

18AU32

Third Semester B.E. Degree Examination, July/August 2021 Engineering Thermodynamics

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions.

- 2. Use of thermodynamic data handbook and steam table is permitted.
- 1 a. Define a thermodynamics system, cycle, process, property and thermal equilibrium.
 - b. Using zeroth law of thermodynamics, explain the temperature concept. (10 Marks)
 (10 Marks)
- 2 a. Define work and heat. Mention the sign convention for both. Also give the comparison between them. (10 Marks)
 - b. Explain the following with sketch
 - (i) electrical work
 - (ii) paddle wheel work

(10 Marks)

(08 Marks)

- 3 a. Derive an expression for work done in a steady flow process. (08 Marks)
 - b. State Clausius and Kelvin Plank statements of second law of thermodynamics and prove that they are equivalent.

 (12 Marks)
- 4 a. Explain the following applications of SFEE
 - (i) steam turbine
 - (ii) nozzle
 - b. Distinguish between reversible and irreversible process. Also explain the factors that make process irreversible.

 (12 Marks)
- 5 a. Explain the principle of increase of entropy. (10 Marks)
 - b. With the help of TS diagram, derive an expression for work done for available and unavailable energy. (10 Marks)
- a. With the help of a neat sketch, explain how dryness fraction of a wet steam is measured by using combined separating and throttling calorimeter. (10 Marks)
 - b. Define a pure substance with example. Also draw a P-T diagram for pure substance and indicate all necessary points on it and also mention its importance. (10 Marks)
- 7 a. With neat sketches (including T-S and p-h diagrams), explain vapour compression refrigeration system. (10 Marks)
 - b. What is a refrigerant? Explain the desirable properties of refrigerants. (10 Marks)
- 8 a. The conditions of atmospheric air is 40°C DBT and 40% RH. The air is cooled to 25°C DBT. If the air supply to the system is 200 m³/min, find:
 - (i) Heat removed from air per minute
 - (ii) RH of air

Take air pressure to be 1.01325 bar.

(10 Marks)

b. With the help of schematic diagram and appropriate psychrometric chart, explain winter air conditioning system. (10 Marks)

- 9 a. Derive an expression for work done in a two stage compressor. (10 Marks)
 - b. Explain multi-stage compression with PV diagram. Also mention the advantages of multistage compressor over single stage compressor. (10 Marks)
- 10 a. A gas turbine set takes in air at 15°C and 1 bar, pressure ratio is 5. The maximum temperature is 600°C and it develops 220 KW. The turbine and compressor efficiencies are 0.85, determine:
 - (i) Actual overall efficiency
 - (ii) The weight of air circulated/min
 - (iii) Useful power developed per kg of air (10 Marks)
 - b. Explain the following with suitable sketch:
 - (i) Pulse jet
 - (ii) Rocket propulsion

(10 Marks)

2 of 2