		GE	BG	S	S	212	M	

18BT52

Fifth Semester B.E. Degree Examination, July/August 2021 Chemical Reaction Engineering

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions.

- a. Derive rate equation for first order rate of reaction A → R both in terms of concentration and conversion.
 - b. The activation energy of a chemical reaction is 17982 cal/mol in the absence of a catalyst and 11980 cal/mol with the catalyst. By how many times with the rate of the reaction will grow in the presence of a catalyst, if the reaction proceeds at 25°C. (06 Marks)
 - c. At 25°C, the rate constant for the hydrolysis of ethyl acetate by NaOH is 6.5 $\ell/(\text{mol})$ (min) starting with concentration of base and ester of 0.03 mol/ ℓ of each. What proportion of ester will be hydrolysed in 10min. (06 Marks)
- 2 a. Compare differential and integralysis of reaction data of a reaction mixture. (04 Marks)
 - b. Derive rate equation for second order rate of reaction $A + B \rightarrow R$ in terms of conversion.
 - c. Decomposition of a gas in second order. When the initial concentration of gas is 5×10^{-4} mol/ ℓ , it is 40% decomposed in 50min. Calculate the value of rate constant.

(04 Marks)

- 3 a. Derive performance equation for mixed flow reactor and plug flow reactor. (10 Marks)
 - b. In an isothermal batch reactor the conversion of a liquid reactant A is 70% in 13min. Find the space time and space velocity necessary to effect thin conversion in a plug flow reactor and in a mixed flow reactor. Consider first order reaction.

 (10 Marks)
- 4 a. Derive the performance equation of equal size CSTR are connected in parallel. Explain space velocity and space time. (08 Marks)
 - b. An aqueous feed of A and B (400 ℓ /min) with $C_{A_0} = 100$ mmol/ ℓ and $C_{B_0} = 200$ mmol/ ℓ is to be converted into product in a plug flow reactor. The kinetics and stoichiometry of the reaction are given by A + B \rightarrow , -r_A = 200 C_A C_B (mol/ ℓ .min). Estimate the volume of plug flow reactor required to achieve 99% conversion of A to product. (12 Marks)
- 5 a. Explain the experimental method to determine residence time distribution (pulse input) and list out the properties of tracer. (08 Marks)
 - b. The data given below represent a continuous response to a pulse input into a closed vessel which is to be used as a chemical reactor. Calculate the mean residence time of fluid in the vessel. t̄ and tabulate and construct E curve.

t min	0	5	10	15	20	25	30	35
C_{pulse} (g/ ℓ) (tracer output conc ⁿ)	0	3	5	5	4	2	1	0

(12 Marks)

6 a. Discuss residence time distribution in mixed flow reactor.

- (12 Marks)
- b. Enumerate the relationship between the F and E curve in non ideal flow.

- 7 a. Compare Competitive and Non competitive inhibition. (08 Marks)
 - b. The Km value of an enzyme is known to be 0.01 mol/ ℓ . To measure the rate catalysed by enzyme, you measure the initial rate of the reaction and find that 10% of the initial substrate concentration is 3.4×10^{-4} mol/h. Assume that the reaction rate can be expressed by M -m kinetics. i) What is the reaction rate? ii) What is the concentration of substrate after 15 mins?
- 8 a. Compare LB plot and Eadie Hoftree plot and find k_m and V_{max} from graph. (08 Marks)
 - b. Determine the M M parameter V_m and k_{mn} for

$$urea + urease \xrightarrow[k_2]{k_3} NH_3 + CO_2 + E.$$

The rate equation is given as a function of concentration of urea.

Urea conc ⁿ Kmole/m ³ [S]	0.2	0.02	0.01	0.05	0.02	

(12 Marks)

- 9 a. Derive Monod model of growth kinetics with ideal reactor kinetics. (06 Marks)
 - b. Aerobic degradation of Benzoic acid by mixed culture of micro organisms is given by C_6H_5 COOH + aO_2 + $bNH_3 \rightarrow cC_5H_7NO_2$ + dH_2O + eCO_2 .
 - i) Determine the stoichiometric coefficient if RQ = 0.9.
 - ii) Determine the yield coefficients by $Y_{X/S} & Y_{X/O}$. (14 Marks)
- 10 a. Explain Primary and Secondary product formation kinetics. (10 Marks)
 - b. Write a short note on Growth Filamentous bacteria. (10 Marks)