

Fifth Semester B.E. Degree Examination, July/August 2021

Formal Languages and Automata Theory

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions.

1 a. Define Alphabet, String and Language. Give an example for each.

(04 Marks)

b. Construct DFA for the following languages defines on $\Sigma = \{a, b\}$

(i) Set of all strings ending with 'bba'

(ii) Set of all strings beginning with 'ba'

(iii) $L = \{w | w \in \{a, b\}^* \text{ and } |w| \text{ mod } 3 \neq 2\}$

(10 Marks)

c. Convert the following NFA to DFA.

δNFA	0	1
$\rightarrow p$	{p, q}	{p}
q	{r, s}	{t}
⇒ r″	{p, r}	{t}
*s	ф	ф
*t	ф	ф

(06 Marks)

2 a. Convert the following ∈-NFA to DFA [Refer Fig.Q2(a)]

Fig.Q2(a)

(08 Marks)

- b. Define regular expression and give two examples of regular expressions, explaining the meaning of each.

 (06 Marks)
- c. Convert the following regular expressions to ∈-NFA.
 - (i) a(b + c)*b
- (ii) a(ab + ba)*.

(06 Marks)

- 3 a. State and prove pumping lemma for regular languages and prove that $L = \{0^n \ 1 \ 0^n \mid n \ge 1\}$ is not regular. (10 Marks)
 - b. Consider the following DFA:
 - (i) Draw the table of distinguishable states
 - (ii) Construct the minimum state equivalent DFA.

State	Input	
	0	1
$\in A$	В	C
В	D	Е
C	F	G
*D	D	E
E	F	G
*F	D	Е
*G	F	G

(10 Marks)

- a. Define context-free grammar and using the grammar given below, show the derivation tree for (i) (a101 + b1) * (a1 + b) (ii) (a1 + b1) * aa
 - $G: E \rightarrow I \mid E + E \mid E * E \mid (E)$

 $I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$

(08 Marks)

b. Define leftmost and rightmost derivations. Draw rightmost derivation for (a + b) * (b + c).

- $G: E \to E + T \mid T$
 - $T \rightarrow T * F \mid F$

 $F \rightarrow (E) |a|b|c$

(06 Marks)

- c. Define ambiguous grammar. Show that the following grammars are ambiguous:
 - (i) $G: S \rightarrow aSbS \mid bSaS \mid \in$
 - (ii) $G: S \rightarrow SS$

 $S \rightarrow aSb \mid bSa \mid \in$

(06 Marks)

- 5 a. Define PDA and construct a PDA to recognize $L = \{a^nb^n \mid n \ge 1\}$
 - (i) Construct transition diagram
 - (ii) Define all parameters of the constructed PDA
 - (iii) Show using instantaneous description that 'aabb' is accepted.

(12 Marks)

b. Convert the following grammar to PDA.

- $G: E \rightarrow E + T \mid T$
 - $T \rightarrow T * F \mid F$

 $F \rightarrow (E) |a|b|c$

Show that 'a + b * c' is accepted by the PDA.

(08 Marks)

- 6 a. State and prove pumping lemma for context-free languages. Show that $L = \{a^nb^nc^n \mid n \ge 1\}$ is not a context-free language. (10 Marks)
 - b. Eliminate useless symbols in the grammar given below by
 - (i) Eliminating ∈ productions.
 - (ii) Eliminating unit productions
 - (iii) Eliminate useless symbols.
 - $G: S \rightarrow ABC \mid BaB$
 - $A \rightarrow aA \mid BaC \mid aaa$
 - $B \rightarrow bBb \mid a \mid D$
 - $C \rightarrow CA \mid AC$

 $D \rightarrow \in$

(10 Marks)

- 7 a. Define Turing Machine and Turing Machine to accept $L = \{a^n b^n c^n \mid n \ge 1\}$. Show that string 'abc' is accepted. (12 Marks)
 - b. Define Posts Correspondence Problem (PCP) and solve the PCP for the following lists, given below:

i	Wi	X_{i}
1	1	111
2	10111	10
3	10	0

(08 Marks)

- 8 Write short notes on:
 - a. Recursive languages
 - b. Non-deterministic Turing Machine
 - c. Mutli-tape Turing Machines
 - d. Undecidability

(20 Marks)

* * * * *