and 
M1 = 3, 6.

	 19.	With the assumptions used in Chapter 3, Emanuel (1986, p. 270), shows that 
the vorticity can be written as

	

�
h

v
h

v
v v e

1 1 ˆ
1

2

1 2

1

2
2 2 1 1 3ω = ∂

∂ξ
− ∂

∂ξ
+ κ − κ







	 (a)	 Derive a form for 2
�
ω  consistent with Appendix E.1.

	 (b)	 Use the result of part (a) to derive a form for 2
�
ω /(β′V1) that depends 

only on the θ and β angles (Truesdell, 1952).
	 20.	Solve.

	 (a)	 Use v2 and (∂v/∂n)2 to estimate the nondimensional shock wave stand-
off distance Δest(=∆est/Rb) for a convex shock. This estimate assumes 
a linear variation along the stagnation streamline for v. See Figure 6.1 
and you will need r given by Equation (6.19b).

	 (b)	 With γ = 1.4, compute Δest when

	 M1 = 1, 2, 4, 6

		  for both two-dimensional and axisymmetric flows, and compare with 
the Δ given by Equation (6.19a).

	 (c)	 Discuss your results.
	 21.	Conditions for a triple point are

	 γ = 1.4,  M1 = 3,  βI = 46.04°,  βR = 55.17°,  type (b)

	 (a)	 Determine M2, M3, M4, and βI, βR, βM, and θSS.
	 (b)	 Is M weak or strong? Is R inverted and weak or strong?

	 22.	Evaluate the vorticity, ω2, for the source flow model when Equations (8.61) 
apply. Normalize ω2 with V1 and any reference length. What does the sign 
of ω2 indicate and why?

	 23.	Use Equation (G.17a,b) to analytically evaluate (∂p/∂s)1/p1 and (∂p/∂b)1/p1 
for the flow model in Section 8.7. Then use Equation (8.61) for a numerical 
evaluation of both derivatives and compare with the p1s[= (∂p/∂s)1/p1] value 
in Equation (8.62c). (Hint: Consider γ, β′, φ′, and M1na as given, and first 
evaluate F and V1 in terms of x1,x2(= x,y) and M1.)

	 24.	Determine z, y, β, and β′ values for the Thomas points when
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211Problems

	 γ = 1.4,  M1 = 2,  σ = 0, 1,  θb = 15°

	 Use Equation (6.21) for the shock shape and Table 6.1. Each σ value has one 
Thomas point. Summarize your answers at the end.

	 25.	Use γ = 1.4 and Equations (7.10) and (5.20) to evaluate the sign of (1/p1)
(∂p/∂s�)2 at the detachment point of a convex, two-dimensional, detached 
shock for M1 values ranging from 1.2 to 6. What does this tell you about the 
location of the Thomas point?

	 26.	Solve:
	 (a)	 Evaluate the parameters listed in Appendix J.5 when

	 γ = 1.4,  M1 = 3,  w = 4,  r2 = r3 = 2,  σ = 0, 1

	 (b)	 Compare the part (a) answers for the s and n derivatives of u, v, p, and 
ρ with results from Appendix E.
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Index

a

Acceleration
flow plane, 66
infinite, 66
term, 43, 144

Applications, derivative formulation, 139–144; 
See also Derivative applications

included angle, 139
indeterminacies, 140
isobaric surface condition, 139
normal shock condition, 140
pressure gradient, 142

Arbitrary sign
basis vector system, 5
vector relations, 118

Assumed coordinates, global, 195

b

Barotropic term, 67
Basis vector system and shock velocity, 5–8

arbitrary sign, 5
binormal basis vector, 7
Cartesian coordinate system, 5, 7
flow plane, 6
identity, 7
“just upstream” qualification, 5
parameters, 8
solid-body rotation, 6
tangential shock wave velocity component, 5
unit vector, 5, 6

Billig formula, 69
Blast wave theory, 154

c

Cartesian coordinate system
jump conditions, 5
source flow model, 109
two-dimensional formulation, 17
vorticity, 64

