Chromatic number of Antipodal Graph

B. Prashanth
Department of Mathematics Acharya Institute of Technology Bangalore-560107 India
prashanthb@acharya.ac.in

Abstract

Chromatic number of a graph is the minimum number of colors with which a graph can be colored properly. In this paper we are finding the chromatic number of Antipodal graph, also we discussed the chromatic number of different properties of Antipodal graph.

Keywords: Chromatic number, Antipodal graph, complete graph, diameter.

I. INTRODUCTION:

Singleton (1968) introduced the concept of the Antipodal graph of a graph G, denoted Antipodal graph
by $A(G)$, is the graph on the same vertices as of G, two vertices being adjacent if the distance between them is equal to the diameter of G.

Chromatic number of Antipodal graph

By the motivation of existing definition of Chromatic number of a graph and Antipodal graph we can find the Chromatic number of Antipodal graph. We consider only finite undirected graphs $G=(V, E)$ without loops and multiple edges and follow Harary [4] for notation and terminology.

II. RESULTS AND DISCUSSION:

Proposition 1. (Aravamudhan and Rajendran [1]) For a graph $G=(V, E), G=A(G))$ if, and only if G is complete.

From the above result we have the following

Proposition 2. For a complete graph $\mathrm{G}=(\mathrm{V}, \mathrm{E}), \chi(\mathrm{G})=\chi(\mathrm{A}(\mathrm{G}))$

Proof. Since G is a complete graph and n is the number of vertices of $\mathrm{G}, \chi(\mathrm{G})=\mathrm{n}$ and by Proposition $1, \mathrm{G}=\mathrm{A}(\mathrm{G})$ hence $\quad \chi(\mathrm{G})=\chi(\mathrm{A}(\mathrm{G}))=\mathrm{n}$

For any positive integer k , the $\mathrm{k}^{\text {th }}$ iterated antipodal graph $\mathrm{A}(\mathrm{G})$ is defined as follows:
$\mathrm{A}^{0}(\mathrm{G})=\mathrm{A}(\mathrm{G}), \quad \mathrm{A}^{\mathrm{k}}(\mathrm{G})=\mathrm{A}\left(\mathrm{A}^{\mathrm{k}-1}(\mathrm{G})\right)$
Corollary 3. For any graph G, and any positive integer $\mathrm{k}, \chi\left(\mathrm{A}^{\mathrm{k}}(\mathrm{G})\right)=\chi(\mathrm{A}(\mathrm{G}))$

Proposition 4. (Aravamudhan and Rajendran [1]) For a graph $G=(V, E), \bar{G}=A(G)$ if, and only if, i). G is of diameter 2 or ii). G is disconnected and the components of G are complete graphs. In view of the above, we have the following result:

Proposition 5. For a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E}), \chi(\mathrm{A}(\mathrm{G}))=\chi(\overline{\mathrm{G}})$ if, and only if, i). G is of diameter 2 or ii$)$. G is disconnected and the components of G are complete graphs.

Proof. Suppose that, $\chi(\mathrm{A}(\mathrm{G}))=\chi(\overline{\mathrm{G}})$ then clearly we have $\mathrm{A}(\mathrm{G})=\overline{\mathrm{G}}$ and hence
G satisfies the conditions of Proposition 4.
Conversely, G satisfies the conditions of Proposition 4 then $\overline{\mathrm{G}}=\mathrm{A}(\mathrm{G})$, obviously, $\chi(\mathrm{A}(\mathrm{G}))=\chi(\overline{\mathrm{G}})$.

Proposition 6. For a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E}), \chi(\mathrm{A}(\overline{\mathrm{G}}))=\chi(\mathrm{A}(\mathrm{G}))$ if, and only if, i). G is of diameter 3 or ii). G is disconnected and the components of G are complete graphs.

Corollary 7. If G is a graph of diameter 2 and G is not disconnected then, $\chi(\mathrm{A}(\overline{\mathrm{G}}))<(\mathrm{A}(\mathrm{G}))$.

III. ACKNOWLEDGEMENTS:

The author is thankful to the reviewers for their valuable suggestions to enhance the quality of our article. Also, the author very much thankful to Dr. P. Siva Kota Reddy, Associate Professor, Siddaganga Institute of Technology, Tumkur for his constant support.

REFERENCES:

[1] R. Arvamudhan and B. Rajendran, On antipodal graphs, Discrete Math.,58(1984), 193-195.
[2] R. Arvamudhan and B. Rajendran, On antipodal graphs, Discrete Math.,58(1986), 303-305.
[3] F. Barahona, M. Grotschel, M. Junger, and G. Reinelt, An application of Combinatorial optimization to statistical physics and circuit layout design,Operations Research, 36 (3) (1988), 493-513.
[4] F. Harary, Graph Theory, Addison-Wesley Publishing Co., 1969.
[5] R. L. Brooks, on coloring the noods of a network, Proc. Cambridge Philos. Soc. 37 (1941) 194-197.

AUTHOR'S BRIEF BIOGRAPHY:

[^0]
[^0]: Dr. B. Prashanth: Assistant professor in Department of Mathematics Acharya Institute of Technology, Bangalore. It is affiliated to Visvesvaraya Technological University, Belgaum, Karnataka. He published more than ten research papers in reputed International Journals and recently he received Ph.D from University of Mysore, he had 8 years of Teaching and research experience.

