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ABSTRACT

A connected graph G is said to be Hamiltonian-t-laceable if there exists a Hamiltonian path between
every pair of distinct vertices at a distance t’ in G and Hamiltonian-t*-laceable if there exist at least
one such pair, where t is a positive integer. In this paper we explore Hamiltonian-t*- Laceability
properties of the cyclic product C(2n, m) and the Brick product C(2n+1, 3, 2) of cycles.

Keywords: Hamiltonian-t -laceable graph; Cyclic product; Brick product; Laceability number.
2010 Mathematics Subject Classification: 05C45, 05C99.

1. INTRODUCTION

Let G be a finite, simple connected undirected graph. Let u and v be two vertices in G. The
distance between u and v denoted by d(u,v) is the length of a shortest u-v path in G. G is
Hamiltonian-t-laceable if there exists a Hamiltonian path between every pair of vertices u and v with
d(u,v)=t and Hamiltonian-t*-laceable if there exists at least one such pair with d(u,v)=t where t is a
positive integer such that 1<t < diamG. The concept of Hamiltonian laceability of brick products of
even cycles was studied by B. Alspach, C.C. Chen and Kevin Mc Avaney in [1]. In [2], Leena
Shenoy and R. Murali have discussed the Hamiltonian-t*-laceability of (m,r)-Brick
Product of odd cycles C(2n+1,m,r) for m=2 and r=2 and cyclic product for C(2n,m)
for m=1,2.

First, we recall the following definitions.

Definition 1.1. Let m and n be positive integers. Let C,, = a,a,a, 8,3, a........... a,, , 8, denote a
cycle of order 2n (n>1). Then, the cyclic product of C,, denoted by C(2n, m) is defined as follows.

Copyright © 2012 ijogt.com-Shihan International Publications, India. All rights reserved.  Page 32


mailto:girisha@acharya.ac.in

Hamiltonian Laceability in Cyclic product and Brick product of Cycles

For m=1, C(2n, 1) is obtained from C,, by adding chords a, (a,, ), 1< k < (n-1) and
a, (a,,), for k=n where the computation is performed under modulo 2n.

For m>1, C(2n, m) is obtained by first taking disjoint union of m copies of C,, namely
Can(2), Can(2), Can(3)...... Con(m) where for each i=1,2,3,....m Con(i) =
Ay Ajp Q3 Ajg Qs Ajgevvennnnn j(an1) Qo FUIther:

Case(i): If m is even, an edge is drawn to join a; toa;,,; for both odd or both even
I< i<(m-1), 1 £j<2n whereas for odd i and even 1< j <2nan edge is drawn to joina; toa, ., -
Finally an edge is drawn to join a;,, toa,.

Case(ii): If m is odd an edge is drawn to join a; toa,,,; for both odd or both even

I i< (m-1), 1 <j <2n whereas for odd i and even 1< j < 2n an edge is drawn to join
a; toa,,,. Finally an edge is drawn to join a,,, toa,,.

The Cyclic products C(8, 4) and C(8, 5) are shown in Fig 1 and Fig 2.

Fig.2 C(8, 5)

Definition 1.2. Let m, n and r be positive integers. Let Coni1= a, a,@, 8,8, as.......... a,, a, denote a

cycle of order 2n+1 (n>1). The (m,r)-brick product of C,,.1, denoted by C(2n+1,m,r) is defined for
m=1, we require that 1< r < 2n. Then C(2n+1,m,r) is obtained from Cy+1 by adding chords a, (a,., ),

0 <k < 2n where the computation is performed under modulo 2n+1.
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For m > 1, C(2n+1, m, r) is obtained by first taking the disjoint union of m copies Can1
namely Coni1 (1), Cons1(2), Cone1(3)........ Cons1(m) where for each i= 1,2,3...... m  Con(i) =
Ay AipQ3 A4 45 Ajgeveeennns (o) Q- FUrther:

Case(i): If m is odd and 1< r <2n where r is defined as r={(2n+1) j} +2, >0, an edge is
drawn to join a;j to ag+1); for both odd or both even 1< i< (m-1), 0 <j <2n whereas for each odd
1< i< (m-1) and even 1< j <2n an edge is drawn to join a; toa, ., . Finally an edge is drawn to

jOin a‘i(2r1) toa'm(2n+r)'
Case(ii): If m is even and 1< r <2n where r is defined as r={(2n+1) j} +3, j>0, an edge is
drawn to join a;j to ag+1); for both odd or both even 1< i< (m-1), 0 <j <2n whereas for each odd

I< i< (m-1) and even I< j <2n an edge is drawn to join a; toa,,;,,. Finally an edge is drawn to

joing,, to &

m(2n+r) *

The brick product C(11,3,2) is shown in Fig 3.
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Fig.3 C(11, 3, 2)

Definition 1.3. Let u and v be two distinct vertices in a connected graph G. Then u and v are
attainable in G if there exists a Hamiltonian path in G between u and v. We write (u,v) is attainable
in G.

