HAMILTONIAN LACEAB ILITY IN CONE PRODUCT GRAPHS

Girisha. A^{1} and R.Murali ${ }^{2}$
${ }^{1}$ Department of Mathematics, Acharya Institute of Technology, Bangalore.
Email: girisha@acharya.ac.in
${ }^{2}$ Department of Mathematics, Dr. Ambedkar Institute of Technology, Bangalore.
Email: muralir2968@gmail.com

Abstract

A connected graph G is said to be Hamiltonian-t-laceable if there exists a Hamiltonian path between every pair of distinct vertices at a distance ' t ' in G and Hamiltonian- t^{*}-laceable if there exist at least one such pair, where t is a positive integer. In this paper we explore Hamiltonian- t^{*} - Laceability properties of the Cone product $C_{p}(n)$, Ring product $R(2 n, 2 n, 1)$ and the C_{g}-product $C_{g}(n, m k)$ graphs, where $m \geq 2$ and n, k are positive integers.

Keywords: Hamiltonian- t^{*}-laceable graph, Cyclic product, Cone product.
2000 Mathematics Subject Classification: 05C45, 05C99.

1. INTRODUCTION

Let G be a finite, simple connected undirected graph. Let u and v be two vertices in G. The distance between u and v denoted by $d(u, v)$ is the length of a shortest $u-v$ path in G. G is Hamiltonian-t-laceable if there exists a Hamiltonian path between every pair of vertices u and v with $d(u, v)=t$ and Hamiltonian- $t *$ laceable if there exists at least one such pair with $d(u, v)=t$ where t is a positive integer such that $1 \leq t \leq$ diamG. The concept of Hamiltonian laceability of brick products of even cycles was studied by B. Alspach, C.C. Chen and Kevin Mc Avaney in [1]. In [2], Leena Shenoy and R. Murali have discussed the Hamiltonian laceability of Cyclic product $\mathrm{C}(2 n, m)$. Using th is concept, In this paper we explore Hamiltonian-t*laceability of Ring product $\mathrm{R}(2 n, 2 n, 1)$ of graph. Also we establish laceability properties of Cone product and $\mathrm{C}_{\mathrm{g}}-$ product graphs.

2. THE CONE PRODUCT GRAPH

The Cone product graph denoted by $C_{p}(n), n \geq 2$ is defined as follows.

First take Corona of two paths P_{n} and P_{n} i.e,
$P_{n} \circ P_{n}=G_{1}$ and denote the vertex set of G_{1} by $\mathrm{V}=r_{k}=\left\{a_{k 1}, a_{k 2}, a_{k 3} \ldots \ldots . . a_{k n}\right\}$ where $1 \leq k \leq n$.

Join each point r_{k} to a root vertex $a_{k 0}$.
Next, for each $1 \leq k \leq n-1$ an edge (called hooking edge) between the vertices $a_{n k}$ in r_{k} and to $a_{(k+1)_{1}}$ in r_{k+1} is drawn for each $1 \leq k \leq n-1$.

Finally, for $k=n$ an edge is draw to join a vertex $a_{k n}$ in r_{k} to a_{11} in r_{1}.

The cone product $C_{p}(n)$ is shown in figure 2.1.

Fig- 2.1

Theorem 2.1. The cone product $C_{p}(n), n \geq 4$ is hamil-tonian- t^{*}-laceable for $1 \leq t \leq n$.

