

USN

18MAT31

Third Semester B.E. Degree Examination, July/August 2021 Transform Calculus, Fourier Series and Numerical **Techniques**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions.

Find L[$t e^{-2t} \sin 4t$].

(06 Marks)

b. A periodic function of period $2\pi/\omega$ is defined by $f(t) = \begin{cases} E \sin \omega t, & 0 \le t < \frac{\pi}{\omega} \\ 0, & \frac{\pi}{\omega} \le t < \frac{2\pi}{\omega} \end{cases}$. Where E and ω are constants.

Solve: $y''(t) + k^2y(t) = 0$; y(0) = 0 and y'(0) = 1 by Laplace transformation.

(07 Marks) (07 Marks)

a. Find: i) $L^{-1} \left\{ \frac{s^2 - 3s + 4}{s^3} \right\}$ ii) $L^{-1} \left[\cot^{-1} \left(\frac{S}{2} \right) \right]$.

(06 Marks)

b. Find the inverse Laplace transform of $\frac{1}{(s-1)(s^2+1)}$ by using convolution theorem.

(07 Marks)

- Express the following function in terms of Heaviside step function and hence find its Laplace transform where $f(t) = \begin{cases} t^2, & 0 < t \le 2 \\ 4t, & t > 2 \end{cases}$. (07 Marks)
- Expand $f(x) = x(2\pi x)$ as a Fourier series in $[0, 2\pi]$.

(06 Marks)

- Obtain Fourier series for the function f(x) given by $f(x) = \begin{cases} 1 + \frac{2x}{\pi}, & -\pi \le x \le 0 \\ 1 \frac{2x}{\pi}, & 0 \le x \le \pi \end{cases}$.
- Find the half range sine series of $f(x) = \frac{e^{ax}}{\sinh a \pi}$ in $(0, \pi)$.

(07 Marks)

Find the Fourier series expansion of f(x) given by $f(x) = \begin{cases} 1 & 0 < x < 1 \\ 2 & 1 < x < 3 \end{cases}$. (06 Marks)

Find the half range sine series for x^2 in $(0, \pi)$.

(07 Marks)

The values of x and the corresponding values of f(x) over a period T are given below. Show that $f(x) = 0.75 + 0.37 \cos \theta + 1.004 \sin \theta$ where $\theta = \frac{2\pi x}{T}$. (07 Marks)

T/6 5T/6 1.98 | 1.30 | 1.05 1.30 -0.88

- State: i) Initial and final value theorems ii) Find the Z –transform of $\cos\left(\frac{n\pi}{2} + \frac{\pi}{4}\right)$. (06 Marks)
 - Find the complex Fourier transform of the function $f(x) = \begin{cases} 1 & \text{for } |x| \le a \\ 0 & \text{for } |x| > a \end{cases}$ Hence evaluate $\int_{0}^{\infty} \left(\frac{\sin x}{x} \right) dx$. (07 Marks)
 - Compute the inverse Z-transform of $\frac{3z^2 + 2z}{(5z-1)(5z+2)}$. (07 Marks)

18MAT31

(06 Marks)

- 6 a. Find the Fourier cosine transform of $f(x) = \begin{cases} x, & 0 < x < 2 \\ 0, & \text{else where} \end{cases}$ (06 Marks)
 - b. Find the Z-transform of $2n + \sin \frac{n\pi}{4} + 1$. (07 Marks)
 - c. Solve the difference equation: $u_{n+2} 3u_{n+1} + 2u_n = 0$, with $u_0 = 0$ and $u_1 = -1$. (07 Marks)
- 7 a. Find by Taylor's series method the value of y at x = 0.1 to five places of decimals from $\frac{dy}{dx} = x^2y 1, y(0) = 1.$ (06 Marks)
 - b. Use fourth order Runge-Kutta method to solve $(x + y)\frac{dy}{dx} = 1$, y(0.4) = 1 at x = 0.5 correct to four decimal places. (07 Marks)
 - c. If $\frac{dy}{dx} = 2e^x y$, y(0) = 2, y(0.1) = 2.010, y(0.2) = 2.040 and y(0.3) = 2.090, find y(0.4) correct to four decimal places by using Milne's predictor corrector method and applying corrector formula twice. (07 Marks)
- 8 a. Using modified Euler's formula compute y(1.1) correct to five decimal places given that $\frac{dy}{dx} + \frac{y}{x} = \frac{1}{x^2}$ and y = 1 at x = 1. [taking h = 0.1]. (06 Marks)
 - b. Employ Taylor's series method to find y at x = 0.1 and 0.2 correct to four places of decimal. Given $\frac{dy}{dx} - 2y = 3e^x$, y(0) = 0. (07 Marks)
 - c. Solve the differential equation $y' + y + xy^2 = 0$ with the initial values of $y : y_0 = 1$, $y_1 = 0.9008$, $y_2 = 0.8066$, $y_3 = 0.722$ corresponding to the values of $x : x_0 = 0$, $x_1 = 0.1$, $x_2 = 0.2$, $x_3 = 0.3$ by computing the value of y corresponding to x = 0.4 applying Adams Bashforth predictor and corrector formula. (07 Marks)
- 9 a. Given y'' xy' y = 0 with the initial conditions y(0) = 1, y'(0) = 0, compute y(0.2) using fourth order Runge-Kutta method. (06 Marks)
 - b. Derive Euler's equation in the standard form $\frac{\partial f}{\partial y} \frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) = 0$. (07 Marks)
 - c. A heavy cable hangs freely under gravity between two fixed points. Show that the shape of the cable is a catenary. (07 Marks)
- 10 a. Apply Milne's method to compute y(0.8) given that y'' = 1 2yy' and the following table of initial values. (07 Marks)

X	0	0.2	0.4	0.6
у	0	0.02	0.0795	0.1762
y'	0	0.1996	0.3937	0.5689

- b. Prove that the geodesics on a plane are straight line.
- c. Find the extremal of the functional : $\int_{x_0}^{x_1} (y^2 + y'^2 2y \sin x) dx$. (07 Marks)