

15EE35

Third Semester B.E. Degree Examination, Jan./Feb.2021 Digital System Design

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Define the following terms with an example:
 - (i) Minterm (ii) Canonical product of sums.

(04 Marks)

- b. Expand $f_1(x, y, z) = [x + \overline{xz}(y + \overline{z})]$ into minterms and $f_2(a, b, c) = (a + b)(b + c)(\overline{c} + a)$ into maxterms. (06 Marks)
- c. Simplify the following functions using K-map:
 - (i) $P = f(a,b,c,d) = \sum m(2,3,4,5,13,15) + \sum d(8,9,10,11)$
 - (ii) $R = f(a,b,c,d) = \prod M(0,1,2,5,8,9,10)$

(06 Marks)

OR

2 a. Find a minimal sum for the following Boolean function using Quine-McCluskey minimization technique

 $f(w, x, y, z) = \sum m(2, 4, 5, 9, 12, 13).$

(08 Marks)

b. Simplify the following function using MEV technique and realize the simplified function using basic gates.

 $f(a, b, c, d) = \sum m(2, 4, 5, 10, 11, 14) + \sum d(7,8,9,12,13,15)$

Consider 'd' as a map entered variable.

(08 Marks)

Module-2

- 3 a. With the aid of block diagram, clearly distinguish between a decoder and encoder. (04 Marks)
 - b. Implement full adder using 3:8 decoder with active low outputs.

(06 Marks)

c. Design 5: 32 line decoder using one 2: 4 and four 3: 8 decoders which has the active low enable inputs and active low outputs. Explain the operation. (06 Marks)

OR

- 4 a. Implement $f(a, b, c, d) = \sum m(0, 1, 5, 6, 7, 9, 10, 15)$ using
 - (i) 16:1 MUX with a, b, c and d as select lines.
 - (ii) 8:1 MUX with b, c and d as select lines.(iii) 4:1 MUX with c and d as select lines

(08 Marks)

b. Design two bit binary comparator and implement with suitable logic gates.

(08 Marks)

Module-3

- 5 a. Explain the operation of gated SR latch with a logic diagram, logic symbol and truth table.
 (08 Marks)
 - b. Explain the working of a master-slave JK flip-flop with the help of logic diagram function table, logic symbol and timing diagram. (08 Marks)

OR

6 a. Differentiate between synchronous counter and asynchronous counter.

(04 Marks)

b. Derive the characteristic equation of D and T flip flop.

(04 Marks)

c. Explain 4-bit universal shift register with the help of logic diagram, mode control table.

(08 Marks)

Module-4

a. Explain the Mealy model of a sequential circuit.

(06 Marks)

b. A sequential circuit has one input and one output. The state diagram as shown in Fig. Q7 (b). Design the sequential circuit with J-K flip-flop. (10 Marks)

Fig. Q7 (b)

OR

8 a. Explain the Moore model of sequential circuit.

(06 Marks)

b. Design a synchronous counter using J-K flip-flops to count the sequence, 0, 1, 2, 4, 5, 6, 0, 1, 2,.... Use state diagram and state table.

(10 Marks)

Module-5

- 9 a. Mention the types of HDL descriptions. Explain data flow and behavioural descriptions with an example. (10 Marks)
 - b. Differentiate the VHDL and verilog.

(06 Marks)

OR

- 10 a. Explain the following:
 - (i) Signal declaration and assignment statements.
 - (ii) Concurrent signal assignment statements.
 - (iii) Constant declaration and assignment statements.

(12 Marks)

b. Explain the vector data type with an example.

(04 Marks)