Heavy ion induced luminescence studies of YAlO₃: Tb₃b, Tm₃b single crystals

H B Premkumar_{1,2}, D V Sunitha₂, H Nagabhushana_{2,9}, S C Sharma₃, S C Prashantha_{4,9}, Fouran Singh₅, B M Nagabhushana₆, Guangjun Zhao₇, Jianyu Chen₇ and R P S Chakradhar₈

- Department of Physics, Acharya Institute of Technology, Bangalore 560 107, India
- 2 Prof C.N.R. Rao Centre for Advanced Materials, Tumkur University, Tumkur-572 103, India
- ${\ensuremath{\mathtt{3}}}$ B.S.Narayan center of excellance for advanced materials, Department of Mechanical
- Engineering, B.M.S. Institute of Technology, Yelahanka, Bangalore-560 064, India
- 4 Department of Physics, East West Institute of Technology, Bangalore-560 091, India 5 Inter University Accelerator Centre, Aruna Asaf Ali marg, New Delhi-110 067, India
- 6 Department of Chemistry, M.S. Ramaiah Institute of Technology, Bangalore 560 054, India
- 7 Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine

Mechanics, Chinese Academy of Sciences, Shanghai-201 800, People's Republic of China

8 CSIR-National Aerospace Laboratories, Bangalore -560017, India

E-mail: bhushanvlc@gmail.com and scphysics@gmail.com

ASTRACT

Ionoluminescence (IL), photoluminescence (PL) and thermoluminescence (TL) studies of YAlO₃:Tb³⁺, Tm³⁺ (1 at %) single crystals are carried out using 100 MeV Si⁷⁺ ions for the fluence 3.91×10^{12} ions cm⁻². IL peaks are recorded in the range 385-450, 493, 544, 585 and 624 nm in Tb₃₊- and 353, 459, 523, 651 and 763 nm in Tm3+-doped YAlO3 single crystals, respectively. PL studies also show similar characteristic emission peaks. The variation of IL intensity is studied in a YAlO₃:Tb₃₊ crystal for a wide fluence range of 3.91×10^{12} – 17.57×10^{12} ions cm⁻². The IL intensity is found to be higher in lower ion fluences, and it decreases with the increase of ion fluence. Thermoluminescence (TL) studies are carried out for ion fluence- $(3.91 \times 10^{12} \text{ ions cm}^{-2})$ and UV-exposed (05-60 min) single crystals. A single well-resolved glow peak at 242 °C, along with a shouldered peak at 272 °C, is recorded in the Tm³⁺-doped sample. In the Tb³⁺-doped samples, a wellresolved glow peak at 218 °C, along with a shouldered peak at 147 °C, is recorded at the lower temperature side. In the UV-exposed crystals, two glow peaks at 168 °C and 223 °C are recorded. The glow peaks are found to be shifted towards the lower temperature side with an increase in UV exposure time. Good linearity over a large span of UV exposure time and a single glow peak with a simple trap distribution are observed in YAlO₃:Tb₃₊ single crystals, which makes them suitable as a dosimeter for UV-rays. The kinetic parameters (E, b, s) are estimated using the glow peak shape method for both ion and UV-exposed crystals, and the results are discussed in detail.

Keywords: ionoluminescence, thermoluminescence, photoluminescence, ion irradiation, single crystals