Christoffel symbol, 29, 169
Computational fluid dynamics (CFD), 2

derivative formulation, 117
two-dimensional formulation, 17

Crocco point, 54, 61
Curved shock theory (CST), 2, 113

derivative formulation, 123
intrinsic coordinate derivatives, 106

normal derivatives, 43
triple-point morphology, 81

d

Derivative applications, 41–61
derivatives along characteristics, 45–48

left-running characteristic, 47
Mach lines, 45
right-running characteristic, 46, 47
shock-produced vorticity, 46
subsonic flow, 46
vortical layer, 46

flows with conical shock wave, 51–54
disturbances in upstream direction, 51
downstream-most ray, 52
Euler equations of motion, 51
inverted cone, 52
ordinary differential equations, 51
Prandtl-Meyer flow, 51
stagnation value, 53
Taylor-Maccoll flow, 51

intrinsic coordinate derivatives, 43–45
chain rule, 45
independent check on theory, 45
osculating plane, 44
solid-body rotation, 43
stagnation pressure, 45

normal derivatives when shock is normal to 
upstream velocity, 41–43

axisymmetric shock, 41
concave shock, 42
convex shock, 42
critical Mach number assertion, 43
instability implication, 43
L’Hospital’s rule, 41
shock curvatures, 41
shock stand-off distance, 42
uniform freestream, 43

special states, 54–57
axisymmetric shock, 55
convex shock, 56
Crocco point, 54
detachment condition, 54
symbolic manipulation software, 55
Thomas point, 55, 56
vorticity, 54

θ derivatives, 57–61
continuity for a two-dimensional 

flow, 58
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216 Index

Crocco point, 61
elliptic paraboloid shock, 60
momentum equation, 57
Thomas point, 61

wave reflection from shock wave, 48–51
compressive wave, 48
converging Mach lines, 48
Crocco point, 54
detached shock, 49
downstream shock system, 48
freestream Mach number, 50
hypersonic small disturbance theory, 50
incident wave, 48
incoming wave, 50
reflected expansion, 49
right-running Mach lines, 48

Derivative formulation (general), 117–154
applications, 139–144

included angle, 139
indeterminacies, 140
isobaric surface condition, 139
normal shock condition, 140
pressure gradient, 142

elliptic paraboloid shock, 121–123
differences between three- and two-

dimensional shocks, 121
EP shock shape, 122
intrinsic coordinate system, 122
isobaric curve, 123
osculating plane, 122
scalar momentum equations, 122
steady momentum equation, 122
three-dimensional shock, 122, 123

jump conditions and tangential derivatives, 
130–131

nonuniform upstream flow, 131
surface derivatives, 130
tangential derivatives, 131

normal derivatives, 131–139
divergence of velocity, 134, 135, 136
double sums, 137
EP shock, 138
Euler equations, 131, 136
flow plane derivatives, 132
isentropic relation, 133
Mach wave, 138
nondimensionalization, 136
nonzero torsion, 132
orthonormal basis relations, 133
osculating plane, 132
shock-based coordinate system, 131
Thomas point, 139
two-dimensional shock, 136–137

preliminary remarks, 117
elliptic paraboloid shock, 117
steady flow, 117
transition, 117

shock curvatures, 123–126
axisymmetric shock, 125
coordinate system, 124
curved shock theory, 123
differential operators, 124
explicit curvature formula, 125
saddle point, 124

single Mach reflection, 148–154
blast wave theory, 154
constancy along ray, 152
convex shock, 154
downstream velocity, 151
flow field, 149
incident shock, 149
Mach–Zehnder interferogram, 150
normal density derivative, 154
pseudostationary shock, 149
quiescent gas conditions in shock 

tube, 150
reflected shock, 148, 149, 153
shock inclination angle, 154
shock shape, 149
speed of sound, 151
tangential derivatives, 154
two-dimensional flow, simplification, 152

unsteady, normal derivative formulation, 
144–148

acceleration term, 144
Euler equations, 145, 146
local velocity, 144
scale factor derivatives, 144
tangential derivatives, 148

vector relations, 118–120
arbitrary sign, 118
shock-based basis and angles in flow 

plane, 119
shock generic shape, 118
velocity just upstream, 118

vorticity, 126–130
axisymmetric shock, 130
Crocco’s equation, 126, 127
derivative parameter, 127
entropy change across shock, 128
Euler equations, 126
gradient operator, 127
homenergetic flow, 126, 130
stagnation enthalpy, 126
substitution principle, 126

