Library Firest/Second Semester B.

st/Second Semester B.E. Degree Examination, July/August 2021 Engineering Physics

Max. Marks: 80

Note: 1. Answer any FIVE full questions.

2. Physical Constants: Velocity of light, $C = 3 \times 10^8$ m/S,

Plank's constant $h = 6.625 \times 10^{-34}$ J-S; Mass of electron $m_e = 9.1 \times 10^{-31}$ kg,

Avogadro's number, N_A=6.023×10⁻²⁶/Kmole

Boltzmann constant $K = 1.38 \times 10^{-23} \text{ J/K}$,

Charge of an electron $e = 1.602 \times 10^{-19} C$

- a. What is black body? Explain the spectral distribution of energy radiation emitted by the black body. (06 Marks)
 - b. What are Matter waves? Mention its characteristics properties?

(06 Marks)

c. The uncertainty in the location of a particle is 1Å. Find the uncertainty in its momentum.

(04 Marks)

- 2 a. Using Heisenberg's uncertainty principle. Prove that electron does not exist in the nucleus.
 (05 Marks)
 - b. Set up time independent Schrodinger wave equation for a particle in one dimension using complex variables. (06 Marks)
 - c. Compare the energy of photon with that of a neutron when both are associated with a wavelength of 1\AA (given that the mass of the neutron is $1.678 \times 10^{-27} \text{kg}$). (05 Marks)
- 3 a. Explain the terms:
 - i) Mean free path
 - ii) Relaxation time
 - iii) Drift velocity.

(06 Marks)

b. Explain the success of Quantum free electron theory.

(06 Marks)

- c. For GaAS, the electrical conductivity at room temperature is 10⁻⁶s/m. The electron and hole mobility are 0.85m²/V.S and 0.04m²V/S respectively. Calculate the intrinsic carrier concentration. (04 Marks)
- 4 a. What is Meissner effect? Explain Type I and Type II superconductors.

(07 Marks)

b. Explain the BCS theory of superconductivity.

(05 Marks)

- c. Calculate the probability of finding an electron at an energy level 0.02 eV above the Fermi level of ambient temperature of 300K. (04 Marks)
- 5 a. Mention the condition and requisites for lasing action.

(06 Marks)

b. Explain the construction and working principle of CO₂ gas laser.

(06 Marks)

c. The refractive indices of the core and cladding of a step index optical fiber are 1.45 and 1.40 respectively and its core diameter is 50µm. Calculate the number of modes for the light of wavelength 670nm. (04 Marks)

6 a. Derive an expression for numerical aperture of an optical fiber placed in a Air medium.

(05 Marks)

- b. Describe the method of recording and reconstruction of an image in a holography with the help of suitable diagrams.

 (06 Marks)
- c. What is Attenuation? Explain any two factors affecting the power loss.

(05 Marks)

- 7 a. Define the terms:
 - i) Space lattice
 - ii) Poly morphism
 - iii) Allotropy
 - iv) Unit cell.
 - b. What is Atomic Packing Factor (APF)? Calculate the atomic packing factor for simple cubic, Face centered cubic and BCC.

 (06 Marks)
 - c. Sketch the following planes in cubic unit cell i) (110) ii) ($\overline{1}$ 10) iii) (213) and ($\overline{2}$ 13).

(04 Marks)

- 8 a. What is Primitive cell? Derive an expression for interplanner spacing in terms of Miller (06 Marks) indices.
 - b. Describe the Bragg's X-ray diffractometer used to determine the crystal system. (06 Marks)
 - c. A monochromatic x-ray beam of wavelength 700nm undergoes 2nd order Bragg's reflection from a plan (302) of a cubic crystal at a glancing angle of 35°. Calculate the lattice constant. (04 Marks)
- 9 a. What are the shock waves? Mention its properties and applications. (07 Marks)
 - b. Give the graphical representation of density of states for 0D, 1D, 2D and 3D structures as a (04 Marks) function of energy.
 - c. Write a note on Carbon Nanotube (CNT).

(05 Marks)

- 10 a. Define Machnumber and give distinctions between acoustics, ultrasonic, subsonic and supersonic waves.

 (06 Marks)
 - b. Describe the process of recording the image of sample using scanning electron microscope.
 (06 Marks)
 - c. The distance between the two pressures sensors in a shock wave tube 100mm the time taken by a shock wave to travel this distance is 0.2ns. Find the Mach number of the shock wave travelling at 330m/s.

 (04 Marks)

* * * * *