

CBCS SCHEME

15MATDIP41

Fourth Semester B.E. Degree Examination, July/August 2021 Additional Mathematics - II

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions.

1 a. Determine the rank of the matrix
$$A = \begin{bmatrix} 0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{bmatrix}$$
 by applying elementary row

transformations.

(05 Marks)

- b. Find the inverse of the matrix $\begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$ using Cayley Hamilton theorem. (05 Marks)
- c. Solve by Gauss elimination method

$$2x + y + 4z = 12$$

$$4x + 11y - z = 33$$

$$8x - 3y + 2z = 20$$

(06 Marks)

2 a. Find the eigen values of
$$A = \begin{bmatrix} 7 & -2 & 0 \\ -2 & 6 & -2 \\ 0 & -2 & 5 \end{bmatrix}$$
 (05 Marks)

b. Solve the system of equations by Gauss elimination method.

$$x + y + z = 9$$

$$x - 2y + 3z = 8$$

$$2x + y - z = 3$$

(06 Marks)

Find the rank of the matrix by reducing it to echelon form.

$$\begin{bmatrix}
-2 & -1 & -3 & -1 \\
1 & 2 & 3 & 1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1
\end{bmatrix}$$
(05 Marks)

3 a. Solve
$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 5y = 0$$
 subject to $\frac{dy}{dx} = 2$, $y = 1$ at $x = 0$. (05 Marks)
b. Solve $(4D^4 - 4D^3 - 23D^2 + 12D + 36)y = 0$. (05 Marks)

b. Solve
$$(4D^4 - 4D^3 - 23D^2 + 12D + 36)y = 0$$
.

(05 Marks)

c. Solve by the method of variation of parameters
$$\frac{d^2y}{dx^2} + y = \tan x$$
. (06 Marks)

4 a. Solve
$$\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 4y = e^{2x} + \cos 2x$$
. (05 Marks)

b. Solve
$$y'' + 2y' + y = 2x + x^2$$
 (05 Marks)

c. Using the method of undetermined coefficients, solve
$$y'' - 5y' + 6y = e^{3x} + x$$
 (06 Marks)

15MATDIP41

- a. Find the Laplace transform of (i) $\frac{e^{-at} e^{-bt}}{t}$ (ii) $\sin 5t \cos 2t$ (05 Marks)

$$f(t) = \begin{cases} E, & 0 < t < \frac{a}{2} \\ -E, & \frac{a}{2} < t < a \end{cases} \text{ where } f(t+a) = f(t)$$
 (06 Marks)

- b. Find the Laplace transform of $f(t) = \begin{cases} E, & 0 < t < \frac{a}{2} \\ -E, & \frac{a}{2} < t < a \end{cases} \quad \text{where } f(t+a) = f(t) \tag{06 Marks}$ c. Express $f(t) = \begin{cases} t, & 0 < t < 4 \\ 5, & t > 4 \end{cases} \quad \text{in terms of unit step function and hence find } L[f(t)]. \tag{05 Marks}$
- a. Express $f(t) = \begin{cases} \cos t, & 0 < t < \pi \\ \cos 2t, & \pi < t < 2\pi \\ \cos 3t, & t > 2\pi \end{cases}$ in terms of unit step function and hence find its

Laplace transform. (06 Marks)

- b. Find the Laplace Transform of (i) t sin at (ii) t⁵e^{4t} (05 Marks)
- c. If $f(t) = t^2$, 0 < t < 2 and f(t + 2) = f(t) for t > 2, find L[f(t)]. (05 Marks)
- Find the inverse Laplace Transform of $\frac{2s-1}{s^2+4s+29}$. (05 Marks)
 - b. Find the inverse Laplace transform of $\cot^{-1}\left(\frac{s}{s}\right)$. (05 Marks)
 - c. Solve by using Laplace Transforms $\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 4y = e^{-t}$; y(0) = 0, y'(0) = 0. (06 Marks)
- Solve the initial value problem $y'' + 4y' + 3y = e^{-t}$ conditions with y(0) = 1, y'(0) = 1 using (06 Marks) Laplace Transforms.
 - Find the inverse Laplace Transform of $\frac{s+2}{s^2(s+3)}$ (05 Marks)
 - Find the inverse Laplace Transform of $log \left[\frac{s^2 + 4}{s(s+4)(s-4)} \right]$ (05 Marks)
- A box contains 3 white, 5 black and 6 red balls. If a ball is drawn at random, what is the probability that it is either red or white? (05 Marks)
 - The probability that a person A solves the problem is 1/3, that of B is 1/2 and that of C is 3/5. If the problem is simultaneously assigned to all of them what is the probability that the problem is solved?
 - Three machines A, B and C produce respectively 60%, 30%, 10% of the total number of items of a factory. The percentages of defective output of these machines are respectively 2%, 3% and 4%. An item is selected at random and is found defective. Find the probability (06 Marks) that the item was produced by machine C.
- (05 Marks) State and prove Baye's theorem. 10 a.
 - b. If A and B are events with $P(A \cup B) = \frac{3}{4}$, $P(\overline{A}) = \frac{2}{3}$ and $P(A \cap B) = \frac{1}{4}$, find P(A), P(B)and $P(A \cap B)$. (05 Marks)
 - Three students A, B, C, write an entrance examination. Their chances of passing are 1/2, 1/3 and 1/4 respectively. Find the probability that
 - (i) atleast one of them passes (ii) all of them pass (iii) atleast two of them passes.

(06 Marks)