Derivatives for two-dimensional or 
axisymmetric shock with uniform 
freestream, 33–39

jump conditions, 33–34
Mach numbers, 34
normal shock, standard equations for, 34
perfect gas assumption, 34

normal derivatives, 36–39
energy equation, 38
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217Index

Euler equations, 36, 37
homenergetic flow, 38
hypersonic limit, 39
longitudinal curvature of shock, 36
MACSYMA code, 38
normal momentum equation, 38
pressure gradients, 38
stagnation pressure, 37
streamline derivative of entropy, 37
transformation to current notation, 36

preliminary remarks, 33
Euler equations, 33
flow plane, 33

tangential derivatives, 35–36
freestream velocity, 36
Mach angle, derivative of, 35
shock curvature in flow plane, 35

Derivatives when upstream flow is nonuniform, 
99–115

intrinsic coordinate derivatives, 106–107
curved shock theory, 106
nonuniform freestream, 106
transverse momentum equation, 106
upstream vorticity, 107

jump conditions, 101
normal derivatives, 103–106

equations, 104
Euler equations, 103
homenergetic equation, 104
Mach wave, 105
pressure derivative, 105
sequential procedure, 104
symbolic manipulation software, 105

preliminary remarks, 99–100
downstream streamline angle, 99
flow plane approach, 99
intrinsic coordinates, 100
isentropic relation, 99
nondimensional variables, 100
normalization, 100
notational changes, 99
shock schematic in flow plane, 100

source flow model, 109–115
arbitrary point on shock, 110
Cartesian coordinate system, 109
CST parameters, 113
cylindrical flow sketch, 111
entropy gradient, 109
expansive flow, 115
isentropic relations for pressure and 

density, 113
law of sines, 111, 112
nondimensional length parameter, 113
normal component of Mach number, 110
point source, 109
radial coordinate at shock, 111
shock strength, 114

sonic circle, 110
strength of source flow, 110

tangential derivatives, 101–103
bracket term, 103
uniform upstream flow, 102
vector notation, 101

vorticity, 107–109
continuity equation, 108
entropy change across shock, 107
entropy derivatives, 108
gas constant, 107
nonuniform upstream flow, 107
supersonic, cylindrical source flow, 

108–109
uniform upstream flow, 107

Dot product
jump conditions, 10
two-dimensional formulation, 18

Double solution, 90

e

Elliptic paraboloid (EP) shock, 117, 196
differences between three- and two-

dimensional shocks, 121
formulation, 191–194

common items, 191–192
normal derivatives, 193
tangential derivatives, 192–193

intrinsic coordinate system, 122
isobaric curve, 123
normal derivatives, 138
osculating plane, 122
scalar momentum equations, 122
shape, 122
steady momentum equation, 122
three-dimensional shock, 122, 123

Enthalpy
conservation equations, 9
jump condition, 12
stagnation, 2, 3, 64, 126

EP shock; See Elliptic paraboloid shock
Euler equations, 51

homogeneous, 33
nondimensional, 136
nonuniform upstream flow, 103
normal derivatives, 131
perfect gas, 3
three-dimensional, 126
uniform freestream, 36
unsteady, 145

f

Flow plane, 2, 6
acceleration, 66
derivative formulation, 119
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218 Index

derivatives for two-dimensional shock, 33
jump conditions, 6
nonuniform upstream flow, 99

Formulation; See Derivative formulation 
(general)

g

Gas
calorically imperfect, 2, 51
constant, 89, 107
dynamic relations, 53
large number of atoms, 80
model, jump conditions, 2
perfect

assumption, 4, 34
entropy, 64
Euler equations for, 3
Mach numbers, 15, 34
oblique shock, 2, 12
shock wave triple-point morphology, 80
two-dimensional flow, 17

quiescent conditions, 150
shock wave phenomena, 12
velocity, 6

Global, shock-based coordinates, 195–200
assumed coordinates, 195
elliptic paraboloid model, 196
existence condition, 195
general solution, 199
joint solution, 199
method-of-characteristics, 196
ordinary differential equations, 196
orthogonality condition, 199
partial differential equations, 196
scale factors, 195
uniform freestream, 200

h

Hypersonic small disturbance theory, 50

i

Identity
basis vector system, 7
shock-based curvilinear coordinates, 20

Intrinsic coordinate derivatives, 43–45, 106
chain rule, 45
curved shock theory, 106
derivative applications, 43–45
independent check on theory, 45
nonuniform upstream flow, 106–107
osculating plane, 44
solid-body rotation, 43
stagnation pressure, 45

