Domination number of Antipodal Graph and Antipodal Middle graph

${ }^{1}$ B. Prashanth
Department of Mathematics
Acharya Institute of Technology
Visvesvaraya Technological
University, Bangalore-560107,India
prashanthb@acharya.ac.in

${ }^{2}$ P. Samanta
Department of Mathematics Berharampur University
Berharampur -760007,India
dr.pns.math@gmail.com

${ }^{3}$ S. Vijay
Department of Mathematics
Govt. First Grade College
Kadur,Chikkamangalore,India
vijays_math@gmail.com

Abstract

In this paper we are finding Domination number of Antipodal graph, Introduce the new notation Antipodal Middle graph also by using domination number of Antipodal graph and Antipodal Middle graph, we discussed the different properties of Antipodal graph and Antipodal Middle graph.

2000 Mathematics Subject Classification: 05C 15, 05C 69
Keywords: Domination number, Antipodal graph, Middle graph, Diameter, Independent set .

1. INTRODUCTION:

A set D of vertices in a graph G is a dominating set if every vertex in $V-D$ is adjacent to some vertex in D. The domination number $\gamma(\mathrm{G})$ is the minimum cardinality of a dominating set of G.

A set S of vertices in a graph G is called an independent set if no two vertices in S are adjacent.
An independent set S is called maximal independent set if any vertex set properly containing S is not independent.

The lower independence number $\mathrm{i}(G)$ is the minimum cardinality of a maximal independent set of G

Antipodal graph

Singleton (1968) introduced the concept of the Antipodal graph of a graph G denoted by $A(G)$, is the graph on the same vertices as of G, two vertices being adjacent if the distance between them is equal to the diameter of G.

Domination number of Antipodal graph

By the motivation of existing definition of Domination number of a graph and Antipodal graph we can find the Domination number of Antipodal graph.

[^0]
Middle graph

The Middle graph of G [5], is defined with the vertex set $V(G) U E(G)$ where two vertices are adjacent if and only if they are either adjacent edges of G or one is a vertex and the other is an edge incident with it and it is denoted by $\mathrm{M}(G)$.

Antipodal Middle graph

We introduce a new notation called Antipodal Middle graph of a graph G, denoted by $\mathrm{A}[\mathrm{M}(\mathrm{G})]$, is the graph on the same vertices as of $\mathrm{M}(\mathrm{G})$, two vertices being adjacent if the distance between them is equal to the diameter of $\mathrm{M}(\mathrm{G})$.

Domination number of Antipodal Middle graph

By the motivation of existing definition of Domination number of a graph and Antipodal Middle graph we can find the Domination number of Antipodal Middle graph.

We consider only finite undirected graphs $G=(\mathrm{V}, \mathrm{E})$ without loops and multiple edges and follow Harary [4] for notation and terminology.

2. RESULTS AND DISCUSSION:

Proposition 1. (Aravamudhan and Rajendran [1])

For a graph $G=(\mathrm{V}, \mathrm{E}), G=\mathrm{A}(G)$ if, and only if G is complete.
From the above result we have the following
Proposition 2. For a complete graph $G=(\mathrm{V}, \mathrm{E}), \gamma(G)=\gamma(\mathrm{A}(G))$
Proof. Since G is a complete graph and n is the number of vertices of $G, \gamma(G)=1$ and by Proposition $1, G=\mathrm{A}(G)$ hence $\gamma(G)=\gamma(\mathrm{A}(G))=1$.

For any positive integer k , the $\mathrm{k}^{\text {th }}$ iterated antipodal graph $\mathrm{A}(G)$ is defined as follows:
$\mathrm{A}^{0}(G)=\mathrm{A}(G), \mathrm{A}^{\mathrm{k}}(G)=\mathrm{A}\left(\mathrm{A}^{\mathrm{k}-1}(G)\right)$
Corollary 3. For any graph G, and any positive integer $\mathrm{k}, \gamma\left(\mathrm{A}^{\mathrm{k}}(G)\right)=\gamma(\mathrm{A}(G))$

Proposition 4. (Aravamudhan and Rajendran [1])

For a graph $G=(\mathrm{V}, \mathrm{E}), \bar{G}=\mathrm{A}(G)$ if, and only if,
i). G is of diameter 2
or ii). G is disconnected and the components of G are complete graphs.
In view of the above, we have the following result:

[^1]Proposition 5. For a graph $G=(\mathrm{V}, \mathrm{E}), \gamma(\mathrm{A}(G))=\gamma(\overline{\mathrm{G}})$ if, and only if, i). G is of diameter 2
or ii). G is disconnected and the components of G are complete graphs.

