Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Librarian Learning Resource Centre Acharya Institutes

GBGS SCHEME

USN	18EC33
-----	--------

Third Semester B.E. Degree Examination, Feb./Mar. 2022 **Electronic Devices**

Time: 3 hrs. Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Explain classification of semiconductor insulator and metals using energy band diagram.
 - o. Explain different types of bonding forces in solids. (04 Marks)
 - c. What are intrinsic and extrinsic materials? Explain briefly by taking suitable example.
 (08 Marks)

OR

- 2 a. Define Hall effect in semiconductor. Obtain an expression for mobility interms of Hall coefficient and resistivity. (08 Marks)
 - b. Consider a semiconductor bar with width w = 0.1 mm, thickness t = 10 μ m, length L = 5 mm. For B = 10 KG (1 KG = 10^{-5} wb/cm²) and current of 1 mA. We have $V_{AB} = -2$ mV and $V_{CD} = 100$ mV. Find the type, concentration and mobility of the majority carrier. [Refer Fig.Q2(b)]

Fig.Q2(b)

(04 Marks)

(08 Marks)

c. Derive an expression for conductivity and mobility from random thermal motion or electron in solid. (08 Marks)

Module-2

- 3 a. Explain the reverse bias p-n junction indicating the minority carrier distribution and variation of quasi fermi levels. (10 Marks)
 - b. With a neat diagram, explain in detail Avalanche Breakdown and derive an approximate analysis of avalanche multiplication. (10 Marks)

OR

- 4 a. Derive an expression for current and voltage for an illuminated junction of protodiode and discuss the operation in various quadrants in I-V characteristic. (08 Marks)
 - b. Explain the structure and operation of solar cell. Indicate the significance of Fill Factor.
 - c. A solar cell has a short circuit current of 100 mA and open circuit voltage of 0.8 V under full solar illumination fill factor is 0.7. What is maximum power delivered to load by this cell?

 (04 Marks)

Module-3				
_	a. Explain the summary of hole flow and electron flow in p-n-p transistor with		per blashing	
5	a.	1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
	1	Explain the process flow for double polysilicon self aligned BJT Fabrication.	(10 Marks)	
	b.	Explain the process now lot as a large		
		OR		
		Derive Eber's moll modes for Assymetric Transistor (coupled diode model).	(10 Marks)	
6	a.	Derive Eber's moll modes for Assymetric Transistor (coupled died). Write short notes on: (i) Base narrowing (ii) Avalanche Breakdown in transistor	(10 Marks)	
	b.	b. Write short notes on: (1) Base narrowing (11) Treatment		
		Module-4		
	7 a. Explain the structure and operation of pn JFET by varying V _{GS} and VDS independently. (06 Marks)			
7	a.	Explain the structure and operation of pit 31 E1 by varying 103	(06 Marks)	
		11 signal agriculated circuit of JEET and obtain the exp	ression for	
	b.			
		transconductance (gm) and plot the graph with respect to V _{gs} . (06 Marks) Explain the operation of MOS capacitor using energy band diagram for p-type substrate		
	c.	Explain the operation of MOS capacitor using energy build diagram in its		
		when:		
		(i) Negative gate bias		
		(ii) Moderate positive gate bias	(08 Marks)	
		(iii) Large positive gate bias		
		OP		
	8 a. Explain the ideal capacitance voltage characteristics of an MOS capacitor with p-type (08 Marks)			
8	a.		(08 Marks)	
	b.	substrate. Explain the operation of n-channel enhancement MOSFET and obtain the current voltage (08 Marks)		
		1-tionship	(04 Marks)	
	C	Write the different types of MOS structures and symbols for each.	(01111111111)	
		Module-5		
9	ĺ	Explain briefly the various steps involved in the fabrication of p-n junction:	(05 Marks)	
	a	D 111 - mad mrocessing	(05 Marks)	
	b	Ion implementation	(05 Marks)	
	C	\sim 1.17 Demonstration (CVII)		
		l. Photolithography	(05 Marks)	
OR CASE (40 M La)				
1	0 a	a. Write a note on Integrated Circuit (IC) and its advantages and types of ICs.	(10 Marks)	
1		e. Explain the fabrication of CMOS twin well process.	(10 Marks)	