

CBCS SCHEME

15EC61

Sixth Semester B.E. Degree Examination, July/August 2021 **Digital Communication**

Time: 3 hrs.

ARAHOA

Max. Marks:80

Note: Answer any FIVE full questions.

- a. Define the pre-envelope. Show the spectral representation of pre-envelopes for low pass signal. (06 Marks)
 - b. Define Hilbert transform. State and prove its properties.

(06 Marks)

- c. For the binary data 10011101, sketch the following:
 - i) RZ unipoler
 - ii) NRZ polar iii) NRZ Bipolar
 - iv) Manchester format.

(04 Marks)

- 2 a. Derive the expression for power spectral density of polar signaling.
- (08 Marks) (08 Marks)
- b. Derive the expression for complex low pass representation of band pass system.
- 3 a. Explain the geometric representation of the signal for N = 2 and M = 3 and explain the various parameters. (06 Marks)
 - b. S.T. correlator outputs are statically independent.

(04 Marks)

- c. What do you mean by match filter receiver? Derive the expression for the impulse response of matched filter receiver. (06 Marks)
- 4 a. Using Gram-Schmitt orthoganalization procedure and find the orthnormal basis function for the signal shown below.

Fig.Q4(a)

(08 Marks)

- b. With neat block diagram explain detector and maximum likelihood decoder of a correlation receiver. (08 Marks)
- 5 a. Explain the generation and detection of BFSK.

(06 Marks)

- b. With the signal space representation of BPSK derive the expression for probability of error.
 (06 Marks)
- c. For the input binary sequence 11001001, draw the in phase and quadrature phase components of the QPSK signal. (04 Marks)
- 6 a. With a neat block diagram, explain the generation and coherent detection of QPSK signal.
 (06 Marks)
 - b. Explain the DPSK transmitter and receiver with neat block diagram.

(06 Marks)

c. Explain the binary FSK using non coherent detection.

(04 Marks)

/	a.	with a fleat diagram of digital i Aivi system obtain the expression for 151.	(10 Maiks)	
	b.	State and prove Nquist criterion for zero ISI.	(06 Marks)	
8	a.	Explain the design by band limited signals with controlled ISI.	(10 Marks)	
	b.	With neat diagram and relevant expressions explain the concept of adaptive equal	ization.	
			(06 Marks)	
9	a.	Explain the model of a spread spectrum digital communication system.	(08 Marks)	
	b.			
	٥.	i) The number of bits/MFSK symbol = 4		
		ii) The number of MFSK symbol per hop = 5		
			(02.34 . 1 .)	
		iii)Calculate the processing gain of the system in decibels.	(02 Marks)	
	C.	List and briefly explain any 3 application of direct sequence spread spectrum.	(06 Marks)	
10	a.	With a neat block diagram explain frequency spread spectrum technique. Also	explain the	
		terms chiprate, jamming margin and processing gain.	(08 Marks)	
	b.	Explain the effect of dispreading on a narrow band interference in direct sequence spread spectrum systems.		
		A DSSS signal in designed to have the power ratio P _R /P _N at the intended received	er is 10^{-2} . If	
		the desired $E_b/N_0 = 10$ for acceptable performance. Determine the minimum		
		processing gain.	(08 Marks)	