USN

Seventh Semester B.Arch. Degree Examination, Jan./Feb. 2021 Structure – VII

Time: 3 hrs. Max. Marks:100

Note: 1. Answer any FIVE full questions.
2. Missing data, if any, may be suitably assumed.

1 a. What are the advantages of PSC?

(08 Marks)

- b. A rectangular concrete beam, 250mm wide and 600mm deep, is prestressed by means of four 14mm φ diameter high tensile bars located 200mm from the soffit of the beam. If the effective stress in the wires is 700N/mm², what is the maximum bending moment that can be applied to the section without causing tension @ the soffit of the beam. (12 Marks)
- 2 a. What is pressure line in PSC?

(06 Marks)

b. A rectangular concrete beam 250mm wide by 300mm deep is prestressed by a four of 540kN at an constant eccentrity of 60mm. The beam supports a concentrated load of 68kN @ the centre of a span of 3m. Determine the location of the pressure line @ the centre, quarter span and support sections of the beam. Neglect the self – weight of the beam.

(14 Marks)

3 a. Briefly explain the concept of load balancing.

(06 Marks)

- b. A pre-stressed concrete beam supports an imposed load of 4kN/m over an effective span of 10m. The beam has a rectangular section with a width of 200mm and depth of 600mm. Find the effective pre-stressing force in the cable if it is parabolic with an eccentricity of 100mm at the centre and zero at the ends for the following conditions.
 - i) If the bending effect of PSF is nullified by the imposed load for the mid-span section (neglect self weight of beam).
 - ii) If the resultant stress due to self-weight imposed load and pre stressing force is zero at the soffit of the beam for the mid-span section ($D_C = 24 \text{kN/m}^3$). (14 Marks)
- A pre-stressed concrete beam, 200mm wide and 300mm deep, is pre-stressed with wires (area = 320mm²) located at a constant centricity of 50mm and carrying an initial stress of 1000N/mm². The span of the beam is 10m. Calculate the percentage loss of stress in wires if:
 - i) The beam is pre-tensioned
 - ii) The beam is post-tensioned using the following data:

 $E_S = 210 \text{kN/mm}^2$

 $E_C = 35 \text{kN/mm}^2$

Relaxation of steel stress = 5% of initial stress

Shrinkage of concrete = 300×10^{-6} for pre tensioning

= 200×10^{-6} for post tensioned

Creep coefficient = 1.6 Slip @ anchorage = 1mm

Frictional co-efficient for wave effect = 0.0015/m.

(20 Marks)

- 5 a. What is grid floor? Mention its advantages.
 - b. What are pneumatic structures? Explain their behavior.

(10 Marks) (10 Marks)

a. What is flat slab? What are its advantages and disadvantages?

(10 Marks)

- b. Write note on:
 - i) Space structures
 - ii) Tensile structures.

(10 Marks)

09ENG75

Two way slab of size $5m \times 4m$ internal simply supported on 230mm thick wall, thickness of slab = 150mm.

Steel along short span = $10 \text{mm} \phi 250 @ 150 \text{ c/c}$ Steel along long span = $8 \text{mm} \phi @ 250 \text{mm} \text{ c/c}$. Draw neatly:

- i) Plan showing reinforcement
- ii) c/s along short span.

(20 Marks)

- Write short notes on:
 - a. Geodesic domes
 - b. Folded plates
 - c. Application of pre-stressed concrete
 - d. Pre-tensioning and post tensioning.

(20 Marks)