STITUTE OF IE		GBG
LIBUSIN		
Date		

CBCS SCHEME

18BT41

Fourth Semester B.E. Degree Examination, July/August 2021 Stoichiometry

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions.

- 1 a. A mixture of CH₄ and C₂H₆ has density of 1 kg/m³ at 273 K and 101.325 KPa. Calculate the mole% and weight% CH₄ and C₂H₆ in the mixture. (06 Marks)
 - b. A natural gas has the following composition by volume. $CH_4 = 82\%$, $C_2H_6 = 12\%$, $N_2 = 6\%$. Calculate (i) Density of gas at 288 K and 101.325 kPa. (ii) Composition by weight % and (iii) Average molecular weight. (10 Marks)
 - c. Define Daltons and Amagots law.

(04 Marks)

- 2 a. A chemist is interested in preparing 500 ml of 1 Normal, 1 Molar and 1 Molal solution of H₂SO₄. Assuming the density of H₂SO₄ solution to be 1.075 g/cm³, calculate the quantities of H₂SO₄ to be taken to prepare the solution. (10 Marks)
 - b. An aqueous solution of K₂CO₃ is prepared by dissolving 43 kg of K₂CO₃ in 100 kg of water at 293 K. Calculate molarity normality and molality in solution. The density of solution is 1.3 kg/l. (10 Marks)
- 3 a. Soybean seeds are extracted with heaxane in batch extractor. The flaked seeds are found to contain 18.6% oil, 69% solid and 12.4% moisture by weight. At the end of the extraction process cake (meal) is separated from hexane oil mixture. The cake is analyzed to contain 0.8% oil, 87.7% solids and 11.5% moisture (by weight). Find the percentage recovery of oil.
 - b. It is desired to have a mixed acid containing 40% HNO₃, 43% H₂SO₄ and 17% H₂O by weight. Sulphuric acid of 98% by weight is readily available. Calculate (i) The strength of the nitric acid and (ii) Weight ratio of sulphuric acid to nitric acid. (10 Marks)
- 4 a. A feed to a continuous distillation column analysis by weight 28% benzene and 72% toluene. The analysis of the distillate shows 52 weight % benzene and 5% of benzene in bottom product. Calculate the amount of distillate and product per 1000 kg of feed per hour. Also calculate the percent recovery of benzene. (10 Marks)
 - b. Crude oil is analyzed to contain 87% carbon, 12.5% hydrogen and 0.5% sulphur (by weight). Calculate the net calorific value of crude oil at 298 K.
 Data: Gross calorific value of crude oil at 298 K (25°C) is 45071 kJ/kg oil. Latent heat of water vapour at 298 K is 2442.5 kJ/kg.
- a. A combustion chamber is fed with butane and excess air. Combustion of butane is complete. The composition of combustion of gases on volume basis is given below: $CO_2 = 9.39\%$, $H_2O = 11.73\%$, $O_2 = 4.70\%$, $N_2 = 74.18\%$. Find the % excess air used and mole ratio of air to butane used. (10 Marks)
 - b. In the production of chlorine gas by oxidation of HCl gas, air is used 30% in excess of that theoretically required. Based on 4 Kmol of HCl. Calculate (i) The weight ratio of air to HCl (ii) If oxidation is 80% complete, find the composition of the product stream on mole basis.
- 6 a. A Coke is known to contain 90% carbon and 10% non combustible ash (by weight)
 (i) How many moldes of oxygen are theoretically required to burn 100 kg of coke completely. (ii) if 50% excess air is supplied. Calculate the analysis.

 (10 Marks)

- b. Define the following:
 - Yield. (i)
- Selectivity.
- (iii) Percent excess.

- Stochrometric ratio. (iv)
- (v) Percent conversion.

(10 Marks)

A natural gas has the following composition on mole basis : $CH_4 = 84\%$, $C_2H_6 = 13\%$, $N_2 = 3\%$. Calculate the heat to be added to heat 10 kmol of natural gas from 298 K to 523 K. Using the heat capacity data given below: $C_p^{\circ} = a + bT + cT^2 + dT^3$.

	Gas	a	$b \times 10^3$	$c \times 10^6$	d×10 ⁹
	CH ₄	19.2494	52.1135	11.973	_11.3173
	C_2H_6	5.4129	178.0872	-67.3749	8.7147
	N ₂	29.5909	-5.141	13.1829	-4.968

Obtain an empirical expression relating the heat of the reaction and the temperature of the reaction for the following reaction:

$$SO_2(g) + \frac{1}{2}O_2(g) = SO_3$$

Using the same expression, calculate the heat of reaction at 773 K.

Use Data:

Component	ΔH°f,kJ/mol
SO ₃ (g)	-395720
$SO_2(g)$	-296810 ·

 $C_P^{\circ} = a + bT + cT^2 + dT^3 \left(KJ/KmolK \right)$

Component	a	$b \times 10^3$	c×10 ⁶	d×109
SO ₃	22.036	121.624	-91.867	24.369
SO ₂	24.771	62.948	-44.258	11.122
O_2	26.026	11.755	-2.343	-0.562

(10 Marks)

- A natural gas has the following composition on mole basis: $CH_4 = 84\%$, $C_2H_6 = 13\%$ and $N_2 = 3\%$. Calculate (i) the heat added to heat 2 kmol of gas mixture from 311 K to 533 K.
 - (ii) The heat to be added to heat 200 kg of natural gas from 311 K to 533 K.

Data: Cpm values in KJ/KmolK

(10 Marks)

	Pm	Annual Control of the
G	as $C_{Pm}^{\circ}(311-298)$	$C_{Pm}^{\circ}(533-298)$
C	H ₄ 36.0483	41.7800
C_2	2H ₆ 53.5240	67.4954
N	V ₂ 29.1317	29.3578

- b. Calculate the heat of formation of n-propanol liquid using the following data:
 - Standard heat of formation of CO_2 (g) = -393.51 kJ/mol.

Standard heat of formation of $H_2O(l) = -285.83 \text{ kJ/mol}$

Standard heat of combustion of n-propanol = $-285.83 \, \text{kJ/mol}$

(10 Marks)

Assume that experimental measurements for a certain organism have shown that cells can convert $\frac{2}{3}$ of substrate carbon to biomass.

$$C_6H_{12}O_6 + aO_2 + bNH_3 \rightarrow c[C_{4.4}H_{7.3}N_{0.86}O_{1.2}] + dH_2O + eCO_2$$

- Calculate the stoichiometric coefficients (i)
- Calculate yield coefficients Y_{X/S} and Y_{X/O2}

(10 Marks)

- Write a brief note on the historical developments of bioprocessing technology.
 - (10 Marks)
- a. Mention different unit operations involved in typical bioprocess with a flow sheet. (10 Marks)
 - With a neat process flow diagram, explain the production of ethanol.

(10 Marks)

* * * 2 of 2 * * *