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Abstract 

     A connected graph G is said to be Hamiltonian-

t-laceable if there exists a Hamiltonian path between 

every pair of distinct vertices at a d istance„t‟ in G and 

Hamiltonian-t*-laceable if there exist at least one 

such pair, where t is a positive integer. In this paper 

we explore Hamiltonian- t*- Laceab ility properties of 

the Cone product Cp(n), Ring product R(2n, 2n, 1) 

and  the Cg –product Cg(n, mk) graphs, where m ≥ 2 

and n, k  are positive integers. 
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1. INTRODUCTION 

       Let G be a finite, simple connected undirected 

graph. Let u and v be two vertices in G. The distance 

between u and v denoted by d(u,v) is the length of a 

shortest u-v path in G. G is Hamiltonian-t-laceable if 

there exists a Hamiltonian path between every pair of 

vertices u and v with d(u,v)=t and Hamiltonian-t*-

laceable if there exists at least one such pair with 

d(u,v)=t where t is a positive integer such that 1≤ t ≤ 

diamG. The concept of Hamiltonian laceability of 

brick products of even cycles was studied by B. Als-

pach, C.C. Chen and Kevin Mc Avaney in [1]. In  

[ 2 ],  Le ena Shenoy  and  R. Mu ra l i  have  d is -

cus s ed  the Ha milton ian  lac eab i l ity  o f Cyc -

l ic p roduct  C( 2 n , m ) . Us ing  th is  conc ep t , In  

th is  pap er  we e xp lor e Ha mil ton ian -t* -

la ceab i l ity  o f  Ring product R(2n, 2n, 1) of graph. 

Also we establish laceability properties of Cone 

product and  Cg – product graphs. 
 

2. THE CONE PRODUCT GRAPH 

       The Cone product graph denoted by 𝐶𝑝(n), n≥2 

is defined as follows. 

First take Corona of two paths 𝑃𝑛  and 𝑃𝑛  i.e,  

          𝑃𝑛 ∘ 𝑃𝑛 =𝐺1  and denote the vertex set of  𝐺1  by 

V=𝑟𝑘 ={𝑎𝑘1 , 𝑎𝑘2 , 𝑎𝑘3  ………𝑎𝑘𝑛 } where 1≤ k ≤n. 

Join each point 𝑟𝑘  to a root vertex  𝑎𝑘0 . 

Next, for each 1≤ k ≤ n-1 an edge (called hooking 

edge) between the vertices 𝑎𝑛𝑘  in 𝑟𝑘  and to 𝑎 𝑘+1 1  in   

𝑟𝑘 +1  is drawn for each 1 ≤ k ≤ n-1. 

Finally, for k  = n an edge is draw to join  a vertex 𝑎𝑘𝑛  

in 𝑟𝑘  to 𝑎11  in 𝑟1 . 

The cone product 𝐶𝑝(n) is shown in figure 2.1. 

 

Fig- 2.1  

Theorem 2.1. The cone product 𝐶𝑝(n), n≥4 is hamil-

tonian-𝑡∗-laceable for 1≤ 𝑡 ≤ n. 

Proof: Let  G=𝐶𝑝(n) be a cone graph with  vertex set 

𝑟𝑘 ={𝑎𝑘1  , 𝑎𝑘2 ,𝑎𝑘3 …….𝑎𝑘𝑛 }   where 

1≤ k ≤ n. The number of vertices in G is 

n(n+1)=𝑛2+n  and number o f edges is  
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(no. of vertices + 𝑛2 − 1) = 2𝑛2+n-1. 

