|--|

15MT73

Seventh Semester B.E. Degree Examination, Feb./Mar. 2022 **Signal Process**

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

a. Define signal. List the types of signals with an example for each.

(08 Marks)

b. Find the even and odd component of the signals given below:

OR

2 a. Check whether the system is memoryless casual, time invariant, linear and stable.

i) y(t) = x(t) + 10

ii) y(n) = x(n) + n.

(08 Marks)

b. For $x(n) = \{\frac{1}{2}, 1, 2, 4, 8\}$ sketch

i) $y_1(n) = x(n-3)$

ii) $y_2(n) = x(-n + 4)$.

(08 Marks)

Module-2

3 a. Determine the convolution of

 $x(n) = \{1, 5, 4, 3, 2\}$

 $h(n) = \{1, 0, 1, 0, 2\}.$

(08 Marks)

b. State and prove the property of commutation and distribution in convolution.

(08 Marks)

OR

4 a. Derive an expression for convolution sum.

(08 Marks)

b. Evaluate $x(n) = (\frac{1}{2})^n u(n)$ and h(n) = u(n-3).

(08 Marks)

Module-3

5 a. State and prove Parseval's theorem.

(08 Marks)

b. Compute and DFT of $x(n) = \{0, 1, 2, 3\}$.

(08 Marks)

OR

- 6 a. In direct computation of N-point DFT of x(n). How many:
 - i) Complex multiplication
 - ii) Complex additions
 - iii) Trigonometric functions are required
 - iv) Real multiplications are required.

(08 Marks)

b. Compute circular convolution of

 $x(n) = [1 \ 2 \ 3 \ 4]$

 $h(n) = [1 \ 0 \ 1 \ 0].$

(08 Marks)

Module-4

a. Derive an expression for order of a Butterworth low pass filter.

(08 Marks)

b. Obtain direct form I, direct from II and parallel realization of

H(z) =
$$\frac{8z^3 - 4z^2 + 11z - 2}{(z - \frac{1}{4})(z^2 - z + \frac{1}{2})}$$
.

(08 Marks)

OR

8 a. Design a Chebysheve I filter to meet the following specification,

Pass bound ripple ≤ 2dB

pass band edge 1rad/sec

stop band alternation ≥ 20dB and stopband edge - 1.3rad/sec.

(08 Marks)

- b. A digital low pass filter is required to meet the following specification:
 - i) Monotonic passband and stopband
 - ii) -3.01dB cutoff frequency of 0.5π rad
 - iii) Stopband alternation of atleast 15dB at 0.75π rad. Find the system function H(z) using bilinear transformation. (08 Marks)

Module-5

9 a. Realize FIR linear phase filter for 'N' to be even.

(08 Marks)

b. A low pass filter is to be designed with frequency response

H_d(w) = H_d(e^{jw}) =
$$\begin{cases} e^{-j2w}, & |w| < \frac{\pi}{4} \\ 0, & \frac{\pi}{4} < w < \pi \end{cases}$$

Determine $h_d(n)$ and h(n) if w(n) is a rectangular window defined below :

$$w_R(n) = \begin{cases} 1, & 0 \le n \le 4 \\ 0, & \text{otherwise} \end{cases}$$

(08 Marks)

OR

10 a. Obtain direct form I, direct form II cascade realization for,

$$y(n) = 0.75y(n-1) - 0.125y(n-2) + 6x(n) + 7x(n-1) + x(n-2).$$

(08 Marks)

b. Design a low pass filter with a cut off frequency $w_C = \frac{\pi}{4}$, a transition width $\Delta w = 0.02\pi$ and a stopband ripple $\delta_S = 0.01$. Use Kaiser window. (08 Marks)
