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Abstract—  The graph G  is Hamiltonian laceable [2] if there exists a Hamiltonian path between every pair of distinct 

vertices in it at an odd distance. G is Hamiltonian-t-laceable (t*-laceable) if there exists a Hamiltonian path in G between 

every pair (at least one pair) of vertices u and v in G with the property tvud ),(  In this paper, we discuss the 

Hamiltonian laceability properties of the graph vG , where G  is the Star graph  )3(,,1  nKG n
.  We also 

explore the Hamiltonian Laceability properties of the subdivision graph
G . 

 
Index Terms—Hamiltonian path, Hamiltonian laceability, Hamiltonian-t-laceable path, i-Hamiltonian   laceability. 

I. INTRODUCTION 

Let G  be a finite, simple connected undirected graph. Let u and v be two vertices in G . The order of G  denoted 

by O ( G ) is the cardinality of the vertices of G. The distance between u and v denoted by ),( vud is the length of 

a shortest u-v path in G . G  is Hamiltonian Laceable if there exists a Hamiltonian path between every pair of 

distinct vertices in it at an odd distance. G  is Hamiltonian-t-laceable if there exists a Hamiltonian path between 

every pair of vertices u and v inG with the property tvud ),( and Hamiltonian-t*-laceable [2] if there exists a 

Hamiltonian path between at least one such pair with the property tvud ),(  , where t is a positive integer such 

that diamGt 1 . Hamiltonian laceability in the brick product of cycles was explored by B. Alspach, C.C. 

Chen and Kevin McAvaney in [1] where the authors proved the laceability in the brick product of odd cycles. 

Hamiltonian –t-laceability in the brick product of even cycles was studied by Leena. N. Shenoy and R. Murali in 

[2].  In [3], Girisha. A and R. Murali have studied Hamiltonian-t*-laceability of 4-regular graphs. In this paper we 

study the Hamiltonian-t*-laceability properties of the graph extended star graph vG   and the subdivision 

graph
G . 

Definition1.1: Let nKG ,1 be the star graph and )( ,1 nKVv . The graph vG   is obtained from G  by 

replacing the vertex v by a cycle of length n and joining the vertices of the cycle to the former neighbors of v as 

shown in Fig.1. 

 

 
Fig. 1: The Graphs G and vG  
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Definition1.2: Let G  be a complete graph. The subdivision graph obtained by inserting a vertex of degree two 

into any one edge of G and we denote it by
G .     

 When the inserted vertex in a subdivision of G  is specified, say u, we denote by )(uG  a graph with 

}{)())(( uGVuGV  and },{))(())(( xyxuxyGEuGE  where )(GExy . 

 

 
Fig. 2: The Graph K4(u) 

Definition1.3: Let G  be a connected graph of order n and let )(Ghp
be the length of a Hamiltonian path [4] 

between any two distinct vertices in G . A Hamiltonian path in G  is called a 0-Hamiltonian path if 

1)(  nGhp  and a 1-Hamiltonian path if nGhp )(
 

Definition1.4: Let i be a non-negative integer. A connected graph G  of order n is called i-Hamiltonian-t-laceable 

if there exists in G , a i-Hamiltonian path between every pair of distinct vertices u and v with the 

property tvud ),( , .1 diamGt   

Definition1.5: A connected graph G  of order n is called i-Hamiltonian-t*-laceable if there exists in G , a 

i-Hamiltonian path [4] between at least one pair of distinct vertices u and v with the property tvud ),( , 

.1 diamGt   

Definition 1.6: Let 3,,1  nKG n , be the star graph of order n. Then the extended star graph nnK ,,1 is 

obtained by inserting a star graph of order 1n to each pendent vertex of nK ,1 . 

II. RESULTS 

Theorem 2.1: The graph vKG n  ,1
, n ≥ 3 is i-Hamiltonian-1

*
-laceable for ni  . 

Proof: Let us denote the vertices of vK n ,1 by naaaaaa ..........,,,, 54321 and nbbbbbb ..........,,,, 54321 . 

Here we need to establish the following case to show that G  is i -Hamiltonian-1
*
-laceable. 

 

 

Fig. 2: The Graphs  nk ,1  and vk n ,1  
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In 1),(, 11 abdG  and the path 
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in G. 

 

Hence the proof                                     ▀ 

Theorem 2.2: The vkG n  ,1
, n ≥ 3 is i-Hamiltonian-2

*
-laceable for i=n-1. 

Proof: Let us denote the vertices of vK n ,1 by naaaaaa ..........,,,, 54321 and  nbbbbbb ..........,,,, 54321 . 

Here we need to establish the following case to show that G  is i-Hamiltonian-2
*
-laceable. In G, 2),( 21 abd  

and the path  

.frompathnHamiltoniaais),)(,)(,)(,)(,(..............),(
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Hence the proof                                      ▀ 

Theorem 2.3: Let G be the complete graph of order n  ( 3n ). Then 
G  

is 1-Hamiltonian-2
*
-laceable. 

Proof: Let )3(  nkG n
 be the complete graph and 

G be the subdivision graph obtained by inserting a 

vertex u  of degree two into any edge of G  with the end vertices x  and y  such that
 Gyxd .2),( has 

1n vertices and  12 Cn
 edges. 

 

Let  yaaaaaaxu n ,.....................,,,,,, 254321 
 be the vertices of 

G .  

Then the path  

.y   x  tofrompath  -laceable*2-nHamiltonia a is),(),(

),(...................),(),(),(),(),(),(:
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
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

 

Hence the proof                                      ▀ 

Theorem 2.4:  The graph nnk ,,1  is   i-Hamiltonian-1
*
-laceable for 3)( ,,1  nnkOi . 

Proof: Let nkG ,1
 
be a star graph of order n  and nnkG ,,11  be a extended star graph with vertices 

)1()2()3(54321 ..........,,,,   nnnnnn bbbbbbbb
 
and naaaaaa ..........,,,, 54321  and a parent vertex v . 

 

Fig. 3: The graph nk ,1  and nnk ,,1  
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In 1),(, 11 vadG and the path 
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Hence the proof                                       
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