We consider the following cases 

Case(i) For t=1 

In G, d(𝑎11 , 𝑎10 )=1 and the path 

P:{( 𝑎11 , 𝑎12 )∪( 𝑎12 , 𝑎13 )∪  𝑎13 , 𝑎14
 ∪ …… ∪

(𝑎1 𝑛−1 ,𝑎1𝑛 )}∪  𝑎1𝑛 , 𝑎2𝑛
 ∪   𝑎21 ,𝑎22  ∪

𝑎22,𝑎23∪……..∪𝑎2𝑛−1,𝑎2𝑛∪𝑎2𝑛,𝑎31∪𝑎31,𝑎32∪𝑎
32,𝑎33∪………∪𝑎3𝑛−1,𝑎3𝑛∪𝑎3𝑛,𝑎41∪……..∪𝑎𝑘𝑛−
1,𝑎𝑘𝑛∪ 𝑎𝑘0,𝑎(𝑘−1)0 ∪(𝑎(𝑘−1)0, 
𝑎(𝑘−2)0)∪ ……∪ (𝑎20 , 𝑎10) is a Hamiltonian path 

Hence 𝐶𝑝(n) is Hamiltonian- 1∗-laceable  

Case(ii): For t=2 

Clearly, d(𝑎11 ,𝑎20 ) =2 and the path 

P:{( 𝑎11 , 𝑎10 )∪( 𝑎10 , 𝑎12 )∪  𝑎12 , 𝑎13
 ∪ (𝑎13 , 𝑎14 ) ∪

……∪ (𝑎1 𝑛−1 ,𝑎1𝑛 )}∪  𝑎1𝑛 , 𝑎21
 ∪   𝑎21 ,𝑎22 ∪

𝑎22,𝑎23∪(𝑎23,𝑎24 ∪……..∪𝑎2𝑛−1,𝑎2𝑛∪𝑎2𝑛,𝑎31
∪𝑎31,𝑎32∪𝑎32,𝑎33∪………∪𝑎3𝑛−1,𝑎3𝑛∪𝑎3𝑛,𝑎41
∪……..∪𝑎𝑘𝑛−1,𝑎𝑘𝑛∪ 𝑎𝑘0,𝑎(𝑘−1)0 ∪(𝑎(𝑘−1)0, 
𝑎(𝑘−2)0)∪ ……∪ (𝑎30 , 𝑎20) is a Hamiltonian path. 

Hence 𝐶𝑝(n) is Hamiltonian- 2∗-laceable  

Case(iii): For t=3 

In G, d(𝑎11 , 𝑎30 ) =3 and the path 

P:{( 𝑎11 , 𝑎10 )∪( 𝑎10 , 𝑎12 )∪  𝑎12 , 𝑎13
 ∪ (𝑎13 , 𝑎14 ) ∪

……∪ (𝑎1 𝑛−1 ,𝑎1𝑛 )}∪  𝑎1𝑛 , 𝑎21
 ∪   𝑎21 ,𝑎22 ∪

𝑎22,𝑎23∪(𝑎23,𝑎24 ∪……..∪𝑎2𝑛−1,𝑎2𝑛∪𝑎2𝑛,𝑎31
∪𝑎31,𝑎32∪𝑎32,𝑎33∪………∪𝑎3𝑛−1,𝑎3𝑛∪𝑎3𝑛,𝑎41
∪……..∪𝑎𝑘𝑛−1,𝑎𝑘𝑛∪ 𝑎𝑘0,𝑎(𝑘−1)0 ∪(𝑎(𝑘−1)0, 
𝑎(𝑘−2)0)∪ ……∪ (𝑎30 , 𝑎20) is a Hamiltonian path. 

Hence 𝐶𝑝(n) is Hamiltonian- 3∗-laceable  

Hence the Proof                                                                                                                                  

Remark 2.1: If  n =2 or 3, the Cone product Cp(n) is 

Hamiltonian-2
*
-laceable.     

Figure 2.2, illustrates a Hamiltonian path from 𝑎11  to 

𝑎20  in 𝐶𝑝(3). Th is path is  

P:{( 𝑎11 , 𝑎10 )∪( 𝑎10 , 𝑎12 ) ∪  𝑎12 , 𝑎13
 ∪ (𝑎13 , 𝑎21 ) ∪

(𝑎21 , 𝑎22 ) ∪  𝑎22 , 𝑎23
 ∪ (𝑎23 ,𝑎31 ) ∪ (𝑎31 , 𝑎32 ) ∪

 𝑎32 , 𝑎33
 ∪ (𝑎33 , 𝑎30 ) ∪ (𝑎30 ,𝑎20 ). 

 

 

 

Fig- 2.2  

3. LACEABILITY IN RING PROD-

UCT OF GRAPHS 

      First, we recall [2] the definition of Cyclic prod-

uct graph. 

