

15ME73

Seventh Semester B.E. Degree Examination, July/August 2021 **Control Engineering**

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions.

- Define control system. Compare open loop and closed loop control system with an example. (08 Marks)
 - What are the requirements of an Ideal Control System?

(08 Marks)

(08 Marks)

2 Explain with Block diagrams:

(iii)

- (i) Proportional controller.
- Integral controller. (ii)
- (iv) P.I.D controller. (16 Marks)
- Draw F-V and F-C circuits using analogue quantities.

Derivative controller.

Fig. Q3 (a)

Determine the overall transfer function of a block diagram shown in Fig. Q3 (b).

Fig. Q3 (b)

- Determine the transfer function of field controlled DC motor which relates output angular displacement (θ) with input voltage (e_f). (08 Marks)
 - Obtain the overall TF of SFG given:

Fig. Q4 (b)

(08 Marks)

- Discuss the various standard inputs used in control system analysis.
- (04 Marks)
- b. Derive the response equation of 1st order system for unit step input.

(06 Marks)

Applying RH criterion, discuss the stability of closed loop system as a function of K for the following OLTF,

G(s)H(s) =
$$\frac{K(s+1)}{s(s-1)(s^2+4s+16)}$$
.

(06 Marks)

15ME73

- 6 Sketch the Root locus plot for G(s)H(s) =. For what values of K, the system becomes UNSTABLE. (16 Marks)
- Sketch the Polar plot for the transfer function, $G(s) = \frac{1}{(1+s)(1+2s)}$ (06 Marks)
 - Apply Nyquist stability interior to the system with loop transfer function,

G(s)H(s) =
$$\frac{4s+1}{s^2(1+s)(1+2s)}$$
.

Ascertain its stability.

(10 Marks)

- For a unity feedback system with OLTF, $G(s) = \frac{40(s+3)}{s(s+10)(s+2)}$ 8 Draw the Bode plot and determine : GM, PM, $\,\omega_{gc}\,,\,\,\omega_{PC}\,.$ Comment on the stability of the system. (16 Marks)
- Write down the characteristics of,
 - Lag compensator (i)
 - (ii) Lead compensator.
 - (iii) Lag-lead compensator.

(09 Marks)

- b. Define: (i) State
- (ii) State vector
- (iii) Controllability
- (iv) Observability (07 Marks)
- Find the controllability and observability of the system described by the state equation:

$$\begin{bmatrix} \dot{\mathbf{x}}_1 \\ \dot{\mathbf{x}}_2 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \mathbf{u}$$

(08 Marks)

b. Explain the design of lead compensator using Root locus (procedure only).

(08 Marks)