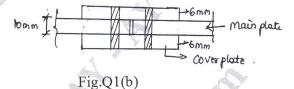
Learning Resource Central Admarya Institute & Technology

CBCS SCHEME

USN					
USN					

17CT72

Seventh Semester B.E. Degree Examination, Feb./Mar. 2022 Design of Steel Structures


Time: 3 hrs.

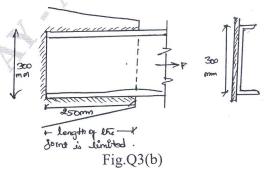
Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. Use of IS 800-2007 and steel tables are allowed.

Module-1

- a. What are rolled steel sections? List and explain different types of rolled steel sections with a neat sketch. (10 Marks)
 - b. Determine the bolt value for the shown butt joint in Fig.Q1(b) using M₂₀ and property class 5.6 bolts.

(10 Marks)

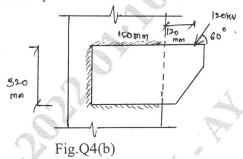

OR

- 2 a. What is bolted connections? Give the advantages and disadvantages of bolted connections.
 - b. Determine the efficiency of lap joint shown in Fig.Q2(b). Use M₁₆ bolt and class 5.6 Fe 410 plate is used. (10 Marks)

0 0 0 60mm 0 0 0 60mm 60mm 40mm Fig.Q2(b)

Module-2

- 3 a. What is welding? Explain briefly the welding defects with a neat figure. (12 Marks
 - b. Design a welded end connection for a tension member as shown in Fig.Q3(b), consisting of ISMC 300 to carry a load equal to full strength of the member, the length of the joint is limited to 250 mm. (08 Marks)



1 of 3

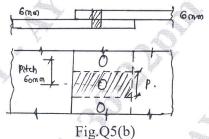
OR

4 a. What are the types and properties of welds? Explain with a neat figure. (10 Marks)

b. Determine the size of the weld required the shown bracket connection for Fig.Q4(b).

(10 Marks)

Module-3


5 a. Explain: (i) Theorem of plastic collapse

(ii) Plastic collapse load

(iii) Conditions of plastic analysis

(06 Marks)

b. Two plates of 6 mm thick are connected by "single bolted lap joint" with 20 mm dia bolts at 60 mm pitch. Calculate the efficiency of a joint, take 410 N/mm² and 4.6 grade bolt for the Fig.Q5(b). (14 Marks)

OR

6 Explain:-(i) Lug angles

(ii) Splices

(iii) Gusset plates

(iv) Factors effecting the strength of tension members

(20 Marks)

Module-4

- 7 a. Determine the compressive strength of angle strut ISA $100 \times 65 \times 8$ mm with a length 3m when connected by (i) with single bolt (ii) More than two bolts (iii) Welded connection. Take $f_y = 250$ MPa. (10 Marks)
 - b. Design a angle strut using double angle to carry a load 400 kN. Use welded connection. Take the length of the members as 2m. (10 Marks)

OR

- 8 a. Design a angle strut using single angle section to carry a load of 150 kN. Use M₂₀ property class 5.6 bolts. The length of the member is 2.5m. (10 Marks)
 - b. Determine compressive strength of double angle strut 2ISA 90×60×8 mm connected to gusset plate. (i) On same side (ii) On both sides.

 The thickness of gusset plate is 10mm and length is 2.5 mtrs. (10 Marks)

Module-5

9 a. Explain (i) Lateral stability of beams (ii) Factors affecting lateral stability (06 Marks)

b. A simply supported beam ISMB 350 @52.4 kg/m is used over a span of 5m. The beam carries an udl, live load 20 kN/m and DL 15 kN/m. The beam is laterally supported throughout. Check the safety of the beam. (14 Marks)

OR

10 a. What is slab and gusseted base?

(05 Marks)

b. A compression member ISHB 300 at 63 kg/m is carrying a load of 800 kN. Take M₂₀ grade of concrete and 150 kN/m² as SBC of soil. Design slab base and concrete base using welded or bolted connection. (15 Marks)

3 of 3