Inverted cone, 52

j

Jacobian theory, 30
Jump conditions (general), 5–16

basis vector system and shock velocity, 5–8
arbitrary, 5
binormal basis vector, 7
Cartesian coordinate system, 5, 7
flow plane, 6
identity, 7
“just upstream” qualification, 5
parameters, 8
solid-body rotation, 6
tangential shock wave velocity 

component, 5
unit vector, 5, 6

conservation equations, 8–10
Euler equations, 8
flow conditions, 8
mass flux conservation, 9
second law, 9
substantial derivative, 9
symmetrical jump conditions, 10

explicit solution, 10–12
conservation of mass flux, 11
dot products, 10
downstream variables, 11
downstream velocity, 11
energy equation, 11
gas shock wave phenomena, alternative 

approaches for treating, 12
oblique shock equation, 12
thermodynamic state equation, 12
upstream Mach number, 12
velocity tangency condition, 10

illustrative example, 12–16
buzz phenomenon of jet engine, 12–13
inequality, 16
Mach number definitions, 14, 15
oblique shock waves, 13
perfect gas, 14, 15
shock velocity, 13
sinusoidal oscillation, 13
speed of sound ratio, 15

“Just downstream” proviso, 1
“Just upstream” qualification, 5

l

Lambda shock wave system, 3
Law of sines, 111, 112
L’Hospital’s rule, 41, 89

m

Mach number
generic shock shape, 69
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jump conditions, 14, 15, 34
normal component of, 34
source flow model, 110
wave reflection from shock wave, 50

Mach reflection pattern, 4
Mach stem, triple-point morphology, 79, 82
Mach–Zehnder interferogram, 150
MACSYMA code, 38
Method-of-characteristics (MOC), 23, 196
Method-of-characteristics for single, first-order 

partial differential equation, 163–167
discussion, 165–166
general solution, 163–165

characteristic curve, 164, 165
hyperbolic equations, 165
ordinary differential equations, 164

homogeneous equation, 163
illustrative example, 166–167

arbitrary function of argument, 167
characteristic equations, 166
general solution to PDE, 167

inhomogeneous term, 163
partial differential equation, 163

n

Nomenclature, 155–157
Greek, 156
special symbols, 156–157
subscripts and superscripts, 156

Nonuniform freestream
description, 2
tangential derivatives, 103

Nonuniform upstream flow, 99–115
intrinsic coordinate derivatives, 106–107

curved shock theory, 106
nonuniform freestream, 106
transverse momentum equation, 106
upstream vorticity, 107

jump conditions, 101
normal derivatives, 103–106

equations, 104
Euler equations, 103
homenergetic equation, 104
Mach wave, 105
pressure derivative, 105
sequential procedure, 104
symbolic manipulation software, 105

preliminary remarks, 99–100
downstream streamline angle, 99
flow plane approach, 99
intrinsic coordinates, 100
isentropic relation, 99
nondimensional variables, 100
normalization, 100
notational changes, 99
shock schematic in flow plane, 100

source flow model, 109–115
arbitrary point on shock, 110
Cartesian coordinate system, 109
CST parameters, 113
cylindrical flow sketch, 111
entropy gradient, 109
expansive flow, 115
isentropic relations for pressure and 

density, 113
law of sines, 111, 112
nondimensional length parameter, 113
normal component of Mach number, 110
point source, 109
radial coordinate at shock, 111
shock strength, 114
sonic circle, 110
strength of source flow, 110

tangential derivatives, 101–103
bracket term, 103
uniform upstream flow, 102
vector notation, 101

vorticity, 107–109
continuity equation, 108
entropy change across shock, 107
entropy derivatives, 108
gas constant, 107
nonuniform upstream flow, 107
supersonic, cylindrical source flow, 

108–109
uniform upstream flow, 107

o

Oblique shock, 13
equations, 12, 83
flow plane definition, 6
homenergetic flow, 126
jump conditions, 2

Oblique shock wave angle, 159–161
coefficients in polynomial, 159
computer-friendly equation, 159
cubic equation, 160
gas dynamics, 159
strong shock solution, 161
weak and strong solutions, 160