Let m and n be positive integers. Let C2n = 

012543210 ,..,,.........,,,, aaaaaaaa n  denote a 

cycle of order 2n (n>1). Then, the cyclic product of 

C2n denoted by C(2n, m) is defined as follows. 

For m=1, C(2n, 1) is obtained from C2n by 

adding chords ),( 2 knk aa   1≤ k  ≤ (n-1) and

),( 2nk aa  for  k  = n where the computation is per-

formed under modulo 2n. 

 

Definition 3.1 : The Ring product R(2n, 2n, 1) is 

obtained by taking two copies  of  C(2n,1) with vertex 

set 𝑉1 +𝑉2  Where 𝑉1 = {𝑎𝑖 } and 𝑉2 = {𝑎𝑖
′ }. Each ver-

tex 𝑎𝑖  in 𝑉1  is jo ined by 𝑎𝑖
′  in  𝑉2  , n≥ 3, 0 ≤ 𝑖 ≤

2𝑛 − 1. 

Example : Ring product R(6, 6, 1) is shown in Figure 

3.1 
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 Fig-3.1  

Theorem 3.1. The graph R(2n,2n,1) is Hamiltonian- 

𝑡∗-laceable for 1≤ 𝑡 ≤ 3. 

Proof: Consider the graph G=R(2n,2n,1) with vertex 

set 

V={𝑎0 , 𝑎1 , 𝑎2 , 𝑎3 , 𝑎4……..𝑎2𝑛 −1 , 𝑎0
′ , 𝑎1

′ , 𝑎2
′ , 𝑎3

′ , 𝑎4
′ ,

………..,𝑎2𝑛 −1
′ }.   

G  has 4n number of vertices and 3(n+1) number of 

edges. 

We consider the following cases 

Case(i): For t=1 

In G, d(𝑎0 , 𝑎0
′ )=1 and the path P:(𝑎0 , 𝑎1)∪  𝑎1 , 𝑎2

 ∪
 𝑎2 , 𝑎3

 ∪  𝑎3 , 𝑎4
 ∪ ………∪  𝑎2𝑛 −1 , 𝑎2𝑛 −1

′  ∪
(𝑎2𝑛 −1

′ ,
𝑎2𝑛 −2

′ ) ∪  𝑎2𝑛 −2
′ ,  𝑎2𝑛 −3

′  ∪ (𝑎2𝑛 −3
′ , 𝑎2𝑛 −4

′ ) ∪
……… ∪ (𝑎2

′ , 𝑎1
′ ) ∪ (𝑎1

′ ,  𝑎0
′ ) is a Hamiltonian path. 

Hence G is Hamiltonian-1∗-laceable  

Case(ii): For t=2 

Clearly, d(𝑎0 , 𝑎𝑛
′ ) = 2 and the path P:(𝑎0 , 𝑎2𝑛 −1)∪

 𝑎2𝑛 −1 ,𝑎2𝑛 −2
 ∪  𝑎2𝑛 −2 , 𝑎2𝑛 −3

 ∪  𝑎2𝑛 −3 , 𝑎2𝑛 −4
 ∪

……… ∪  𝑎𝑛 ,an −1 ∪  𝑎𝑛 −1,an−2 ∪  𝑎𝑛 −2,𝑎n−3 ∪

……… .∪  𝑎1 , 𝑎1
′  ∪ (𝑎1

′ , 𝑎2𝑛
′ ) ∪  𝑎2𝑛 −1

′ , 𝑎2𝑛 −2
′  ∪

(𝑎2𝑛 −2
′ ,𝑎2

′ ) ∪ ………∪ (𝑎2
′ ,𝑎3

′ ) ∪ (𝑎3
′ , 𝑎2𝑛 −3

′ ) ∪ 

(𝑎2𝑛 −3
′ ,𝑎2𝑛 −4

′ )∪ (𝑎2𝑛 −4
′ , 𝑎4

′ ) ∪  𝑎4
′ , 𝑎5

′  ∪
 𝑎2𝑛 −5

′ ,𝑎2𝑛 −6
′  ∪  𝑎2𝑛 −6

′ , 𝑎6
′  ∪  𝑎6

′ , 𝑎7
′  ∪ ……… .∪

(𝑎𝑛−1
′ , 𝑎𝑛

′ ) is a  Hamiltonian path. 

