18MATDIP31

Third Semester B.E. Degree Examination, July/August 2021 Additional Mathematics – I

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions.

- 1 a. Show that $(1 + \cos\theta + i\sin\theta)^n + (1 + \cos\theta i\sin\theta)^n = 2^{n+1}\cos^n\left(\frac{\theta}{2}\right)\cos\left(\frac{n\theta}{2}\right)$. (07 Marks)
 - b. Express $1 i\sqrt{3}$ in polar form and hence find its modulus and amplitude. (06 Marks)
 - c. Express $\frac{1}{1-\cos\theta+i\sin\theta}$ in the form a + ib and also find its conjugate. (07 Marks)
- 2 a. Define dot product between two vectors A and B. Find the sine of the angle between the vectors $\vec{A} = 2\hat{i} 2\hat{j} + \hat{k}$ and $\vec{B} = \hat{i} 2\hat{j} + 2\hat{k}$. (07 Marks)
 - b. If $\vec{A} = \hat{i} 2\hat{j} + 3\hat{k}$, $\vec{B} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\vec{C} = 3\hat{i} + \hat{j}$, find the value of p such that $\vec{A} p\vec{B}$ is perpendicular to \vec{C} .
 - c. Find $\vec{a} \cdot (\vec{b} \times \vec{c})$, $\vec{b} \times (\vec{a} \times \vec{c})$ and $\vec{c} \cdot (\vec{a} \times \vec{b})$ where $\vec{a} = \hat{i} + \hat{j} \hat{k}$, $\vec{b} = 2\hat{i} \hat{j} + 2\hat{k}$, $\vec{c} = 3\hat{i} \hat{j} \hat{k}$.

 (07 Marks)
- 3 a. Obtain the Maclaurin's series expansion of log(sec x) upto the terms containing x⁶.(07 Marks)
 - b. If $u = \tan^{-1} \left(\frac{x^3 + y^3}{x y} \right)$ then using Euler's theorem, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2u$.

(06 Marks)

- c. If u = f(x y, y z, z x), prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$. (07 Marks)
- 4 a. Obtain the Maclaurin's series expansion of the function $\sqrt{1+\sin 2x}$ upto x^4 . (07 Marks)
 - b. If $u = e^{\frac{x^2y^2}{x+y}}$, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 3u \log u$ using Euler's theorem. (06 Marks)
 - c. If $u = \frac{yz}{x}$, $v = \frac{zx}{y}$, $w = \frac{xy}{z}$ then show that $\frac{\partial(u, v, w)}{\partial(x, y, z)} = 4$ (07 Marks)
- 5 a. A particle moves along a curve $x = 3t^2$, $y = t^3 4t$, z = 3t + 4 where t is the time variable. Determine the components of velocity and acceleration vectors at t = 2 in the direction $\hat{i} 2\hat{j} + 2\hat{k}$.
 - b. Find the unit normal vector to the surface $xy^3z^2 = 4$ at the point (-1, -1, 2). (06 Marks)
 - c. Show that the vector field $\vec{F} = (2x + yz)\hat{i} + (4y + zx)\hat{j} (6z xy)\hat{k}$ is irrotational. Also find ϕ such that $\vec{F} = \nabla \phi$. (07 Marks)

18MATDIP31

- 6 a. Find div \vec{F} and Curl \vec{F} , where $\vec{F} = \nabla(x^3 + y^3 + z^3 3xyz)$. (07 Marks)
 - b. If $\vec{F} = (3x^2y z)\hat{i} + (xz^3 + y^4)\hat{j} 2x^3z^2\hat{k}$ then find $\nabla \cdot \vec{F}$, $\nabla \times \vec{F}$ and $\nabla \cdot (\nabla \times \vec{F})$ at (2, -1, 0).

 (06 Marks)
 - c. Determine the constant 'a' such that the vector $(2x+3y)\hat{i} + (ay-3z)\hat{j} + (6x-12z)\hat{k}$ is Solenoidal. (07 Marks)
- 7 a. Obtain a reduction formula for $\int_{0}^{\pi/2} \cos^{n} x dx (n > 0)$. (07 Marks)
 - b. Evaluate $\int_0^a x^4 \sqrt{a^2 x^2} dx$. (06 Marks)
 - c. Evaluate $\int_{1}^{5} \int_{1}^{x^2} x(x^2 + y^2) dx dy$. (07 Marks)
- 8 a. Obtain a reduction formula for $\int_{0}^{\pi/2} \sin^{n} x dx$ (n > 0). (07 Marks)
 - b. Evaluate $\int_{0}^{2\pi} x^2 \sqrt{2ax x^2} dx$ (06 Marks)
 - c. Evaluate $\iint_{-1}^{1} \iint_{x-z}^{z} (x+y+z) dy dx dz$ (07 Marks)
- 9 a. Solve $(2x^3 xy^2 2y + 3)dx (x^2y + 2x)dy = 0$ (07 Marks)
 - b. Solve $\frac{dy}{dx} y \tan x = y^2 \sec x$. (06 Marks)
 - c. Solve $3x(x+y^2)dy + (x^3 3xy 2y^3)dx = 0$ (07 Marks)
- 10 a. Solve $\frac{dy}{dx} + y \cot x = \sin x$. (07 Marks)
 - b. Solve (x+3y-4)dx + (3x+9y-2)dy = 0 (06 Marks)
 - c. Solve $[1+(x+y)\tan y]\frac{dy}{dx} + 1 = 0$ (07 Marks)

* * * * *