

irst Semester B.E. Degree Examination, July/August 2021 Engineering Mathematics - I

Max. Marks: 100

Note: Answer any FIVE full questions.

- 1 a. Find the nth derivative of $y = \sin^2 x \sinh^2 x + \log_{10} (x^2 3x + 2)$. (07 Marks)
 - b. Find the Pedal equation for the curve $r = a + b \cos \theta$. (06 Marks)
 - c. Obtain radius of curvature for the parametric curve, $x = a(t \sin t)$ $y = a(1 \cos t)$. (07 Marks)
- 2 a. If $y = tan^{-1}x$, prove that $(1 + x^2)y_{n+2} + 2(n+1)xy_{n+1} + n(n+1)y_n = 0$. Hence obtain $y_n(0)$.
 - b. Find the Angle of intersection between the curves $r = 2 \sin \theta$; $r = 2(\sin \theta + \cos \theta)$.
 - c. Find the radius of curvature for the polar curve $r^2 = a^2 \cos 2 \theta$. (06 Marks)
- 3 a. Expand log(1+x) using Maclaurin's series upto the term containing x⁴. (07 Marks)
 - b. State and prove Euler's theorem for homogeneous function of degree n. (06 Marks)
 - c. If u = x + y + z, v = y + z, z = uvw, find $\frac{\partial(x, y, z)}{\partial(u, v, w)}$. (07 Marks)
- 4 a. i) Evaluate $\lim_{x\to 0} \left(\frac{1}{x} \frac{1}{e^x 1}\right)$ ii) Evaluate $\lim_{x\to 0} \left(\frac{a^x + b^x}{2}\right)^{\frac{1}{x}}$. (06 Marks)
 - b. If $u = \sin^{-1} \left(\frac{x^3 + y^3}{x + y} \right)$, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2 \tan u$. (07 Marks)
 - c. If u = f(x y, y z, z x), then prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$. (07 Marks)
- 5 a. A particle moves along $x = t^3 4t$, $y = t^2 + 4t$, $z = 8t^2 3t^3$, where 't' denotes time. Find the magnitudes of velocity and acceleration at time t = 2. (07 Marks)
 - b. Assuming the validity of differentiation under integral sign prove that

$$\int_{0}^{\infty} e^{-x^2} \cos \alpha x dx = \frac{\sqrt{\pi}}{2} e^{-\alpha^2/4}.$$
 (07 Marks)

- c. Trace the curve $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$, using general rules of tracing the curve. (06 Marks)
- 6 a. If $\overrightarrow{F} = \text{grad}(x^3 + y^3 + z^3 3xyz)$ find curl \overrightarrow{F} . Is \overrightarrow{F} irrotational? (07 Marks)
 - b. Prove that if \overrightarrow{F} is a vector point function div (curl \overrightarrow{F}) = 0. (07 Marks)
 - c. If \overrightarrow{r} is a position vector of a point in space obtain div \overrightarrow{r} and curl \overrightarrow{r} . (06 Marks)

- 7 a. Obtain the reduction formula for $\int \sin^m x \cos^n x dx$, where m and n are positive integers.
 - b. Solve: $xy(1+xy^2)\frac{dy}{dx} = 1$. (07 Marks)
 - c. Find the Orthogonal trajectories of a system of confocal and coaxial parabolas $y^2 = 4a(x+a)$. (07 Marks)
- 8 a. Solve: $(xy^3 + y)dx + 2(x^2y^2 + x + y^4)dy = 0$. (07 Marks)
 - b. Evaluate $\int_{0}^{a} \frac{x^{7}}{\sqrt{a^{2}-x^{2}}} dx$, using reduction formulae. (06 Marks)
 - c. Water at temperature 100°C cools in 10 minutes to 88°C in a room of temperature 25°C. Find the temperature of water after 20 minutes. (07 Marks)
- 9 a. Solve the following system of equations: x + y + z = 9, x 2y + 3z = 8, 2x + y z = 3, by Gauss Elimination method. (06 Marks)
 - b. Diagonalize the matrix $\begin{bmatrix} -1 & 1 & 2 \\ 0 & -2 & -1 \\ 0 & 0 & -3 \end{bmatrix}$. (07 Marks)
 - c. Find the largest Eigen value and the corresponding Eigen vector of the matrix,
 - $\begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{bmatrix}$
 - Taking $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$ as the initial Eigen vector carryout six iterations. (07 Marks)
- 10 a. Solve the following system by LU Decomposition method. x + y + z = 1, 3x + y 3z = 5, x 2y 5z = 10. (08 Marks)
 - b. Find the Inverse transformation of:

$$y_1 = 4x_1 + 6x_2 + 6x_3$$

 $y_2 = x_1 + 3x_2 + 2x_3$

$$y_2 = x_1 + 3x_2 + 2x_3$$

 $y_3 = -x_1 - 4x_2 - 3x_3$. (06 Marks)

- c. Reduce the quadratic form,
 - $3x^2 + 5y^2 + 3z^2 2yz + 2zx 2xy mtext{ to the Canonical form.} mtext{(06 Marks)}$

* * * *