

GBGS SCHEME

17MN751

Seventh Semester B.E. Degree Examination, Jan./Feb. 2021 Mine Systems Engineering

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Explain in detail the scope, characteristics and phase of Mine System Engineering. (10 Marks)
 - b. Solve the following by Graphical method:

 $Max Z = 3000x_1 + 2000x_2$

subject to $x_1 + 2x_2 \le 6$

 $2x_1 + x_2 \le 8$

 $x_2 \leq 2$

 $x_2 - x_1 \le 1$

 $x_1, x_2 \ge 0$

(10 Marks)

OR

2 a. Explain the models in system analysis.

(10 Marks)

b. Solve following by Simplex method

 $Min Z = x_2 - 3x_3 + 2x_5$

subject to $3x_2 - x_3 + 2x_5 \le 7$

 $-2x_2 + 4x_3 \le 12$

 $-4x_2 + 3x_3 + 8x_5 \le 10$

 $x_2, x_3, x_5 \ge 0$

(10 Marks)

Module-2

3 a. Use dual simplex to solve the LPP

 $Min Z = 2x_1 + x_3$

subject to $x_1 + x_2 - x_3 \ge 5$

 $x_1 - 2x_2 + 4x_3 \ge 8$

 $x_1, x_2, x_3 \ge 0$

(10 Marks)

b. Explain the simulation techniques for equipment selection and production scheduling.

(10 Marks)

OR

4 a. Explain deterministic models. Probabilistic models and their applications to mining.

(10 Marks)

b. Write the dual of the following LPP and Solve it. Hence find the solution to the primal. Max $Z = 4x_1 + 2x_2$

subject to $x_1 + x_2 \ge 3$

 $x_1 - x_2 \ge 2$

 $x_1, x_2 \ge 0$

(10 Marks)

Module-3

5 a. Find initial feasible solution and then optimize by MODI method.

	Destination				
		P	Q	R	Supply
origin	A	5	7	8	70
	В	4	4	6	30
	С	3	7	7	50
	Demand	65	42	43	

(10 Marks)

b. Solve the following transportation problem

	D_1	D_2	D_3	D_4	D_5	supply
S_1	4	2	3	2	6	8
S_2	5	4	5	2	1	12
S_3	6	5	4	7	3	4
Demand	4	4	6_	8,	8	

(10 Marks)

OR

6 a. A company has 4 salesmen A, B, C and D. These salesmen are to be allotted 4 cities 1, 2, 3 and 4. The estimated profit per day for each salesman in each city if given in the following table:

	1	2	3	4
A	16	10	14	11
В	14	11	15	15
C	15	15	13	12
D	13	12	14	15

What is the optimum assignment which will yield maximum profit?

(10 Marks)

b. Solve the following travelling salesman job.

		10 City				
		14	2	3	4	5
	1	- 4	10	25	25	10
from oits	2	1	-	10	15	2
from city	3	8	9	-	20	10
A	4	14	10	24	12	,15
	5	10	8	25	27	-

(10 Marks)

Module-4

A project consists of the following jobs and their duration.

Activity Precedence Duration (in days)

A			10
В	A		9
B C D E F	A		6
D	В	1	7
E	В	Aller	5
F	C, D	* The second	5 9
G	C, D E, F	. Y	8

- i) Draw a network diagram
- ii) Identify the critical path
- iii) find the project duration
- iv) calculate the floats Total, Free, Independent and Interference
- v) Compute Slack time for each event.

(20 Marks)

OR

8 The three times estimates of a certain project are given below:

		i di terrenin proje	ber mie Brien dere ii.
Activity	Time optimist	Time Normal	Time Pessimistic
0 - 1	2	3	4
1 - 3	15	16	17
1 - 2	3	6	9
1 – 4	6	10	14
2 - 3	4	8	12
3 – 4	3	5	7
4 – 5	2	3	4

- i) Draw network, find the control path
- ii) If the scheduled time for the end event is equal to the earliest expected time of the last event, find the probability of completion of project work
- iii) If the scheduled time is 28 days, find the probability of completion of the project work.

(20 Marks)

Module-5

9 a. Explain the characteristics of Queuing system.

(10 Marks)

b. Solve the following (2×4) game by graphical method

(10 Marks)

OR

10 a. With the help of Kendall's Notation, explain the birth and death model.

(10 Marks)

b. Solve the following problem by using Dominance principle

		B_1	B_2	B_3	B ₄	B_5
	A_1	2	4	3	3	4
Dlover A	A_2	5	6	3	7	8
Player A	A_3	6	7	9	8	7
	A_4	4	2	8	4	3

(10 Marks)