1	Dravien	
Leaming	Resource Certify strute & Technology	

GBGS SCHEME

					4	4	4	
--	--	--	--	--	---	---	---	--

15EE63

Sixth Semester B.E. Degree Examination, Feb./Mar. 2022 Digital Signal Processing

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Compute 4-point DFT of an input sequence : $x(n) = cos\left(\frac{n\pi}{4}\right)$ and plot its magnitude and phase angle. (06 Marks)
 - b. Obtain the linear convolution of the sequences $x(n) = \{1, 2, -1, 2, 3, -2, -3, -1, 1, 1, 2, -1\}$ and $h(n) = \{1, 2\}$, using overlap save method with 4 -point circular convolution. (10 Marks)

OR

- 2 a. Find the circular convolution of input sequence $x(n) = \{1, 2, 3, 4\}$ with impulse response $h(n) = \{2, 1, 2, 1\}$ using Stockham's method. (07 Marks)
 - b. State and prove circular time shifting property of Discrete Fourier transform. (03 Marks)
 - c. X(k) is a 14-point DFT of the sequence x(n), the first 8-samples of X(k) are given as: X(0) = 12; X(1) = (-1 + j3); X(2) = (3 + j4); X(3) = (1 j5) X(4) = (-2 + j2); X(5) = (6 + j3) X(6) = (2 j3); X(7) = 10. Compute the remaining samples of X(k) and find the value of $\sum_{n=0}^{13} |x(n)|^2$. (06 Marks)

Module-2

- 3 a. Show that FFT is computationally efficient than direct computation of DFT. (04 Marks)
 - b. What are the similarities and differences between DIT and DIF algorithms of FFT?

(04 Marks)

c. Compute 8-point DFT of the sequence x(n) = {1, 1, 1, 1} using Radix - 2 DIT - FFT algorithm.

OR

- 4 a. If $x_1(n) = \{1, 2, 0, 1\}$ and $x_2(n) = \{1, 3, 3, 1\}$, obtain the circular convolution of $x_1(n)$ and $x_2(n)$ using Radix 2 DIT FFT algorithm. (08 Marks)
 - b. If DFT X(k) is given as:

 $X(k) = \{0, 2\sqrt{2(1-j)}, 0, 0, 0, 0, 2\sqrt{2(1+j)}\}\$, determine the corresponding time sequence x(n) and draw the signal flow graph with all intermediate results, using inverse Radix -2 DIF – FFT algorithm. (08 Marks)

Module-3

- 5 a. The system function of an along filter is given as: $H_a(s) = \frac{s + 0.1}{(s + 0.1)^2 + 9}$. Obtain the system
 - function of the IIR digital filter using impulse invariance method. (06 Marks)
 - b. Design an analog filter with maximally flat response in the passband and an acceptable attenuation of -2dB at 20 radians/sec. The attenuation in the stopband should be more than 10dB beyond 30 radians/sec. (10 Marks)

OR

- 6 a. Design a lowpass 1rad/sec bandwidth Chebyshev filter with an acceptable passband ripple of 2dB, cut-off frequency of 1 rad/sec and stopband attenuation of 20dB or greater beyond 1.3 rad/sec. (10 Marks)
 - b. Use Bilinear transformation to design a fist order lowpass Butterworth filter that has a 3dB cut-off frequency at $W_c = 0.2\pi$. The normalized filter is given as:

$$H_{an}(s) = \frac{1}{s+1}.$$
 (06 Marks)

Module-4

- 7 a. Design a digital lowpass filter using Chebyshev filter design procedure that meets the following specifications: passband magnitude characteristics that is constant to 1dB for frequencies below $w = 0.2\pi$ and stopband attenuation of at least 15dB for frequencies between $w = 0.3\pi$ and π . Use Bilinear transformation. (10 Marks)
 - b. Obtain the general realization of parallel form for an IIR system. (06 Marks)

OR

8 a. Design a Chebyshev filter for the following specifications using impulse invariance method. $0.8 \leq |H(e^{j\omega})| \leq 1 \quad \text{for} \quad 0 \leq \omega \leq 0.2\pi \tag{12 Marks}$

 $|\,H(e^{j\omega})\,|\!\leq 0.2\ \ \text{for}\quad 0.6\pi\leq\omega\leq\pi$ b. A difference equation describing a filter is given as :

 $y(n) - \frac{3}{4}y(n-1) + \frac{1}{8}y(n-2) = x(n)\frac{1}{2}x(n-1)$

Draw Direct form – I and Direct form – II structures for an IIR system. (04 Marks)

Module-5

- 9 a. Design a normalized linear phase FIR filter having the phase delay of τ = 4 and atleast 40dB attenuation in the stopband. Also obtain the magnitude/frequency response of the filter.
 (12 Marks)
 - b. Obtain the cascade realization of the system function:

$$H(z) = 1 + \frac{5}{2}z^{-1} + 2z^{-2} + 2z^{-3}$$
. (04 Marks)

OR

- 10 a. Design a low pass FIR filter using frequency sampling technique having cut-off frequency of $\frac{\pi}{2}$ rad/sample. The filter should have a linear phase with length M = 17. (12 Marks)
 - b. Determine the direct form realization of the system function:

$$H(z) = 1 + 2z^{-1} - 3z^{-2} - 4z^{-3} + 5z^{-4}$$
. (04 Marks)

* * * * *