10CS56

Fifth Semester B.E. Degree Examination, Feb./Mar. 2022 Formal Languages and Automata Theory

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions, selecting at least TWO full questions from each part.

PART - A

a. Mention the difference between DFA, NFA and ∈-NFA.

(04 Marks)

- b. Construct a DFA to accept strings over {a, b} such that every block of length five contains at least two a's. (05 Marks)
- c. Design a DFA to accept a strings of a's and b's ending with abb.

(05 Marks)

d. Convert the following NFA to DFA: [Refer Fig.Q.1(d)].

(06 Marks)

Fig.Q.1(d)

2 a. Consider the following ∈-NFA:

δ	\in	a	b
$\rightarrow p$	{r}	{q}	{p, r}
q	ф	{p}	ф
*r	$\{p, q\}$	{r}	{p}

- i) Compute the ∈-closure of each state.
- ii) Give the set of all strings of length 3 or less accepted by the automation.
- iii) Convert the ∈-NFA to DFA,

(06 Marks)

- b. Prove that, for every regular expression, there exists a finite automation which accepts the same language accepted by the regular expression, ie L(RE) = L(FA). (05 Marks)
- c. Define regular expression and write regular expression for the following languages:
 - i) $L = \{a^{2n} b^{2m} : n \ge 0, m \ge 0\}$
 - ii) Set of all strings not ending with substring 'ab' over $\Sigma = \{a, b\}$. (06 Marks)
- d. Obtain the regular expression for the following DFA using state elimination technique: [Refer Fig.Q.2(d)]. (03 Marks)

Fig.Q.2(d)

- 3 a. State and prove pumping lemma of regular languages. And show that $L = \{a^n b^n \mid n \ge 0\}$ is not regular.
 - b. What is homomorphism? Consider the homomorphism from the alphabet $\{0, 1, 2\}$ to $\{a, b\}$ defined by h(0) = ab, h(1) = b and h(2) = aa, then
 - i) What is h(2201)?
 - ii) If L is language $(ab + bab)^*bab$. What is $h^{-1}\{L\}$?

(04 Marks)

c. Minimize the following DFA using table filling algorithm:

0	1
В	A
A	C
D	В
D	A
D	F
G	E
F	G
	B A D D D

(08 Marks)

- 4 a. Define a CFG and also obtain the CFGs for the following languages:
 - i) $L = \{0^n 1^n | n \ge 1\}$
 - ii) $L = \{w : w \text{ is a palindrome, where } w \in \{a, b\}^*\}$
 - iii) $L = \{a^n b^m c^k \text{ where } k = m + n, n, m, k \ge 0\}$
 - iv) $L = \{w | N_a(w) = N_b(w) \text{ where } w \in \{a, b\}^*\}$

(08 Marks)

- b. Consider the grammar: $E \to +EE | *EE | -EE | x | y$. Find the Left Most Derivation (LMD), Right Most Derivation (RMD) and parse tree for the string "+ * xyxy". (06 Marks)
- c. Prove that, the following grammar is ambiguous, using the string "ibtibtaea":

 $S \rightarrow iCtS | iCtSeS | a$

 $C \rightarrow b$

(06 Marks)

PART - B

- 5 a. Define PDA. Construct a PDA that accepts the language $L = \{a^n b^n | n \ge 1\}$. Write IDs for the string "aaabbb". (10 Marks)
 - b. Convert the following CFG to PDA:

 $S \rightarrow aABB aAA$

 $A \rightarrow aBBa$

 $B \rightarrow bBBA$

 $C \rightarrow a$

(08 Marks)

c. Define DPDA (Deterministic) and NPDA (Non-deterministic).

(02 Marks)

- 6 a. Consider the following CFG:
 - $S \rightarrow ABC BaB$
 - $A \rightarrow aA |BaC|aaa$
 - $B \rightarrow bBb|a|D$
 - $C \rightarrow CA|AC$
 - $D \to \in$
 - i) What is unit production?
 - ii) Eliminate ∈-production, unit productions and useless productions from the grammar.

 (10 Marks)
 - b. What is Chomsky Normal Form (CNF)? Obtain the following grammar in CNF:

$$E \rightarrow E + E | E * E | (E) | id$$

(06 Marks)

c. Show that, $L = \{a^n b^n c^n | n \ge 0\}$ is not context free.

(04 Marks)

- 7 a. Design a turing machine to accept the language $L = \{0^n1^n | n \ge 1\}$. Write its transition diagram. Also show the sequence of moves made by the turing machine for the string "0011".
 - b. Explain Multi-tap turing machine and non-deterministic turing machines with neat block diagrams. (08 Marks)
- Write short notes on:
 - a. Post's correspondence problem
 - b. Recursive languages
 - c. Applications of finite automata
 - d. Applications of regular expressions and Context-Free Grammar (CFG). (20 Marks)

* * * * *