

Third Semester B.E. Degree Examination, Jan./Feb. 2021 **Engineering Mathematics – III**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A

a. If $f(x) = |\cos x|$, expand f(x) as a Fourier series in the interval $(-\pi, \pi)$. (06 Marks)

*b. Obtain a half range Fourier cosine series for $x \sin x$ in the interval $(0, \pi)$. Hence show that $\frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} - \dots = \frac{\pi - 2}{4}.$ (07 Marks)

The following table gives the variations of periodic current over a period.

t sec	0	T	Т	T	2T	5TV	T
		6	3	2	3	6	
A amp	1.98	1.30	1.05	1.30	-0.88	-0.25	1.98

Show that there is a direct current part of 0.75 amp in the variable current and obtain the amplitude of the first harmonic. (07 Marks)

a. Find the Fourier transform of $f(x) = \begin{cases} 1 & \text{for } |x| < 1 \\ 0 & \text{for } |x| > 1 \end{cases}$. Hence evaluate $\int_0^\infty \frac{\sin x}{x} dx$.

b. Find the Fourier sine transform of $e^{-|x|}$, hence evaluate $\int_{0}^{\infty} \frac{x \sin mx}{1+x^2} dx$.

Find the Fourier transform of $f(x) = e^{-a^2}$. (07 Marks)

3 a. A tightly stretched string with fixed end points x = 0, and $x = \ell$ is initially in a position given by $y = y_0 \sin^3(\pi x / \ell)$. If it is released form rest from this position, find the displacement

b. Solve the differential equation $\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2}$ for the conduction of heat along a rod without radiation, subject to the following conditions:

(i) u is not infinite for $t \to \infty$ (ii) $\frac{\partial u}{\partial x} = 0$ for x = 0 and $x = \ell$ (iii) $u = \ell x - x^2$ for t = 0 between x = 0 and $x = \ell$.

(07 Marks)

c. Solve $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial v^2} = 0$ subject to the conditions, u(0, y) = 0, $u(\pi, y) = 0$, $u(x, \infty) = 0$ and $u(x, 0) = K \sin 2x.$ (07 Marks)

Fit a parabola $y = a + bx + cx^2$ to the following data:

(06 Marks)

-3.150 -1.390 0.620 2.880 5.378

Use the Graphical method to minimize, Z = 20x + 10y, subject to the constraints, $x + 2y \le 40$, $3x + y \ge 30$, $4x + 3y \ge 60$, $x \ge 0$, $y \ge 0$.

c. Use the Simplex method to maximize, Z = 3x + 4y, subject to the constraints $2x + y \le 40$, (07 Marks) $2x + 5y \le 180, x \ge 0, y \ge 0.$

10MAT31

PART - B

- 5 a. Using Newton Raphson method, find a real root of $x \sin x + \cos x = 0$ which is near $x = \pi$, correct to four decimal places. (06 Marks)
 - b. Solve the system of equations by relaxation method x + y + 54z = 110, 27x + 6y z = 85, 6x + 15y + 2z = 72. (07 Marks)
 - c. Using Rayleigh's power method, find largest eigen value and the corresponding eigen vector

of the matrix
$$A = \begin{bmatrix} 4 & 1 & -1 \\ 2 & 3 & -1 \\ -2 & 1 & 5 \end{bmatrix}$$
 taking initial vector as $[1, 0.8, -0.8]^T$. (07 Marks)

6 a. Estimate the values of f(22) and f(42) from the following table:

X	20	25	30 35	5 40	45
y = f(x)	354	332	291 26	0 231	204

(07 Marks)

b. Use Lagrange's formula to find the polynomial f(x), given:

X	0	2	3	6
y = f(x)	648	704	729	792

(07 Marks)

c. Use Simpson's 1/3 rule to evaluate $\int_{0}^{5} \frac{dx}{4x+5}$, dividing the range into 10 sub intervals.

(06 Marks)

- 7 a. Solve $25u_{xx} = u_{tt}$ at the pivotal points given u(0,t) = 0 = u(5,t); $u_t(x, 0) = 0$ and $u(x,0) = \begin{bmatrix} 20x, & 0 \le x \le 1 \\ 5(5-x), & 1 \le x \le 5 \end{bmatrix}$ by taking h = 1, compute u(x,t) for $0 \le t \le 1$. (07 Marks)
 - b. Solve $\frac{\partial^2 u}{\partial x^2} = 2 \frac{\partial u}{\partial t}$ subject to the conditions u(0, t) = 0 = u(4, t) and u(x, 0) = x(4 x) by taking h = 1. Find the values upto t = 5.
 - c. Solve $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ in the following square region with the boundary conditions as indicated in the Fig.Q7(c).

(06 Marks)

8 a. If $\overline{u}(z) = \frac{2z^2 + 3z + 12}{(z-1)^4}$, find the values of u_0 , u_1 , u_2 .

(07 Marks)

- b. Obtain the inverse z transform of $\frac{2z^2 + 3z}{(z+2)(z-4)}$. (06 Marks)
- c. Solve the difference equation, $y_{n+2} + 6y_{n+1} + 9y_n = 2^n$ with $y_0 = y_1 = 0$ using z-transform.

(07 Marks)