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Abstract. In this paper, we study the Schur properties of convexities(concave) like Schur, Schur Geometric, Schur

Harmonic convexities on the ratio of difference of means obtained by arithmetic mean, geometric mean, harmonic

mean, contra harmonic mean, heron mean and root-square means. Also, established some inequalities related to

these means.
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1. Introduction

In [19], Taneja has established chain of inequality for the binary means as follows.

(1.1) H(a,b)≤ G(a,b)≤ N1(a,b)≤ He(a,b)≤ N2(a,b)≤ A(a,b)≤ S(a,b)
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For the real numbers a, b > 0, A(a,b) = a+b
2 , G(a,b) =

√
ab, H(a,b) = 2ab

a+b , He(a,b) =
a+
√

ab+b
3 , S(a,b) =

√
a2+b2

2 , C(a,b) = a2+b2

a+b are respectively called arithmetic mean, geometric

mean, harmonic mean, heron mean, root square mean and contra-harmonic mean.

N1(a,b) =
(√

a+
√

b
2

)2
N2(a,b) =

(√
a+
√

b
2

)(√
a+b

2

)
are the subsidiary means discussed in

[19]

Many ratio of difference of well known means are studied in [13]

(1.2) MSA(a,b) = S(a,b)−A(a,b)

(1.3) MSN2(a,b) = S(a,b)−N2(a,b)

(1.4) MSN3(a,b) = S(a,b)−N3(a,b)

(1.5) MSHe(a,b) = S(a,b)−He(a,b)

(1.6) MSN1(a,b) = S(a,b)−N1(a,b)

(1.7) MSG(a,b) = S(a,b)−G(a,b)

(1.8) MSH(a,b) = S(a,b)−H(a,b)

(1.9) MAN2(a,b) = A(a,b)−N2(a,b)

(1.10) MAG(a,b) = A(a,b)−G(a,b)

(1.11) MAH(a,b) = A(a,b)−H(a,b)

(1.12) MN2N1(a,b) = N2(a,b)−N1(a,b)

(1.13) MN2G(a,b) = N2(a,b)−G(a,b)

The above difference of means are nonnegative and convex in R2
+→ (0,∞)× (0,∞).

In this paper, we discussed convexities(concavity) related to ratio of difference of dual means.
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2. Preliminaries

This section deals with prerequisites essential to development of our work.

Lemma 2.1. In [14] Jamal Rooin and Mehdi Hassni introduced the homogeneous functions

f (x) and g(x), where

(2.1) f (x) =
ax−bx

cx−dx and g(x) = ln
ax−bx

cx−dx , for x ∈ (−∞,∞)

(1) convex, if ad−bc≥ 0

(2) concave, if ad−bc≤ 0 and

(3) equalities holds, if ad−bc = 0. for a > b≥ c > d > 0.

The Schur convex function was introduced by I. Schur, In 1923 and it has many impor-

tant applications in analytic inequalities. In 2003, X.M. Zhang propose the concept of Schur-

geometrically convex function which is an extension of Schur-convexity function ([5]-[18]).

Definition 2.1. [13], [20] Let x = (x1,x2, ...,xn) and y = (y1,y2, ...,yn) ∈ Rn

(1) x is majorized by y, (in symbol x ≺ y). If ∑
k
i=1 x[i] ≤ ∑

k
i=1 y[i] and ∑

n
i=1 x[i] ≤ ∑

n
i=1 y[i],

where x[1] ≥, ...,≥ x[n] and y[1] ≥, ...,≥ y[n] are rearrangements of x and y in descending

order.

(2) x ≥ y means xi ≥ yi for all i = 1,2.....n. Let Ω ∈ Rn(n≥ 2). The function ϕ : Ω→ R is

said to be decreasing if and only if −ϕ is increasing.

(3) Ω⊆ Rn is called a convex set if (αx1 +βy1, ....,αxn +βyn) for every x and y ∈Ω where

α,β ∈ [0,1] with α +β = 1.

(4) Let Ω ⊆ Rn the function ϕ : Ω→ R be said to be a Schur convex function on Ω if x≺ y

on Ω implies ϕ(x) ≤ ϕ(y) then ϕ is said to be a Schur concave function on Ω if and

only if −ϕ is Schur convex.

Definition 2.2. Let x = (x1,x2, ...,xn) and y = (y1,y2, ...,yn) ∈ Rn
+.

Let Ω ⊆ Rn is called harmonically convex set if (xα
1 yβ

1 , ...,x
α
1 yβ

1 )∈ Ω for all x and y ∈ Ω where

α,β ∈ [0,1] with α +β = 1. Let Ω⊆ Rn
+, the function ϕ : Ω→ R+ is said to be Schur harmoni-

cally convex function on Ω if (lnx1, ..., lnn)≺ (lny1, ..., lnyn) on Ω implies ϕ(x)≤ ϕ(y) then ϕ is
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said to be a Schur harmonically concave function on Ω if and only if−ϕ is Schur harmonically

convex.