Proof: Let $\mathrm{G}=C_{p}(n)$ be a cone graph with vertex set $r_{k}=\left\{a_{k 1}, a_{k 2}, a_{k 3} \ldots \ldots . a_{k n}\right\}$ where
$1 \leq k \leq n$. The number of vertices in G is $n(n+1)=n^{2}+n$ and number of edges is
$\left(\right.$ no. of vertices $\left.+n^{2}-1\right)=2 n^{2}+n-1$.
We consider the following cases

Case(i) For $t=1$

In $G, d\left(a_{11}, a_{10}\right)=1$ and the path
$\mathrm{P}:\left\{\left(a_{11}, a_{12}\right) \cup\left(a_{12}, a_{13}\right) \cup\left(a_{13}, a_{14}\right) \cup \ldots \ldots \cup\right.$
$\left.\left(a_{1(n-1)}, a_{1 n}\right)\right\} \cup\left(a_{1 n}, a_{2 n}\right) \cup\left\{\left(a_{21}, a_{22}\right) \cup\right.$
a22,a23U........ Ua2n-1,a2nUa2n,a31ソa31,a32טa
32,a33U........ Ua3n-1,a3nUa3n,a41U........Uakn-
1, $a k n \cup(a k 0, a(k-1) 0) \cup(a(k-1) 0$,
$\left.a_{(k-2) 0}\right) \cup \ldots \ldots \cup\left(a_{20}, a_{10}\right)$ is a Hamiltonian path

Hence $C_{p}(\mathrm{n})$ is Hamiltonian- 1^{*}-laceable
Case(ii): For $t=2$
Clearly, $d\left(a_{11}, a_{20}\right)=2$ and the path
$\mathrm{P}:\left\{\left(a_{11}, a_{10}\right) \cup\left(a_{10}, a_{12}\right) \cup\left(a_{12}, a_{13}\right) \cup\left(a_{13}, a_{14}\right) \cup\right.$
$\left.\ldots \ldots \cup\left(a_{1(n-1)}, a_{1 n}\right)\right\} \cup\left(a_{1 n}, a_{21}\right) \cup\left\{\left(a_{21}, a_{22}\right) \cup\right.$
$a 22, a 23 \cup(a 23, a 24) \cup \ldots \cup a 2 n-1, a 2 n \cup a 2 n, a 31$
Ua31,a32Ua32,a33U........Ua3n-1, a3nUa3n,a41
U........Uakn-1, aknU(ak0, a(k-1)0) U($a(k-1) 0$,
$\left.a_{(k-2) 0}\right) \cup \ldots \ldots \cup\left(a_{30}, a_{20}\right)$ is a Hamiltonian path.

Hence $C_{p}(n)$ is Hamiltonian- 2*-laceable
Case(iii): For $t=3$
In G, $d\left(a_{11}, a_{30}\right)=3$ and the path
$\mathrm{P}:\left\{\left(a_{11}, a_{10}\right) \cup\left(a_{10}, a_{12}\right) \cup\left(a_{12}, a_{13}\right) \cup\left(a_{13}, a_{14}\right) \cup\right.$ $\left.\ldots \ldots \cup\left(a_{1(n-1)}, a_{1 n}\right)\right\} \cup\left(a_{1 n}, a_{21}\right) \cup\left\{\left(a_{21}, a_{22}\right) \cup\right.$ $a 22, a 23 \cup(a 23, a 24) \cup \ldots \cup a 2 n-1, a 2 n \cup a 2 n, a 31$ Ua31, a32Ua32,a33U.........Ua3n-1, a3nUa3n,a41 U........Uakn-1, aknU(ak0, a(k-1)0) $\cup(a(k-1) 0$, $\left.a_{(k-2) 0}\right) \cup \ldots \ldots \cup\left(a_{30}, a_{20}\right)$ is a Hamiltonian path.

Hence $C_{p}(n)$ is Hamiltonian- 3*-laceable
Hence the Proof
Remark 2.1: If $n=2$ or 3, the Cone product $C_{p}(n)$ is Ha miltonian-2*-laceable.

