17MT42

(10 Marks)

(10 Marks)

th Semester B.E. Degree Examination, July/August 2021 **Fluid Mechanics and Machines**

Tir	ner	hrs. Max. Marks	s: 100
		Note: Answer any FIVE full questions.	
1	a.	Define the following properties of the fluid: (i) Mass density (ii) Kinematic viscosity (iii) Surface tension	
		(iv) Dynamic viscosity (v) Specific gravity (vi) Weight density (12	Marks
	b.	State and prove Pascal law. (08	Marks
2	a.	Derive an expression for hydrostatic law and state the statement of hydrostatic law.	
	h		Marks
		Define Manometer. Classification of Manometer. (06 500 Litre oil weights 60 kN. Calculate specific weight, mass density, specific v	Mark
	C.		Mark
		Specific gravity.	1,14,11
3	a.	Define the following fluid flow:	
		(i) Steady and unsteady flow	
		(ii) Laminar and turbulent flow	
	19	1	Mark
	b.	Derive an expression for continuity equation in 3 dimensional form with assumption.	Moul
4			Mark
4	a.	With assumption made, derive an expression for Bernoulies equation of motion from Euler equation of motion. (10	
	b.	A water is flowing through a taper pipe of length 100 mtr having diameter 600 mm	Mark
	0.	upper end and 300 mm at lower end at the rate of 50 ltr/sec. Pipe has a slope of 1 in 3	
			Mark
or see			
5	a.	Write the procedure for solving Buckingham's π theorems and Raylie's method for	
	h	•	Mark
	b.	Describe the following dimensionless number: (i) Payrolds number: (ii) Fylor's number: (iii) Wakher number	
		(i) Reynolds number (ii) Euler's number (iii) Webber number (iv) Mach's number (v) Froude's number (10	Mark
6	a.	Derive an expression for discharge through venturimeter. (10	Mark
	b.		Mark
7	a.	Define turbo machine. Explain parts of turbo machines. (08	Mark
	b.	Comparisons between turbo machines and positive displacement machines. (08	Mark
	c.	Write classification of turbo machines. (04	Mark
8	a.	Derive an expression for Euler's turbine equation. (10	Mark
	b.	Derive an expression for alternative form of Euler's equations. (10	Mark
9	a.	Derive an expression for maximum efficiency of Pelton turbine. (10	Mark
	b.		Mark

10 a. With a neat sketch, explain pressure compounding, velocity compounding.

b. Derive an expression for maximum efficiency of single state steam turbine.

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.