

CBCS SCHEME

20MMD15

First Semester M.Tech. Degree Examination, Jan./Feb. 2021 Dynamics and Mechanism Design

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Define kinematic inversion. Name and sketch all the inversions of 4-bar chain. (05 Marks)
 - b. Define mobility of a mechanism. Obtain the Kutzback mobility criterion. (05 Marks)
 - c. Define transmission angle of a 4 bar mechanism. Obtain the expression for the same interms of link dimensions. Also obtain the condition for its maximum value. Sketch the linkage position at maximum transmission angle. (10 Marks)

OR

- 2 a. Differentiate between planer, spherical and spatial mechanisms. (12 Marks)
 - b. With a neat figure, explain the Auxillary point method using rotated velocity vector.

 (08 Marks)

Module-2

- 3 a. Differentiate between Holonomic and non-holonomic constraints with examples. (06 Marks)
 - b. Explain the principle of vertical work. (04 Mark
 - c. A simple mechanical system as shown in Fig.Q3(c) consists of two frictionless blocks of equal mass (m) are connected by a massless rigid rod. Using principle of virtual work, determine the force F, if the system is in static equilibrium.

Fig.Q3(c)

(10 Marks)

OF

- 4 a. Write the standard form of Lagrange's equation for a holonomic system. Mention the various terms involved in it. (04 Marks)
 - b. A block of mass (m_2) which slides on another block of mass (m_1) which in turn slides on a horizontal surface as shown in Fig.Q4(b). Using Lagrange's equation and x_1 , x_2 coordinates obtain the differential equation of motion.

Fig.Q4(b)

(08 Marks)

20MMD15

c. Find the equation of motion for the system shown in Fig.Q4(c) using Lagrange's equation (assume small oscillation)

(08 Marks)

Module-3

5 a. Explain function generation, path generation and body guidance. (06 Marks)

b. Design a 4-bar mechanism to generate a function $y=x^{1.5}$ in the range $1 \le x \le 4$ using Chebyshev spacing for three precision points. Take $\phi_s=30^\circ$ $\psi_s=90^\circ$ and $\Delta\phi=\Delta\psi=90^\circ$. Assume the length of fixed link as 100 mm. (14 Marks)

OR

6 a. Explain with suitable sketch the pole of a rotating link. (06 Marks)

b. Locate the relative pole for a slider crank mechanism. Use proportionate dimensions for links of a mechanisms. Briefly explain the stepwise procedure. (14 Marks)

Module-4

7 a. Describe the two position synthesis of Crank-Rocker mechanism with suitable diagram.

(10 Marks)

b. Give a brief procedure for overlay method of synthesis.

(10 Marks)

(10 Marks)

OR

8 a. Derive the Frendenstein's equation for 4-bar linkage. (10 Marks)

b. Synthesis a 4-bar linkage to give the following values for angular velocities and accelerations. Use Bloch's method of synthesis. $\omega_2 = 200 \text{ rad/sec}$; $\omega_3 = 85 \text{ rad/sec}$; $\omega_4 = 130 \text{ rad/sec}$; $\alpha_2 = 0$, $\alpha_3 = -1000 \text{ rad/sec}^2$,

 $\omega_2 = 200 \text{ rad/sec}$; $\omega_3 = 85 \text{ rad/sec}$; $\omega_4 = 130 \text{ rad/sec}$; $\alpha_2 = 0$, $\alpha_3 = -1000 \text{ rad/sec}$; $\alpha_4 = -16000 \text{ rad/sec}^2$. Sketch the mechanism (adopt scale $1 \times 10^6 \text{ units} = 25 \text{ mm}$). (10 Marks)

Module-5

9 a. Explain gyroscopic action in systems.

b. Derive Eular-Lagrange's equation of motion. (10 Marks)

OR

- Write short notes on any four of the following:
 - a. Generalized coordinates
 - b. Hamilton principle
 - c. Poles and relative poles
 - d. 4-position synthesis
 - e. Kinematic analysis by Goodman's indirect method
 - f. Eularian angles (20 Marks)