Figure 2.2, illustrates a Hamiltonian path from a_{11} to a_{20} in $C_{p}(3)$. This path is
$\mathrm{P}:\left\{\left(a_{11}, a_{10}\right) \cup\left(a_{10}, a_{12}\right) \cup\left(a_{12}, a_{13}\right) \cup\left(a_{13}, a_{21}\right) \cup\right.$
$\left(a_{21}, a_{22}\right) \cup\left(a_{22}, a_{23}\right) \cup\left(a_{23}, a_{31}\right) \cup\left(a_{31}, a_{32}\right) \cup$ $\left(a_{32}, a_{33}\right) \cup\left(a_{33}, a_{30}\right) \cup\left(a_{30}, a_{20}\right)$.

Fig- 2.2

3. LACEABILITY IN RING PRODUCT OF GRAPHS

First, we recall [2] the definition of Cyclic product graph.

Let m and n be positive integers. Let $C_{2 n}=$ $a_{0}, a_{1}, a_{2} a_{3}, a_{4}, a_{5}, \ldots \ldots \ldots, a_{2 n-1}, a_{0}$ denote a cycle of order $2 n(n>1)$. Then, the cyclic product of $\mathrm{C}_{2 \mathrm{n}}$ denoted by $\mathrm{C}(2 n, m)$ is defined as follows.

For $m=1, \mathrm{C}(2 n, 1)$ is obtained from $\mathrm{C}_{2 \mathrm{n}}$ by adding chords $a_{k}\left(a_{2 n-k}\right), \quad 1 \leq k \leq(n-1)$ and $a_{k}\left(a_{2 n}\right)$, for $k=n$ where the computation is performed under modulo $2 n$.

Definition 3.1 : The Ring product $\mathrm{R}(2 n, 2 n, 1)$ is obtained by taking two copies of $\mathrm{C}(2 n, 1)$ with vertex set $V_{1}+V_{2}$ Where $V_{1}=\left\{a_{i}\right\}$ and $V_{2}=\left\{a_{i}^{\prime}\right\}$. Each vertex a_{i} in V_{1} is joined by a_{i}^{\prime} in $V_{2}, n \geq 3,0 \leq i \leq$ $2 n-1$.

Example : Ring product $R(6,6,1)$ is shown in Figure 3.1

Fig-3.1
Theorem 3.1. The graph $R(2 n, 2 n, 1)$ is Hamiltonian-t^{*}-laceable for $1 \leq t \leq 3$.

Proof: Consider the graph $G=R(2 n, 2 n, 1)$ with vertex set
$\mathrm{V}=\left\{a_{0}, a_{1}, a_{2}, a_{3}, a_{4} \ldots \ldots . a_{2 n-1}, a_{0}^{\prime}, a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}, a_{4}^{\prime}\right.$, $\left.\ldots \ldots . . ., a_{2 n-1}^{\prime}\right\}$.
G has $4 n$ number of vertices and $3(n+1)$ number of edges.