ODEs; See Ordinary differential equations
Operator formulation, 179–182

Cartesian bases, 179
finite pressure gradient, 182
fixed variable, 180
inverse transformation, 180
position vector, 179
shock surface derivatives, 181
source flow model, 181

Ordinary differential equations (ODEs)
first-order, 23
flows with conical shock wave, 51
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global, shock-based coordinates, 196
method-of-characteristics, 164

Orthogonal basis derivatives, 169
orthogonal forms for Christoffel symbol, 169
unitary basis derivatives, 169

Orthogonal coordinate system, two-dimensional 
formulation, 19

p

Partial differential equations (PDEs), 23
first-order, 23, 27
global, shock-based coordinates, 196
method-of-characteristics, 163

Perfect gas
assumption, 4, 34
entropy, 64
Euler equations, 3
Mach numbers, 15, 34
oblique shock, 2, 12
shock wave triple-point morphology, 80
two-dimensional flow, 17

Prandtl-Meyer flow, 51
Problems, 205–211
Pseudostationary shock, 149

r

Reflected shock
algorithm, 154
angular variation, 96
derivative formulation, 148, 149, 153
inverted, 86
Mach disk and, 53
ray intersecting, 152
single Mach reflection, 148
triple-point morphology, 79, 96
weak, 150

s

Scale factors
derivatives, 144
global, shock-based coordinates, 195
two-dimensional formulation, 22–24

differentiation compatibility condition, 22
integration constants, 23
method-of-characteristics, 23
ordinary differential equations, 23
overdetermined system of equations, 22
partial differential equations, 23

Shock wave dynamics, introduction, 1–4
blunt body blow, 1
“bootstrap” approach, 4
calorically imperfect gas, 2
computational fluid dynamics, 2
curved shock theory, 2

elliptic paraboloid shock, 3
Euler equations, 3, 4
flow plane, 2
freestream Mach numbers, 3
gas model, 2
homenergetic flow, 2
jump conditions across oblique shock, 2
“just downstream” proviso, 1
lambda shock wave system, 3
Mach reflection pattern, 4
stagnation enthalpy, 2, 3
tangential derivatives, 2
theory of characteristics, 2
three-dimensional shock, 1
topics under investigation, 1

Shock wave triple-point morphology, 79–98
analysis, 82–87

barred angles, 86
detachment wave angles, 85
Mach stem, 84, 85
Mach wave value, 82
oblique shock equation, 83
tangency conditions, 84
triple point, 83
velocity tangency constraint, 83
wave angle of incident shock, 82

preliminary remarks, 79–82
constraints, 79
curved shock theory, 81
hysteresis, 80
incident shock, 79
Mach reflection flow, 80
Mach stem, 79, 82
perfect gas, 80
pressure condition, 79
reflected shock, 79
shock-polar diagrams, 79
shock/shock interference, 79
slipstream, 79
stability, 80
subsonic flow, 81
triple-point solution, 81

results and discussion, 89–98
double solution, 90
incident shock, 96
Mach wave, 89, 90
overlapping solutions, 90
parametric results, 89
plotting routine artifact, 89
reflected shock, 96
split segments, 94
triple solutions, 94, 98
window edge, 89

solution method, 87–89
algorithm, 87
“almost” qualifier, 88
entropy jump formula, 89
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incident shock, 88
L’Hospital’s rule, 89
Mach wave, 88
parameter window, 87
real-valued solution, 87

Single Mach reflection (SMR), 148–154
Steady shock derivative formulation, 183–186

common items, 183
normal derivatives, 185–186
tangential derivatives, 184–185

Symbol
Christoffel, 29, 169
frequently encountered, 4
manipulation software, 55, 104, 105
special, 156–157
summation, 156

t

Tangential derivatives
conditions for obtaining, 2
elliptic paraboloid shock, 192–193
jump conditions and, 130–131
single Mach reflection, 154
steady shock derivative formulation, 184–185
two-dimensional shock, 35–36
uniform freestream, 188–189
unsteady, normal derivative formulation, 148

Taylor-Maccoll equations, 53
Taylor-Maccoll flow, 51
Theory of characteristics, 2
Thomas point, 55, 61, 139
Three-dimensional shock, 1

coordinates, 195
coordinate system, 4
derivative formulation, 117
elliptic paraboloid shock, 122, 123
jump conditions, 11, 33
normal derivatives, 132