Definition 1.4. Let a; and a; be any two distinct vertices in a connected graph G. Let E’ be a minimal
set of edges not in G and P be a path in G, such that P U E is a Hamiltonian path in G from a; to a;.

Then | E is called the t*-laceability number A*g) of (a,a;) and the edges in E are called the

t"- laceability edges with respect to (@,a;).

2. RESULTS

In [2], Leena N.Shenoy and R. Murali proved the following results.

Theorem 2.1. C(2n, 1) is Hamiltonian-t-laceable, 1 <t < diamG.

Theorem 2.2. Let G=C(2n, 2). Then
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Q) G is Hamiltonian-t*-laceable for odd t, 1<t < (n+1) with A% =1
(i) G is Hamiltonian-t*-laceable for even t, 1 <t < (n+1) with A% =2.

We now prove the following results.

Theorem 2.3. Let G=C(2n,m). If n > 3 and even, m > 3 and (2n-m) > 2, then
Q) G is Hamiltonian-t*-laceable for t =1.
(i) G is Hamiltonian-t*-laceable for all 2 <t <n with A * =1.
(ilf) G is Hamiltonian-t*-laceable for t = n+1 with A*q) =2.

Proof. Consider G = C (2n, m) with vertices
Q1 @y g3y Ay gr Ayseeniennnenne Ay (2n-1)1 Auor gy Bypreeeennees Q5(2n-1)1 201 8315 832

< an 1y Bar Bgpy Aypeeennnenns 40201y Q401 Agpr Aoy Bggereeennnenes

Let Psl By T8 T Ay T Ay T Ay B(2n-1) ~ &0

PsZ 18y — 8y — 83 8y, —Aggeeeeiinnnnn a2(2n—1) — 3y

a3(2n—1) — a5

— QA — A — Qs T g am(2n_1) — a0 be m sub pathS in G.

Let diamG = n+land let a,, and a;; be the vertices in P, We have the following cases.
Case (i). For t=1.

Let i = 2. Then(a,,,a;)is attainable and the path:
Pra,—a, —a,, —a,; —ay...cccc.....

ey~ Bpon) — Bmanag) — Bim(znozyeeeeeseereeees B, — Qyon) — Bygongy — Byangyeeeereerens a;
is a Hamiltonian path.

a

Fig.4 Hamiltonian laceable path from a;; to a;; in C(8,4)
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Case (ii). For 2< t<n.
Let 2 < i < (ntl). Then(a,,a,) is attainable for each and the path:

Pra,—a,, —a,, — 8, —8y..cccccc... By(2ny ~ Aa2n) ~ Aaran-1) ~ Bg(an_g)reeeeeeeeens By —Qpeeennnn a

—pnezn) ~ Bmezng) ~ Bm(an_g)-reeeereeeeees By — Ayon) ~ Ayang) ~ Aygang)eeereeerees A,y — 8y — 83— Qg By
is a Hamiltonian path with t* laceability edge (a,,,),a;,) -

Case (iii). For t=n+1.

Let i = nt2 for n >4, consider a vertex a,,; on P,, Then (a,;,a,;) is attainable and the path

Play; -8y —8y, —8y; =8y 8o(2n) ~ Ag(an) ~Az(an-1) T Bgiangy e By 8y ~ 8y ~ g 8y2n)
- a5(2n) a5(2n—l) - a5(2n 2)rrrrnranas Qg — 8y — 8y — Ay, 8 — 83— A Qg 'al(2n) - am(Zn) am(Zn 1)
am(2n—2) """"""" 'am(l+i) amS am6 """"" aml

is a Hamiltonian path with t* laceability edge (ay,,,ayn) aNd (21 8ps)-
Hence the proof. m

For n=3, we have the following result.