Definition 2.3. [11],[20] Let Ω⊆ Rn is called symmetric set if x ∈ Ω implies Px ∈ Ω for every

n×n permutation matrix P the function ϕ : Ω→ R is called symmetric if for every permutation

matrix P, ϕ(Px) = ϕ(x) for all x ∈Ω.

Definition 2.4. Let Ω⊆ Rn ϕ : Ω→ R is called symmetric and convex function. Then ϕ is Schur

convex on Ω .

Lemma 2.2. Let Ω⊆ Rn be symmetric with non empty interior convex set and let ϕ : Ω→ R+

be continuous on Ω and differentiable in Ω0.If ϕ is symmetric on Ω and

(2.2) (x1− x2)

(
∂ϕ

∂x1
− ∂ϕ

∂x2

)
≥ 0(≤ 0).

holds for any x = (x1,x2, ...,xn) ∈ Ω0, then ϕ is a Schur convex (Schur concave) function.

Lemma 2.3. Let Ω⊆ Rn be symmetric with non empty interior geometrically convex set and let

ϕ : Ω→ R+ be continuous on Ω and differentiable in Ω0. If ϕ is symmetric on Ω and

(2.3) (lnx1− lnx2)

(
x1

∂ϕ

∂x1
− x2

∂ϕ

∂x2

)
≥ 0(≤ 0).

holds for any x=(x1,x2, ...,xn)∈Ω0, then ϕ is a Schur-geometrically convex (Schur-geometrically

concave) function.

Lemma 2.4. Let Ω⊆ Rn be symmetric with non empty interior Harmonically convex set and let

ϕ : Ω→ R+ be continuous on Ω and differentiable in Ω0. If ϕ is symmetric on Ω and

(2.4) (x1− x2)(x2
1

∂ϕ

∂x1
− x2

2
∂ϕ

∂x2
)≥ 0(≤ 0)

holds for any x=(x1,x2, ...,xn)∈Ω0, then ϕ is a Schur-harmonically convex (Schur-harmonically

concave) function.
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3. Main results

We set of this section with the difference of means defined in the equations 1.2 to 1.13. The

difference between the means are as follows.

MSN2(a,b)−MSA(a,b) = A(a,b)−N2(a,b)

MSHe(a,b)−MSN2(a,b) = N2(a,b)−He(a,b)

MSHe(a,b)−MSA(a,b) = A(a,b)−He(a,b)

MSN1(a,b)−MSHe(a,b) = He(a,b)−N1(a,b)

MSN1(a,b)−MSN2(a,b) = N2(a,b)−N1(a,b)

MN1H(a,b)−MGH(a,b) = N1(a,b)−G(a,b)

MSH(a,b)−MSG(a,b) = G(a,b)−H(a,b)

The above difference of the means are convex for all positive real value of ′t ′.

Now, we establish the ratio of difference of above means as follows:

MSN2−MSA

MSHe−MSN2

=
A−N2

N2−He

MSHe−MSA

MSN1−MSHe

=
A−He

He−N1

Theorem 3.1. For a > b > 0, the ratio of difference of mean

MSN2−MSA

MSHe−MSN2

=
A−N2

N2−He

is convex for all positive real values of ’t’.
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Proof. Let

f (t,1) =
MSN2(t,1)−MSA(t,1)
MSHe(t,1)−MSN2(t,1)

=
A(t,1)−N2(t,1)
N2(t,1)−He(t,1)

Using Lemma 2.1

f (t,1) = AHe−N2
2

f (t,1) = (
t +1

2
)(

t +1+
√

t
3

)− (

√
t +1
2

√
t +1

2
)2

f (t,1) =
t +1

2
(
t +1+

√
t

3
− (

√
t +1
2

)2)

f (t,1) =
(t +1)(

√
t−1)2

24
t ≥ 0

.

Hence, the ratio of difference of mean is convex for all positive real values of ′t ′. �

Theorem 3.2. For a > b > 0, the ratio of difference of mean

(3.1)
MSHe−MSA

MSN1−MSHe

=
A−He

He−N1

is convex for all positive real values of ′t ′.

Proof. Let

(3.2) f (t,1) =
MSHe(t,1)−MSA(t,1)
MSN1(t,1)−MSHe(t,1)

=
A(t,1)−He(t,1)
He(t,1)−N1(t,1)

Using Lemma 2.1,

f (t,1) = AN1−H2
e

f (t,1) = (
t +1

2
)(

√
t +1
2

)2− (
t +1+

√
t

3
)2

f (t,1) =
t2−6t +1+2

√
t +2t

√
t

72
≥ 0 f orall t ≥ 0

Hence it is convex for all positive real values of ′t ′. �
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4. Schur convexity of difference of Means

In this section, the Schur convex, the Schur-geometric, the Schur-harmonic convexity for the

difference of means are established.