We consider the following cases
Case(i): For $t=1$
In $G, d\left(a_{0}, a_{0}^{\prime}\right)=1$ and the path P: $\left(a_{0}, a_{1}\right) \cup\left(a_{1}, a_{2}\right) \cup$ $\left(a_{2}, a_{3}\right) \cup\left(a_{3}, a_{4}\right) \cup \ldots \ldots \ldots \cup\left(a_{2 n-1}, a_{2 n-1}^{\prime}\right) \cup$ $\left(a_{2 n-1}\right.$,
$\left.a_{2 n-2}^{\prime}\right) \cup\left(a_{2 n-2}^{\prime}, a_{2 n-3}^{\prime}\right) \cup\left(a_{2 n-3}^{\prime}, a_{2 n-4}^{\prime}\right) \cup$
$\ldots \ldots \ldots \cup\left(a_{2}^{\prime}, a_{1}^{\prime}\right) \cup\left(a_{1}^{\prime}, a_{0}^{\prime}\right)$ is a Hamiltonian path.
Hence G is Hamiltonian-1*-laceable
Case(ii): For $t=2$
Clearly, $d\left(a_{0}, a_{n}^{\prime}\right)=2$ and the path P: $\left(a_{0}, a_{2 n-1}\right) \cup$
$\left(a_{2 n-1}, a_{2 n-2}\right) \cup\left(a_{2 n-2}, a_{2 n-3}\right) \cup\left(a_{2 n-3}, a_{2 n-4}\right) \cup$
$\ldots \ldots \ldots \cup\left(a_{n, a_{n-1}}\right) \cup\left(a_{n-1}, a_{n-2}\right) \cup\left(a_{n-2}, a_{n-3}\right) \cup$
$\ldots \ldots \ldots . \cup\left(a_{1}, a_{1}^{\prime}\right) \cup\left(a_{1}^{\prime}, a_{2 n}^{\prime}\right) \cup\left(a_{2 n-1}^{\prime}, a_{2 n-2}^{\prime}\right) \cup$
$\left(a_{2 n-2}^{\prime}, a_{2}^{\prime}\right) \cup \ldots \ldots \ldots \cup\left(a_{2}^{\prime}, a_{3}^{\prime}\right) \cup\left(a_{3}^{\prime}, a_{2 n-3}^{\prime}\right) \cup$
$\left(a_{2 n-3}^{\prime}, a_{2 n-4}^{\prime}\right) \cup\left(a_{2 n-4}^{\prime}, a_{4}^{\prime}\right) \cup\left(a_{4}^{\prime}, a_{5}^{\prime}\right) \cup$
$\left(a_{2 n-5}, a_{2 n-6}\right) \cup\left(a_{2 n-6}, a_{6}^{\prime}\right) \cup\left(a_{6}^{\prime}, a_{7}^{\prime}\right) \cup \ldots \ldots \ldots \cup$
$\left(a_{n-1}^{\prime}, a_{n}^{\prime}\right)$ is a Hamiltonian path.
Hence G is Hamiltonian-2*-laceable
Case(ii): For $t=3$
In $\mathrm{G}, \mathrm{d}\left(a_{0}, a_{2}^{\prime}\right)=3$ and the path $\mathrm{P}:\left(a_{0}, a_{2 n-1}\right) \cup$
$\left(a_{2 n-1}, a_{2 n-2}\right) \cup\left(a_{2 n-2}, a_{2 n-3}\right) \cup\left(a_{2 n-3}, a_{2 n-4}\right) \cup$
$\ldots \ldots \ldots \cup\left(a_{n}, a_{n-1}\right) \cup\left(a_{n-1, \mathrm{a}_{n-2}}\right) \cup\left(a_{n-3,}, a_{n-4}\right) \cup$
$\ldots \ldots \ldots . \cup\left(a_{1}, a_{1}^{\prime}\right) \cup\left(a_{1}^{\prime}, a_{2 n}^{\prime}\right) \cup\left(a_{2 n}^{\prime}, a_{2 n-1}^{\prime}\right) \cup$
$\left(a_{2 n-1}^{\prime}, a_{2 n-2}^{\prime}\right) \cup\left(a_{2 n-2}^{\prime}, a_{2 n-3}^{\prime}\right) \cup \ldots \ldots \ldots \ldots \cup$,
$\left(a_{n}^{\prime}, a_{n-1}^{\prime}\right) \cup \quad\left(a_{n-1}^{\prime}, a_{n-2}^{\prime}\right) \cup \ldots \ldots \ldots\left(a_{3}^{\prime}, a_{2}^{\prime}\right)$ is \quad a Hamiltonian path.

Hence G is Hamiltonian-3*-laceable.

