USN

Fifth Semester B.E. Degree Examination, July/August 2021 Fundamentals of CMOS VLSI

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions.

- Explain the Fabrication steps of CMOS-P-Well process with neat diagram, write the mask sequence.

 (10 Marks)
 - b. Explain second order effects with respect to a MOS device.

(10 Marks)

- 2 a. With neat circuit diagram and relevant mathematical equations explain differential inverter.
 - b. Draw the circuit schematic, stick diagram and layout diagram of nMOS, 2 I/P Nand Gate.
 (10 Marks)
- 3 a. Describe the following logic structures:
 - i) Complementary CMOS logic
 - ii) Pseudo nMOS logic.

(10 Marks)

- b. Explain the operation of CMOS dynamic logic. Also discuss the cascading problems of dynamic CMOS logic. (10 Marks)
- 4 a. Calculate the capacitance of the structure given below.

Fig.Q.4(a)

Relative area capacitance values Metal 1 to substrate = 0.075 Polysilicon to substrate = 0.1 Gate to channel = 1.0

(10 Marks)

- b. Obtain the scaling factors for the following device parameters.
 - i) Gate capacitance per unit area (C_o)
 - ii) Channel resistance (R_{on})
 - iii) Gate Delay (T_D)
 - iv) Saturation current (I_{dss})
 - v) Power dissipation / Gate Pg.

(10 Marks)

10EC56

5	a. b.	Discuss the architectural issues related to subsystem design. Explain dynamic register element and 4 bit shift register using nMOS and CMOS	(10 Marks) logic. (10 Marks)
6	a. b.	Design 4 × 4 barrel shifter. With the neat diagram, explain parity generator structured design.	(10 Marks) (10 Marks)
7	a. b.	Explain three transistor dynamic RAM cell. Explain CMOS pseudo static memory cell.	(10 Marks) (10 Marks)
8	a. b.	Explain scan design techniques. Write short notes on: i) Noise Margin ii) I/O pads	(10 Marks)
		iii) Silicides.	(10 Marks)