Theorem 4.1. The ratio of difference of mean

MSN2−MSA

MSHe−MSN2

is

(1) Schur convex

(2) Schur geometrical convex

(3) Schur harmonical convex, for all a≥ b.

Proof. Let

f (a,b) =
MSN2(a,b)−MSA(a,b)
MSHe(a,b)−MSN2(a,b)

=
A(a,b)−N2(a,b)
N2(a,b)−He(a,b)

by Lemma 2.1,

f (a,b) = AHe−N2
2

f (a,b) =
a+b

2
a+b+

√
ab

3
− (

√
a+
√

b
2

√
a+b

2
)2

f (a,b) =
(a+b)(

√
a−
√

b)2

24

f (a,b) =
a2 +b2 +2ab−2a

√
ab−2b

√
ab

24

by finding the partial derivatives of f (a,b) and simple manipulation we have,

∂ f
∂a

=
2a+2b−3

√
ab−b(

√
b/
√

a)
24

∂ f
∂b

=
2b+2a−3

√
ab−a(

√
a/
√

b)
24
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Proof of (i):

T hen s = (
∂ f
∂a
− ∂ f

∂b
) =

1
24

(a
√

a√
b
−b

√
b√
a
)

T hen s = (a−b)(
∂ f
∂a
− ∂ f

∂b
) =

a−b
24

(
a2−b2
√

ab
)≥ 0 f or a≥ b.

This verifies the condition for Schur convexity.

Proof of (ii): we have

a
∂ f
∂a
−b

∂ f
∂b

= (
a−b

12
)(a+b−

√
ab)

T hen s = (lna− lnb)∑a
∂ f
∂a
−∑b

∂ f
∂b

= (lna− lnb)(
a−b

12
)(a+b−

√
ab)≥ 0 f or a≥ b.

This verifies the condition for Schur geometrically convex.

Proof of (iii): we have

a2 ∂ f
∂a
−b2 ∂ f

∂b
= (

a−b
24

)(2a2 +2b2 +4ab−3
√

ab(a+b))

Then

s=(a−b)∑a2 ∂ f
∂a
−∑b2 ∂ f

∂b
=(a−b)(

a−b
24

)(2a2+2b2+4ab−3
√

ab(a+b))≥ 0 f or a≥ b.

This verifies the condition for Schur harmonic convex. �

Theorem 4.2. The ratio of difference of mean

MSHe−MSA

MSN1−MSHe

is (i). Schur convex (ii). Schur geometrical convex (iii). Schur harmonically convex, for all

a≥ b.

Proof.

let f (a,b) =
MSHe(a,b)−MSA(a,b)
MSN1(a,b)−MSHe(a,b)

=
A(a,b)−He(a,b)
He(a,b)−N1(a,b)

Hence,

f (a,b) = AN1−H2
e
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f (a,b) = (
a+b

2
)(

√
a+
√

b
2

)2− (
a+b+

√
ab

3
)2

f (a,b) =
a2 +b2−6ab+2a

√
ab+2b

√
ab

72

by finding the partial derivatives of f (a,b) and simple manipulation gives

∂ f
∂a

=
1

72
(2a−6b+3

√
ab+b

√
b/
√

a)

∂ f
∂b

=
1

72
(2b−6a+3

√
ab+a

√
a/
√

b)

Proof of (i):

T hen s = (a−b)
∂ f
∂a
− ∂ f

∂b
=

(a−b)2

72
√

ab
(8
√

ab− (a+b))≥ 0 f ora≥ b

This verifies the condition for Schur convex.

Proof of (ii):

Then

a
∂ f
∂a
−b

∂ f
∂b

=
2(a−b)

72
(a+b+

√
ab)

T hen s = ( lna− lnb)(a
∂ f
∂a

)− (b
∂ f
∂b

) = ( lna− lnb)
2(a−b)

72
(a+b+

√
ab)≥ 0 f or a≥ b.

This verifies the condition for Schur geometrically convex.

Proof of (iii):

Then

a2 ∂ f
∂a
−b2 ∂ f

∂b
=

(a−b)
72

(2(a2 +b2 +ab)+3
√

ab(a+b)−6ab)

T hen s= (a−b)a2 ∂ f
∂a
−b2 ∂ f

∂b
=

(a−b)2

72
(2(a2+b2+ab)+3

√
ab(a+b)−6ab)≥ 0 f or a≥ b.

This verifies the condition for Schur harmonic convex. �
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