Figure 3.2 shows Hamiltonian path in $G=R(10,10,1)$ between the vertices a_{0} to a_{5}^{\prime} is shown. This path is $\mathrm{P}:\left(a_{0}, a_{9}\right) \cup\left(a_{9}, a_{8}\right) \cup\left(a_{8}, a_{7}\right) \cup\left(a_{7}, a_{6}\right) \cup\left(a_{6}, a_{5}\right) \cup$ $\left(a_{5}, a_{4}\right) \cup\left(a_{4}, a_{3}\right) \cup\left(a_{3}, a_{2}\right) \cup\left(a_{2}, a_{1}\right) \cup\left(a_{1}, a_{1}^{\prime}\right) \cup$ $\left(a_{1}^{\prime}, a_{0}^{\prime}\right) \cup\left(a_{0}^{\prime}, a_{9}^{\prime}\right) \cup\left(a_{9}^{\prime}, a_{8}^{\prime}\right) \cup\left(a_{8}^{\prime}, a_{2}^{\prime}\right) \cup$ $\left(a_{2}^{\prime}, a_{3}^{\prime}\right) \cup\left(a_{3}^{\prime}, a_{7}^{\prime}\right) \cup\left(a_{7}^{\prime}, a_{6}^{\prime}\right) \cup\left(a_{6}^{\prime}, a_{4}^{\prime}\right) \cup\left(a_{4}^{\prime}, a_{5}^{\prime}\right)$

Fig- 3.2

4. C_{g} - PRODUCT

The C_{g} - Product $\quad C_{g}(n, m k)$ is defined as follows:

Let $\left\{a_{1}, a_{2}, a_{3}, a_{4} \ldots \ldots . . a_{n-1}, a_{0}=a_{n}\right\}$ be n number of vertices and for each i, jo in an edge a_{i} to $a_{i+m k}$, where $m \geq 2$, and computation is performed under modulo n. Where $k=\left\lfloor\frac{n-2}{m}\right\rfloor$.

Example: The graph $C_{g}(10,3 k)$ is shown in the figure 4.1.

Fig- 4.1
Now, we consider the following theorem
Theorem 4.1: Let $G=C_{g}(n, 2 k), n \geq 8$. Then, G is Hamiltonian- t^{*}-laceable for $t=1,2$. Where $n \neq 3(l+2)$, $l \geq 1$

Proof: Let $G=C_{g}(n, 3 k), n \geq 8$. The vertex set of G is given by $\mathrm{V}=\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5} \ldots \ldots . . a_{n-2}, a_{n-1}\right\}$

Case(i): For $n=3 l+5, l \geq 1$
Subcase(i): For $t=1$
In $G, d\left(a_{1}, a_{4}\right)=1$ and the path
$\mathrm{P}:\left(a_{1}, a_{n-1}\right) \cup\left(a_{n-1}, a_{n-3}\right) \cup\left(a_{n-3}, a_{n-5}\right) \cup$ $\ldots \ldots . . \cup\left(a_{5}, a_{3}\right) \cup\left(a_{3}, a_{6}\right) \cup \ldots \ldots \ldots \cup\left(a_{n-2}, a_{0}\right) \cup$ $\left(a_{0}, a_{2}\right) \cup\left(a_{2}, a_{4}\right)$ is a Hamiltonian path.

Hence G is Hamiltonian- 1^{*}-laceable for $n=3 l+5$.
Subcase(ii): For $t=2$
In $G, d\left(a_{1}, a_{2}\right)=2$ and the path
$P:\left(a_{1}, a_{n-1}\right) \cup\left(a_{n-1}, a_{n-3}\right) \cup\left(a_{n-3}, a_{n-5}\right) \cup$ $\ldots \ldots . \cup\left(a_{3}, a_{0}\right) \cup\left(a_{0}, a_{n-2}\right) \cup\left(a_{n-2}, a_{n-4}\right) \cup$ $\left(a_{n-4}, a_{n-6}\right) \cup \ldots \ldots \ldots \cup\left(a_{4}, a_{2}\right)$ is a Hamiltonian path.

