CBCS SCHEME

USN										
-----	--	--	--	--	--	--	--	--	--	--

15CS653

Sixth Semester B.E. Degree Examination, Feb./Mar. 2022 Operation Research

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Define operation research. Explain the phases of operation research.

(08 Marks)

- b. Define the following with reference to LPP
 - i) Feasible solution
 - ii) Slack variables
 - iii) Degeneracy
 - iv) Optimal solution.

(08 Marks)

OR

2 a. A firm manufactures 3 types of products A, B, C. These products are processed on 3 different machines. The time required to manufacture each of 3 products and the daily capacity of the 3 machines are given in the table.

Machine	Product A	Product B	Product C A	vailability of machines
1	2	3	2, 6	440
2	4.	_	_3	470
3	2	5		430

It is required to determine the daily number of units to be manufactured for each products. The profit per unit of a product A, B, C is Rs. 4, 3, 6 respectively. It is assumed that all the amount produced are consumed in a market. Formulate the mathematical model for a given LP.

(08 Marks)

b. Solve graphically for given LP

Max $Z = 100x_1 + 40x_2$

Subject to the constraints $5x_1 + 2x_2 \le 1000$

$$3x_1 + 2x_2 \le 900$$

$$x_1 + 2x_2 \le 500$$

where $x_1, x_2 \ge 0$.

(08 Marks)

Module-2

3 a. Find all the basic solutions to the following problem.

Max $Z = x_1 + 3x_2 + 3x_3$

Subject to the constraints $x_1 + 2x_2 + 3x_3 = 4$

$$2x_1 + 3x_2 + 5x_3 = 7$$

Also find which of the basic solution are

- i) Basic feasible
- ii) Non degenerative basic feasible
- iii) Optimal basic feasible.

(06 Marks)

b. Solve the following LP by simplex method:

Max $Z = 3x_1 + 4x_2$

Subject to the constraints $x_1 + x_2 \le 450$

$$2x_1 + x_2 \le 600$$

Where $x_1, x_2 \ge 0$.

(10 Marks)

OR

Solve the following LP by Big M – method:

Min $Z = 12x_1 + 20x_2$

Subject to the constraints $6x_1 + 8x_2 \ge 100$

$$7x_1 + 12x_2 \ge 120$$

Where $x_1, x_2 \ge 0$.

(08 Marks)

b. Use 2-phse Simplex method to

Max $Z = 5x_1 - 4x_2 + 3x_3$

Subject to the constraints $2x_1 + x_2 - 6x_3 = 20$

$$6x_1 + 5x_2 + 10x_3 \le 76$$

$$8x_1 - 3x_2 + 6x_3 \le 50$$

Where $x_1, x_2, x_3 \ge 0$.

(08 Marks)

Module-3

Explain the essence of duality theory.

(08 Marks)

Write the dual of the following LPP

Minimize $Z = 3x_1 - 6x_2 + 4x_3$

Subject to the constraints $4x_1 + 3x_2 + 6x_3 \ge 9$

$$1x_1 + 2x_2 + 3x_3 \ge 6$$

$$6x_1 - 2x_2 - 2x_3 \le 10$$

$$x_1 - 2x_2 + 6x_3 \ge 4$$

$$x_1 - 2x_2 + 6x_3 \ge 4$$
$$2x_1 + 5x_2 - 3x_3 \ge 6$$

where $x_1, x_2, x_3 \ge 0$.

(08 Marks)

Write the working procedure of dual simplex method.

(06 Marks)

b. Use the dual Simplex method to solve the following LPP

Minimize $Z = 2x_1 + 2x_2 + 4x_3$

Subject to the constraints $2x_1 + 3x_2 + 5x_3 \ge 2$

$$3x_1 + x_2 + 7x_3 \le 3$$

$$x_1 + 4x_2 + 6x_3 \le 5$$

$$3x_1 + x_2 + 7x_3 \le 3$$

$$x_1 + 4x_2 + 6x_3 \le 5$$

where $x_1, x_2, x_3 \ge 0$.

(10 Marks)

Module-4

- Find the initial basic feasible solution of the following transportation problem by
 - i) Least cost method
 - ii) North West corner rule method.

	Α	B	C	D	Supply
A	19	30	50	10	7
	70	30	40	60	9
	40	8	70	20	18
d	5	8	7	14	•

Demand

(10 Marks)

b. Find the optimal transportation cost by Vogeis method

JSL UY	v ogc	12 1111	LUIUC	1.
	A	B	C	Supply
	2	7	4	5
	3	3	1	8
	5	4	7	7
	1	6	2	14
		_	10	•

Demand

(06 Marks)