Triple-point morphology; See Shock wave triple-
point morphology

Two-dimensional or axisymmetric formulation, 
17–32

application to two-dimensional or 
axisymmetric shock, 24–27

arbitrary function of arguments, 26
characteristic equations, 25
integral, 25
integration constants, 26

basis derivatives, 29–32
Christoffel symbol, 29
gradient operator, 32
Jacobian theory, 30

basis vectors, 17–19
computational fluid dynamics, 17
dot product, 18
freestream velocity, 17

gradient operator, 19
normal vector, 18
orthogonal coordinate system, 19
perfect gas, 17
scale factors, 19
transverse radial position vector, 17

scale factors, 22–24
differentiation compatibility condition, 22
integration constants, 23
method-of-characteristics, 23
ordinary differential equations, 23
overdetermined system of equations, 22
partial differential equations, 23

shock-based curvilinear coordinates, 20–22
arbitrary point, 20
Cartesian coordinates, 21
identity, 20
key result, 21
tensor notation, 20
transformation development, 20
vorticity analysis, 20

transformation equations, 27–29
direct integration, 29
explicit result, 29
function of integration, 27
integrand, 28

Two-dimensional or axisymmetric shock with 
uniform freestream, 33–39

jump conditions, 33–34, 171–172
Mach numbers, 34
normal shock, standard equations for, 34
perfect gas assumption, 34

normal derivatives, 36–39, 173–174
energy equation, 38
Euler equations, 36, 37
homenergetic flow, 38
hypersonic limit, 39
longitudinal curvature of shock, 36
MACSYMA code, 38
normal momentum equation, 38
pressure gradients, 38
stagnation pressure, 37
streamline derivative of entropy, 37
transformation to current notation, 36

preliminary remarks, 33
Euler equations, homogeneous, 33
flow plane, 33

tangential derivatives, 35–36, 172–173
freestream velocity, 36
Mach angle, derivative of, 35
shock curvature in flow plane, 35

u

Uniform freestream
convex shock with, 154
elliptic cone shock, 200
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elliptic paraboloid shock, 121
extremum value, 54
formulation, 187–189

common items, 187–188
normal derivatives, 189
tangential derivatives, 188–189

homenergetic assumption, 3
tangential derivatives, 103
upstream streamline curvature, 43
velocity, two-dimensional formulation, 17

Uniform freestream, derivatives for two-
dimensional or axisymmetric shock 
with, 33–39

jump conditions, 33–34
Mach numbers, 34
normal shock, standard equations for, 34
perfect gas assumption, 34

normal derivatives, 36–39
energy equation, 38
Euler equations, 36, 37
homenergetic flow, 38
hypersonic limit, 39
longitudinal curvature of shock, 36
MACSYMA code, 38
normal momentum equation, 38
pressure gradients, 38
stagnation pressure, 37
streamline derivative of entropy, 37
transformation to current notation, 36

preliminary remarks, 33
Euler equations, homogeneous, 33
flow plane, 33

tangential derivatives, 35–36
freestream velocity, 36
Mach angle, derivative of, 35
shock curvature in flow plane, 35

Unit vector
binormal basis vector, 7
jump conditions, 5, 6
shock-based curvilinear coordinates, 20
symbol, 156

Unsteady state 2 parameters, 201–203
data required, 201
tangential derivatives, 203

Upstream flow, nonuniform, 99–115
intrinsic coordinate derivatives, 106–107

curved shock theory, 106
nonuniform freestream, 106
transverse momentum equation, 106
upstream vorticity, 107

jump conditions, 101, 175
normal derivatives, 103–106, 176–177

equations, 104
Euler equations, 103
homenergetic equation, 104
Mach wave, 105
pressure derivative, 105

sequential procedure, 104
symbolic manipulation software, 105

preliminary remarks, 99–100
downstream streamline angle, 99
flow plane approach, 99
intrinsic coordinates, 100
isentropic relation, 99
nondimensional variables, 100
normalization, 100
notational changes, 99
shock schematic in flow plane, 100

source flow model, 109–115
arbitrary point on shock, 110
Cartesian coordinate system, 109
CST parameters, 113
cylindrical flow sketch, 111
entropy gradient, 109
expansive flow, 115
isentropic relations for pressure and 

density, 113
law of sines, 111, 112
nondimensional length parameter, 113
normal component of Mach number, 110
point source, 109
radial coordinate at shock, 111
shock strength, 114
sonic circle, 110
strength of source flow, 110

tangential derivatives, 101–103, 175–176
bracket term, 103
uniform upstream flow, 102
vector notation, 101

vorticity, 107–109
continuity equation, 108
entropy change across shock, 107
entropy derivatives, 108
gas constant, 107
nonuniform upstream flow, 107
supersonic, cylindrical source flow, 