Proof. Suppose that, $\gamma(\mathrm{A}(G))=\gamma(\overline{\mathrm{G}})$ then clearly we have $\mathrm{A}(G)=\overline{\mathrm{G}}$
and hence G satisfies the conditions of Proposition 4.
Conversely, G satisfies the conditions of Proposition 4 then $\overline{\mathrm{G}}=\mathrm{A}(G)$, obviously, $\gamma(\mathrm{A}(G))=\gamma(\overline{\mathrm{G}})$.
Proposition 6. For a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E}), \gamma(\mathrm{A}(\bar{G}))=\gamma(\mathrm{A}(G))$ if, and only if,
i). G is of diameter 3 or ii). G is disconnected and the components of G are complete graphs.

3. MAIN RESULTS:

Proposition 7: For any graph $\mathrm{G}, \gamma(\mathrm{G}) \leq \gamma\{\mathrm{A}[\mathrm{M}(\mathrm{G})]\}$
Proposition 8: For any graph G, $\gamma[\mathrm{A}(\mathrm{G})] \leq \gamma\{\mathrm{A}[\mathrm{M}(\mathrm{G})]\}$
Proposition 9: $\gamma(\mathrm{G})=\mathrm{i}(\mathrm{M}(\mathrm{G}))$ if and only if G is an antipodal graph.
Proof of Result is obvious

4. CONCLUSION:

In this paper, we discussed various properties of Antipodal graph and Antipodal Middle graph.

5. ACKNOWLEDGEMENTS:

The first author is thankful to the Chairman, Acharya Institute of Technolgy, Bangalore for his constant support.

6. REFERENCES:

[1]. R. Arvamudhan and B. Rajendran, On antipodal graphs, Discrete Math., 58(1984), 193-195.
[2]. R. Arvamudhan and B. Rajendran, On antipodal graphs, Discrete Math., 58(1986), 303-305.
[3] . T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of domination in graphs, Marcd Dekker, Inc., New York (1998)
[4]. F. Harary, Graph Theory, Addison-Wesley Publishing Co., 1969.
[5]. Danuta Michalak, on Middle and total graphs with coarsencss number equal 1, Springer Verlag Graph theory, lagow Proceedings, Berlin Heidelberg, New York, Tokyo, (1981) 139-150.
[6]. G.Chartrand, H.Hevia, E.B.Jarrett, M.Schultz, Subgraph distances in graphs defined by edge transfers, Discrete Math. 170 (1997) 63-79.
[7]. T.H.Haynes, S.T.Hedetniemi and P.J.Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc, New York, 1998.

AUTHOR'S BRIEF BIOGRAPHY:

Dr. B. Prashanth: Assistant professor in Department of Mathematics Acharya Institute of Technology, Bangalore. It is affiliated to Visvesvaraya Technological University, Belgaum, Karnataka. He published more than thirteen research papers in reputed International Journals and recently he received Ph.D from University of Mysore, he had 10 years of Teaching and research experience.

Dr. P. Samantha: Lecturer in Department of Mathematics, Berhampur University, Bhanjabihar, He is an Author of Theory and some Apllication of Summability Methods published by Natalia Nicolaev, lap Lambert, Germany. He is currently guiding 2 Ph. D students under Berhampur University.

Dr. Vijay. S: Assistant professor in Department of Mathematics, Govt. First grade College, Kadur, Chikkamangalore, Karnataka. He Received Ph. D degree from Visvesvaraya Technological University, Belgaum, Karnataka. He published more than 15 research papers in reputed International Journals.

[^0]: © IJMSET-Advanced Scientific Research Forum (ASRF), All Rights Reserved
 "IJMSET promotes research nature, Research nature enriches the world's future"

[^1]: © IJMSET-Advanced Scientific Research Forum (ASRF), All Rights Reserved
 "IJMSET promotes research nature, Research nature enriches the world's future"

