ADAG GATTETITE

		GDGD SUISME	
USN			5AE832
Eighth Semester B.E. Degree Examination, November 2020			
		Boundary Layer Theory	
Tin	ne: 3	hrs. Max. Max. Max. Max. Max. Max. Max. Max	arks: 80
		Note: Answer any FIVE full questions irrespective of modules.	
		Module-1	
1	a.	Give the physical importance of the following non dimensional parameter	
		(with suitable equations) i) Reynold's number ii) Prandtl number.	(08 Marks)
	b.	Define the aerofoil and explain the flow round a circle with suitable equation.	(08 Marks)
2	a.	Define with suitable equations:	
		i) Velocity of the fluid particle	
		ii) Acceleration of the fluid particleiii) Newton's law of viscosity.	(08 Marks)
	b.	Establish the equation of continuity due to Euler's method with usual notation.	(08 Marks)
		Module-2	
3	a.	Explain coquette flow with a reference to non-zero pressure gradient taking	ng suitable
	į.	equations and suitable diagram.	(08 Marks)
	b.	Describe an unsteady flow between plates with bottom injection and top section.	(08 Marks)
4	a.	Define the stagnation point flow and state equations for: i) Velocity distribution ii) Pressure distribution, in the case of two dimensiona	l flows.
			(08 Marks)
	b.	Establish the equation for velocity distribution in Poiseuillel's flow.	(08 Marks)
		Module-3	
5	a.	Draw a laminar boundary layer and derive the equation in it.	(08 Marks)
	b.	Derive displacement thickness and momentum thickness for a boundary layer	(08 Marks)
		dimensional flow.	(00 Marks)
		D. internal and the second	(10 Marks)
6	a. b.	Derive momentum integral equation. Define: i) Thermal boundary layer ii) Forced convection.	(06 Marks)
	υ.	Module-4	
7	a.	Explain Blausius solution for flat plate.	(08 Marks)
1	b.	Demonstrate similarity solution to boundary layer.	(08 Marks)
8	a.	What is Reynold's analogy?	(04 Marks)
	b.	Derive Falkner – Skan differential equation with a reference boundary layer ed	juation for a
		plane steady incompressible flow.	(12 Marks)

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

turbulence.

b.

10

Explain the following: i) Temporal instability ii) Spatial instability. Write short notes on: i) Schlieren methods ii) Pressure probe. (08 Marks)

(08 Marks)

(08 Marks)

(08 Marks)

Module-5

Explain time averaging and fluctuation in a neat diagram.

Draw a neat diagram of hot wire anemometer and explain the principle of measurement of