Hence G is Hamiltonian- 2*-laceable for $n=3 l+5$.
Case(ii): For $n=3 l+7, l \geq 1$
Subcase(ii): For $t=1$
In G, $\mathrm{d}\left(a_{1}, a_{4}\right)=1$ and the path
$\mathrm{P}:\left(a_{1}, a_{n-2}\right) \cup\left(a_{n-2}, a_{n-5}\right) \cup\left(a_{n-5}, a_{n-8}\right) \cup$
$\ldots \ldots . . \cup\left(a_{5}, a_{2}\right) \cup\left(a_{2}, a_{n-1}\right) \cup\left(a_{n-1}, a_{n-4}\right) \cup$
$\ldots \ldots \ldots \cup\left(a_{6}, a_{6}\right) \cup\left(a_{3}, a_{0}\right) \cup\left(a_{0}, a_{n-3}\right) \cup$
$\left(a_{n-3}, a_{n-6}\right) \cup \ldots \ldots . \cup\left(a_{7}, a_{4}\right)$ is a Hamiltonian path.

Hence G is Hamiltonian- 1^{*}-laceable for $n=3 l+7$.
Subcase(ii): For $t=2$
In $G, d\left(a_{1}, a_{3}\right)=2$ and the path

$$
\begin{aligned}
& \mathrm{P}:\left(a_{1}, a_{n-2}\right) \cup\left(a_{n-2}, a_{n-5}\right) \cup\left(a_{n-5}, a_{n-8}\right) \cup \\
& \ldots \ldots . . \cup\left(a_{5}, a_{2}\right) \cup\left(a_{2}, a_{n-1}\right) \cup\left(a_{n-1}, a_{n-4}\right) \cup \\
& \left(a_{n-4}, a_{n-7}\right) \cup \ldots \ldots \ldots \cup\left(a_{6}, a_{0}\right) \cup\left(a_{0}, a_{n-3}\right) \cup \\
& \left(a_{n-3}, a_{n-6}\right) \cup \ldots \ldots . \cup\left(a_{7}, a_{3}\right) \text { is a Hamiltonian } \\
& \text { path. }
\end{aligned}
$$

Hence G is Hamiltonian- 2^{*}-laceable for $n=3 l+7$.

Hence the proof.

In Figure 4.2 Hamiltonian path in $\mathrm{G}=C_{y}(8,3 k)$, between the vertices a_{1} to a_{3} is shown. This path is $\mathrm{P}:\left(a_{1}, a_{7}\right) \cup\left(a_{7}, a_{5}\right) \cup\left(a_{5}, a_{3}\right) \cup\left(a_{3}, a_{0}\right) \cup\left(a_{0}, a_{6}\right) \cup$ $\left(a_{6}, a_{4}\right) \cup\left(a_{4}, a_{2}\right)$.

Fig- 4.2

Acknowle dgements

The first author is thankful to the Management and the staff of the Department of Mathematics, Acharya Institute of Technology, Bangalore for their support and encouragement. The authors are also thankful to the Management, Dr. A mbedkar Institute of Technology, Bangalore and R\&D centre, Department of Mathematics, Dr. A mbedkar Institute of Technology, Bangalore for their support.

References

[1] Brain Alspach C.C. Chen and Kevin Mc Avaney "On a class of Hamiltonian laceable 3-regular graphs", Journal of Discrete Mathematics 151(1996), pp19-38.
[2] Leena N. shenoy and R.Murali, "Laceability on a class of Regular Graphs", International Journal of computational Science and Mathematics, volume 2, Nu mber 3 (2010), pp 397-406.

BIOGRAPHIES

Girisha.A is working as Assistant Professor in the Department of Mathematics, Acharya Institute of Technology, Bangalore, Karnataka, India. He is about to complete his PhD degree from Visvesvaraya Technological University, Belgaum. He has published six research papers. He is a life member of Indian Mathematical society.

Dr. R. Murali is working as Professor in the Department of Mathematics, Dr. A mbedkar Institute of Technology, Bangalore, Karnataka, India. He has published several research papers in reputed journals. He is a life member of ISTE, ADMA and the Ramanujan Mathematical Society.

