Library Sixth Semester B.E. D. Appli

Semester B.E. Degree Examination, July/August 2021
Applied Gas Dynamics

Max. Marks:100

Note: 1. Answer any FIVE full questions.
2. Use of gas tables is permitted.

- 1 a. Derive an expression for the flow through converging diverging passages in terms of area and mach number. Explain under what circumstances the passages works as a nozzle and a diffuser.

 (10 Marks)
 - b. The pressure, temperature and Mach number at the entry of C flow passage are 2.45 bar, 26.5° C and 1.4 respectively. If the exit mach number is 2.5, determine for adiabatic flow of a perfect gas ($\gamma = 1.3$, R = 0.469kJ/kg.k)
 - i) Stagnation temperature
 - ii) Temperature and velocity of gas at exit
 - iii) The flow rate per square meter of the inlet.

(10 Marks)

- 2 a. Derive an expression for Prandtl-Meyer relation for a normal shock wave. (10 Marks)
 - b. The state of a gas ($\gamma = 1.3$, R = 0.469kJ/kg.k) upstream of a normal shock wave is given by the following data: $M_x = 2.5$, $P_x = 2$ bar $T_x = 275$ K. Calculate the mach number, pressure, temperature and velocity of the gas downstream of the shock. (10 Marks)
- 3 a. Draw a Fanno line and derive on expression for enthalpy in terms of stagnation enthalpy mass flow density and enthalpy. (10 Marks)
 - b. Air at $P_0 = 10$ bar, $T_0 = 400$ K, and supplied to a 50mm diameter pipe. The friction factor for the pipe surface is 0.002. If the Mach number changes from 3.0 at the entry to 1.0 at the exit diameter determine.
 - i) The length of the pipe ii) Mass flow rate.

(10 Marks)

- 4 a. With the help of a neat sketch, explain constant entropy and constant enthalpy line in Rayleigh flow. (10 Marks)
 - b. A combustion chamber in a gas turbine plan receives air at 350K, 0.55 bar and 75m/s. The air-fuel ratio is 29 and the calorific value of the fuel is 41.87 kJ/hg. Taking $\gamma = 1.4$, and R = 0.287kJ/kg°K for the gas, determine :
 - i) The initial and final Mach number
 - ii) Final pressure temperature and velocity of gas
 - iii) Percentage stagnation pressure loss in the combustion chamber
 - iv) The maximum stagnation temperature attainable.

(10 Marks)

- 5 a. With the help of relevant sketches, describe small perturbation theory and derive on expression for potential equation. (10 Marks)
 - b. Explain the various methods of solution of non-linear potential equations. (10 Marks)
- 6 With the help of expression and sketches describe,
 - i) Prandtl-Glauert transformation ii) Von-Karman rule for transonic flow.

(20 Marks)

- 7 a. With the help of a neat schematic diagram explain the shock wave boundary layer interaction. (10 Marks)
 - b. Describe the application of thin aerofoil theory to the following:
 - i) A flat plate ii) Demand shape aerofoil.

(10 Marks)

8 a. List the classification of wind tunnel and explain open circuit supersonic wind tunnel.

(10 Marks)

o. With the help of sketches, explain Interferometer technique of flow visualization. (10 Marks)

* * * * *