GBGS SCHEME

USN 17EC36

Third Semester B.E. Degree Examination, Feb./Mar.2022 Engineering Electromagnetics

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

a. State and explain Coulomb's law in vector form. (07 Marks)

- b. Let a point charge of $Q_1 = 20 \, \eta C$ be located at A(3,-1,5) and a charge of $Q_2 = 40 \, \eta C$ be located at B(-2, 3, 0). Find force \overline{F} at C(1, 2, 3) having charge of Q_3 of 10 μC in free space. (08 Marks)
- c. Define electric field intensity \overline{E} and explain the method of obtaining \overline{E} at a point in Cartesian co-ordinate system due to point charge Q. (05 Marks)

OR

- 2 a. Obtain the expression for electric field \overline{E} due to infinite line change with charge density of ρ_L C/m, at point P on y-axis at a distance 'r' from the origin. The line is placed along z-axis.

 (08 Marks)
 - b. Define electric flux density \overline{D} . Obtain the expression for \overline{D} due to point charge and infinite line charge. (06 Marks)
 - c. Find \overline{D} at P(6, 8, -10) m due to uniform infinite line charge with charge density (ρ_L) of 40 μ C/m on z-axis. (06 Marks)

Module-2

3 a. State and prove Gauss's law.

(08 Marks)

- b. Find div \overline{D} for the following field,
 - (i) $\overline{D} = (2xy y^2)\overline{a_x} + (x^2z 2xy)\overline{a_y} + x^2y\overline{a_z}$ C/m² at P₁(2,3,-1).
 - (ii) $\overline{D} = 2rz^2 \sin^2 \phi \overline{a}_r + rz^2 \sin 2\phi \overline{a}_\phi + 2r^2 z \sin^2 \phi \overline{a}_z$ C/m² at P₂(r = 2, $\phi = 110^\circ$, z = -1) (06 Marks)
- c. State and Prove divergence theorem.

(06 Marks)

OR

- 4 a. Obtain the expression for potential difference by bringing a unit positive charge from Point B to Point A. The point B is at r_B distance and point A is at r_A from the origin. (06 Marks)
 - b. Show that the energy required to assemble 'n' number of point charges in an empty space is,

$$W_{E} = \frac{1}{2} \sum_{m=1}^{n} Q_{m} V_{m}$$
 (08 Marks)

c. Find the workdone in moving +2C charge from B(2, 0, 0) m to A(0, 2, 0) m along the straight line joining the two points. Assume that the electric field \overline{E} is $12x\overline{a}_x - 4y\overline{a}_y V/m$. (06 Marks)

Module-3

- 5 a. Starting from Gauss's law in point form, deduce Poisson's and Laplace's equations.
 - b. Two plates of parallel plate capacitor or are separated by the distance of 'd' m and maintained at zero and V₀ voltages respectively. Determine capacitance between these two plates.

 (08 Marks)
 - c. State and explain Biot-Savart law.

(06 Marks)

OR

- 6 a. Obtain the expression for \overline{H} in all the regions if a cylindrical conductor carries a direct current I and its radius is 'R' m. Plot the variation of \overline{H} against the distance r from the centre of the conductor. (08 Marks)
 - b. Given the general vector $A = \sin 2\phi a_{\phi}$ in cylindrical co-ordinate system. Find curl of A at $\left(2, \frac{\pi}{4}, 0\right)$.
 - c. Explain the concept of scalar and vector magnetic potentials.

(06 Marks)

Module-4

- 7 a. Derive Lorentz force equation. (06 Marks)
 - b. Obtain the expression for magnetic force between two current elements and hence for current loops. (08 Marks)
 - c. A current element of 2 m in length lies along y axis centred at origin. The current is 5A in \bar{a}_y direction. If it experience a force $1.5\frac{(\bar{a}_x + \bar{a}_z)}{\sqrt{2}}N$ due to uniform field \bar{B} . Determine \bar{B} .

(06 Marks)

OR

- 8 a. In certain region, the magnetic flux density of magnetic material with $X_m = 6$ is given by $\overline{B} = 0.005 \text{ y}^2 \overline{a}_x \text{ T}$. At y = 0.4 m, find the magnitude of \overline{J} .
 - b. Derive the expression for the energy density in the magnetostatic fields. (08 Marks)
 - c. Tabulate the similarities of the electric and magnetic circuits.

(06 Marks)

- Module-5
- 9 a. A conductor of 1 cm in length is parallel to z-axis and rotates at radius of 25 cm at 1200 rpm. Find induced voltage if the radial field is given by, $\overline{B} = 0.5a_rT$. (06 Marks)
 - b. Derive Maxwell's equation in point form from Ampere's circuit law and Gauss's law for static field.

 (08 Marks)
 - c. List Maxwell's equation in point form and integral form.

(06 Marks)

OR

- 10 a. Derive the General Wave equation starting from Maxwell's equations. (08 Marks)
 - b. A 300 MHz uniform plane wave propagates through fresh water for which $\sigma = 0$, $\mu_r = 1$ and $\epsilon_r = 78$. Calculate attenuation constant, phase constant, wavelength and intrinsic impedance. (06 Marks)
 - c. State and prove pointing theorem.

(06 Marks)

* * * * *