Theorem 2.4. Consider G=C(2n,m). If n = 3 and even, m > 3 and (2n-m) > 2 then G is Hamiltonian-
t*-laceable for t = 4 with A* =1.
Proof. Let G=C(6,m). If i = n+2 for n = 3, consider a vertex a,. on P,,. Then (a,;,a,,) is attainable

and the path:
Play —a, —a, —a, =5 8p0 — 830 ~8g5 ~8gq ~ 83—y — 8y ~ gy ~ gz Ayg
—Qgg —Agg — Aggeueeienens A — A Qg — Qs — A — 3~ T Aggeeeie, Ay —aAus — a4

is a Hamiltonian path with t* laceability edge (a,,,a,,5)-
Hence the proof. m

Theorem 2.5. Let G=C(2n,m). If n > 3 and odd, m > 3 and (2n-m) > 3 then
Q) G is Hamiltonian-t*-laceable for t =1.
(i) G is Hamiltonian-t*-laceable for all 2 <t <n with A*) =1.
(iif) G is Hamiltonian-t*-laceable for t = n+1 with A% =1.
Proof. Consider G=C(2n, m) with vertices:

A1y By By gy ygenneeennnnn Ay 201y A1 Byps Bypreeeennnns Bp(2n1)» Boor Bgpy Bgpeennrrveeenns

<B(on1y Baor Bgpy ypeeennnnns 840201y Q401 Agpr By Bggereeaannnnn A, o0 1) 8o
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Let P :a,—a,—a;—a, 5. .c.ccruu. &y (2n9) — Ao
Psz S8y —8yp —8y3 — Ay T 8pgne 8p(2n-1) ~ A0
Pss -85 83 833 — Ay ~8ggn 832n-1) ~ 830
Psm cQm — 8y, — 83 8, — Qg am(2n—l) —8no bemsub pathS in G.

Let diam G = n+1 and a,,and a,; be the vertices in P, We have the following cases.
Case (i). For t=1.

Let i = 2. Then (a,,,a,,) is attainable and the path:
Pra,—a,; —a,, =8, —8y...ccc....... 3y(2n) — Ba2n) — Qa(an1) — Ba2n-2) — Aa(2n-3) — Aa(an_ayeeereeeeeees

..... Bgy =8y —ypeeeeneeenennByian ~ Bsian) ~ Asang) ~ Bsan_) e oo Bmizn) ~ m(zn1) ~ Bm(an_z)++eee-
...... By — Q2 — Qyan gy — Byan gy eereeeeeeeeee By

is a Hamiltonian path.

a

- a.zt}
a € 4 o gta %\330
42 a %:Lﬁ 40
/
%&4 =z Al Do 23 so
Fig.5 Hamiltonian Path from a;; to a;, in C(8,5)
Case (ii). For2< t<n.
Let 2 < i < (ntl). Then(a,,a;) Iis attainable for each i and the path:
Pra,—a, —a,, =y —ay.......cnn 3y02n) — Bagan) — Aa2n1) — Bagan-2) — Qa(2n-3) — a(an_dy-eerreeereees
..... Byy =8y — ypeeeeneeenenByion) — Qsony — Asiang) — As(an_g)++eeeee- By — Ayion) ~ Qong) — Qyan o)+

is a Hamiltonian path with t* laceability edge (a,,),3,,).

Case (iii). For t=n+1

Sub Case (i). Let i =n+2 for even n > 4, consider a vertex am on P, . Then (a1 ,ami) is attainable
and the path:
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Pra,—a,—-a;-8;,—dg.erren. Ay(i_2) ~ Qi) — Am(izz) — Am(ig)+reereeerrees By — Ay2ny — Ayonoay
— Qan2) ~ Qygigy — Apiia) — Bp(iig) — Ap(igyrreereereeieeees Q1 — Qp(n) — Agan-gy) ~ Apan) — Apan_gyreereereenees
Ay — Qg — Aggigy — Ag(i_gyereereerens Qiany — Qagana) — Baan_g)reereereees Agiiagy — Qg — Qgi — Bggyeeereenees
........ Ay — Qyanyeeereeeene Amayzn — Ameny2nct) — Rma)2n z) e Bmonyzn — Amogy@n) — Am-sy@nz) e
.......... Qm_1ymsi-3) — Am(zn) — Am(an_gy«+eeeereeee- B

is a Hamiltonian path with t* laceability edge (&, ym.i-z: men)-

Sub Case (ii). Let i = n+2 for odd n > 3. Consider a vertex ami on P, . Then (aj1 ,am;) is attainable
and the path:

Play—a, —a;—a, — 5. Qi(an) T8y Ty T Az Ay ~ Am-)i-1) ~ A(m-1)(-2)
~ Qmy(-3) ~ A(mo)(iodyeeeeeeeeennnenn Ay ~ Amezy ~ Amz)z ~ Q(mog)gereeeerennnnnnnnns Am-2)2n) ~ Y(m-3)(2n)
~ A(m-3)2n-1) ~ Am-3)2n-2) ~ Am-3)(2n-g)rrrerereeeeees o1~ Am-p)i ~ Amoay(ien) ~ A(mon)(iea)eeeeeeeees &(m-1)(2n)
—Qp2n) ~ Amzno1) ~ Amanog)eeeeeeeeeereeee a,;

is a Hamiltonian path with t* laceability edge (a,;, a,_y)-
Hence the Proof. 0

Theorem 2.6. Let G = C(2n+1, 3, 2) for n > 3, then
Q) G is Hamiltonian-t*- laceable for t=1
(i) G is Hamiltonian-t*- laceable for 2 <t < (n+1) with A*=1
Proof. Consider G = C(2n+1, 3, 2) with vertices:

----- A3(2n-1) » A3(2n) » 830
under modulo 2n+1.

Let Psl S8y — 8 —83 8y ~ Qs Qy(2n-1) ~ Qyan) ~ Ao
P, 8, —a, —8,; =8y —Ayg.ccenurinnn Ay(2n-1) ~ Ap2n) ~ o
P,y —85 — 855 — 8y —Aggeereinenns a(on-1) — Bg(any — Ago DE three sub pathsin G.

Let diam G = n+land a,, and a; be the vertices in Ps; We have the following cases.
Case (i). For t=1.
Leti=2. Then(a,,,a,,)is attainable and the path:
Pla, - 810 ~ Q1) ~ gy T Aygeeeeninens A3 —8p3 — 8y — Ay — 8y ~y(qg) T gy ~Apgereereiennns
..... By, — 8y — 8gg — Aggenverainnnnnnnlgy — gy —8gy) — 8y — Ay,

is a Hamiltonian path.

ISSN 2320 — 6543 1jogt, 1(1) (2013), 17-22 Page 38



Hamiltonian Laceability in Cyclic product and Brick product of Cycles

'l'_\.']
jﬂﬂ
=]

Fig.6 Hamiltonian Path from a;; to a;; in C(11, 3, 2)

Case (ii). For2 <t<n
Sub Case (i). For each odd i, 2 < i < (ntl), (a1, a&,;) Is attainable and the path

Pla,—a,- Qy(an) T By T Bygrneeaeenn Ay(is1) ~ Auivz) T Ap(ivz) T Ap(isa) T Ao T Bp(ingyreeeeeneeeies
----- Ap1 —8pg —8y(an) T 8pg T ApgereerinninnniBy(ing) T Ag(isz) T g(ipa) T g(igs)eeereeennBgg ~ 83 — 8y
—Aggereiininininns Q3i,0) ~ Qi) A A3 T Qg a;

is a Hamiltonian path with t* laceability edge (a,;,,), ).
Sub Case (ii). For each even i between 2 < i < (n+l), (a11, ai) is attainable and the path:

Pla, - 810 ~Qy(an) Ty T ygereainnes By (1) ~ Bisa) T Bpi T gy e 81 8y ~ 8p(2n) ~ Ay
Sl > DY SO Ayiv2) ~ Ag(ira) — Agirg) ~ Ag(isayrereeeeees dyy — Ay —Agy —Aggeieiiiininnn. Az, — Ay,
— Q3 Qg a,;

is a Hamiltonian path with t* laceability edge (a,.,,,a,)-
Case (iii). Fort=n+1
Sub Case (i). Let i=n+2 for odd n > 3, consider a vertex a, on P.. Then (a1 ,as) is attainable

and the path:
P: Ay — A, A3 = A, g Qg — 8y — 8y — Ay, —Apg —Apgeeenreirnirnninnnns Q1) — 831y — Byiz)
a9 T Aaqgy Qg — Qg9 —Ag(on) ~ Ay(an) T Ag(an-n) T Ag(ang)reereeeees A, — Az2n-1) ~ A3(2n-2)

- aS(Zn_s) ------------ as;

is a Hamiltonian path with t* laceability edge (a,;,a;:,4))-

Sub Case (ii). Let i=n+2 for even n > 4, consider a vertex a; onP,,.

Then (a,,,85) IS attainable and the path:
P:a,—a,—a;—a,—c...c..n.... Qo — App —Ap; —Byy —Apg — Apgevnininnnnninns

..... By2n) — gany — Bgp — Bgy — gpeerenneeeennaenBagy — Azi2n.1) — Az2n_2)

— By (an gyreeeennn as;

is a Hamiltonian path with t* laceability edge (as_y, a50n1))-

Hence the proof. O
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