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Abstract— The graph G is Hamiltonian laceable [2] if there exists a Hamiltonian path between every pair of distinct
vertices in it at an odd distance. G is Hamiltonian-t-laceable (t*-laceable) if there exists a Hamiltonian path in G between

every pair (at least one pair) of vertices u and v in G with the property d(U,V) =1 In this paper, we discuss the

Hamiltonian laceability properties of the graph G *V, where G is the Star graph G = Kin, (N=3). we also

explore the Hamiltonian Laceability properties of the subdivision graph G " .
Index Terms—Hamiltonian path, Hamiltonian laceability, Hamiltonian-t-laceable path, i-Hamiltonian laceability.

I. INTRODUCTION

Let G be a finite, simple connected undirected graph. Let u and v be two vertices inG . The order of G denoted
by O (G ) is the cardinality of the vertices of G. The distance between u and v denoted by d (U, V) is the length of
a shortest u-v path inG .G is Hamiltonian Laceable if there exists a Hamiltonian path between every pair of
distinct vertices in it at an odd distance. G is Hamiltonian-t-laceable if there exists a Hamiltonian path between
every pair of vertices u and v in G with the property d(u,V) =t and Hamiltonian-t*-laceable [2] if there exists a
Hamiltonian path between at least one such pair with the property d (u,Vv) =t , where t is a positive integer such

that 1<t <diamG . Hamiltonian laceability in the brick product of cycles was explored by B. Alspach, C.C.
Chen and Kevin McAvaney in [1] where the authors proved the laceability in the brick product of odd cycles.
Hamiltonian —t-laceability in the brick product of even cycles was studied by Leena. N. Shenoy and R. Murali in
[2]. In[3], Girisha. A and R. Murali have studied Hamiltonian-t*-laceability of 4-regular graphs. In this paper we
study the Hamiltonian-t*-laceability properties of the graph extended star graph G *Vv and the subdivision

graphG ™.
Definition1.1: Let G = K, be the star graph andv €V (K, ). The graph G*V is obtained from G by

replacing the vertex v by a cycle of length n and joining the vertices of the cycle to the former neighbors of v as
shown in Fig.1.

v

Fig. 1: The Graphs G and G *V
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Definition1.2: Let G be a complete graph. The subdivision graph obtained by inserting a vertex of degree two
into any one edge of G and we denote itby G ™" .

When the inserted vertex in a subdivision of G is specified, say u, we denote by G(u) a graph with
V(G(u)) =V (G) u{u}tand E(G(u)) = (E(G) — xy) w{xu, xy}where xy € E(G).
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Fig. 2: The Graph K,(u)
Definition1.3: Let G be a connected graph of order n and let h, (G) be the length of a Hamiltonian path [4]

between any two distinct vertices in G . A Hamiltonian path in G is called a 0-Hamiltonian path if
h,(G) =n—1 and a 1-Hamiltonian path if h (G)=n

Definition1.4: Let i be a non-negative integer. A connected graph G of order n is called i-Hamiltonian-t-laceable
if there exists in G , a i-Hamiltonian path between every pair of distinct vertices u and v with the
propertyd(u,v) =t, 1<t < diamG.

Definition1.5: A connected graph G of order n is called i-Hamiltonian-t*-laceable if there exists inG , a
i-Hamiltonian path [4] between at least one pair of distinct vertices u and v with the property d(u,v) =t
1<t <diamG.

Definition 1.6: LetG = K |, N> 3, be the star graph of order n. Then the extended star graph K,  is

obtained by inserting a star graph of order N —1to each pendent vertex of Kl,n .

Il. RESULTS
Theorem 2.1: The graph G = K, | *V, n > 3 is i-Hamiltonian-1"-laceable fori =n
Proof: Let us denote the vertices of K, *Vby @,,a,,8;,8,,85.......... a,and b,,b,,b;,b,,b;.......... b

Here we need to establish the following case to show that G is | -Hamiltonian-1"-laceable.

11.

Fig. 2: The Graphs K, , and K, *V
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In G, d(b;,a,) =1 and the path

P:(b,a,) v (a,b,)u(b,,a5)w(a; b)) w(b;a,)w(a,.b,)w(b,,as)w(as,bs)w(bs,a) v
(€100 o B IO (a,4,b,)v(b,,,a,)u(a,,b,)u(b,,a)is a Hamiltonian path fromb, to a,

Hence the proof .
Theorem 2.2: TheG =K, | *V,n >3 is i-Hamiltonian-2"-laceable for i=n-1.
Proof: Let us denote the vertices of K,/ *Vby @;,@,,85,8,,85.......... a,and b;,b,,b;,b,,b;.......... b, .

Here we need to establish the following case to show that G is i-Hamiltonian-2"-laceable. In G, d(b,,a,) =2

and the path

P:(a,b,) (b, a;)u(a;, b)) u(bs,a,)u(a,,b,) (b, a5)w(as,bs) b, as)w(ag,bs) w(bg,a;) v
(a;,b;) U, u(a,,,b, )b, ,,a,)@,,b,)b,, a)@,b) isa Hamiltonian path fromb, to a, inG.

Hence the proof u

Theorem 2.3: Let G be the complete graph of order n (n>3). Then G is 1-Hamiltonian-2"-laceable.
Proof: Let G =k, (n > 3) be the complete graph and G be the subdivision graph obtained by inserting a

vertex U of degree two into any edge of G with the end vertices X and y such thatd(x,y)=2.G" has
n+21lverticesand "C, +1 edges.

Let U,X,8;,8,,85,8,, 85 ereeeereererennn. a, ,,Yy betheverticesof G*.
Then the path
P:(x,a)u(a,a,)u(a,,a;)u(a;,a,)u(@,,as)u(@s,as) Ve u(a, s, a,,)Y

(a,,,u)u(u,y)isaHamiltonian - 2*-laceable pathfromx toy.
Hence the proof
Theorem 2.4: The graph k

[ |
)-3.

Proof: Let G = kl,n be a star graph of order N and G, = kl,n,n be a extended star graph with vertices

is i-Hamiltonian-1"-laceable for i = O(k

1,n,n 1n,n

b,,b,,b,,b,,b,.......... B3 ~Ban2) ~Pony @nd @,,8,,85,8,,85.00neee. a, and a parent vertexV .

v ‘V
13

12
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3 10

Fig. 3: The graph kl,n and K

1,n,n
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In G,, d(a,,Vv)=1and the path

P : (al' bl) N (bl’ bz) N (bz ' bS) Ui, = (bn—l’ az) Y (az ' bn) N (bn 1 bn+1) N (bn+1’ bn+2) = (bn+2 ' bn+3) =
(B35 05) Y % (b(Zn—3) , b(Zn—Z)) % (b(Zn—Z) ,85) U (8, b(2n—1)) % (b(2n—1) 0,) (05,054 ) U

U (Byn_2ynenp»V) i @i —hamiltonian —1" — laceable path from a, to v with i =O(k,, ,)—3.

Hence the proof
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