Hence G is Hamiltonian-2∗-laceable  

Case(ii): For t=3 

In G, d(𝑎0 , 𝑎2
′ ) = 3 and the path P:(𝑎0 , 𝑎2𝑛 −1)∪

 𝑎2𝑛 −1 ,𝑎2𝑛 −2
 ∪  𝑎2𝑛 −2 , 𝑎2𝑛 −3

 ∪  𝑎2𝑛 −3 , 𝑎2𝑛 −4
 ∪

……… ∪  𝑎𝑛 ,𝑎n−1 ∪  𝑎𝑛 −1,an−2 ∪  𝑎𝑛−3,𝑎n−4 ∪

……… .∪  𝑎1 , 𝑎1
′  ∪ (𝑎1

′ , 𝑎2𝑛
′ ) ∪  𝑎2𝑛

′ , 𝑎2𝑛 −1
′  ∪

(𝑎2𝑛 −1
′ ,𝑎2𝑛 −2

′ ) ∪ (𝑎2𝑛 −2
′ ,𝑎2𝑛 −3

′ ) ∪ ……… …∪
(𝑎𝑛

′ , 𝑎𝑛−1
′ ) ∪ (𝑎𝑛 −1

′ ,𝑎𝑛 −2
′ )∪ …… … .∪ (𝑎3

′ , 𝑎2
′ )is a   

Hamiltonian path. 

Hence G is Hamiltonian-3∗-laceable.   

          

Figure 3.2 shows Hamiltonian path in G=R(10, 10, 1) 
between the vertices 𝑎0  to 𝑎5

′  is shown. This path is  

P:(𝑎0 , 𝑎9)∪ (𝑎9 ,𝑎8) ∪ (𝑎8 ,𝑎7) ∪  𝑎7,𝑎6 ∪  𝑎6 ,𝑎5 ∪

 𝑎5 ,𝑎4 ∪  𝑎4,𝑎3 ∪  𝑎3 ,𝑎2 ∪  𝑎2 ,𝑎1 ∪  𝑎1 ,𝑎1
′  ∪

(𝑎1
′ , 𝑎0

′ )  ∪ (𝑎0
′ , 𝑎9

′ ) ∪ (𝑎9
′ , 𝑎8

′ )  ∪ (𝑎8
′ , 𝑎2

′ ) ∪
(𝑎2

′ , 𝑎3
′ ) ∪ (𝑎3

′ , 𝑎7
′ ) ∪ (𝑎7

′ ,𝑎6
′ ) ∪ (𝑎6

′ , 𝑎4
′ ) ∪ (𝑎4

′ , 𝑎5
′ ) 

 

Fig- 3.2  

 

 

 

4. Cg- PRODUCT 

      The 𝐶𝑔 – Product     𝐶𝑔(𝑛, 𝑚𝑘) is defined as fol-

lows: 

Let {𝑎1 , 𝑎2 , 𝑎3 , 𝑎4 ……..𝑎𝑛 −1 ,𝑎0 = 𝑎𝑛 } be n number 

of vertices and for each i,  jo in an edge 𝑎𝑖  to 𝑎𝑖+𝑚𝑘 , 

where m≥ 2, and computation is performed  under 

modulo n.  Where k = 
𝑛−2

𝑚
 . 
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Example : The graph 𝐶𝑔 (10,3k) is shown in the figure 

4.1. 