108–109
uniform upstream flow, 107

v

van der Waals state equation, 12
Vortical layer, 46
Vorticity and its substantial derivative, 63–78

generic shock shape, 69–71
Billig formula, 69
empirical relation, 69
freestream Mach number range, 69
shock angle, 70

preliminary remarks, 63
analytical method, 63
shock jump condition, 63
substantial derivative, 63
vorticity parameters, 63
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results, 73–78
dimensionality, 73
isentropic expansion, 75
magnitude of vorticity, 78
relief effect, 75
shock curvature, 76
sonic value, 73

slope, curvature, arc length, and sonic point, 
71–73

arc length, 72
elliptic integrals, 72
negative of curvature, 71
sonic point location, 73

substantial derivative of vorticity, 67–69
barotropic term, 67, 68
dyadic, evaluated, 67
substantial derivative, 68

vorticity, 63–67
acceleration in flow plane, 66
Cartesian coordinate system, 64
Crocco’s equation, 64
error, 66
normalized vorticity, 65

shock are length derivative, 64
streamline isentropic equation, 64
vorticity equation, rederiving, 65
zero scalar values, 65

w

Wave reflection from shock wave, 48–51
compressive wave, 48
converging Mach lines, 48
Crocco point, 54
detached shock, 49
downstream shock system, 48
freestream Mach number, 50
hypersonic small disturbance theory, 50
incident wave, 48
incoming wave, 50
reflected expansion, 49
right-running Mach lines, 48

z

Zero scalar values, 65

© 2013 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

3:
10

 1
0 

M
ay

 2
01

6 



© 2013 by Taylor & Francis Group, LLC

D
ow

nl
oa

de
d 

by
 [

V
is

ve
sv

ar
ay

a 
T

ec
hn

ol
og

ic
al

 U
ni

ve
rs

ity
 (

V
T

U
 C

on
so

rt
iu

m
)]

 a
t 0

3:
10

 1
0 

M
ay

 2
01

6 


	Shock Wave Dynamics: Derivatives and Related Topics
	Contents
	Preface
	Acknowledgments

	Shock Wave Dynamics: Derivatives and Related Topics (1)
	Color Insert

	Shock Wave Dynamics: Derivatives and Related Topics (2)
	Chapter 1: Introduction

	Shock Wave Dynamics: Derivatives and Related Topics (3)
	Chapter 2: General Jump Conditions
	2.1 Basis Vector System and Shock Velocity
	2.2 C onservation Equations
	2.3 E xplicit Solution
	2.4 I llustrative Example


	Shock Wave Dynamics: Derivatives and Related Topics (4)
	Chapter 3: Two-Dimensional or Axisymmetric Formulation
	3.1 Basis Vectors
	3.2 S hock-Based Curvilinear Coordinates
	3.3 S cale Factors
	3.4 A pplication to a Two-Dimensional or Axisymmetric Shock
	3.5 T ransformation Equations
	3.6 Basis Derivatives


	Shock Wave Dynamics: Derivatives and Related Topics (5)
	Chapter 4: Derivatives for a Two-Dimensional or Axisymmetric Shock with a Uniform Freestream
	4.1 P reliminary Remarks
	4.2 Jump Conditions
	4.3 T angential Derivatives
	4.4 N ormal Derivatives


	Shock Wave Dynamics: Derivatives and Related Topics (6)
	Chapter 5: Derivative Applications
	5.1 N ormal Derivatives When the Shock Is Normal to the Upstream Velocity
	5.2 I ntrinsic Coordinate Derivatives
	5.3 D erivatives along Characteristics
	5.4 W ave Reflection from a Shock Wave
	5.5 Flows with a Conical Shock Wave
	5.6 S pecial States
	5.7 θ Derivatives


