USN					
	1				

17EC34

Third Semester B.E. Degree Examination, Feb./Mar. 2022 **Digital Electronics**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Write K-Map and list min terms and max terms for y = f(a, b, c, d) = b + cd. (04 Marks)
 - b. Simplify using K-map and Implement using basic gates $P = f(v, w, x, y, z) = \sum m (0, 5, 7, 9, 15, 18, 21, 29, 30)$.
 - c. Simplify using Quine McCluskey minimization technique $R = f(l, m, n, o, p) = M_0 M_5 M_7 M_{10} M_{17} M_{22} M_{27} M_{30}$.

(08 Marks)

OR

- 2 a. Simplify the function $f(d, e, f, g) = \sum m(0, 1, 2, 4, 5, 7, 9, 12)$ using K-map. (04 Marks)
 - b. $f(w, x, y, z) = \sum m(0, 1, 3, 7, 8, 12) + dc(5, 10, 13, 14)$. Do max term minimization using K map and write simplified P.O.S expression. (06 Marks)
 - c. Write reduced prime implicant table for the

 $f(v, w, x, y, z) = \sum m(1, 9, 10, 11) + dc(0, 3, 14, 25, 27)$. Implement using gates.

. (10 Marks)

Module-2

3 a. Write a note on BCD decoders.

(04 Marks)

b. Implement 3 to 8 line decoder using two 2 to 4 line decoders.

(06 Marks)

c. Implement $f(a, b, c) = \sum m(0, 2, 4, 7)$ using suitable decoder and with one NAND gate.

(10 Marks)

OR

4 a. Write a note on 10 line to BCD encoder.

(04 Marks)

b. Design 1 bit comparator with cascade inputs and outputs.

(08 Marks)

c. Realize $p = f(a, b, c, d) = \sum m(0, 1, 2, 4, 5, 7, 8, 9, 12, 13)$ using suitably MUX.

(08 Marks)

Module-3

5 a. Implement 8 bit Adder/subtractor using 7483.

(05 Marks)

b. Implement 4 to 16 line decoder using two 3 to 8 decoder.

(06 Marks)

c. Explain how fast carry technique reduces propagation times through parallelAdder.

(09 Marks)

OR

- 6 a. Write a note on D flip flop with neat figure and function table, character equation, FF excitation table and applications. (05 Marks)
 - b. Write a note on JK master slave flip flop.

(06 Marks)

c. Design a counter which has following states and repeats. $0-4-5\rightarrow 2$

Use only JK flipflops.

(09 Marks)

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8=50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Module-4

a. Design a mod 8 synchronous up counter using JK flip flops.

(05 Marks)

b. Write state diagram for give state table

Pr	Next xy/z								
	00	Z	01	Z	11	Z	10	Z	
A	В	0	C	0	В	1	A	0	
В	E	0	C	0	В	1	D	1	
С	A	0	В	0	С	1	D	1	
D	C	0	D	0	Α	1	В	0	
Е	C	0	С	0	С	1	Е	0	

Table Q.7(b)

(06 Marks)

c. Design a synchronous mod-5 down counter.

(00 Marks)

OR

8 a. Write a note on universal shift register.

(07 Marks)

- b. Write a note on Mod 8 twisted ring counter with logic diagram, state table, state diagram and timing diagram for positive edge triggered register. (08 Marks)
- c. The I/P signal shown below are applied to SR latch when initially in it's 0 state. Sketch Q and Q o/p signal assuming all timing constraints are satisfied. (05 Marks)

Fig.Q.8(c)

Module-5

9 a. Write a note on Moore machine sequential circuit model with neat diagram. (05 Marks)

b. Implement sequential machine for state table 9 (b) using DFF

Pre	sent	Next state xy/z											
F_{A}	$V_{\rm F_B}$	$F_{\!A}^{\scriptscriptstyle +}$	$F_{\rm B}^+$	Z	F_A^+	$F_{\rm B}^+$	Z	F_A^+	F_B^+	Z	F_A^+	F_{B}^{+}	Z
A 0	0	0	0	0	0	0	0	0	1	0	0	1	0
0	1	0	10	0	1	1	0	1	1	0	0	1	0
1	1	0	0	0	1	V 0	0	1	1	0	0	1	0
1	0	0	0	0	4 1	0	0	0	0	1	1	0	0

Table 9(b)

(07 Marks)

c. Write state table, state diagram, logic diagram and timing diagram for mod 16 up counter using positive edge triggered JK flip flop. (08 Marks)

OR

10 a. Write a note on Melay machine sequential circuit model.

(05 Marks)

b. Implement 3 bit ring counter using 7495 in right shift mode.

(05 Marks)

c. Write a note on set up time, hold time and delay time relevant to flip flops with waveforms.

(10 Marks)

* * * * *