 

Fig- 4.1  

Now,  we consider the following theorem 

Theorem 4.1  : Let  G=𝐶𝑔 (n, 2k), n≥ 8. Then, G is 

Hamiltonian- 𝑡∗-laceable for t=1,2. Where n≠3(l+2), 

l≥ 1 

Proof: Let G=𝐶𝑔 (n, 3k), n≥ 8. The vertex set of G is 

given by V={𝑎1 ,  𝑎2 ,  𝑎3 ,  𝑎4 ,  𝑎5……... 𝑎𝑛−2 ,  𝑎𝑛 −1} 

Case(i): For n= 3l+5, l≥ 1 

Subcase(i): For t=1 

In G, d(𝑎1 , 𝑎4)=1 and the path  

P:( 𝑎1 , 𝑎𝑛−1)∪ ( 𝑎𝑛 −1, 𝑎𝑛−3)∪  𝑎𝑛 −3 ,𝑎𝑛 −5
 ∪

…… . .∪ (𝑎5 , 𝑎3) ∪( 𝑎3 , 𝑎6 )∪ ………∪( 𝑎𝑛 −2 ,𝑎0 )∪
 𝑎0 , 𝑎2

 ∪ (𝑎2 , 𝑎4) is a Hamiltonian path. 

Hence G is Hamiltonian- 1∗-laceable for n=3l+5. 

Subcase(ii): For t=2 

In G, d(𝑎1 , 𝑎2)=2 and the path  

P:( 𝑎1 , 𝑎𝑛 −1)∪ ( 𝑎𝑛−1 , 𝑎𝑛 −3)∪  𝑎𝑛−3 , 𝑎𝑛 −5
 ∪

…… . .∪ (𝑎3 , 𝑎0) ∪( 𝑎0 , 𝑎𝑛−2 )∪ (𝑎𝑛 −2 , 𝑎𝑛 −4) ∪
(𝑎𝑛−4 , 𝑎𝑛 −6) ∪ …… …∪   𝑎4 , 𝑎2

  is a Hamiltonian  

path.  

Hence G is Hamiltonian- 2∗-laceable for n=3l+5. 

Case(ii): For n= 3l+7, l≥ 1 

Subcase(ii): For t=1 

In G, d(𝑎1 , 𝑎4)=1 and the path  

P:( 𝑎1 , 𝑎𝑛−2)∪ ( 𝑎𝑛 −2, 𝑎𝑛−5)∪  𝑎𝑛 −5 ,𝑎𝑛 −8
 ∪

…… . .∪ (𝑎5 , 𝑎2) ∪( 𝑎2 , 𝑎𝑛−1 )∪ (𝑎𝑛 −1 , 𝑎𝑛−4) ∪
……… ∪( 𝑎6 , 𝑎6)∪  𝑎3 , 𝑎0

 ∪  𝑎0 , 𝑎𝑛 −3
 ∪

 𝑎𝑛−3 , 𝑎𝑛 −6
 ∪ …… . .∪ (𝑎7 , 𝑎4) is a Hamiltonian 

path. 

Hence G is Hamiltonian- 1∗-laceable for n=3l+7. 

Subcase(ii): For t=2 

In G, d(𝑎1 , 𝑎3)=2 and the path  

P:( 𝑎1 , 𝑎𝑛 −2)∪ ( 𝑎𝑛 −2 , 𝑎𝑛 −5)∪  𝑎𝑛 −5 ,  𝑎𝑛−8
 ∪

…… . .∪ (𝑎5 , 𝑎2) ∪( 𝑎2 , 𝑎𝑛−1 )∪  𝑎𝑛 −1 , 𝑎𝑛−4
 ∪

(𝑎𝑛−4 ,  𝑎𝑛−7) ∪ ……… ∪( 𝑎6 ,  𝑎0 )∪  𝑎0 , 𝑎𝑛 −3
 ∪

 𝑎𝑛−3 ,  𝑎𝑛−6
 ∪ …… . .∪ (𝑎7 ,  𝑎3) is a Hamiltonian 

path. 

Hence G is Hamiltonian- 2∗-laceable for n=3l+7. 

      

Hence the proof.     
     

In Figure 4.2 Hamiltonian path in G=𝐶𝑦  (8,3k), be-

tween the vertices 𝑎1to 𝑎3  is shown. This path is  

P:(𝑎1 , 𝑎7)∪ (𝑎7 , 𝑎5 ) ∪ (𝑎5 , 𝑎3 )∪ (𝑎3 , 𝑎0 ) ∪ (𝑎0 , 𝑎6 )∪ 

(𝑎6 , 𝑎4)∪ (𝑎4 , 𝑎2). 

 

Fig- 4.2 
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