USN

MATDIP401

Fourth Semester B.E. Degree Examination, Feb./Mar. 2022 Advanced Mathematics – II

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions.

- 1 a. If l, m, n are the direction cosines of a straight line, then prove that $l^2 + m^2 + n^2 = 1$. (06 Marks)
 - b. A line makes angles α , β , γ , δ with four diagonals of a cube, prove that $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma + \cos^2 \delta = 4/3$. (07 Marks)
 - c. With the usual notation, derive the equation of the plane in the form lx + my + nz = p.

 (07 Marks)
- 2 a. Find the equation of plane which passes through (-10, 5, 4) and is normal to the line joining the points (4, -1, 2) and (-3, 2, 3) line joining the points (4, -1, 2) and (-3, 2, 3). (06 Marks)
 - b. Find the image of the point (1, 3, 4) in the plane 2x y + z + 3 = 0. (07 Marks)
 - c. Find the equation of a line which passes through the point (-2, 3, 4) and parallel to the planes 2x + 3y + 4z = 5 and 4x + 3y + 5z = 6. (07 Marks)
- 3 a. Find the unit normal to both the vectors $\vec{a} + \vec{b}$ and $\vec{b} + \vec{c}$ if $\vec{a} = \hat{i} + \hat{j} \hat{k}$, $\vec{b} = -\hat{i} + 2\hat{y} + \hat{k}$ and $\vec{c} = \hat{i} 2\hat{j} + 3\hat{k}$.
 - b. Find the value of λ so that the vectors $\vec{a} = 2\hat{i} 3\hat{j} + \hat{k}$, $\vec{b} = \hat{i} + 2\hat{j} 3\hat{k}$ and $\vec{c} = \hat{j} + \lambda\hat{k}$ are coplanar. (07 Marks)
 - c. Prove that $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} (\vec{a} \cdot \vec{b}) \vec{c}$ (07 Marks)
- 4 a. A particle moves along the curve $r = 2t^2\hat{i} + (t^2 4t)\hat{j} + (3t 5)\hat{k}$. Find the components of velocity and acceleration in the direction of the vector $\mathbf{c} = \hat{i} 3\hat{j} + 2\hat{k}$ at t = 2. (06 Marks)
 - b. If $\phi = x^2 y^2 z^3$ and $\vec{f} = 2x\hat{i} + 3y\hat{j} + 4\hat{x}$ find $\vec{f} \cdot \nabla \phi$ and $\vec{f} \times \nabla \phi$ at (1, 1, 1). (07 Marks)
 - c. Find the directional derivative of $\phi = x^2yz + 4xz^2$ at the point (1, -2, -1) along the vector $\vec{a} = 2\hat{i} \hat{j} 2\hat{k}$.
- 5 a. If \vec{a} is a vector function and ϕ is a Scalar function then show that $\text{curl}(\phi\vec{a}) = \phi(\text{curl }\vec{a}) + \text{grad}\phi \times \vec{a}$. (06 Marks)
 - b. If $\vec{r} = x\hat{i} + y\hat{j} + 2\hat{x}$ then show that $\nabla r^n = nr^{n-2}\vec{r}$. (07 Marks)
 - c. Find the constants a, b, c so that the vector field $\vec{f} = (x + 2y + az)\hat{i} + (bx 3y z)\hat{j} + (4x + cy + 2z)\hat{k}$ is irrotational. (07 Marks)
- 6 a. Prove that $L\{t^n\} = \frac{n!}{s^{n+1}}$, where n is a positive integer. (05 Marks)
 - b. Find: i) $L\{e^{-2t}\cos^2 t\}$ ii) $L\{2^t\cos^3 t\}$ (10 Marks)
 - c. Find: $L\{te^{-3t}\sin 3t\}$. (05 Marks)

MATDIP401

7 a. If
$$L\{f(t)\} = F(s)$$
 show that $L\left\{\int_0^t f(t)dt\right\} = \frac{F(S)}{S}$. (05 Marks)

b. Find:

Find:
i)
$$L^{-1} \left[log \left(\frac{s+a}{s+b} \right) \right]$$
 ii) $L^{-1} \left[\frac{s+3}{s^2+9s+20} \right]$ (10 Marks)

c. Find:
$$L^{-1} \left[\frac{2s-1}{s^2 + 2s + 17} \right]$$
 (05 Marks)

Using the Laplace transform method, solve the initial value problem.

$$\frac{d^2x}{dt^2} - \frac{2dx}{dt} + x = e^{2t} , \quad x(0) = 0 , \quad \frac{dx}{dt}(0) = -1$$
b. Using Laplace transform method solve

$$\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = e^{-t}$$

$$y(0) = 0 = y'(0).$$
(10 Marks)