	Shock Wave Dynamics: Derivatives and Related Topics (7)
	Chapter 6: Vorticity and Its Substantial Derivative
	6.1 P reliminary Remarks
	6.2 Vorticity
	6.3 S ubstantial Derivative of the Vorticity
	6.4 G eneric Shock Shape
	6.5 S lope, Curvature, Arc Length, and Sonic Point
	6.6 Results


	Shock Wave Dynamics: Derivatives and Related Topics (8)
	Chapter 7: Shock Wave Triple-Point Morphology
	7.1 P reliminary Remarks
	7.2 Analysis
	7.3 S olution Method
	7.4 R esults and Discussion


	Shock Wave Dynamics: Derivatives and Related Topics (9)
	Chapter 8: Derivatives When the Upstream Flow Is Nonuniform
	8.1 P reliminary Remarks
	8.2 Jump Conditions
	8.3 T angential Derivatives
	8.4 N ormal Derivatives
	8.5 I ntrinsic Coordinate Derivatives
	8.6 Vorticity
	8.7 S ource Flow Model


	Shock Wave Dynamics: Derivatives and Related Topics (10)
	Chapter 9: General Derivative Formulation
	9.1 P reliminary Remarks
	9.2 Vector Relations
	9.3 E lliptic Paraboloid Shock
	9.4 S hock Curvatures
	9.5 Vorticity
	9.6 Jump Conditions and Tangential Derivatives
	9.7 N ormal Derivatives
	9.8 Applications
	9.9 U nsteady, Normal Derivative Formulation
	9.10 S ingle Mach Reflection


	Shock Wave Dynamics: Derivatives and Related Topics (11)
	Appendix E: Conditions on the Downstream Side of a Two-Dimensional or Axisymmetric Shock with a Uniform Freestream
	E.1 Jump Conditions
	E.2 T angential Derivatives
	E.3 N ormal Derivatives
	E.4 gi(γ,w)


	Shock Wave Dynamics: Derivatives and Related Topics (12)
	Appendix B: Oblique Shock Wave Angle
	References


	Shock Wave Dynamics: Derivatives and Related Topics (13)
	Appendix C: Method-ofCharacteristics for a Single, First-Order Partial Differential Equation
	C.1 G eneral Solution
	C.2 Discussion
	C.3 I llustrative Example


	Shock Wave Dynamics: Derivatives and Related Topics (14)
	Appendix A: Selective Nomenclature
	Greek
	Subscripts and Superscripts
	Special Symbols


	Shock Wave Dynamics: Derivatives and Related Topics (15)
	Appendix F: Conditions on the Downstream Side of a TwoDimensional or Axisymmetric Shock When the Upstream Flow Is Nonuniform
	F.1 Jump Conditions
	F.2 T angential Derivatives
	F.3 N ormal Derivatives


	Shock Wave Dynamics: Derivatives and Related Topics (16)
	Appendix G: Operator Formulation

	Shock Wave Dynamics: Derivatives and Related Topics (17)
	Appendix J: Elliptic Paraboloid Shock Formulation
	J.1 C ommon Items
	J.2 Sa, Sb
	J.3 w2
	J.4 T angential Derivatives
	J.5 N ormal Derivatives


	Shock Wave Dynamics: Derivatives and Related Topics (18)
	Appendix K: Global, Shock-Based Coordinates

	Shock Wave Dynamics: Derivatives and Related Topics (19)
	Appendix I: Uniform Freestream Formulation
	I.1 C ommon Items
	I.2 Sa, Sb
	I.3 w2
	I.4 T angential Derivatives
	I.5 N ormal Derivatives


	Shock Wave Dynamics: Derivatives and Related Topics (20)
	Appendix H: Steady Shock Derivative Formulation
	H.1 C ommon Items
	H.2 Sa, Sb
	H.3 w2
	H.4 T angential Derivatives
	H.5 N ormal Derivatives


	Shock Wave Dynamics: Derivatives and Related Topics (21)
	Appendix L: Unsteady State 2 Parameters

	Shock Wave Dynamics: Derivatives and Related Topics (22)
	Problems

	Shock Wave Dynamics: Derivatives and Related Topics (23)
	References

	Shock Wave Dynamics: Derivatives and Related Topics (24)
	Index


