Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages

Librarian Learning Resource Centre Acharya Institute & Technology	CBCS SCHEM			
USN				

Fourth Semester B.E. Degree Examination, Feb./Mar. 2022 Engineering Mathematics – IV

Time: 3 hrs.

Max. Marks: 100

17MAT41

(07 Marks)

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Find the Taylor series method, the value of y at x = 0.1 to five decimal places from $\frac{dy}{dx} = x^2y 1$, y(0) = 1. Consider upto 4th degree terms. (06 Marks)
 - b. Solve $\frac{dy}{dx} = \frac{y x}{y + x}$ with y(0) = 1 and hence find y(0.1) by taking one step using Runge-Kutta method of fourth order. (07 Marks)
 - c. Given $\frac{dy}{dx} = \frac{x+y}{2}$, given that y(0) = 2, y(0.5) = 2.636, y(1) = 3.595, y(1.5) = 4.968 then find the value of y at x = 2 using Milne's method. (07 Marks)

OR

- 2 a. Using modified Euler's method, solve $\frac{dy}{dx} = x + |\sqrt{y}|$ with y(0) = 1 and hence find y(0.2) with h = 0.2. Modify the solution twice.
 - b. Use fourth order Runge-Kutta method to find y(0.2), given $\frac{dy}{dx} = 3x + y$, y(0) = 1. (07 Marks)
 - c. Find y at x = 0.4 given $\frac{dy}{dx} + y + xy^2 = 0$ at $y_0 = 1$, $y_1 = 0.9008$, $y_2 = 0.8066$, $y_3 = 0.722$ taking h = 0.1 using Adams-Bashforth method. (07 Marks)

Module-2

- 3 a. Given $\frac{d^2y}{dx^2} = x\left(\frac{dy}{dx}\right)^2 y^2$. Find y at x = 0.2. Correct to four decimal places, given y = 1 and y' = 0 when x = 0 using Runge-Kutta method. (06 Marks)
 - b. If α and β are two distinct roots of $J_n(x)=0$ then prove that $\int\limits_0^1 x J_n(\alpha x) J_n(\beta x)=0$ if $\alpha \neq \beta$.
 - c. Show that $J_{\frac{-1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cos x$. (07 Marks)

OR

4 a. Given $\frac{d^2y}{dx^2} = 1 + \frac{dy}{dx}$, y(0) = 1, y'(0) = 1, compute y(0.4) for the following data, using Milne's predictor-corrector method. y(0.1) = 1.1103, y(0.2) = 1.2427, y(0.3) = 1.399 y'(0.1) = 1.2103, y'(0.2) = 1.4427, y'(0.3) = 1.699 (06 Marks)

17MAT41

b. Express $x^3 + 2x^2 - x - 3$ in terms of Legendre polynomial.

(07 Marks)

c. Derive Rodrigue's formula $P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} [(x^2 - 1)^n]$

(07 Marks)

Module-3

5 a. State and prove Cauchy-Rieman equation in Cartesian form.

- (06 Marks)
- b. Evaluate $\int_{C} \frac{e^{2z}}{(z+2)(z+4)(z+7)} dz$ where C is the circle |z| = 3 using Cauchy's residue
 - theorem.

(07 Marks)

c. Discuss the transformation $W = e^{Z}$.

(07 Marks)

OR

6 a. Prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^2 = 4 |f'(z)|^2$

(06 Marks)

b. State and prove Cauchy's integral formula.

- (07 Marks)
- c. Find bilinear transformation which maps Z = i, 1, -1 onto $W = 1, 0, \infty$
- (07 Marks)

Module-4

7 a. A random variable X has the following probability function for various values of x:

X (= xi)	0	1	2	3	4	5	6	7
P(x)	0	K	2K	2K	3K	K^2	$2K^2$	$7K^2+K$

Find: (i) The value of K (ii) P(x < 6) (iii) $P(x \ge 6)$

(06 Marks)

b. Derive mean and variance of the binomial distribution.

- (07 Marks)
- c. The joint probability distribution of two random variables X and Y as follows:

X	-4	2	7
1	1/8	1/4	1/8
5	1/4	1/8	1/8

Determine: (i) Marginal distribution of X and Y

- (ii) Covariance of X and Y
- (iii) Correlation of X and Y

(07 Marks)

OR

- 8 a. In a certain factory turing out razor blades, there is a small chance of 0.002 for a blade to be defective. The blades are supplied in packets of 10. Use Poisson distribution to calculate the approximate number of packets containing: (i) no defective (ii) one defective (iii) two defective blades, in a consignment of 10,000 packets. (06 Marks)
 - b. In an examination 7% of students score less than 35% marks and 89% of students score less than 60% marks. Find the mean and standard deviation if the marks are normally distributed. Given p(0 < z < 1.2263) = 0.39 and p(0 < z < 1.4757) = 0.43. (07 Marks)
 - c. Given:

			2"	
X	0	1	2	3
0	0	1/8	1/4	1/8
1	1/8	1/4	1/8	0

Find: (i) Marginal distribution of X and Y (ii) E[X], E[Y], E[XY]

(07 Marks)

Module-5

- 9 a. Define the terms:
 - (i) Null hypothesis
 - (ii) Confidence interval

(iii) Type-I and Type-II errors

(06 Marks)

- b. A certain stimulus administered to each of the 12 patients resulted in the following change in the blood pressure 5, 3, 8, -1, 3, 0, 6, -2, 1, 5, 0, 4. Can it be concluded that the stimulus will increase the blood pressure (t_{0.05} for 11 d.f is 2.201) (07 Marks)
- c. Given the matrix $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$. Find the fixed probability vector. (07 Marks)

OR

- 10 a. A die thrown 9000 times and a thrown of 3 or 4 was observed 3240 times. Is it reasonable to think that the die is an unbiased one? (06 Marks)
 - b. Four coins are tossed 100 times and the following results were obtained:

Number of Heads	0	1	2	3	4
Frequency	5	29	36	25	5

Fit a binomial distribution for the data and test the goodness of fit [$\chi^2_{0.05} = 9.49$ for 4 d.f].

(07 Marks)

c. Every year, a man trades for his car for a new car. If he has Maruti, he trade it for a Tata. If he has a Tata, he trade it for a Honda. However, if he has a Honda, he is just as likely to trade it for a new Honda as to trade it for a Maruti or a Tata. In 2016, he bought his first car which was a Honda. Find the probability that he has (i) 2018 Tata (ii) 2018 Honda (iii) 2018 Maruti.