

15MT34

hird Semester B.E. Degree Examination, July/August 2021 Control Systems

Time: 3 hrs.

Max. Marks:100

Note: Answer any FIVE full questions.

- a. Define control systems. Distinguish between open loop and closed loop control systems.

 (08 Marks)
 - b. In the circuit below Fig.Q1(b). Determine the transfer function E₀(S)/E_i(S) (08 Marks)

2 a. Write the differential equations for the mechanical rotational system shown in Fig.Q2(a). Obtain the torque-current analogy of system. (08 Marks)

Fig.Q2(a) θ_3 .

Reduce the block diagram shown in Fig.Q2(b) to its simple form and hence obtain C(s)/R(s).

3 a. The signal flow graph shown in Fig.Q3(a) determine the transfer function $\frac{C(s)}{R(s)}$ using Mason's formula.

Fig.Q3(a) (06 Marks)

(06 Marks)

- b. What are the standard test signals used in time domain analysis and give their Laplace transforms? (04 Marks)
- c. For the shown in Fig.Q3(c), find the followings: i) System type ii) Static error constants, K_p , K_v and K_a iii) Steady state error for an input r(t) = 5u(t).

a. For the signal flow graph shown in Fig.Q4(a), determine the transfer function using Mason's gain formula.

Fig.Q4(a)

(08 Marks)

Derive an equation for unit step response of a second order system for under-damped case.

For system $s^4 + 22s^3 + 10s^2 + s + K = 0$ find K_{mar} and 'w' at K_{mar} . (08 Marks)

5 The open loop transfer function of a feedback system is

 $G(s)H(s) = \frac{K(s+5)}{s(1+Ts)(1+2s)}$ Parameters K and T are represented on a plane with K on

x-axis and T on y-axis.

(08 Marks)

- Draw the approximate root locus diagram for a closed loop system whose loop transfer 6 function is given by $G(s)H(s) = \frac{\bar{K}}{s(s+5)(s+10)}$. Comment on the stability.
- A system of third order shows resonance peak of 2 and resonance frequency of 3 rad/sec. Determine the transfer function of equivalent second order system and hence find T_r, T_p, T_s and % overshoot.
 - b. For a particular unity feedback, $G(s) = \frac{242(s+5)}{s(s+1)(s^2+5s+121)}$. Sketch the bode plot. Find

 ω_{gc} and ω_{pc} . G.M, P.M.

(08 Marks)

Consider type2 system with transfer function $G(s)H(s) = \frac{1}{s^2(1+T_s)}$. Obtain its polar plot.

(08 Marks)

b. For a certain control system $G(s)H(s) = \frac{k}{s(s+2)(s+10)}$. Sketch the Nyquist plot and hence calculate the range of values of k for stability. (08 Marks)

(04 Marks)

a. Define the following terms: i) state ii) state variable iii) state vector Obtain the state model of the given electrical network shown in Fig.Q9(b).

Obtain the state model of the given electron $\dot{X} = AX$ where $A = \begin{bmatrix} 1 & -2 \\ 1 & -4 \end{bmatrix}$ and

(08 Marks)

Construct the state model using phase variables if the system is described by the differential equation : $\frac{d^3y(t)}{dt^3} + 4\frac{d^2y(t)}{dt^2} + 7\frac{dy(t)}{dt} + 2y(t) = 5u(t)$ and draw the state diagram. (06 Marks)

List the properties of state transition matrix.

(04 Marks)

Find the state transition matrix for $A = \begin{bmatrix} 0 & -1 \\ +2 & -3 \end{bmatrix}$ using Laplace transform method. (06 Marks)