Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

3

	*			
USN	14			

14ENG2.5

Second Semester B.Arch. Degree Examination, Dec.2017/Jan.2018 **Building Structures - II**

Time: 3 hrs.

Max. Marks: 100

Note: Answer FIVE full questions, selecting ONE full question from each module.

Module-1

- Define the following: 1
 - Centre of gravity
 - ii) Centroid
 - iii) Moment of inertia

(06 Marks)

Locate the centroid of the section shown below:

(14 Marks)

Explain the theorem of parallel axis.

(06 Marks)

Find the moment of inertia about centroidal axis of the section shown in Fig.Q2(b).

Module-2

Define shear force and bending moment.

(04 Marks)

Calculate and draw the SF and BM diagrams for the beam shown in Fig.3(b).

(16 Marks)

4 a What are the types of beams?

(05 Marks)

b. Calculate the SF and BM for the cantilever beam shown in Fig.Q4(b) and draw shear force and bending moment diagram.

Module-3

5 a. Define the following:

- i) Bending stress
- ii) Neutral axis
- iii) Section modulus

(06 Marks)

(15 Marks)

- b. A steel beam of hollow square section of outer side 100 mm and inner side 80 mm is used on beam for a span of 4 m find the uniformly distributed load on the beam that can carry if the bending stress is nor to exceed 120 N/mm². (14 Marks)
- 6 a. A cantilever beam of span 3m having size 100 mm \times 150 mm deep carrying a udl of 10 kN/m. Find the maximum deflection of beam at free end. Take $E = 2 \times 10^5 \text{ N/mm}^2$.

(10 Marks)

b. A simply supported timber beam of span 4m having size 100×200 deep carries a udl of 5 kN/m. Find maximum deflection at mid span. Take $E = 1 \times 10^4$ N/mm². (10 Marks)

Module-4

7 a. Define the following:

- i) Crushing load
- ii) Buckling load
- iii) Safe load

(06 Marks)

- b. A mild steel tube 4 m long and 30 mm internal diameter and 38 mm external dia is used as strut with both ends hinged. Find the crippling load. Take $E = 2.1 \times 10^5 \text{ N/mm}^2$. (14 Marks)
- 8 a. Define:
 - i) Short column
 - ii) Long column

(04 Marks)

b. Determine the safe load on a hollow cast iron rectangular column having M.I of 7188×10^4 mm⁴ and 4375×10^4 mm⁴, about x-x axis and y-y axis. The height of column is 7m with both ends fixed. Take $E = 1.2 \times 10^5$ N/mm². (16 Marks)

Module-5

9 a. A column of size 300 mm \times 300 mm in section is provided with 8 bars of 20 nm ϕ . Find the load taken by concrete and load taken by steel. Take $f_s = 415 \text{ N/mm}^2$ $f_c = 20 \text{ N/mm}^2$.

(10 Marks)

- b. ARCC column 300 mm dia is reinforced with 6 bars of 20 mm dia. Find the load taken by concrete and steel separately. Take $f_s = 250 \text{ N/mm}^2$, $f_c = 15 \text{ N/mm}^2$. (10 Marks)
- Calculate the safe axial load for a stanchion ISHB 350 @ 710.2 N/m, 3.5 m high. It is to be used as an uncased column in a single storey building. The column is restrained in direction and position at both ends. $f_y = 250$ MPa for ISHB350 @ 710.2 N/mm $r_{xx} = 146.5$ mm, $r_{yy} = 52.2$ mm. (20 Marks)

* * * *